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Abstract
Fictitious play (FP) is one of the most fundamen-
tal game-theoretical learning frameworks for com-
puting Nash equilibrium in n-player games, which
builds the foundation for modern multi-agent learn-
ing algorithms. Although FP has provable conver-
gence guarantees on zero-sum games and potential
games, many real-world problems are often a mix-
ture of both and the convergence property of FP
has not been fully studied yet. In this paper, we
extend the convergence results of FP to the combi-
nations of such games and beyond. Specifically, we
derive new conditions for FP to converge by lever-
aging game decomposition techniques. We further
develop a linear relationship unifying cooperation
and competition in the sense that these two classes
of games are mutually transferable. Finally, we an-
alyze a non-convergent example of FP, the Shapley
game, and develop sufficient conditions for FP to
converge.

1 Introduction
Solving Nash equilibrium (NE) [Nash, 1950; Deng et al.,
2021] in multi-player games has become a central interest
in a variety of fields including but not limited to economics,
computer science and artificial intelligence. Among the many
NE solvers, fictitious play (FP) [Brown, 1951] is one of the
most well-known learning algorithms. In FP, at each itera-
tion, each player takes a best response to the empirical aver-
age of the opponent’s previous strategies. It is guaranteed
that FP dynamics converge to an NE on two-player zero-
sum games [Robinson, 1951] and potential games [Mon-
derer and Shapley, 1996a; Monderer and Shapley, 1996b;
Mguni et al., ], with no need to access the other player’s utility
information. Thus, the design principle of FP (i.e., the itera-
tive best-response dynamics) has inspired many other approx-
imation solutions to NE. For example, in solving two-player
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zero-sum games, two representative methods are double or-
acle (DO) [McMahan et al., 2003; Dinh et al., 2021] and
policy space response oracle (PSRO) [Lanctot et al., 2017;
Feng et al., 2021; Perez-Nieves et al., 2021; Liu et al., 2021]
where a subgame NE is adopted as the best-responding target
and multi-agent reinforcement learning (MARL) algorithms
[Yang and Wang, 2020] are applied to approximate the best
response. Similarly, Heinrich et al. [2015] combined ficti-
tious self-play with deep RL methods and demonstrated re-
markable performance on Leduc Poker and Limit Texas Hol-
dem at real-world scale. Besides its inspirations for modern
MARL algorithms [Muller et al., ; Yang et al., 2018], FP it-
self has been shown to have good performance of converging
to approximate equilibria on some more general games [Can-
dogan et al., 2013; Ostrovski and van Strien, 2014], and is
still a popular interest of research to the communities of both
game theory and machine learning [Swenson et al., 2018].

However, the assumptions of zero-sum or potential games
are rather limited. As Dasgupta and Collins [2019] men-
tioned, adversarial learning has been modeled as a two-player
zero-sum game, but chances are that the learner’s loss may
not equal the adversary’s utility. Similar as zero-sum games
characterizing full competition, potential games can be re-
garded as full cooperation. While in most real applications,
there are both competition and cooperation among players.
For example, in a market, sellers for the same type of goods
are not only players competing for the same group of buyers,
but also collaborators attracting more buyers to the market.
More general results for FP to converge on combinations of
competition and cooperation are needed, considering its cur-
rent limited positive convergence results.

Our techniques and results. We leverage two game de-
composition techniques, Hodge Decomposition [Candogan
et al., 2011] and Strategic Decomposition [Hwang and Rey-
Bellet, 2020], to study the convergence of FP on mixtures of
games modelling full competition and cooperation. The idea
of game decomposition is to treat the set of games as a linear
space and decompose a game into several simple basis games,
whose NEs are easy to characterize. Interestingly, in both de-
compositions, a game is made up of a competitive part, a co-
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operative part and a trivial part. It is known that FP converges
on all these basis games. Combining two decompositions en-
ables us to find latent relationships among games and study
how a game’s dynamics is influenced by each component. We
note that, however, there will be no convergence guarantee for
FP on arbitrary combinations of these basis games, since they
span the whole game space, and FP has been proved to fail to
converge on all games [Shapley, 1964].

The contributions of this paper are as follows,

• We prove that FP converges on any linear combination
of a harmonic game (competition) and a potential game
(cooperation), so long as they sum to be strategically
equivalent to a zero-sum game or to an identical interest
game. The conditions are polynomial-time checkable.

• We show that, utilizing a linear parameter, games lying
in these two equivalent classes can be transformed from
one class into another.

• We give a new analysis of the non-convergence of
Continuous-time FP (CFP) on the classic example, the
Shapley game, from the view of dynamical system and
game decomposition, and provide a sufficient condi-
tion about initial conditions for it to converge on linear
combinations of zero-sum games and identical interest
games.

Since many machine learning methods are built on FP, the
fact that FP converges in larger game classes provides a guar-
antee for them to be applied to more real situations safely.
We argue that the classes of games considered in our paper
are of wide interest and include many important games like
load balancing games [Vöcking, 2007], cost and market shar-
ing games with various distribution rules [Gopalakrishnan et
al., 2011], and strictly competitive games [Adler et al., 2009].

Related work. Our analysis is mainly based on the tech-
niques of game decomposition. To make the paper self-
contained, we discussed related work on game decomposi-
tions here, and put the full related work in the Appendix.

Candogan et al. [2011] and Hwang and Rey-Bellet [2020]
studied decompositions for finite games. Helmholtz Decom-
position [Balduzzi et al., 2018], on the other hand, studied
the decomposition of continuous games into potential games
and Hamiltonian games. But few works are about making
use of decomposition to analyze games. To the best of our
knowledge, utilizing game decomposition techniques to ana-
lyze game dynamics is still a new area. Tuyls et al. [2018] de-
composed an asymmetric bimatrix game, where two players
have the same number of pure actions, into two one popula-
tion games, from the evolutionary game theory point of view.
Cheung and Tao [2021] utilized the canonical decomposition
of decomposing a game into a zero-sum game and an identical
interest game to study the chaotic behaviors of general-sum
games under multiplicative weight dynamics. We study the
convergence properties of fictitious play. Instead of checking
which component dominates the other, we model the mixture
of two basis games by linear combinations and see how the
game patterns evolve when the parameter changes smoothly
and continuously, which can also be seen as a linear homo-
topy from the view of homotopy method.

Paper organization. Section 2 introduces necessary pre-
liminaries. Section 3 shows our main convergence results.
The illustration of transformations between cooperation and
competition is shown in Example 1 and Section 3.2. Section
4 analyzes the Shapley game and give a condition for CFP to
converge. Section 5 summarizes and give future work.

2 Background
We use bold lowercase characters to denote vectors. 1n and
0n denote n-dimensional all-one and all-zero vectors, respec-
tively, ei the vector the ith coefficient of which is 1 and all
other coefficients are 0. [n] denotes the set {1, . . . , n}.

2.1 Games and Nash Equilibrium
We focus on two-player bimatrix games. We use bold upper-
case letters to denote games and uppercase letters to denote
matrices: A game G is given in the bimatrix form (A,B),
where the first (second) matrix in the pair denotes the pay-
off matrix of player 1 (player 2, respectively). Both matrices
have dimension m × n, i.e., player 1 (player 2) has m (n,
respectively) actions.

We call an action i a pure strategy, and a distribution over
all actions a mixed strategy. Denote the set of all mixed
strategies as ∆m, where ∆m := {p ∈ Rm : pi ≥ 0, ∀i ∈
{1, . . . ,m},

∑m
i=1 pi = 1}. Given a game G = (A,B) and

two mixed strategies p ∈ ∆m, q ∈ ∆n, player 1 (player 2)’s
utility is p>Aq (p>Bq, respectively). We use BRi(·,G) to
denote player i’s best response set:

BR1(q,G) = arg max
i∈[m]

(Aq)i,BR2(p,G) = arg max
j∈[n]

(p>B)j .

We omit the last variable of BRi when there is no confusion.
A Nash equilibrium (NE) is a pair of mixed strategies such

that no one wants to deviate with the other’s strategy fixed:

Definition 1. Strategy pair (p∗,q∗) is a Nash Equilibrium
(NE) of game G = (A,B) if for any p ∈ ∆m and q ∈ ∆n,

p∗>Aq∗ ≥ p>Aq∗, p∗>Bq∗ ≥ p∗>Bq

We call an NE pure when strategies in the NE are all pure
strategies, and mixed otherwise.

Let G be the set of all bimatrix games. Given games G1 =
(A1, B1), G2 = (A2, B2) ∈ G, define their addition to be
G1 + G2 := (A1 +A2, B1 +B2). Given a scalar α ∈ R
and a game G = (A,B), define the scalar multiplication to
be αG = (αA,αB). Now G is a linear space and we can
consider the combinations and decompositions of games.

2.2 Basic Games and Relations among Games
We introduce subspaces of G that are basic in this paper.

Definition 2. Define the following subspaces of G
1. Identical interest games, I := {(A,B) ∈ G : A = B}
2. Zero-sum games, Z := {(A,B) ∈ G : A+B = 0}
3. Non-strategic games, E :=

{
(A,B) ∈ G : A = 1mu>,

B = v1>n ,u ∈ Rn,v ∈ Rm
}

4. Normalized games, N := {(A,B) ∈ G :
∑m
j=1Aji =

0, ∀ i ∈ [n];
∑n
j=1Bij = 0, ∀ i ∈ [m]}
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Identical interest games and zero-sum games are important
games in game theory and machine learning, especially in
multi-agent learning and adversarial learning, with the former
modeling team cooperation and the latter modeling competi-
tion. In a non-strategic game, a player’s utility only depends
on the other player’s strategy, and is not affected by her own
strategy at all. Thus any strategy pair of the game is an NE.

Noticing that adding a non-strategic game to a game does
not change its original game structure, e.g., the best response
structure and NEs, one can define an equivalence relation be-
tween two games if they only differ by a non-strategic game
(also called strategic equivalence by Hwang and Rey-Bellet
[2020]), and mainly focus on the normalized games. In a nor-
malized game, the sum of one player’s utilities, with her own
strategy changing and the other’s fixed, equals to zero.

Different from Hwang and Rey-Bellet [2020], we call two
games G and G′ are additionally equivalent if G′ = G+E
for some E ∈ E . Here we introduce a more general equiva-
lence among games.
Definition 3. Game G = (A,B) is strategically equivalent
to game G′ = (A′, B′), if there exist two positive constants
α, β ∈ R+ and a non-strategic game E ∈ E such that

(A′, B′) = (αA, βB) + E, for some E ∈ E
While additional equivalence is a special case of strategic

equivalence, the notion of additional equivalence is compat-
ible with the operations of the space. Lemma 1 shows that
both equivalences preserve the best response structure.
Lemma 1. Given two strategically equivalent games G and
G′, we have
BR1(q,G) = BR1(q,G′), BR2(p,G) = BR2(p,G′)

We use S(·) (A(·)) to denote the set of games that are
strategically (additionally) equivalent to the games in ·. In
particular, we call games in S(Z) (S(I)) zero-sum equiva-
lent games (identical interest equivalent games, respectively).

2.3 Discrete-time Fictitious Play (DFP)
In fictitious play, each player regards the empirical distribu-
tion over the other player’s actions as her belief towards the
other player’s mixed strategy, and acts myopically to maxi-
mize her utility in the next step. Specifically, let p(t) ∈ ∆m

and q(t) ∈ ∆n be the beliefs of two players’ strategies at
time step t, then the sequence (p(t),q(t)) is a discrete-time
fictitious play (DFP) if:

(p(0),q(0)) ∈ ∆m ×∆n

and for all t:

p(t+ 1) ∈ t

t+ 1
p(t) +

1

t+ 1
BR1(q(t)),

q(t+ 1) ∈ t

t+ 1
q(t) +

1

t+ 1
BR2(p(t))

(1)

With a specific tie-breaking rule, we can regard BRi(·) as a
vector and the inclusion above becomes equality.

In the following sections, DFP is simply called FP. With
abuse of notation, the term FP refers to the dynamic rules in
Eqn. (1) or the sequences generated by the rules, according to
the context. We say a game has fictitious play property (FPP)
if every FP sequence of it converges. Noticing that games
with the same best response structure enjoy the same FPP.

3 Convergence on the Combinations of
Cooperation and Competition

In this section, we formally present our first two main results.
In Section 3.1, we introduce two game decompositions, and
present our results on the linear combinations of basis games.
In Section 3.2, we illustrate how the players’ relationships
transform with respect to the linear parameter.

3.1 Proof of Convergence by Game
Decompositions

Before formally stating our first result, we present two impor-
tant game decompositions:
Theorem 1 (Strategic Decomposition). [Hwang and Rey-
Bellet, 2020] The space of games G can be decomposed as:

G = (I ∩ N )⊕ (Z ∩N )⊕ B.

where B := (I + E) ∩ (Z + E) is the set of zero-sum equiv-
alent potential games, ⊕ denotes the direct sum of two linear
subspaces.
I + E is the space of games additionally equivalent to iden-

tical interest games, and is actually the space of all potential
games. The equivalence between this definition and the one
using potential function is shown in Appendix. As shown by
Hwang and Rey-Bellet [2020], a two-player zero-sum equiv-
alent potential game B ∈ B has the form

B = (u1>n ,1mv>) + E =
(
u1>n + 1mx>,1mv> + y1>n

)
(2)

for some u,y ∈ Rm, v,x ∈ Rn and E = (1mx>,y1>n ) ∈ E .
That is, a player’s utility is not affected by the other’s strategy,
which can be seen as the opposite of non-strategic games.
Each player has a dominant strategy, and a pure NE exists.
Theorem 2 (Hodge Decomposition). [Candogan et al.,
2011] The space of games G can be decomposed as:

G = P ⊕H⊕ E .

where P := N ∩ (I + E) denotes normalized potential
games, and H := {(A,B) ∈ N : mA+ nB = 0} normal-
ized harmonic games. P + E is the set of all potential games.
H+ E is the set of all harmonic games.

The definition of normalized harmonic games tells that
they are like zero-sum games. Thus both decompositions
show that any bimatrix game is made up of a fully cooper-
ative component, a fully competitive component and a com-
ponent that either has both features or is trivial. Combining
the decompositions and equivalences makes us able to study
bimatrix games from multiple angles.

Since the basis games in the decompositions generate the
whole game space, FP will not converge on all combinations
of them (a famous example of non-convergence is the Shap-
ley game [Shapley, 1964]). Notice that on all basis games,
however, FP will converge: results on zero-sum games and
potential games are known [Monderer and Shapley, 1996a;
Robinson, 1951]. When the tie-breaking rule is decided, best
responses in FPs are always the same on games in B and E
— a dominant strategy in B ∈ B and the prescribed strategy
by the tie-breaking rule in E ∈ E — thus FP will converge.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

181



[−14, 21 −20, 30 −14, 21
18,−27 14,−21 2,−3
−18, 27 0, 0 −16, 24

]
=

(
2

[−7 −10 −7
9 7 1
−9 0 −8

]
, 3

[
7 10 7
−9 −7 −1
9 0 8

])
+

[
0, 0 0, 0 0, 0
0, 0 0, 0 0, 0
0, 0 0, 0 0, 0

]

Figure 1: Game G ∈ S(Z): G = (2Z,−3Z), where Z ∈ Rm×n.

In Appendix, we provide a simple proof to show that FP also
converges on harmonic games.

It is then interesting to study under what conditions do
combinations of these games preserve FPP. By first conduct-
ing experiments on mixtures of normalized harmonic games
and normalized potential games, we find out that if they are
components of a zero-sum game, then FP converges on any
linear combination of them. The following theorem gives the
formal explanation for this phenomenon and provide a more
general condition for FP to converge: if their sum is either
fully competitive or cooperative, then any linear combination
of these games has FPP. Recall that the set S(·) is the set of
games strategically equivalent to games in · , then we have:

Theorem 3. For any game G ∈ S(Z) ∪ S(I) with Hodge
Decomposition,

G = P + H + E

where P ∈ P , H ∈ H, E ∈ E . Then for any λ ∈ R, game
λP + (1− λ)H has FPP.

We note that the decomposition of a game that is either
strategically equivalent to a zero-sum game or to an identical
interest game is non-trivial: It can have all game components,
since a game lying in these two classes does not necessarily
belong to any basis game class. One can refer to the decom-
position of the game in Example 1 in Appendix C.

To prove Theorem 3, we first give a necessary lemma.
Lemma 2 states the properties of zero-sum equivalent poten-
tial games; it shows that sets S(I) and S(Z) are closed under
the operation of adding a zero-sum equivalent potential game.

Lemma 2. If G ∈ S(Z)∪S(I), then G+B ∈ S(Z)∪S(I)
for any B ∈ B.

With Lemma 2, we can now prove Theorem 3. The conver-
gence of games λP+(1−λ)H are actually the trade-offs be-
tween cooperation (P) and competition (H). Though the de-
compositions of games considered are non-trivial, by further
decomposing the components using the other decomposition,
we find interesting relations among components of different
decompositions, which is a key technique in our proof.

Proof sketch of Theorem 3. We show the proof sketch of the
case when G ∈ S(Z) here and the full proof is in Appendix.
Let P = I+E = (I, I)+E, where I ∈ I, E ∈ E , I ∈ Rm×n.
H can be formulated as (nZ,−mZ) for some Z ∈ Rm×n.

When G = (Z ′,−αZ ′)+E′ ∈ S(Z), where Z ′ ∈ Rm×n,
α > 0, E′ ∈ E , then we have

(I, I) + (nZ,−mZ) = (Z ′,−αZ ′) + E′ −E

By letting E′ − E = (E1, E2), where E1, E2 ∈ Rm×n sat-
isfies E1 = 1mu>, E2 = v1>n , for some u ∈ Rn, v ∈ Rm,

we have I and Z represented as linear combinations of Z ′,
E1 and E2. Thus for any λ ∈ R,

λP + (1− λ)H = ((a1(λ)Z ′, b1(λ)Z ′)

+ (a2(λ)E1 + a3(λ)E2, b2(λ)E1 + b3(λ)E2) + λE

By the definition of non-strategic games and Eqn. (2),
(a2(λ)E1 + a3(λ)E2, b2(λ)E1 + b3(λ)E2) ∈ B is a zero-
sum equivalent potential game. When a1(λ)b1(λ) 6= 0,
game (a1(λ)Z ′, b1(λ)Z ′) ∈ S(Z) ∪ S(I). By Lemma 2,
λP + (1− λ)H ∈ S(I) ∪ S(Z) and thus has FPP.

When a1(λ)b1(λ) = 0, λP+(1−λ)H has one payoff ma-
trix in the form of x1>n + 1my> for some x ∈ Rm, y ∈ Rn.
The player with this kind of payoff matrix has a dominant
strategy. During each time step of FP, the player will choose
her dominant strategy, and the other best responds to that
dominant strategy. The sequence will converge to a pure NE.

Following Theorem 3, define D to be a new set of games,
in which one of the payoff matrices has the form of x1>n +
1my> for some x ∈ Rm, y ∈ Rn, then:

Corollary 1. For any game G ∈ D with Hodge Decomposi-
tion

G = P + H + E

where P ∈ P , H ∈ H, E ∈ E . Then for any λ ∈ R, game
λP + (1− λ)H has FPP.

Conditions in Theorem 3 and Corollary 1 can be checked
in linear time, e.g. through the method by Heyman [2019].

3.2 Transformations from Cooperation to
Competition

We use one example to show the non-trivial decompositions
of games considered in Section 3.1 and how the proportions
of the cooperative component and the competitive component
influence the game, when λ ∈ [0, 1] ranges from 0 to 1.

Example 1. A game in S(Z) is shown in Figure 1. We de-
compose this game using Hodge Decomposition into three
components P ∈ P , H ∈ H and E ∈ E , the details of
which are in Appendix C, and compute the game G(λ) =
λP + (1 − λ)H. The changes of NE which FP converges to
with λ changing from 0 to 1 is shown in Figure 2. In Figure
2a, the strategy trajectories are presented in the mixed strat-
egy simplex: each vertex of the triangle is an action vi. We
draw mixed strategy p = (p1, p2, p3) ∈ ∆3 on the convex
combination of the vertices,

∑3
i=1 pivi. The green dots rep-

resent the strategy trajectory of player 1, and the blue dots
that of player 2. The star sign denotes the strategies when
λ = 1. We set the step length to be 0.001. For each λ,
we run FP starting from (v1,v1) for 500,000 rounds. The
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• Player 1

• Player 2

(a) Equilibrium changes in one strategy simplex.

0 0.5 5/6 1.0
0

0.5

1.0 action 1
action 2
action 3

(b) Equilibrium strategy changes of player 1.

Figure 2: How Nash equilibrium of game λP + (1 − λ)H changes as the linear parameter λ increases from 0 to 1. (a) The changes of
equilibrium strategies of both players are shown in one strategy simplex. The black arrows tell the direction of the changes. The stars denote
the stopping point. When λ is small, the harmonic part dominates. The game shows more competitive patterns, as the equilibrium strategies
are mixed in the interior of the strategy simplex. As λ gets larger, the support of equilibrium strategies shrinks. (b) The changes of player
1’s strategy in a line chart. In the green area (when λ < 5

6
), the game is zero-sum equivalent. In the yellow area (when λ > 5

6
), the game is

identical interest equivalent. When λ exceeds 5
6

, the game is more cooperative, and the equilibrium stays pure.

strategy trajectories of both players start at the center of a
strategy simplex, i.e. the uniform equilibrium of harmonic
games [Candogan et al., 2011]. As λ increases, the strate-
gies move towards the boundaries, and their supports become
small. When λ is large enough, they reach a pure NE (nodes
with stars), which is typical of potential games, and no longer
moves. Figure 2b shows the changes of player 1’s strategies
in line chart.

We utilize the algorithm by Heyman [2019] to decide when
will G(λ) ∈ S(Z). When λ < 5

6 , The competitive part takes
over, G(λ) ∈ S(Z). When λ > 5

6 , G(λ) ∈ S(I). When
λ = 5

6 , G(λ) 6∈ S(Z) ∪ S(I) but belongs to D instead. We
draw the point λ = 5

6 on Figure 2b. One can find out that
when λ is less than but close to 5

6 , the equilibrium for FP
to converge to already becomes pure and never moves even
when λ exceeds 5

6 .
When λs in the above examples reach the threshold, the

games enter D instead of S(Z) ∩ S(I). We argue that
games in D show the same dynamic patterns with games in
S(Z) ∩ S(I). Specifically, we show that S(Z) ∩ S(I) =
A(Z) ∩ A(I) = B, and players in games belonging to B
have dominant strategies. In both classes of games, the play-
ers will choose a determined strategy and the dynamics con-
verge to the corresponding pure NE directly.
Proposition 1. S(Z) ∩ S(I) = A(Z) ∩ A(I) = B.

The process of transforming from zero-sum equivalent
games to identical interest equivalent games with the changes
of a linear parameter can be seen as an instinct feature of
these two games, and a bridge linking non-cooperative game-
theoretic view of cooperation and competition. Using a linear
parameter that changes with time, we may be able to model
how the relationships of players evolve in real world. Further-
more, when λ is small enough, we can regard the potential
part in λP + (1− λ)H as a small perturbation added up to a
harmonic game. Our result shows that when the perturbation
satisfies certain conditions, the game with perturbations can
still be regarded as a zero-sum equivalent game.

4 Analysis on the Non-convergence Example
In this section, we use game decompositions to give a new
analysis of the classic non-convergent example of FP, the
Shapley game [Shapley, 1964]. We consider Continuous-
time Fictitious Play (CFP), a useful tool to give insights into
DFP’s dynamics. we present the Shapley game and introduce
a novel function, the best response utility function. We give
two results about initial conditions based on this function.

4.1 Continuous-time Fictitious Play (CFP)
DFP can be regarded as an update procedure for players’ em-
pirical beliefs, where the update rate is 1. Now consider
the corresponding continuous version, by rescaling the rate
to δ > 0 and letting δ → 0. This equivalently defines the
derivatives of the sequence (p(t),q(t)) with respect to t : 1

ṗ(t) =
BR1(q(t))− p(t)

t
, q̇(t) =

BR2(p(t))− q(t)

t
. (3)

The detailed derivation from DFP to CFP is in Appendix D.
For CFP, we define another stable state following the stud-

ies on dynamical systems.
Definition 4 (Cycle). A CFP follows a cycle C if there is an
integer K > 0 and a sequence of K pairs of pure strategies:

C = {(i1, j1) , . . . , (iK , jK)}
s.t., ∃T > 0, ∀t > T , (BR1(q(t)),BR2(p(t))) of the play
takes the values (i1, j1) , . . . , (iK , jK) periodically.

It is a special case that a CFP converges to an NE when
it follows a cycle. So far, all the known convergence re-
sults of CFP and DFP are the same. Intuitively, when dis-
crete time step tends to +∞, so as the denominator of Eqn.
(1), the changes of (p(t),q(t)) at each time step become in-
finitesimal, and will resemble the derivatives defined by Eqn.
(3). Thus, CFP can provide useful insights into original DFP,
though the relationships of two dynamics are still not clear.

Now we study the conditions that a CFP with some initial
conditions converges to an NE.

1One can further rescale the variable t to t′ = ln t (for t > 0) to
eliminate the the denominator.
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[
0, 0 2, 1 1, 2
1, 2 0, 0 2, 1
2, 1 1, 2 0, 0

]
︸ ︷︷ ︸

the Shapley game

=

[−1,−1 0.5, 0.5 0.5, 0.5
0.5, 0.5 −1,−1 0.5, 0.5
0.5, 0.5 0.5, 0.5 −1,−1

]
︸ ︷︷ ︸

Potential game
Normalized identical interest game

+

[
0, 0 0.5,−0.5 −0.5, 0.5

−0.5, 0.5 0, 0 0.5,−0.5
0.5,−0.5 −0.5, 0.5 0, 0

]
︸ ︷︷ ︸

Harmonic game
Normalized zero-sum game

+

[
1, 1 1, 1 1, 1
1, 1 1, 1 1, 1
1, 1 1, 1 1, 1

]
︸ ︷︷ ︸

Non-strategic game
Zero-sum equivalent potential game

Figure 3: Hodge Decomposition and Strategic Decomposition of the Shapley game. It is a coincident that they are the same.

4.2 The Shapley Game
The Shapley game, proposed by Shapley [1964], is a counter-
example of FP’s convergence: except under certain initial
conditions, FP does not converge to NE. Figure 3 shows its
payoff matrices and the two decomposition results.

When two players’ initial strategies are different, e.g.
(1, 2), FP follows cycle C1 = {(1, 2), (1, 3), (2, 3), (2, 1),
(3, 1), (3, 2)}, but does not converge: both players’ strate-
gies will change periodically but never reach any fixed point.
When their initial strategies are the same, e.g. (1, 1), FP fol-
lows another cycle C2 = {(2, 2), (1, 1), (3, 3)}, and tends to
an NE (p,q), where p = q = ( 1

3 ,
1
3 ,

1
3 ).

4.3 The Best Response Utility Function
We further consider more general combinations of the decom-
posed components G(λ) = λP + (1−λ)H = λI + (1−λ)Z.
Define the best response utility (BRU) function for game
G = (A,B) and players’ strategies (p,q) to be

U(p,q,G) = max
i∈[m]

(Aq)i + max
j∈[n]

(pB)j .

It is the sum of maximal utilities each player can get by her
best response to the opponent’s strategy. We omit the last
variable of U when there is no confusion. Experimental anal-
ysis (in Appendix D) on the Shapley game shows that whether
DFP converges to NE or not, U always converges.

For the empirical frequencies (p(t),q(t)) (t ≥ 1) obtained
by CFP, consider the derivative of U(p(t),q(t)) (U(t) for
short) with respect to t, for almost all t, then for any fixed
t0 > 0, we have

U(t) =
t0U(t0)

t
+

1

t

∫ t

t0

Gi(τ),j(τ)dτ, (4)

where G = A + B, i(τ) and j(τ) are short for the index
of BR1(q(τ)) and BR2(p(τ)). The detailed derivation is in
Appendix. This leads to a sufficient condition for the conver-
gence of BRU.

Lemma 3. For a game G = (A,B), letG = A+B. Assume
CFP follows a cycle {(i1, j1) , . . . , (iK , jK)}. If Gi1,j1 =
· · · = GiK ,jK , then BRU converges.

Back to the Shapley game, on cycle C2, Gi1,j1 = · · · =
Gi3,j3 = minGij . To be compared, on cycle C1, Gi1,j1 =
· · · = Gi6,j6 > minGij . This means BRU converges but not
to the minimal possible value, which coincides with the fact
that the strategies fail to converge.

One can further find out that when a CFP starts with the
same strategies for both players, i.e., when it converges to

NE, by the symmetry of the game, p(t) = q(t) for all t. Then
for all strategy pairs (p(t),q(t)) related to C2, U̇ satisfies

U̇ = 2e(t)Ie(t)− (p>Be(t) + e(t)Aq) < 0,

where I is the payoff matrix of the Shapley game’s normal-
ized identical interest component, and e(t) = BR1(q(t)) =
BR2(p(t)). U(t) will keep decreasing till it tends to NE.

Now we consider the Shapley game as a linear combina-
tion of a normalized identical interest game and a normalized
zero-sum game and we state the reason formally in Theorem
4 why it converges under such initial conditions. Given a cy-
cle C of game G such that there exist CFPs tending to C, let
P (C,G) be all the mixed strategy pairs that lie on the paths
following C, and Conv(S) be the closed convex hull of set S.
Denote the set of G’s NEs as X (G). We have
Theorem 4. For game G(λ) = λI + Z for some I ∈ (I ∩
N ) and G ∈ (Z ∩ N ), λ ∈ R. If from an initial point,
CFP on G(λ) enters the same cylce C of G(0), where C is
a cycle that a convergent CFP on G(0) will tend to, and for
all (p,q) ∈ Conv(P (C,G))\X (G(0)), U̇(p,q) < 0, then
CFPs on G(λ) which tend to C will converge to an NE.

Theorem 4 gives a sufficient condition for a CFP to con-
verge. Intuitively, when |λ| is small enough, the dynamics of
G(λ) will resemble that of G(0). If CFPs on these games en-
ter the same cycle of G(0), and U̇ < 0 for all points related
to this cycle, then CFPs on G(λ) converge to NE.

5 Conclusion and Future Work
Decomposing the game space into combinations of simple
classes enables us to find the new relations among games. In
this paper, we use this method to prove a new condition for
FP to converge and build a bridge between games modelling
full competition and cooperation. We derive an instinct prop-
erty for them that these two classes of games can be mutually
transformed to the other with a simple parameter. This abil-
ity of mutual transformation may be applied in the dynamic
multi-agent systems in which agents’ relationships vary with
time, which helps study complex real environments. Fur-
thermore, we analyze the well-known example of FP’s non-
convergence, the Shapley game, and give a sufficient condi-
tion for its continuous version to converge.

As for the future work, the first one is to have more analysis
on FP dynamics using game decomposition techniques. We
note that it will be of vital importance but great challenge to
give a full characterization, and it is impossible to have a con-
vergence guarantee on arbitrary combinations of games. An-
other interesting problem is to study the dynamical properties
of simple games, e.g., zero-sum games, with perturbations.
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Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat, David
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