UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The Role of Optical Coherence Tomography Criteria and Machine Learning in Multiple Sclerosis and Optic Neuritis Diagnosis

Kenney, Rachel C; Liu, Mengling; Hasanaj, Lisena; Joseph, Binu; Abu Al-Hassan, Abdullah; Balk, Lisanne J; Behbehani, Raed; ... Balcer, Laura J; + view all (2022) The Role of Optical Coherence Tomography Criteria and Machine Learning in Multiple Sclerosis and Optic Neuritis Diagnosis. Neurology , 99 (11) e1100-e1112. 10.1212/WNL.0000000000200883. Green open access

[thumbnail of Petzold_WNL.0000000000200883.full.pdf]
Preview
Text
Petzold_WNL.0000000000200883.full.pdf - Accepted Version

Download (749kB) | Preview

Abstract

BACKGROUND AND OBJECTIVES: Recent studies have suggested that intereye differences (IEDs) in peripapillary retinal nerve fiber layer (pRNFL) or ganglion cell + inner plexiform (GCIPL) thickness by spectral domain optical coherence tomography (SD-OCT) may identify people with a history of unilateral optic neuritis (ON). However, this requires further validation. Machine learning classification may be useful for validating thresholds for OCT IEDs and for examining added utility for visual function tests, such as low-contrast letter acuity (LCLA), in the diagnosis of people with multiple sclerosis (PwMS) and for unilateral ON history. METHODS: Participants were from 11 sites within the International Multiple Sclerosis Visual System consortium. pRNFL and GCIPL thicknesses were measured using SD-OCT. A composite score combining OCT and visual measures was compared individual measurements to determine the best model to distinguish PwMS from controls. These methods were also used to distinguish those with a history of ON among PwMS. Receiver operating characteristic (ROC) curve analysis was performed on a training data set (2/3 of cohort) and then applied to a testing data set (1/3 of cohort). Support vector machine (SVM) analysis was used to assess whether machine learning models improved diagnostic capability of OCT. RESULTS: Among 1,568 PwMS and 552 controls, variable selection models identified GCIPL IED, average GCIPL thickness (both eyes), and binocular 2.5% LCLA as most important for classifying PwMS vs controls. This composite score performed best, with area under the curve (AUC) = 0.89 (95% CI 0.85-0.93), sensitivity = 81%, and specificity = 80%. The composite score ROC curve performed better than any of the individual measures from the model (p < 0.0001). GCIPL IED remained the best single discriminator of unilateral ON history among PwMS (AUC = 0.77, 95% CI 0.71-0.83, sensitivity = 68%, specificity = 77%). SVM analysis performed comparably with standard logistic regression models. DISCUSSION: A composite score combining visual structure and function improved the capacity of SD-OCT to distinguish PwMS from controls. GCIPL IED best distinguished those with a history of unilateral ON. SVM performed as well as standard statistical models for these classifications. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that SD-OCT accurately distinguishes multiple sclerosis from normal controls as compared with clinical criteria.

Type: Article
Title: The Role of Optical Coherence Tomography Criteria and Machine Learning in Multiple Sclerosis and Optic Neuritis Diagnosis
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1212/WNL.0000000000200883
Publisher version: https://doi.org/10.1212/WNL.0000000000200883
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Humans, Machine Learning, Multiple Sclerosis, Nerve Fibers, Optic Neuritis, Retinal Ganglion Cells, Tomography, Optical Coherence
UCL classification: UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL
URI: https://discovery.ucl.ac.uk/id/eprint/10156459
Downloads since deposit
120Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item