
Bayesian Analysis (2022) TBA, Number TBA, pp. 1–29

Bayesian Learning of Graph Substructures∗

Willem van den Boom†, Maria De Iorio‡,§,¶ and Alexandros Beskos‖,∗∗

Abstract. Graphical models provide a powerful methodology for learning the
conditional independence structure in multivariate data. Inference is often focused
on estimating individual edges in the latent graph. Nonetheless, there is increasing
interest in inferring more complex structures, such as communities, for multiple
reasons, including more effective information retrieval and better interpretability.
Stochastic blockmodels offer a powerful tool to detect such structure in a network.
We thus propose to exploit advances in random graph theory and embed them
within the graphical models framework. A consequence of this approach is the
propagation of the uncertainty in graph estimation to large-scale structure learn-
ing. We consider Bayesian nonparametric stochastic blockmodels as priors on the
graph. We extend such models to consider clique-based blocks and to multiple
graph settings introducing a novel prior process based on a Dependent Dirichlet
process. Moreover, we devise a tailored computation strategy of Bayes factors for
block structure based on the Savage-Dickey ratio to test for presence of larger
structure in a graph. We demonstrate our approach in simulations as well as on
real data applications in finance and transcriptomics.

Keywords: Bayesian nonparametrics, degree-corrected stochastic blockmodels,
Dependent Dirichlet process, Gaussian graphical models, multiple graphical
models, multivariate data analysis.

1 Introduction

Graphical models provide a flexible tool to describe the conditional independence struc-
ture in multivariate data: the nodes of the graph represent variables and the edges
amongst them define conditional dependence (Lauritzen, 1996). Most inferential ap-
proaches focus on estimation of individual edges rather than on identification of infor-
mative structure in a graph on a larger scale. This is despite the fact that such large-scale
structure is often present and of interest in multivariate data (Ravasz et al., 2002; Yook
et al., 2004). Moreover, estimation of a single edge is (often extremely) sensitive to the
number of observations as well as to the presence of specific nodes in the graph. We
therefore propose graphical models that also enable learning of large-scale structure.
These models build on extensive work in random graphs and networks (Newman, 2011;
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Fortunato and Hric, 2016; Lee and Wilkinson, 2019) such as the stochastic blockmodel
(Holland et al., 1983).

It is important to stress the distinction between random graph theory and graphical
models as two parallel, large research areas with only limited interplay such as the work
by Bornn and Caron (2011) and Peixoto (2019). Within the first field, models for random
graphs have evolved substantially from initial approaches such as the Erdős–Rényi model
(Erdős and Rényi, 1959) to methods for large-scale structure. They usually involve the
description of network formation/evolution. See Fienberg (2012) and Barabási (2016)
for an overview. Such developments contrast with the literature on graphical models
(Friedman et al., 2007; Armstrong et al., 2009; Zhou et al., 2011; Maathuis et al., 2019;
Ni et al., 2022) that aims to infer a graph from multivariate data. In this context, focus
of inference is usually to determine the presence of an edge between two nodes whereas
modelling of large-scale graph structures is often neglected (Bornn and Caron, 2011).

The rationale underpinning our work derives from the following consideration. In
the random graph literature, there is major interest on large-scale structures as they
often arise in applications. A common example is provided by scale-free networks which
imply a hub structure (Yook et al., 2004). More recently, Newman (2011) advocates for
more complex structures such as modularity. This consideration motivates the need to
investigate such components also when inferring graphs from multivariate data. On the
other hand, the Bayesian graphical model literature commonly focuses on single edges,
and specification of a prior on graph space is achieved assuming the same probability
of inclusion for each edge with all edges being independent. This prior corresponds to
the Erdős–Rényi model.

Focusing on single edges can be restrictive in many applications, often preventing
detection of important data features. For instance, assume we are interested in estimat-
ing a graph from gene expression data. It could be of biological interest (e.g. disease
aetiology) to group genes in co-expression modules (i.e. block, larger structure) (Yook
et al., 2004). Similarly in metabolomics, it is of interest to identify metabolites that are
involved in the same biochemical reaction/pathway (Ravasz et al., 2002). Social net-
works provide another area where such graph substructures are relevant. For instance,
we might estimate a graph from voting records of members of parliament with the goal
of identifying political factions.

The increasing interest in estimating large structures in multivariate data is reflected
in recent work. For example, Zhang (2018) first estimates a graph from the data and,
then, identifies large-scale structure using random graph methods. Such an approach is
suboptimal, for instance because it does not propagate the uncertainty from network
estimation to the estimation of large-scale structure. In the machine learning literature,
methods for identification of graph substructure can be found in Marlin et al. (2009).

Our work is positioned in this new line of research. Exploiting advances from ran-
dom graph theory, we propose graphical models able to accommodate single-edge as
well as block structure. The benefits of joint graph and structure recovery compared to
a two-step approach are multiple: (i) if present, large-scale structure can guide graph
estimation; (ii) ad hoc specification of a graph estimator (e.g. through an edge inclusion



W. van den Boom, M. De Iorio, and A. Beskos 3

probability threshold) is not required; (iii) data-driven detection of structure or lack
thereof; (iv) uncertainty in graph estimation propagates to large-scale structure learn-
ing; (v) extension to complex set-ups (e.g. different biological conditions) is in principle
straightforward which leads to; (vi) effective use of information as the developed frame-
work allows combining data from multiple sources in a principled way. We consider both
single and multiple graph scenarios as well as different blockmodels, namely the usual
stochastic blockmodel and also one where blocks are cliques. Here we focus on block-
models because of their popularity, but the setting is general and other priors could be
employed.

One of our contributions is an algorithm (derived as by-product of the MCMC) to
compute Bayes factors to test for the presence of block structure, which is equivalent
to the presence of clusters in a nonparametric partition model. Our approach, based on
the Savage-Dickey ratio (Dickey, 1971), offers computational advantages over existing
methods (Basu and Chib, 2003; Legramanti et al., 2022a). To define blocks in multiple
graphs, we introduce a novel Bayesian nonparametric prior. Specifically, we propose a
Dependent Dirichlet process that does not enforce exchangeability within groups as in
previous approaches (e.g. MacEachern, 1999; De Iorio et al., 2004; Müller et al., 2004;
Camerlenghi et al., 2019; Quintana et al., 2022).

The paper is structured as follows. Sections 1.1 and 1.2 review related work on
blockmodels and graphical models, respectively. Section 2 introduces Gaussian graphical
models (GGMs, Dempster, 1972). In Section 3, we propose various priors on graphs that
allow recovery of large-scale structure. Section 4 introduces Bayes factors for testing
for block structure. We demonstrate the proposed approach in simulation studies in
Section 5 and on real data applications in Section 6. We conclude the paper in Section 7.
The paper is accompanied by Supplementary Material which contains further details
on the methods and results.

1.1 Stochastic Blockmodels

Arguably, the most widely used model for large-scale structure in graphs is the block-
model (Fienberg, 2012) which is therefore our starting point. A stochastic blockmodel
(Holland et al., 1983) consists of a partition of the set of nodes into blocks or communi-
ties, where we use both terms interchangeably. Then, nodes in the same block are more
likely to be connected than nodes from different blocks. Thus, the structure of inter-
est is the clustering of nodes and the connectivity within and between these clusters.
Introducing block structure in graph estimation allows highlighting macro-organisation
(instead of focusing on single edges) and important hubs/connectivity clusters, which
ultimately will aid interpretation of the results and hypothesis generation.

To this end, the key modelling strategy that we adopt is to employ tools from
the Bayesian nonparametric literature for estimation of block structure in a graph, as
such a strategy provides uncertainty propagation across the full graphical model and
data-driven determination of blocks’ number and membership. We limit this literature
review of blockmodels to Bayesian nonparametric approaches though many others exist
(e.g. Fortunato and Hric, 2016; Abbe, 2018; Funke and Becker, 2019; Lee and Wilkinson,
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2019; Gao and Ma, 2021). See Schmidt and Mørup (2013) for an introduction to Bayesian
nonparametric modelling of graphs including blockmodels. Kemp et al. (2006) introduce
a blockmodel where the prior on the partition of nodes is a Chinese restaurant process
(CRP, Pitman, 2006) which closely relates to the Dirichlet process (DP, Ferguson, 1973).
Geng et al. (2018), Gao et al. (2020) and Jiang and Tokdar (2021) place a mixture
prior with random number of components (Miller and Harrison, 2017; Argiento and
De Iorio, 2022) on the partition: Geng et al. (2018) obtain posterior consistency results
for the number of blocks, and Jiang and Tokdar (2021) do so for the partition and the
edge probabilities. Gao et al. (2020) provide posterior concentration rates for the edge
probabilities and show that their posterior mean achieves the minimax rate. Legramanti
et al. (2022b) employ Gibbs-type partition priors which generalise both the CRP and
the mixture with random number of components.

In general, these approaches require also specification of prior edge inclusion prob-
abilities jointly with the block structure prior. For instance, Kemp et al. (2006), Geng
et al. (2018) and Legramanti et al. (2022b) place Beta distributions on the edge proba-
bilities, and Reyes and Rodŕıguez (2016) and Jiang and Tokdar (2021) add structure by
using different priors for within- and between-block edge probabilities, while Tan and
De Iorio (2019) use a DP to build a joint prior on the partition of nodes and edge proba-
bilities. Additionally, they extend the model to a degree-corrected blockmodel, i.e. they
introduce a popularity parameter for each node. Passino and Heard (2020) and Loyal
and Chen (2022) consider Bayesian blockmodels where edge probabilities derive from a
latent space embedding. Caron and Fox (2017) model edge probabilities by associating
edges with realisations from a Poisson process with rate described by a random measure.
Herlau et al. (2016) and Todeschini et al. (2020) extend this approach, respectively, to (i)
blockmodels, with blocks corresponding to subsets of the support of a random measure;
and (ii) to overlapping community detection, with each community corresponding to an
element of a compound random measure. The Bayesian nonparametric blockmodel by
Peixoto (2017) defines a generative process based on a random partition prior on the
block configuration where structural constraints are imposed on the number of edges
across blocks. This approach avoids explicit modelling of edge inclusion probabilities.

1.2 Learning Block Structure in Graphical Models

Proposals for the estimation of large-scale structures in graphical models can be cat-
egorised in two main strategies: (i) regularisation methods; (ii) imposing structure on
the precision matrix. Within the first framework, Ambroise et al. (2009) and Marlin
et al. (2009) do not model graphs explicitly, but learn a block structure as part of a
shrinkage estimator for the precision matrix as in the graphical lasso (Friedman et al.,
2007), where every block is characterised by its own regularisation parameter.

Within the second framework, Sun et al. (2014) consider a GGM with a CRP as
prior on the partition of nodes. Then, the partition informs the sparsity pattern of the
scale matrix of the Wishart prior on the precision matrix rather than of the precision
matrix itself as is commonly done in GGMs. See Section S3 of Supplementary Material
(van den Boom et al., 2022b) for details. Marlin and Murphy (2009) impose sparsity
in the precision matrix of a GGM by first approximating the joint distribution of the



W. van den Boom, M. De Iorio, and A. Beskos 5

nodes via the specification of the conditional distribution of each node given the others.
Then, they impose a continuous spike-and-slab prior on “edge weights” that capture the
association of a node with the others. Finally, the prior on edge weights incorporates a
block structure. Sun et al. (2015) fix the number of blocks, place a Dirichlet prior on the
partition of the nodes in an exponential graphical model and compute a point estimate
of the partition using an expectation-maximisation algorithm.

Bornn and Caron (2011) consider decomposable graphs, which allow modelling of
cliques and separators separately, and use a product partition model as prior on the
graph. Their prior can induce large cliques and, as such, allows the identification of
larger structures than edges. Peixoto (2019) uses a stochastic blockmodel as prior for
network reconstruction in two discrete-valued graphical models, i.e. the Ising model
and an epidemic model of infection status across time. He shows empirically that joint
estimation of the graph and block structure increases accuracy as compared to two-step
approaches. Colombi et al. (2022) and Cremaschi et al. (2022) consider inference in
GGMs under a known block structure with either all or no edges present between a pair
of blocks.

2 Gaussian Graphical Models

Let the graph G = (V,E) be defined by a set of edges E ⊂ {(i, j) | 1 ≤ i < j ≤ p}
that represent links among the nodes in V = {1, . . . , p}. The data are represented by
an n× p matrix Y with independent and identically distributed rows corresponding to
p-dimensional random vectors whose elements are represented by nodes on the graph.
A graphical model (Lauritzen, 1996) is a family of distributions on the rows which is
Markov over G. That is, the distribution p(Y | G) is such that the i-th and j-th columns
of Y are independent conditionally on the other columns if and only if (i, j) /∈ E.

While our development for learning large-scale structure applies to graphical models
in general, here we focus on GGMs (Dempster, 1972), which consider a Gaussian law
for p(Y | G). Then, each row of Y is distributed according to a Multivariate Gaus-
sian distribution N (0p×1, Ω

−1) with precision matrix Ω. The conditional independence
structure implied by G implies that Ωij = 0 if and only if nodes i and j are not con-
nected. For the complete matrix Y , Ωij = 0 implies that the i-th and j-th columns
of Y are independent conditionally on the others. In this context, a blockmodel on G
enables learning of sparse block-structured precision matrices where the block structure
is unknown.

A popular choice as prior p(Ω | G) for the precision matrix Ω conditional on the graph
G is the G-Wishart distribution WG(δ,D) as it induces conjugacy and allows working
with non-decomposable graphs (Giudici, 1996; Roverato, 2002). It is parameterised by
degrees of freedom δ > 2 and a positive-definite rate matrix D. Then (e.g. Atay-Kayis
and Massam, 2005),

p(Y | G) ∝
∫

p(Ω | G) p(Y | Ω) dΩ =
IG(δ

�, D�)

(2π)np/2IG(δ,D)
, (1)
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where δ� = δ + n, D� = D + Y �Y and IG(δ,D) is the normalising constant of the
density of WG(δ,D). The constant IG(δ,D) is not analytically available for general,
non-decomposable G. Thus, we make use of the Markov chain Monte Carlo (MCMC)
methodology from van den Boom et al. (2022a) and of a Laplace approximation of
IG(δ,D) from Moghaddam et al. (2009) to perform posterior inference on G.

3 Graph Priors for Large-Scale Structure Recovery

Key to learning large structure in graphs is specification of a prior p(G) on graphs. To
this end, we borrow ideas from random graph theory, adapting them effectively in our
context.

Moreover, our approach is based on the Dirichlet process (Ferguson, 1973), a prob-
ability model for random probability distributions. Readers familiar with the DP can
skip to the next subsection. If a random measure H ∼ DP(ν,H0), then H is almost
surely discrete. H0 is the base measure, a distribution around which the DP is centred,
while ν > 0 denotes the precision parameter. Due to its discreteness, H admits the well-
known “stick-breaking” construction (Sethuraman, 1994) and can be represented as a
countable mixture of point masses: H =

∑∞
k=1 wkδβ′

k
. Here δβ′

k
is a point mass at β′

k,

the weights wk are generated by rescaled Beta distributions, wk = ξk
∏k−1

l=1 (1− ξl) with

ξk
i.i.d.∼ Beta(1, ν), and the locations {β′

k}∞k=1 are i.i.d. samples from the base measure
H0. Finally, the sequences {β′

k}∞k=1 and {ξk}∞k=1 are independent.

3.1 Degree-Corrected Stochastic Blockmodel

The fundamental idea behind our strategy is the following. Each node i in the graph
forms a connection with another node j according to (i) its own propensity (or popular-
ity) captured by the parameter θi; (ii) its block membership captured by the“interaction”
parameter βij , with nodes in the same block having higher probability to share an edge.
The popularity parameter can be thought of as the node-specific propensity to form
connections with other nodes. To guarantee parsimony, popularity parameters are mod-
elled assuming a DP prior. On the other hand, prior specification on block-specific
parameters is more complex, as it depends on the prior on the partition of nodes, which
defines the block structure. We exploit the discreteness of the DP to define the blocks,
where each component in the DP discrete mixture (see the “stick-breaking construc-
tion”) corresponds to a block and nodes allocated to the same component share the
same block-specific interaction parameter. Figure 1 summarises the modelling strategy.

Our starting point is the Bayesian nonparametric degree-corrected stochastic block-
model by Tan and De Iorio (2019) who propose a probit model for the edge inclusion
probabilities. More specifically, Pr{(i, j) ∈ E} = Φ(μij), independently over distinct
pairs (i, j) for 1 ≤ i < j ≤ p, where Φ(·) is the cumulative distribution function of the
standard Gaussian distribution N (0, 1). Then,

μij = θi + θj + βij 1[zi = zj ] (2)
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Figure 1: Visualisation of the degree-corrected stochastic blockmodel. Each node is
characterised by its own popularity parameter θi. Block membership is captured by the
allocation parameter zi. Nodes in the same block share the same value for zi as well
as for the interaction parameter βi = β�

zi . There are more edges within (solid lines)
than between (dashed lines) blocks represented by square boxes. The resulting graph
G constrains the precision matrix Ω of the data Y . The direction of the arrows reflects
the hierarchical specification of the model.

The allocation variable zi denotes the community node i belongs to. The parameter βij

measures the strength of interaction among members of the same community with nodes
in the same block expected to share more edges among themselves than with nodes
outside. The popularity parameter θi allows for degree correction in the blockmodel.
That is, nodes have varying popularity as captured by the number of their neighbours,
i.e. the number of nodes they are connected to via an edge.

To specify a prior on βij , we introduce auxiliary variable βi for each node i and

assume βi | H i.i.d.∼ H for i ∈ V where H ∼ DP(ν,H0) with H0 = N (0, s2β), s
2
β > 0.

The discreteness of the DP implies a positive probability of ties in a sample from H =∑∞
k=1 wkδβ′

k
and this, in turn, induces a clustering structure so that the nodes will

be grouped together in K clusters, where the number K of clusters is unknown and
learnt from the data through the posterior distribution. In our context, each cluster
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corresponds to a block, the parameters wk denote the prior probabilities of belonging to
each mixture component, and β′

k denotes the block-specific interaction parameter. Nodes
are clustered based on their edge inclusion probability, so that nodes in the same block k
share a common value β′

k such that in (2) βij = βi = βj = β′
k. Thus, the set of node-level

parameters {βi}pi=1 reduces a posteriori to the set of unique values β�
1 , . . . , β

�
K assigned

to within-block edges. We denote block membership with the variable zi ∈ {1, . . .K},
i ∈ V .

Each node is characterised by its own popularity parameter θi, which allows for
higher flexibility, but can also challenge identifiability of large-scale structures. This is
due to the fact that some connection patterns might be explained nearly as well (in
terms of graph likelihood) by either granular specification of the vector θ or by blocks.
To avoid such identifiability issues and associated inflated posterior uncertainty, we
reduce the number of unique elements of θ through clustering via a DP. Specifically,

θi | F i.i.d.∼ F for i ∈ V , where F ∼ DP(α, F0), α > 0, with F0 = N (0, s2θ), s
2
θ > 0.

Lastly, ν ∼ Γ(aν , bν) and α ∼ Γ(aα, bα), aν , bν , aα, bα > 0.

The proposed model has wide applicability as blocks can represent communities.
Algorithm S1 in Supplementary Material (van den Boom et al., 2022b) details an MCMC
algorithm for posterior inference. We remark that the block-specific parameter β�

k does
not appear in the likelihood for a block k of size one, i.e. when |{i | zi = k}| = 1,
differently from conventional applications of the DP. Therefore, the Metropolis-Hastings
proposal to add a block of size one does not require a proposal for the parameter specific
to the new block. This property causes Algorithms 2 and 8 in Neal (2000), which we
use to update the DP parameters, to coincide.

3.2 Southern Italian Community Structure

In the stochastic blockmodel, nodes in the same block are not necessarily connected.
This level of flexibility is particularly desirable when the network is observed directly,
and focus is on understanding network formation and evolution. On the other hand, in
graphical models, the graph is a latent variable and, in applications, it might be appro-
priate to impose a more restrictive definition of block/community. More restrictions can
also provide the benefit of improving computations as the space to explore gets smaller.

Here we assume that nodes in a block form a clique. In a clique, all pairs of nodes
are connected by an edge. Indeed, the earliest approaches for community structure in
graphs consider cliques (Luce and Perry, 1949; Festinger, 1949), the rationale being
that a community is strongest if each pair of its members is connected. Cliques have for
instance biological significance in protein-protein interaction networks (Yu et al., 2006).
We thus introduce a Bayesian nonparametric graph prior where each block is a clique.

In this context, main object of inference are the cluster allocation variables zi, i ∈ V ,
as in Section 3.1, as then the block structure is given: Pr{(i, j) ∈ E} = 1 if zi = zj . We
name such construction the Southern Italian community structure (SICS) with reference
to traditional Southern Italian communities where everybody knows each other. Still,
there can be connections between nodes from different blocks and, for these edges, we
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assume a prior inclusion probability ρ: Pr{(i, j) ∈ E} = ρ for 1 ≤ i < j ≤ p and zi �= zj .
This construction defines a prior p(G | z).

A prior on z completes the graph prior p(G) =
∫
p(G | z) p(z)dz. We assume that z

follows the Chinese restaurant process (Pitman, 2006) with concentration parameter ν
a priori for concreteness and consistency with the DP in Section 3.1. We note that our
approach is flexible and other priors on the partition of nodes z = (z1, . . . , zp) can be
straightforwardly adopted borrowing from the rich Bayesian nonparametric literature.
The CRP assumption implies:

Pr(zi = k | z−i) =

{
nβ
−i,k

p−1+ν , k = 1, . . . ,K−i

ν
p−1+ν , k = K−i + 1

(3)

where z−i = {zj | j �= i}, nβ
−i,k = |{j ∈ V | zj = k, j �= i}| and K−i is the number

of unique elements in z−i. Finally, ρ ∼ U(0, 1) and ν ∼ Γ(aν , bν), aν , bν > 0, complete
prior specification.

We now highlight some of the implications of the SICS prior on the overall graph
structure and on the corresponding MCMC algorithm. In the standard GGM framework,
moves on the posterior space of graphs usually involve a single edge and consequently,
when updating the graph, we only need to integrate out one element of the Cholesky
decomposition of the precision matrix (assumed to have a G-Wishart prior) leading to
efficient computation (van den Boom et al., 2022a). In such a context, updating more
than an edge at a time is extremely challenging. On the other hand, under the SICS
framework, change of block membership for a single node can affect a number of edges
in the graph:

• The node joins a new block, and forms connections with every node already present
in that block, thus a number of edges are introduced in the graph.

• The node is removed from the current block (which is represented by a clique).
Thus, as many edges as the number of nodes left in that block are removed. Some
of these edges might be readded as there is a positive probability ρ of connection
between nodes in different communities.

From a computational point of view, the structure in SICS poses a challenge to posterior
inference using MCMC, due to the multiple edge change. Updates of z conditional on G
are not possible. Instead, we devise MCMC steps to update z and G jointly, in addition
to updating G conditional on z. Section S2.2 of Supplementary Material (van den Boom
et al., 2022b) details the MCMC.

The SICS prior is a limiting case of the stochastic blockmodel, obtained taking the
limit for β�

k → ∞ in the model described in Section 3.1. In the limit, blocks become
cliques with probability one. Palla et al. (2012) consider a latent factor model that is,
conditionally on the factor loadings, equivalent to a GGM with the SICS prior where
ρ = 0. That is, there is an edge between two nodes if and only if they belong to the
same block.
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3.3 Multiple Graphs

In applications, it is common that data (i.e. the rows of the observation matrix Y )
are naturally clustered due to experimental conditions. For instance, Y could represent
gene expression measurements with different groups of rows corresponding to different
cancer types. One way to deal with such heterogeneity is a multiple graphical model
(e.g. Peterson et al., 2015; Ma and Michailidis, 2016; Mitra et al., 2016; Tan et al., 2017),
where each graph corresponds to an experimental condition (e.g. case/control status).

Consider multiple graphs Gx = (V,Ex) and associated data (nx, Yx) for x = 1, . . . , q.
Here, x indexes the groups such that we have nx observations in Yx, with each group
characterised by its own graph and data-generating process p(Yx | Gx). We model the
graphs G1, . . . , Gq jointly through the specification of a prior p(G1, . . . , Gq). The goal
is to identify common patterns, as well idiosyncratic edge/block structures. We now
introduce the multiple graph extension of the degree-corrected stochastic blockmodel,
described in Section 3.1. For each graph Gx, we have Pr{(i, j) ∈ Ex} = Φ(μxij) and (2)
becomes

μxij = θi + θj + βxij 1[zxi = zxj = k]

where zxi is the allocation variable for group x, x = 1, . . . , q, and node i ∈ V . Similarly

to Section 3.1, we introduce auxiliary variable βxi | H i.i.d.∼ H for i ∈ V , marginally for
each x. Then, βxij = βxi = βxj when i, j belong to the same community under condition
x. The other parameters of the blockmodel are shared across graphs and have priors
as specified in Section 3.1. Thus, marginally for each x, we recover the blockmodel of
Section 3.1.

We treat one group (and so graph) as baseline and the other graphs as offset from
the baseline group. For ease of notation, we set x = 1 as baseline group and, for clarity,
corresponding parameters by a subscript ‘b’.

There is a vast literature on Dependent Dirichlet processes (DDPs, see, e.g., Mac-
Eachern, 1999; De Iorio et al., 2004; Müller et al., 2004; Camerlenghi et al., 2019;
Quintana et al., 2022), where the goal is to cluster subjects based also on group in-
formation. These tools are not directly applicable to our context as we are actually
clustering variables (i.e. nodes on the graph) observed on nx subjects under each of q

experimental conditions (groups). Since we are assuming that βxi | H i.i.d.∼ H marginally
for each group x, the same node i under different groups can either belong to a differ-
ent cluster (block) or to the same. In the multiple graph context, it is then desirable
to have Pr(zbi = zxi) > Pr(zbi = zxj) for i �= j and x ≥ 2 to reflect that node i in
Gb and in Gx correspond to the same variable and to encourage sharing of large-scale
structures across graphs. In a multiple networks context, Reyes and Rodŕıguez (2016)
require the same property. See also the discussion on identifiability for multiple block-
models in Section 2.2 of Matias and Miele (2016) and arguments for the related concept
of separate exchangeability in Lin et al. (2021). On the other hand, DDP models typ-
ically assume exchangeability within each group x across subjects which implies that
Pr(zxi = k) = Pr(zxj = k) a priori. We thus consider the following set-up, where the
block structures {zxi}pi=1, x ≥ 2, are estimated as offsets from the baseline {zbi}pi=1.



W. van den Boom, M. De Iorio, and A. Beskos 11

Let βbi | H i.i.d.∼ H for i ∈ V and H ∼ DP(ν,H0) where H0 = N (0, s2β). Then,
set βxi = βbi with probability γ ∈ (0, 1) and βxi | H ∼ H with probability 1 − γ,
independently for i ∈ V and x = 2, . . . , q. We note that our construction is invariant
to any relabelling of the blocks. This is due to the fact that the distribution of βxi is a
mixture of a point mass at βbi and H:

βxi | βbi, H ∼ γδβbi
+ (1− γ)H

where H defines the overall block structure (across multiple graphs). Hence, our prior
specification allows keeping the same block labels across multiple graphs, while biasing
the probability that a node belongs to the same block across conditions. Moreover, the
implied dependence across block structures closely resembles the type of dependence
across partitions described in Page et al. (2022). In a dynamic clustering framework,
they avoid the use of cluster labels by specifying a prior directly on random partitions,
inflating the probability of belonging to the same cluster across time.

Posterior computations are greatly simplified by the introduction of binary “ge-
nealogical indicators” gxi ∈ {0, 1} such that βxi = βbi if gxi = 1 and βxi | H ∼ H if
gxi = 0. Note that even in the case gxi = 0, there is a positive probability that βxi = βbi

due to the discrete nature of H. This implies that the probability of βxi = βbi, x ≥ 2,
is greater than Pr(gxi = 1) = γ a priori conditionally on H. Section S2.3 of Supplemen-
tary Material (van den Boom et al., 2022b) details an MCMC algorithm for inference
which involves a joint update for (gxi, βxi). The prior dependence among the z1i, . . . , zqi
enables learning of block structure both within and across graphs. The indicators gxi
capture the extent to which structure in Gx is shared with Gb. At the same time, the
cluster indicators {zxi}pi=1 capture the within-graph block structure. Thus, the proposed
prior construction allows for borrowing of large-scale information across graphs, as well
as the detection of graph-specific blocks.

We want to highlight that our construction differs from the hierarchical Dirichlet
process (HDP, Teh et al., 2006), as assuming an HDP-type prior would imply that

βxi | Hx
ind.∼ Hx, Hx | H i.i.d.∼ DP(·, H), H ∼ DP(ν,H0). This means that the βxi have

a positive probability to be equal across group x (and obviously node i), but the same
node would not have higher probability to belong to the same block across groups.

There are proposals in the graphical model literature where a graph is considered
baseline (e.g. Mukherjee and Speed, 2008; Telesca et al., 2012; Mitra et al., 2016; Tan
et al., 2017), but their focus is on differences in individual edges instead of blocks. More-
over, Paul and Chen (2020) consider blockmodels with multiple graphs in a frequentist
framework where the number of blocks is known and assume a hierarchical structure for
the block memberships under each experimental condition, linking block membership
to an unknown baseline membership. Reyes and Rodŕıguez (2016) and Stanley et al.
(2016) induce dependence among graphs by assuming that they either share the same
block structure or have unrelated block structures, which leads to a less flexible mod-
elling tool than our approach. Amini et al. (2021) use an HDP to link block structure
across graphs which presents the limitation described in the previous paragraph. Ma and
Michailidis (2016) assume that multiple graphs share the same known block structure
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and only edges between and across blocks might differ across experimental conditions.
Edges are estimated using regularised nodewise regression (Zhou et al., 2011), instead
of working directly on graph space. In a different context, previous work on hidden
Markov models (Fox et al., 2008), including time-varying blockmodels (Ishiguro et al.,
2010; Fan et al., 2015), involves a similar dependence for cluster indicators across time,
but this dependence is induced through a more involved construction with a “spiked”
base measure for the DP on the transition probability vector of the Markov chain.

In our construction, the distribution of {zxi}pi=1, x ≥ 2, is defined conditionally on
{zbi}pi=1 such that {gxi}pi=1 captures differences from {zbi}pi=1. Alternative dependence
structures could be easily considered within our framework. For instance, instead of
setting a group as baseline, we could specify a latent block structure {z0i}pi=1 and then
define {zxi}pi=1, x ≥ 1, as deviations from {z0i}pi=1, for which a prior process needs to
be specified (e.g. simply assume H as prior). Finally, the multiple graph set-up can be
straightforwardly extended to the SICS prior from Section 3.2.

4 Testing for Large-Scale Structure

In this section, we describe a strategy to test if there is any block structure in an
individual graph. Although the description below will only involve one graph for ease of
explanation, the same techniques can be employed to test for the presence of structure
in multiple graphs.

In model (2), block structure is represented through indicator vector z. Thus, testing
for presence of block structure is equivalent to testing whether K ≥ 2. In the Bayesian
paradigm, we can use Bayes factors and here we describe a computational method
for their evaluation based on the Savage-Dickey ratio (Dickey, 1971), as they are not
available analytically. Consider a prespecified block structure z�. For instance, z� can
consist of a single (K� = 1) block, i.e. no large-scale structure, such that the test
assesses the evidence for any block structure. Our method will often be computationally
infeasible for other choices of z� as discussed later but the idea applies to any z� in
principle.

The computation of Bayes factors for DP-based models has received attention in
the literature though with some drawbacks: the method from Basu and Chib (2003)
requires an extra MCMC run with z fixed to z� and the use of sequential importance
sampling, resulting in an involved strategy, not easily integrated into an existing MCMC
implementation. Legramanti et al. (2022a) evaluate the marginal likelihood of each
model using the harmonic mean approach (Newton and Raftery, 1994; Raftery et al.,
2007), which can be unstable or slow to converge. Application of their method in our
(and other’s) context would benefit from the direct evaluation of p(Y | z) which is not
available in closed form. Without an analytical form for p(Y | z), the harmonic mean
approach requires an extra MCMC run with z fixed to z� to approximate p(Y | z�).
Indeed, one of the main advantages of our method is that Bayes factors can be evaluated
directly from the MCMC output for the model of interest.
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More in details, the Bayes factor of the relative evidence of z = z� (model M�) over
z ∼ p(z) (model M) is

B =
p(Y | M�)

p(Y | M)
=

p(Y | z�)
p(Y )

=
p(Y, z�)

p(Y ) p(z�)
=

p(z� | Y )

p(z�)
(4)

where the last ratio is the Savage-Dickey ratio. Note that the second equality uses the
property that the prior on all remaining parameters in the model such as βi are the same
under M and M� in such a way that we recover the same model specification as M�

when z = z� in M. Now, an estimate B̂ for B is obtained by plugging in the usual (in
terms of sample frequency) estimate of p(z� | Y ) derived from the MCMC chain while
p(z�) is readily computed by numerical quadrature: p(z) =

∫
p(z | ν) p(ν) dν where

p(ν) = Γ(ν | aν , bν) and (e.g. Legramanti et al., 2022b)

p(z | ν) = νK
∏K

k=1 |{i | zi = k}|!∏p−1
i=0 (ν + i)

.

This scheme can be employed to compute B̂ from an MCMC chain as long as p(z�)
is not too small. In that case, reliably estimating p(z� | Y ) might be hard as the MCMC
chain could visit z� only rarely after convergence. Furthermore, p(z�) will often be
too small if z� corresponds to multiple blocks due to the combinatorially many ways
to assign p nodes to K� ≥ 2 blocks, but it usually assumes reasonable values for z�

corresponding to absence of block structure (K� = 1), which refers to the conventional
null hypothesis of no structure (i.e. “no effect”). For instance, we test for K� = 1 in the
examples considered in this work. We remark that the methods from Basu and Chib
(2003) and Legramanti et al. (2022a) do not have such limitation for small p(z�), but in
general require additional MCMC runs. Note that p(z� | Y ) being estimated as (close
to) zero is not problematic, but leads to an accurate estimate of B ≈ 0 (as long as p(z�)
is sufficiently far from zero). In Section S4 of Supplementary Material (van den Boom
et al., 2022b), we show empirically that the proposed Bayes factor estimation converges
faster than the harmonic mean approach.

5 Simulation Studies

We demonstrate the performance of our approach in two simulation scenarios. For all
empirical results, we set the hyperparameters as γ = 0.5, s2β = s2θ = 1, aν = bν = aα =
bα = 2, δ = 3 and D = Ip unless otherwise stated. See Section S1 of Supplementary
Material (van den Boom et al., 2022b) for an overview of the models.

5.1 Karate Club Network

We investigate the importance of uncertainty propagation when learning community
structure in a graphical model. As true underlying graph G, we consider the karate
club network (Zachary, 1977) which Tan and De Iorio (2019) analyse using the degree-
corrected stochastic blockmodel of Section 3.1. The network’s p = 34 nodes correspond
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to members of a karate club while its 78 edges signify friendships between members.
Conditionally on G, we sample a precision matrix Ω | G ∼ WG(δ,D). The n rows of
Y are sampled according to the GGM in Section 2 independently from N (0p×1, Ω

−1).
Finally, we fit the model from Section 3.1 using 6000 MCMC iterations, discarding the
first 1000 as burn-in. In this case, we set aν = bν = aα = bα = 5 as in Tan and De Iorio
(2019) for a fair comparison.

We repeat the simulation for n = 104, 103, 102, 10 while keeping Ω the same and
present the estimated community structure in Figure 2. For n = 104, the results are
very close to those in Tan and De Iorio (2019) where the underlying network is known,
with the two main blocks corresponding to the karate instructor Mr Hi and the club’s
president John A. The increased uncertainty in the estimation of G for smaller values of
n obviously affects inference on the block structure, with too little information present
in the data with only n = 10 observations to recover the two main blocks. This is
also reflected in the estimate of the Bayes factor comparing the model with no block
structure vs the model with z ∼ p(z): B̂ = 0 for n = 104, 103, B̂ = 0.28 for n = 102 and

B̂ = 0.40 for n = 10. These results show that uncertainty in graph estimation can have a
major impact on community estimation and this uncertainty should not be ignored as is
often done in applications where a two-step approach is adopted (first graph estimation
and then blocks).

5.2 Block Structure Recovery

We now investigate how accurately the proposed methodology can recover block struc-
ture. We assign p = 20 nodes to K clusters by sampling zi with replacement from
{1, . . . ,K} for i ∈ V . Then, we generate a graph G according to the SICS prior from
Section 3.2 with between-block edge inclusion probability ρ = 0.2. Data Y correspond-
ing to G are sampled as in Section 5.1. We consider the following scenarios: K = 4 for
n = 20, 100, 500, 1000 and n = 500 for K = 2, 3, 4, 5. The performance of the algorithms
is assessed over 50 replicates for each scenario.

We fit both models from Sections 3.1 and 3.2, as well as the model by Sun et al.
(2014) (see Section S3 of Supplementary Material (van den Boom et al., 2022b) for a
description) for comparison. We run the MCMC for 1000 iterations after a burn-in of
500 for the for the stochastic blockmodel and the model by Sun et al. (2014) while we
record 5000 iterations after a burn-in of 1000 for the SICS model to account for the
slower convergence and mixing of its MCMC.

The cluster allocation vector z informs the block structure. As point estimate for
z, we report the configuration that minimises the posterior expectation of Binder’s
(1978) loss function under equal misclassification costs, which is a common choice in
the applied Bayesian nonparametrics literature (Lau and Green, 2007). See Appendix B
of Argiento et al. (2014) for computational details. Briefly, this expectation of the loss
measures the difference for all possible pairs of nodes between the posterior probability
of co-clustering and the estimated cluster allocation. Following Sun et al. (2014), we
use the Rand (1971) index to quantify the difference between the true allocation and
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Figure 2: Karate club network: posterior similarity matrices for the simulation studies.
The nodes are ordered as in Tan and De Iorio (2019).

its Binder point estimate. A Rand index of one corresponds to a perfect match while a
lower value indicates worse block structure recovery.

Figure 3 shows that the proposed methodology recovers the block structure com-
parably to or substantially more accurately than the model by Sun et al. (2014). The
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Figure 3: Block structure recovery: Rand index versus the number of observations (left)
and the number of clusters (right). The lines represent means over the 50 replicates for
the stochastic blockmodel, SICS and the model by Sun et al. (2014). The shaded areas
are 95% bootstrapped confidence intervals.

superior performance of the stochastic blockmodel over SICS, when occurring, is most
likely due to the fact that the SICS model imposes more stringent assumptions on the
correlation structure of the data, which might not be captured with small sample sizes
(left panel of Figure 3). This is in line with power considerations for detecting correla-
tion in a frequentist framework, with large sample size usually required, especially for
partial correlations (see, e.g., Castelo and Roverato, 2006; Knudson and Lindsey, 2014).
Secondly, the SICS structure is more easily recovered when fewer nodes belong to a
block (right panel of Figure 3) as this relaxes the assumption on the overall dependence
structure among the random variables. Finally, posterior inference for the stochastic
blockmodel is performed through an exact MCMC (van den Boom et al., 2022a) while,
for the SICS, we employ a Laplace approximation for the graph likelihood to update z
and G jointly. See Section S2 of Supplementary Material (van den Boom et al., 2022b).

6 Applications

We apply the proposed models to two real data sets. We discuss MCMC mixing and
convergence in Section S5 of Supplementary Material (van den Boom et al., 2022b).

6.1 Mutual Fund Data

We consider data on monthly returns of p = 59 mutual funds described in Scott and
Carvalho (2008). The funds are divided into four types by the sectors they invest in
with 13 funds investing in U.S. bonds, 30 in U.S. stocks, 7 in both U.S. stocks and
bonds, and 9 in international stocks. The data contain observations on n = 86 months.
Here, we ignore the dependence of the returns across time and focus on the dependence
between funds as in Scott and Carvalho (2008) and Marlin et al. (2009). Note that
time dependence could be easily incorporated through a mean term. The returns are
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Figure 4: Mutual fund data: posterior similarity matrices. The red dotted lines demar-
cate the fund types.

quantile-normalised so that they marginally follow a standard Gaussian distribution.
We fit both the degree-corrected stochastic blockmodel from Section 3.1 and SICS from
Section 3.2. We run the MCMC chain for 15000 iterations discarding the first 5000
as burn-in for the stochastic blockmodel, and for 110000 iterations discarding the first
10000 for SICS.

The stochastic blockmodel identifies clear blocks of funds per Figures 4 (left panel)
and 5. Specifically, the U.S. bonds, U.S. stocks and bonds, and international stocks
funds are each blocked together without overlap between these fund types except for
two international stocks funds that are grouped with the U.S. stocks and bonds. The
other funds, which invest in U.S. stocks, are mostly blocked with the U.S. stocks and
bonds, or with the international stocks but not with the U.S. bonds. These results are
intuitive as funds with a mixture of U.S. stocks and bonds make investments which
overlap with funds with only U.S. stocks, and correlation between the returns of U.S.
and international stocks is likely. This identified block structure is notably more in line
with the fund types than the blocking results presented in Marlin et al. (2009) obtained
by shrinkage estimation and optimisation, where only a clear separation of the U.S.
bonds funds from the others is detected.

The SICS prior leads to a large number of blocks with a posterior mode at K = 24
blocks. A larger number of blocks with SICS than with the stochastic blockmodel is
expected as SICS’ definition of a block as a clique is more stringent such that larger
blocks are less likely to appear. The large-scale pattern of the similarity matrix for
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Figure 5: Mutual fund data: median probability graph (Barbieri and Berger, 2004),
which consists of edges with posterior inclusion probability greater than 0.5, from the
stochastic blockmodel. Colour of nodes refers to fund type. Boxes group nodes belonging
to blocks estimated by minimising Binder’s loss function.

SICS is still similar to that of the stochastic blockmodel in Figure 4, though with much
lower values for Pr(zi = zj | Y ). Still, the posterior fit indicates strong evidence for the
presence of a block structure as the Bayes factor in favour of absence of block structure
is B̂ = 0.

Generally, the posterior inference contains information on whether the stochastic
blockmodel or SICS is the most appropriate model for the data at hand. We assess
this by computing the Bayes factor of the stochastic blockmodel versus SICS using the
harmonic mean approach. This results in a log Bayes factor of 235 indicating strong
evidence that the stochastic blockmodel fits the data better than SICS.
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Figure 6: Gene expression data: posterior similarity matrices. The three matrices visu-
alise the posterior probabilities of z1i = z1j , z1i = z2j and z2i = z2j , respectively, where
x = 1 corresponds to breast cancer and x = 2 to ovarian cancer. The red dotted lines
demarcate the modules identified by Zhang (2018).

6.2 Gene Expression Data

As a second application, we consider gene expression levels, the interactions between
which are often represented as networks. An important concept in the gene network
literature is that of module, which is a densely connected subgraph. Thus, learning the
block structure of a graph allows module detection. Typically, a two-step approach is
adopted: first the graph is estimated from the gene expressions, and then the modules
are derived from the graph estimate (see, e.g., Zhang, 2018), which underestimates
uncertainty and often leads to false positives.

We analyse data on gene expressions from n1 = 590 breast cancer tissue samples and
n2 = 561 ovarian cancer samples from The Cancer Genome Atlas. We focus on p = 44
genes identified by Zhang (2018) as spread across four estimated modules (Modules 6,
14, 36 and 39 in Table 2 of the cited paper) which are highly enriched in terms of Gene
Ontology (GO, Ashburner et al., 2000) annotations. For each cancer, the gene expres-
sions are quantile-normalised to marginally follow a standard Gaussian distribution. We
apply the proposed multiple graph methodology from Section 3.3 with q = 2 separate
groups, corresponding to the two different cancers. We run the MCMC algorithm for
55000 iterations, discarding the first 5000 as burn-in.

Posterior inference on block structure, shown in Figure 6, carries strong similarities
with the modules identified by Zhang (2018). For ease of discussion, we refer to the
modules from Zhang (2018) as Module 1 (comprising Nodes 1 through 7), 2 (Nodes 8
through 32), 3 (Nodes 33 through 38) and 4 (Nodes 39 through 44), and highlight them
in Figure 6. The proposed methodology finds differences in block structure between
breast and ovarian cancer (see middle panel of Figure 6) as well as differences from
Zhang’s modules, which are forced to be the same across both cancers by construction.
Across both breast and ovarian cancer, we find that Nodes 39 and 40 (GSTM3 and
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BCAR3 genes, respectively) are grouped with genes from Module 2, which has GO
annotations relating to inflammatory response. For Breast cancer, we cluster Nodes 42
through 44 (GSTM1, GSTM2 and GSTM5) with Module 2 while we put them together
with Module 1, which has GO annotations relating to pattern specification, for ovarian
cancer. Note that these three genes are paralogs of each other which suggests that they
have similar function. Finally, Nodes 35 and 41 (HOXB13 and GSTM4) are together
with nodes in Module 1 for both cancers. These results show the flexibility of the
proposed model to capture differences as well as commonalities in large-scale dependence
structure across multiple biological conditions.

7 Discussion

In this work, we combine advances from random graph theory with graphical models to
obtain joint estimation of the graph and its large-scale structure. The resulting graph-
ical models are able to go beyond estimation of individual edges to provide inference
on the community structure of the graph, while appropriately propagating uncertainty
in the estimation. We introduce a novel DDP prior process tailored to the multiple
graph setting and propose a convenient computation of Bayes factors in partition mod-
els. Advantages of the proposed approach include interpretability, flexibility (due to
the nonparametric component) and wide applicability. We focus on two different block
structures: stochastic blockmodels and SICS. We note that the SICS prior is more suit-
able in applications where strong partial correlation between a small number of nodes
is expected.

Alternative priors on the block structure could be considered. For instance, Gibbs-
type priors (Gnedin and Pitman, 2005) and microclustering priors (Betancourt et al.,
2020) are drop-in replacements for the respective DP terms used in (3), and cover a wide
range of partition priors such as mixture with random number of components (Miller
and Harrison, 2017; Geng et al., 2018; Argiento and De Iorio, 2022). In general, standard
Bayesian nonparametric priors assume that the location parameters are i.i.d. draws from
a base measure. Note that, in our case, the location parameters, β�

k , correspond to the
within-block interaction strength and they can be arbitrarily close or far given the prior
assumptions. On the other hand, in the context of mixture with random number of
components, it is easier to introduce constraints on the locations, if the application or
interpretability require it. For instance, we might impose that the β�

k vary significantly
across blocks and, to that end, assume a repulsive mixture prior (Petralia et al., 2012).

We focus on GGMs for convenience and because of their popularity. Our methodolog-
ical contribution is however not constrained to this specific set-up and can be extended
to work with other graphical models, e.g. to graphs with discrete or mixed type nodes.
Moreover, our computational strategy to estimate Bayes factors finds general applica-
bility in the context of Bayesian nonparametric models to test the presence/absence of
a partition structure.

We conclude the discussion with few remarks on asymptotic properties of the pro-
posed methodology. Posterior contraction on the graph space does not imply contraction
for the block structure and vice versa: posterior contraction of the graph requires the
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number of observations n → ∞. See Lee and Cao (2021) and Niu et al. (2021), and
references therein. On the other hand, asymptotic results for Bayesian learning of block
structure involve the number of nodes p → ∞ (e.g. Geng et al., 2018; Gao et al., 2020;
Jiang and Tokdar, 2021). For n large, the graph might be estimated with high precision.
In that scenario, considerable posterior uncertainty about the block structure can re-
main as such uncertainty can be present even if the graph is observed. Furthermore, for
large p, block structure can be recovered accurately even if the estimates of the overall
graph connection pattern are characterised by high uncertainty.

Supplementary Material

Supplement (DOI: 10.1214/22-BA1338SUPP; .pdf). Overview of notation and models,
details of the MCMC algorithms, description of the model by Sun et al. (2014), empirical
results for the Bayes factor approach, and MCMC trace plots.
Code for the empirical results is available at https://github.com/willemvandenboom/
graph-substructures.
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Zhou, S., Rütimann, P., Xu, M., and Bühlmann, P. (2011). “High-dimensional covari-
ance estimation based on Gaussian graphical models.” Journal of Machine Learning
Research, 12: 2975–3026. MR2854354. 2, 12

Acknowledgments

The data used in Section 6.2 are generated by The Cancer Genome Atlas Research Network:

https://www.cancer.gov/tcga.

https://doi.org/10.1002/pmic.200300636
https://doi.org/10.1093/bioinformatics/btl014
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1186/s12918-018-0530-9
https://doi.org/10.1186/s12918-018-0530-9
https://www.ams.org/mathscinet-getitem?mr=2854354
https://www.cancer.gov/tcga

	Introduction
	Stochastic Blockmodels
	Learning Block Structure in Graphical Models

	Gaussian Graphical Models
	Graph Priors for Large-Scale Structure Recovery
	Degree-Corrected Stochastic Blockmodel
	Southern Italian Community Structure
	Multiple Graphs

	Testing for Large-Scale Structure
	Simulation Studies
	Karate Club Network
	Block Structure Recovery

	Applications
	Mutual Fund Data
	Gene Expression Data

	Discussion
	Supplementary Material
	References

