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ABSTRACT Left-handed G quadruplexes (LHG4) have been recently discovered as a new class of G quadruplexes. The bio-
logical functions of LHG4s are still unknown, but they share a striking resemblance to Z-DNA in their helicity and jagged phos-
phate backbone. To further understand structural features of the LHG4s that define their left handedness, we have employed
human-interpretable machine-learning methods to classify right- and left-handed G4s purely based on torsional angle analysis.
Our results reveal the importance of the a, b, d, and c angles in left-handed structuring across both Z-DNAs and LHG4s. Our
analysis may serve as the first step to understanding the conditions of formation for LHG4s and their potential biological
relevance.
SIGNIFICANCE Our work explores left-handed G quadruplexes, a novel non-canonical DNA structure. Using machine-
learning methods, we have demonstrated that certain backbone torsion angles (a, b, d, and c) can be used to differentiate
between right- and left-handed G quadruplexes as well as other right- (B-DNA) and left-handed (Z-DNA) DNA structures.
Our analysis may serve as the first step to understanding the conditions of formation for left-handed G quadruplexes and
their potential biological relevance.
INTRODUCTION

Genomic DNA is much more than the encoded blueprint of
life. It comprises canonical DNA, which is a right-handed
(RH), double-helical (DH) structure, mostly B-DNA, that
forms relevant to the majority of cellular DNA functionality
(Fig. 1 A). DNA, however, can form a variety of non-canon-
ical structures. In regions of high G-C repetition, it may
form a DH left-handed (LH) DNA structure, termed
Z-DNA (Fig. 1 B) (1). Z-DNA is characterized by a jagged
phosphate backbone, a feature attributed to the alternating
anti-syn dinucleotide steps going from G to C (2). Since
its discovery in 1970, the biological relevance of Z-DNA
has remained controversial, although in particular the
characterization of the ADAR enzyme, an RNA-binding
deaminase that binds Z-DNAwith high specificity, has sug-
gested a significant biological role for Z-DNA (3). Crystal
structures of Z-DNA bound to the Za domain of ADAR
show contacts primarily along the phosphates in the jagged
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backbone, demonstrating that specificity arises from a Z
conformation and not from the DNA sequence (4).

Another non-canonical DNA structural type, termed the
G quadruplex (G4), is typically composed of four gua-
nine-rich stretches associated into stacked guanine-tetrads,
with RH helicity (Fig. 1 C) (5). Numerous RH G4 crystal
and NMR structures have been reported (see, for example,
refs. (6–10)). Sequences with the potential to form G4s
are widely, though not randomly, distributed in many ge-
nomes, with their prevalence in the human genome being
of special focus (5). Increasing evidence points toward the
in vivo existence of G4s, where their presence is implicated
in transcription, translation, replication, and telomeric sta-
bility (5). Interestingly, the Za domain from ADAR displays
binding affinity and stabilization of a specific conformation
of G4—a parallel fold. In this fold, all four G-rich strands
are oriented in the same direction (6).

In 2015, the first LH G quadruplex (LHG4; Fig. 1 D) was
crystallized by the Phan laboratory (7). Its sequence is
derived from the guanine-rich RHG4 aptamer AGRO100
(8). To date, eight crystal and two solution NMR structures
of LHG4s have been reported, all deriving from the minimal
LH motifs of (GTG)4 or (GGT)3GTG (7,9–12). These mini-
mal motifs not only fold into LHG4s but are also able to drive
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FIGURE 1 (A–D) Crystal structures of (A) B-DNA (PDB: 1BNA), (B)

Z-DNA (PDB: 4HIF), (C) RHG4 (PDB: 6QJO), and (D) LHG4 (PDB:

6QJO). Crystal structure 6QJO contains both right- and left-handed G4s do-

mains. In (D), only the LHG4 is shown. To see this figure in color, go on-

line.
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LHG4 formation in some related sequences that, alone,
would adopt a RHG4 fold (7). The known LHG4 structures
consist of two-tetrad G4s, stabilized in the crystal by dimer-
izationwith another two-tetradG4 across a 50-50 interface (7).
Structurally, LHG4s are characterized by a Z-like jagged
backbone oriented in the same direction as its four neighbors
(e.g., parallel G4); the thymines that separate each stretch of
guanines cap the tops of the tetrads (7). However, unlike
Z-DNA, all the nucleotides in LHG4 are oriented in the
anti-conformation (7). Genomic searches in the human
genome for the LHG4minimal motifs (GTG)4 have returned
more than 10,000 hits, which is some two orders of magni-
tude greater than the expected random occurrence of a
12-bp motif (9). The biological relevance and role of
LHG4s is still unknown, as are conditions and driving forces
for their formation. Understanding these questions, however,
is likely intertwined with understanding LHG4 structures.

We report here studies directed at understanding the
structural differences between LHG4s and RHG4s. We
have applied decision trees as a human interpretable ma-
chine-learning method to analyze torsion angles in both
LHG4s and RHG4s. By generating a classifier that discrim-
inates between LHG4s and RHG4s with accuracy of around
90%, we can interpret the produced decision tree to deter-
mine the principal torsion angles that distinguish LH and
RH. Despite the decision tree never being trained on DH
DNA, the methodology was capable of classifying the hand-
edness of Z-DNA and B-DNAwith greater than 86% accu-
racy. After supplementing the training set with Z/B-DNA
samples, the accuracy of Z/B-DNA classification increased
to 97%. This provides an important check on the ability of
the algorithms to reproduce the experimental data and rep-
resents the initial part of our analyses.
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MATERIALS AND METHODS

Data sets

The G4 data set consists of 125 nucleotides taken from seven parallel LHG4

structures and 88 nucleotides taken from six parallel RHG4 structures from

the Protein Data Bank (Table 1). Apart from one NMR structure (2N3M),

all G4 structures included here had been determined by X-ray crystallog-

raphy. The DH data set consists of 76 nucleotides taken from eight

Z-DNA crystal structures and 175 nucleotides taken from 12 B-DNA crys-

tal structures. These are representative of the highest-resolution structures

currently available (an initial study used several early B-DNA crystal

structures, with resolutions in the range 1.90–3.00 Å) (Table S1). Each

nucleotide sample contains a label of ‘‘0’’ if it originates from an LH struc-

ture or ‘‘1’’ from an RH structure. In addition, each nucleotide is character-

ized by six backbone torsion angles (a, b, g, d, ε, z) and the base/sugar

glycosidic torsional angle (c) (Fig. 2 A). These torsional angles were

calculated using the X3DNA web server (36).
Principal-component analysis (PCA)

PCA is a widely used technique for dimensionality reduction, allowing the

variance among the higher-dimensionality data set to be represented and

visualized in a reduced number of dimensions. This is done by calculating

principal components, which are directions in the data set along which the

variation is maximized. Data points in the higher dimensionality data set are

then projected onto the principal components, producing the dimensionality

reduced data set. Plots of the first two principal components are useful in

determining interesting clusters of examples that contain similar higher-

dimensional characteristics with respect to the principal components.

Principal components were calculated from the torsional angle data set

using the PCA class from the scikit-learn Python package, with n, the num-

ber of components, set to 2 (37). The resultant PCA graph was plotted using

the Matplotlib Python package (38).
Experimental training and validation

Our models were trained on the G4 data set and evaluated using repeated,

random holdout validation. Essentially, samples from the G4 data set were

randomly split 70/30 into the training and testing sets, such that for the 213

nucleotides in the data set, 149 were randomly placed into the training set,

and the remaining 64 were placed in the testing set. The 70/30 training/

testing split is commonly used in machine learning (39). Each model

then learned the classification by training on the training set and is scored

based on its accuracy on the testing set, which contains samples the model

has never seen. Accuracy here is defined as the number of samples classified

correctly over the total samples in the testing set. This process was repeated

1000 times, each time with different nucleotides randomly split into the

training and testing sets to produce a representative average accuracy

that is not skewed due to sampling bias. Random holdout validation was

performed using the score function from each respective classifier in the

scikit-learn package (37).
ID3 decision trees

The scikit-learn ID3 decision tree is an algorithm that trains by splitting a

data set recursively by feature (a, b, g, d, ε, z, c) and across a threshold

(0 % q % 360) until similarly classed data points (0 for LH, 1 for RH)

are grouped together. The resulting decision tree produced can then be

used to classify novel data points. To start, the algorithm finds a node, which

is a feature and a threshold, that splits the data set into two resulting sets

with the lowest entropy (40). Entropy, in this context, can be understood

as a measure of class purity in a data set. The entropy of a data set is defined

as EðSÞ ¼ Pc
i¼ 1 � pilog 2pi, where c is the total number of classes (two in



TABLE 1 DNA crystal structures included in the data set

PDB ID Structural type DNA sequence Resolution (Å) References

6FQ2 LHG4 (TG2)4T2(GTG)4T2 2.31 (11)

7DFY LHG4 (GTG)4 1.69 (9)

4U5M LHG4 G(TG2)3TGT2(GTG)4T 1.50 (7)

6GZ6 LHG4 G2T2G2TGTG2T2G2T (GTG)4 2.01 (11)

6QJOa LHG4/RHG4 G(GT)3(GGT)2(GTG)4T2 1.80 (12)

7D5D LHG4 G(GT)5G2T(GTG)4T2 1.18 (10)

7D5E LHG4 (TG2)4T2(GTG)4T2 1.30 (10)

7KLP parallel RHG4 A(GGGTTA)3GGG 1.35 (13)

6N65 parallel RHG4 AG3CGGTGTG3AATAG3AA 1.60 (14)

3T5E parallel RHG4 A(GGGTTA)3GGG 2.10 (15)

6H5R parallel RHG4 TA(GGGTTA)3GGGT 2.00 (16)

4FXM parallel RHG4 A(GGGTTA)3GGG 1.65 (17)

2N3Mb parallel RHG4 (GGT)3TGTT(GTG)3 – (18)

3P4J Z-DNA CG3 0.55 (19)

4OCB Z-DNA CG6 0.75 (20)

4FS6 Z-DNA CG3 1.30 (21)

4FS5 Z-DNA CG3 1.30 (21)

4HIG Z-DNA CG3 0.75 (22)

4HIF Z-DNA CG3 0.85 (22)

7JY2 Z-DNA CG3 1.00 (23)

7ATG Z-DNA CG3 0.60 (24)

1BNA B-DNA (CG)2AATT(CG)2 1.90 (25)

2BNA B-DNA (CG)2AATT(CG)2 2.70 (26)

3BNA B-DNA (CG)2AATTCBrGCG 3.00 (27)

4BNA B-DNA (CG)2AATTCBrGCG 2.30 (27)

5BNA B-DNA (CG)2AATT(CG)2 2.60 (28)

1D60 B-DNA CCAACITTGG 2.20 (29)

1SGS B-DNA CGCTGGA3T3CCAGC 1.60 (30)

1DC0 B-DNA CAT G3C3ATG 1.30 (31)

1D8G B-DNA CCAGTACTGG 0.74 (32)

5DNB B-DNA CCAACGTTGG 1.40 (33)

436D B-DNA CGCGAATAF TCGCG 1.10 (34)

4C64 B-DNA CGCGAATTCGCG 1.32 (35)

aStructure is truncated. 6QJO was split into separate RH and LH components.
bAn NMR structure. Only the two tetrad G4s in 2N3M were included.
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this case, LH and RH) and pi is proportion of class i data points over the

total data set (40). For data sets of only two classes, entropy values are

bounded between 0 and 1. A data set that is purely of one class produces

the lowest entropy of 0 (assuming log 20 ¼ 0), while a data set that is

evenly split between classes produces the highest entropy of 1. After pro-

ducing two data sets, the algorithm is then recursively called on each resul-

tant data set until the entropy drop between parent and child data sets

diminishes below a preset threshold. The ID3 classifier was implemented

using the DecisionTreeClassifier class from the scikit-learn Python package

with the ccp_alpha parameter set to 0.04 (37). The resultant decision tree

was visualized using the plot_tree function from scikit-learn (37).
RESULTS

Composition of the data set

The G4 data set consists of 125 nucleotides taken from
seven parallel LHG4 structures and 88 nucleotides taken
from six parallel RHG4 structures. Our study considers
only parallel G4 structures (Table 1) in order to prevent
introducing differences in the LH and RH data sets due to
G4 topological differences—all the known LHG4 structures
have parallel topology. Additionally, we include only gua-
nines forming the tetrads and omit overhang and loop nucle-
otides since all current LHG4 structures are composed of
single thymine loops while the RHG4 structures have longer
loop lengths and also contain cytosines, adenines, and gua-
nines in the loop regions. The DH data set consists of 76
nucleotides taken from eight Z-DNA crystal structures and
175 nucleotides from 12 B-DNA crystal structures.
Nucleotide angle analysis

We analyzed the assembly of backbone and glycosidic tor-
sion angles (Fig. 2 A) using two-component PCA (Fig. 2
B). The resultant PCA graph captured 65.5% of the variance
in the original data set. Overall, nucleotides from Z-DNA
and LHG4 each show strong clustering, indicating either
strong conformational homogeneity in LH folding nucleo-
tides or low structural variability among the known crystal
structures. In LHG4s, the guanosines segregated into two
clusters, one populated by the first guanosine in every tract
in the 50-30 direction and the other populated by the second
guanosine (note, all known current LHG4s contain only two
guanosines in a tract). Between these values lies the cluster
Biophysical Journal 121, 1–8, November 15, 2022 3



FIGURE 2 (A) Torsion angles considered in this

work. (B) Two-component PCA of RH and LH

DNA structures. Nucleotides are colored based on

the structure they come from and their base. (C)

Torsion angle distribution for guanosines in

LHG4 (colored in orange) and RHG4 (colored in

blue) across the classification data set. To see this

figure in color, go online.
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representing cytidines from Z-DNA. The torsional angles of
Z-DNA cytidines closely match the guanosines in LHG4,
with multiple nucleotides from both clusters of guanosines
in LHG4 overlapping with the Z-DNA cytidine cluster.
The guanosine Z-DNA cluster, however, is distantly segre-
gated from the rest of the LH clusters. This observation
can be explained by the 180� change in the guanosine
glycosidic angles, a result of the syn-anti dinucleotide step
in Z-DNA.

In contrast to the clustering of the LH nucleotides, RH
structures show a large spread of observed torsional angles,
with no clear clustering. Despite the wide distribution in RH
structures, there is very little overlap between the torsion an-
gles of RH- and LH-derived nucleotides on the PCA plot.

To further investigate the differences between LHG4 and
RHG4, we plotted their torsional angle distributions across
all the guanosines in the data set (Fig. 2 C). Of note, the ε

and z angles in LHG4 guanosines populate a bimodal distri-
4 Biophysical Journal 121, 1–8, November 15, 2022
bution unlike their counterparts in RHG4 guanosines. These
two angles are principally related to the differences between
the first and second LHG4 guanosine in each stretch. Be-
tween RHG4 and LHG4 guanosines, their differences in
the a angle are most striking. LHG4 guanosines have a
angle ranges between 150� and 200�, while a angle ranges
for RHG4 guanosines accumulate above 250�.
Decision trees

To further understand how DNA torsional angles relate to
handedness, we trained a decision tree on the LHG4 þ
RHG4 data set using the same 70/30 split. This decision
tree achieved an accuracy of 89.3% over 1000 iterations.
To determine the generalizability of the torsional angle
thresholds to right versus left handedness, we then used
the same trained model to classify B-DNA versus Z-DNA,
which the model had never seen before. Our model achieved
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an accuracy of 85.6% over the same iterations. These results
show a certain degree of transfer learning between the G4
and DH DNA data sets. Over 10 iterations, decision trees
trained using only the G4 data set chose to first split on
the a angle seven out of 10 times, with a values above
252�, on average, designated as the threshold for RH
DNA (Fig 3 A). Of these resultant decision trees, all seven
unanimously further split on the b angle at 150�. These de-
cision trees perform remarkably well on the DH data set,
scoring over 95%. In the remaining three iterations, decision
trees chose to split first on the b angle at 215� followed by
varying splits in the g, d, or z angles. These trees score
below 65% accuracy on the DH data set, contributing to
the 85.6% averaged accuracy.

Motivated by the possibility of transferred learning, we
then asked whether adding samples from B- and Z-DNA
to the training set would increase the accuracy of the deci-
sion tree in classifying LH versus RH DNA (both G4 and
DH). Indeed, we observed an increased accuracy in classi-
fying B- versus Z-DNA from 85.6% to 97.7% and LHG4
versus RHG4 from 89.3% to 92.2% over 1000 iterations
(Table 2).

As more DH samples (B- or Z-DNA) are added to the
training set, the decision trees produced become more likely
to split first on the a angle at 252� followed by splitting on
the b angle at 150�. After more than 20 DH samples have
been randomly mixed into the training set, resultant decision
trees unanimously split on the a and b angles at near 252�

and 150�, respectively.
In the a and b angle decision tree, the a angle alone

already achieves an accuracy of 87.2% in splitting the
data set into homogeneous classes. To determine how
well the other angles can individually be used to classify
LHG4 from RHG4, we then trained decision trees
using only values of a single torsional angle at a time
(Fig 3 B).

Of the seven angles, a and b were most accurate in sepa-
rating LHG4 and RHG4, scoring 87.2% and 85.2%, respec-
tively. These scores must be compared with the baseline of
58.6% accuracy, which is the percentage of LHG4 in the G4
data set. In other words, arbitrarily guessing LH would still
be correct more than half the time.
DISCUSSION

Patterns of clusters in nucleotide conformations across DNA
and RNA structures have been previously identified using
Euclidean clustering algorithms (41) and cluster-plot sur-
veys of experimental structures (see, for example, refs.
(23,24)). Unlike traditional algorithms where a predeter-
mined set of rules are used to transform an input to the
output, machine-learning algorithms are given the input
and output of a problem in hopes of formulating the rules
that connect them. These algorithms are a powerful tool to
parse interesting patterns in a data set. Their application to
the nucleic acid field is not a new concept. Particularly in
the G4 field, high-throughput studies can generate the
massive amounts of data necessary to predict G4 tertiary
fold from sequence through neural networks (42). There is
considerable current emphasis on deep learning, a branch
of machine learning that employs neural networks and mul-
tiple layers of data. Deep learning, unfortunately, cannot be
yet applied to LHG4 structures due to the lack of data on
diverse folds. Only two closely related sequences have
been characterized, and the general rules defining LHG4
structures remain to be elucidated. And despite the raw pre-
dictive power that deep learning can provide, it is a ma-
chine-learning model that sacrifices interpretability for
predictive power. Understanding how a neural network
comes to its conclusion is typically not at all obvious.
Thus, in this study, where understanding how torsion angles
correlate with handedness is more important than the predic-
tion itself, we employ ID3 decision trees.

We have coupled our decision tree analysis with more
straightforward approaches using PCA plots and histo-
grams. These methods allow a more intuitive understanding
of the data set and act as validation for the decision tree
output. And while a direct analysis of conformational angles
can also reveal trends, the classic approach does not cope
well with multi-dimensional data sets, particularly when
FIGURE 3 RH versus LH decision tree. (A) De-

cision tree values are an average of the most com-

mon decision tree over 10 iterations. Nodes are

colored orange or blue based on whether the deci-

sion tree would classify the structure as LHG4 or

RHG4 if the algorithm halted at that node. The

first integer under ‘‘value’’ represents the number

of LHG4s in the population, whereas the second

integer refers to the number of RHG4s. (B) Deci-

sion tree accuracy in classifying RHG4 versus

LHG4 using single torsion angles. Bar graph shows

the average accuracy using each torsional angle

over 1000 training-testing iterations. Error bars

represent the standard deviation of each accuracy

over the iterations. To see this figure in color, go

online.
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TABLE 2 Decision tree accuracy in classifying RH versus LH

G4 and DH DNA (B- and Z-DNA)

DH samples added G4 classifier (%) DH classifier (%)

0 89.3 85.6

10 90.7 93.1

20 91.5 95.6

30 91.7 96.8

40 92.2 97.4

50 92.2 97.7
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consideration of multiple angles at once produces a better
prediction than single angle analysis. As further instances
of LHG4 structures are discovered, a machine-learning
approach may be easier to scale to either corroborate exist-
ing trends or reveal new ones.

Our decision tree analysis accurately classifies LHG4
versus RHG4 with higher than 92% accuracy by splitting
on the a and b angles. Here, guanosines with a angles lower
than 252� and b angles higher than 150� are classified as
LH, and samples outside these values are classified as
RH. These same thresholds, when applied to B- versus
Z-DNA, achieve an accuracy up to 97%, demonstrating a
strong generalizability between the torsional angles of simi-
larly handed DNA folds.

Analysis of LHG4 versus RHG4 angle distributions cor-
roborates the thresholds made by the decision tree. a values
in LHG4s range primarily from 150� to 200�, while those in
RHG4s range primarily from 250� to 325�, supporting the
threshold of 252� set by the decision tree. The distribution
of a angles in LHG4s centers around 180�. This produces
a straight-line movement in the backbone progression,
creating the signature zig-zag characteristic of the LH
fold. Meanwhile, the distribution of a angles in RHG4 peaks
at 300�, generating the even and steady curvature of the RH
fold. Previous studies have also documented the angle distri-
butions for B- and Z-DNA (41,43): a values of cytidine in
Z-DNA closely cluster between 150� and 200�, peaking at
180�, while those of guanosine greatly differ due to the
anti-syn step but are lower than 200�. a values in B-DNA
match with RHG4, clustering between 240� and 360�. These
results are consistent with the PCA plot, which shows over-
lapping between the RH samples as well as close clustering
between cytidines in Z-DNA and the guanosines in LHG4.

Put together, our findings suggest that torsional angle dif-
ference between RH and LH DNA structures may be
conserved—and, possibly, that the progression of the phos-
phate backbone may be intrinsically connected to the hand-
edness of the structure. PCA plotting shows overlap between
the torsional angles of LHG4 and Z-DNA, which has previ-
ously been observed in the analysis of the first LHG4 crystal
structure (7). Given that the Za domain of the ADAR
enzyme preferentially binds to the jagged backbone shared
between LH structures (Z-DNA and LHG4), it may be inter-
esting to determine whether the Za domain (4) can also bind
LHG4 structures.
6 Biophysical Journal 121, 1–8, November 15, 2022
Additionally, PCA of the structures covered in this study
shows a wide range of torsional angle values for RH
structures, contrasting with the tighter clustering produced
from LH angles. Although this may be a consequence of
the limited diversity of current LHG4 structures, even
within the same RHG4 structure, guanosine torsional angles
may vary drastically more than within its LH counterpart.
The wide spread of the RH torsional values demonstrates
a greater degree of flexibility in the backbone, whereas the
set of torsional angles where an LH structure can be stabi-
lized appears to be very constrained and rigid, which may
explain the low number of available LHG4 scaffolds. An
energy landscape of DNA structures based on their torsional
angles suggests wide valleys around the torsional values
corresponding to RH structures. Meanwhile, the energy
landscape around the mean torsional values of LH structures
could be imagined as a sharp and narrow dip. For any
unfolded DNA polymer rolling around on the energy land-
scape, it is more likely to take the RH fold as it cascades
down the slope of the wide valley than it is to randomly
drop into the rigid conformation of the LH fold.

These LH folds are only likely to manifest if conditions
arise that make them more stable than their RH counterpart.
For DH DNA, it has been shown that under conditions of,
for example, negative super coiling, Z-DNA conformations
are favored, as the LH helicity acts to relieve some torsional
stress (44). Similarly, in sequences that fold into LHG4, it is
possible that the LH form is favored because the sequence is
unable to arrange the G tetrads in an RH manner. Even so, it
is still unknown why LHG4-folding sequences are more
adept at folding successive G tetrads into an LH form. These
questions may be answered as we further explore the char-
acteristic torsional angles of LH structures using more
LHG4 crystal and NMR structures and explore the effect
of overhangs on the ability of G4 DNAs to adopt RH or
LH folds.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
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