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ABSTRACT
SGX enclaves are trusted user-space memory regions that ensure
isolation from the host, which is considered malicious. However,
enclaves may suffer from vulnerabilities that allow adversaries to
compromise their trustworthiness. Consequently, the SGX isolation
may hinder defenders from recognizing an intrusion. Ideally, to
identify compromised enclaves, the owner should have privileged
access to the enclave memory and a policy to recognize the at-
tack. Most importantly, these operations should not break the SGX
properties.

In this work, we propose SgxMonitor, a novel provenance anal-
ysis to monitor and identify compromised enclaves. SgxMonitor
is composed of two elements: (i) a technique to extract contextual
runtime information from an enclave, and (ii) a novel model to rec-
ognize enclaves’ intrusions. Our evaluation shows that SgxMonitor
successfully identifies enclave intrusions against state-of-the-art
attacks without undermining the SGX isolation. Our experiments
did not report false positives and negatives during normal enclave
executions, while incurring a marginal overhead that does not affect
real use cases deployment, thus supporting the use of SgxMonitor
in realistic scenarios.
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1 INTRODUCTION
Intel Software Guard eXtension (SGX) is an ISA abstraction that
allows developers to define enclaves [40, 63], small user-space re-
gions isolated from the underlying untrusted OS. Although en-
claves may host arbitrary programs, they are primarily aimed at
protecting software components that carry out specific security-
and privacy-sensitive tasks [19, 21, 49, 67, 72]. Both academic [81]
and industry [15, 32, 46, 58, 59] proposals embrace SGX to execute
such sensitive components.

SGX guarantees that an enclave is properly loaded in memory,
while SGX Remote Attestation (RA) allows a remote entity to verify
the correct enclave initialization, similar to a pre-boot TPM static
code measurement. However, SGX alone has no mechanisms to
guarantee the correct runtime execution of enclaves, which remain
vulnerable against confused deputy attacks that cause deviations
from enclaves’ expected legitimate behaviors and lead to data leak-
age [14, 21, 31, 47, 76].

Although one can equip enclaves with mechanisms tailored at
counteracting specific threats (e.g., CFI or shadow stacks), these
solutions simply stop an attack without providing the analyst in-
formation about the intrusion. In real scenarios, however, solely
blocking an intrusion does not prevent further attempts in similar
contexts. Moreover, recent works highlighted the difficulties of re-
moving all vulnerabilities from SGX enclaves [21]. In this regard,
having information about the attack vector becomes crucial for
improving the defenses. In normal scenarios (e.g., OSes) one can
employ provenance analyses [36, 41, 61, 88] based on streams of

events (e.g., system logs, syscall invocation). However, SGX disal-
lows standard monitoring mechanisms (e.g., Intel PT [43] or Intel
LBR [28, 89]) a-priori [73], thus hindering the adoption of these
approaches. Recent works [90] propose techniques to dump arbi-
trary enclave memory regions in a secure fashion, however, these
mechanisms do not provide a continuous tracing and may leave
room for attacks.

Provenance techniques for SGX need to deal with two challenges:
(i) streaming information out of an enclave without introducing
undesired side effects, and (ii) a model to identify an attack from
the information gathered. We address these challenges with Sgx-
Monitor: a system to allow an external (and legitimate) entity to
inspect an enclave runtime state, retrieve evidence of intrusion,
and not undermining the SGX isolation. To achieve this, we first
design a secure tracing mechanism for SGX enclaves, and second,
propose a model to represent useful intrusion information. Our
monitor combines a lightweight enclave instrumentation with a
novel communication protocol that allows the emission of contex-
tual runtime information in the presence of a compromised OS, thus
adhering to the standard SGX threat model. Our tracing is designed
to offer a similar granularity as Intel PT but for SGX enclaves, form-
ing the foundation for provenance analyses. Most importantly, our
monitor is designed not to amplify other attack vectors such as side-
channels. For detecting intrusions, we propose a novel Finite-State
Machine (FSM) that extends the current models used in SGX [23].
We automatically build the enclave model through a combination
of symbolic execution and a flow-, path-, and context-insensitive
static analysis to create an FSM of the code in an enclave. Intuitively,
an enclave deviating from its FSM gives insights about the attack
vector.

To support our claims, we evaluate the properties of SgxMonitor
in terms of security guarantees and usability. To assess the secu-
rity properties of SgxMonitor, we test it against SnakeGX [31], a
novel data-only malware for SGX enclaves, and specifically-crafted
security benchmarks (§7.1.1). Moreover, we discuss if our solu-
tion braces the attacker surface of SGX enclaves (§7.1.2). To assess
whether SgxMonitor is usable in practice, we deploy it across five
use cases and measure micro- and macro-benchmark (§7.2). Our
results show SgxMonitor incurs in an overhead between 1.6% and
10% for macro-benchmark, which is in line with the state-of-the-art.

In summary, we make the following contributions:

• We propose SgxMonitor, a novel provenance analysis system
designed for SGX enclaves that provides: (i) a new design for
tracing the enclaves runtime behavior in the presence of an
adversarial host without relying on additional hardware iso-
lation (§4); (ii) a stateful representation of the SGX enclaves
runtime properties (§5).
• We assess the security properties of SgxMonitor against
SnakeGX and specifically-crafted security benchmarks (§7.1.1).
Moreover, we conduct a security analysis of our design
(§7.1.2).
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• We likewise evaluate the usability of SgxMonitor by measur-
ing micro/macro-benchmark, and the completeness of our
model (§7.2).

2 SGX BACKGROUND
Enclaves stand at the base of the SGX programming pattern. They
are contiguous memory regions that contain critical pieces of soft-
ware and data (e.g., cryptographic keys). The isolation of SGX en-
claves is handled at microcode level and is independent of the
Operating System (OS) which is considered malicious.

SGX specifies new opcodes to interact with enclaves. For our
work, we consider three of them: (i) EENTER, to trigger the enclave
execution; (ii) EEXIT, to leave the enclave execution; and (iii) ERE-
SUME, to resume the enclave execution after an exception. Moreover,
SGX uses Asynchronously Enclave Exit (AEX) to handle runtime
exceptions.

On top of the former opcodes, Intel provides a Software Devel-
opment Kit (Intel SGX SDK) that organizes the enclave code as
secure functions. A process can interact with an enclave by means
of simple primitives: ECALL, to invoke a secure function; ERET, to
return the execution from a secure function; OCALL, to invoke a
function outside the enclave (i.e., outside function); and ORET, to
resume a secure function execution from an outside function. In addi-
tion, the Intel SGX SDK defines dedicated secure functions to handle
exceptions. The security guarantees provided by SGX ensure strong
protection against direct memory manipulations. However, such
protections do not hold against memory corruption vulnerabilities
that lead to code-reuse attacks.

In addition to memory isolation, SGX introduces a Remote At-
testation protocol (SGX RA) [80] that allows an external entity to
verify the integrity of an enclave. The SGX RA relies on the isolation
offered by the CPU to protect the cryptographic keys. In particular,
the SGX RA guarantees two properties: (i) the host machine has
correctly loaded the enclave in memory, (ii) a remote entity can
check the identity of the enclave and the machine (i.e., CPU) that is
loading it. Therefore, the SGX RA does not capture runtime attacks
that may deviate the enclave execution. The SGX RA provides proof
of a correctly initialized enclave but does not consider running en-
claves. SgxMonitor builds on SGX RA for enclave initialization but
later continuously verifies enclave integrity during execution.

3 THREAT MODEL
In this section, we describe the threat model for SgxMonitor.

AdversaryAssumptions: In linewith the SGX assumptions [63],
we assume the adversary is a host, that can attack the enclave in
two ways. (i) Exploiting classic memory-corruption errors in en-
clave code [21, 30, 76] that lead to hijacking the enclave execution
path [14, 47]. (ii) Altering the enclave communication by over-
hearing, intercepting, and forging packets such as the Dolev Yao
attacker [27]. Since the enclave has no direct access to peripherals,
it requires the OS assistance to communicate with the outside world.
Therefore, a malicious OS can intercept messages reported/received
by the enclave in the attempt to induce a wrong enclave behavior.

Enclave Assumptions: We assume an enclave developed for
SgxMonitor follows the specification described in §4 and §5. In
particular, SgxMonitor requires the source code of the enclave, that

will be instrumented at compilation time to trace runtime enclave
information (§6).

Out-of-Scope Attacks: We assume the CPU is correctly imple-
mented, thus not prone to rollback attacks [69], micro-architectural
vulnerabilities [35, 44, 75, 77, 84, 87], cache timing attacks [16, 33,
54], and denial-of-service from the host. We also assume enclaves
with a correct exception handler implementation [24]. Such prob-
lems are considered orthogonal to SgxMonitor.

4 SGXMONITOR: SYSTEM DESIGN
Natively, SGX forbids any external observer to inspect enclave’s
content. With SgxMonitor, we allow an enclave to securely stream
runtime fine-grain information, namely actions, similarly to Intel
PT. Intuitively, actions represent meaningful enclave events (e.g.,
control-flow transfers, functions invoked) that enable an outside
monitor to recognize an intrusion. Our system plays a crucial role
since it has to transfer (potential) sensitive information without
amplifying the attacker capabilities. This section focuses on the
technical description, while we conduct a security analysis in §7.1.2.

Figure 1 illustrates the SgxMonitor design, that involves seven
actors:

• a target enclave T, the enclave to monitor against attacks
under the threat model described in §3.
• a monitor enclave M, that receives the actions A generated
by T.
• an Application, that interacts with T through standard SGX
specifications (e.g., ECALL, OCALL),
• the Model D, that represents the correct behavior of T.
• the Model Extractor, that generates a model containing the
correct behavior of T.
• the Model Verifier, that validates the runtime status of T
according to A and D.
• a remote entity R, that attempts to validate both software
and runtime integrity of T.

Generally, we assume T, or its host, may be compromised. More-
over, we move M into a separate host to reduce the likelihood of
compromising M. R is a legitimate remote entity that desires to vali-
date the integrity of T, we ensure R’s trustworthiness by employing
the standard SGX RA [6] (see §2). We opted for this design because
an enclave cannot be internally segmented (i.e., , an enclave forms
a single inseparable fault domain), therefore, we ship the actions
outside the enclave as soon as they are generated.

Overall, the design of SgxMonitor is split into two distinct phases:
Offline Enclave Analysis, and Online Enclave Verification. During the
Offline Enclave Analysis, the Model Extractor generates the Model D
representing the correct behavior of the target enclave T ( 1 ). Then,
we seal D to prevent a malicious host to tamper with it ( 2 ). During
theOnline Enclave Verification, we assume thatM and T are correctly
loaded in the respective hosts. Once T is loaded, it establishes a
secure communication channel with M by using the standard SGX
RA [6], as described in §4.2 ( 3 ). This channel allows T to send a
stream of actions A to M, while an Application can interact with
T by following standard SGX mechanisms (e.g., ECALL, OCALL).
Finally, M uses the Model Verifier to validate the runtime integrity
of T by verifying the actions A adhere to the model D ( 4 ). The
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Figure 1: SgxMonitor design.

Model Extractor ( 1 ) and Verifier ( 4 ), along with further model
details, are described in §5.5 and §5.6, respectively.

Once M correctly receives A from T, R uses the SGX RA to
communicate with T and M. Specifically, R uses the SGX RA to
verify the software integrity and the identity of T ( 5 ). Likewise, R
uses the SGX RA to attest the identity of M and inquiry the runtime
state of T, i.e., if T still follows the model D and, in case, where the
model diverges and how ( 6 ).

4.1 Action Reporting Mechanism
T relies on an action reporting mechanism that is resilient against
the threat model described in §3: an intrusion inside T (e.g., exploit-
ing a T internal error), and a malicious host.

We design the action reporting as a dedicated function, called
trace(), that is included in crucial code locations of T at compi-
lation time. Without loss of generality, we say all the actions are
reported through trace() over a secure channel between M and
T (§4.2). This section mainly focuses on the reporting mechanism,
while a complete description of actions is presented in §5.2. Finally,
we assume trace() is free from errors and an adversary cannot
exploit it to take control of T. This is reasonable since trace() has
a minimal implementation tailored for action reporting.

The intuition of our mechanism is to report an action before a
critical control-flow location is traversed (e.g., a return instruction).
We exemplify this mechanism in Figure 2, in which the program
traces an action representing a return edge to the caller (Line 5). In
this scenario, an adversary could attempt an intrusion by injecting a
ROP chain, report arbitrary actions, and finally hiding her presence
in T. In this case, T will report an action representing the anomalous
return address (i.e., the first ROP gadget) right before the payload
is executed, thereby producing evidence of the intrusion. We can
generalize this approach such that T reports every action before they
are actually executed, i.e., before an intrusion begins. We paired
this mechanism with the secure communication protocol (§4.2)
that avoids forging and tampering with already reported actions.
Therefore, an adversary cannot hijack T without reporting evidence
about the attack.

Our solution is robust against attempts of overwriting trace().
In this case, we use the standard SGX security properties and dis-
tinguish two cases. First, in SGX 1.0 [1], the host cannot arbitrary

1 i n t fun ( i n t a ) {
2 / ∗ f u n c t i o n body ∗ /
3

4 / / t r a c e the i n d i r e c t jump to the c a l l e r
5 t r a c e ( _ _ b u i l t i n _ r e t u r n _ a d d r e s s ( 0 ) ) ;
6 r e t u r n 0 ;
7 }
8

Figure 2: Example of code instrumentation. We report the
action before critical program edges are traversed. This dis-
allows an adversary to hijack T without reporting an action.
The secure protocol then ensures the adversary cannot forge
an action (§4.2).

alter the page permission of an enclave, this blocks any overwrite
attempts by design. Second, for SGX 2.0, a host can change the
enclave memory layout (i.e., change page permission) only upon
an enclave request. However, for this to happen an adversary has
to first complete an intrusion in T, thus reporting evidence of the
attack similarly to the previous scenario.

We thus claim the action emission, when paired with the secure
communication protocol (§4.2), provides the base for our resilient
provenance analysis (more info in §7.1.2).

4.2 Secure Communication Protocol
T and M exchange actions relying on a secure communication chan-
nel that ensures three properties: (i) the host cannot tamper with
the packets reported by T; (ii) an adversary cannot alter or forge
the packets already reported even if she takes control of T; and
(iii) the protocol does facilitate side-channel attacks. Note that we
accept an adversary that performs a denial-of-service between T
and M. In this case, M considers T as untrusted after a timeout.

Workflow. The channel requires three steps to be established
( 3 in Figure 1): (i) T issues a standard SGX RA [6] with M, thus
ensuring a respective identity verification; (ii) M sends a secure key
K to T; and (iii) T sends the actions to M. The secure channel is
shared among the threads of T, that refer to the same key K. We also
include a thread ID into the exchanged packets, this allows M and T
to multiplex and demultiplex the communication. The adoption of
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Algorithm 1: Procedure used by the target enclave to re-
port logs in a secure fashion.
1 reportLog(A)
2 mac← 𝐻1 (𝐴|𝐾)
3 𝐶 ← (𝐴|mac) ⊕ 𝐾
4 𝐾 ← 𝐻2 (𝐾)
5 𝑤𝑟𝑖𝑡𝑒 (𝐶)

Algorithm 2: Algorithm used by the monitor enclave to
verify the logs reported through reportLog() described in
Algorithm algorithm 1.
1 verifyLog(C)
2 (𝐴|mac) ← 𝐶 ⊕ 𝐾
3 mac′ ← 𝐻1 (𝐴|𝐾)
4 if mac′ ≠ mac then
5 untrusted()
6 else
7 process(𝐴)
8 end
9 𝐾 ← 𝐻2 (𝐾)

a shared key K avoids an adversary to use the technique discussed
in Dark-ROP [47], we provide more details in the §7.1.2.

The validation of the transmitted actions relies on two algorithms,
reportLog() and verifyLog(), that are illustrated in algorithm 1
and algorithm 2, respectively. Both reportLog() and verifyLog()
use a lock to avoid concurrency problems. K has the same size of
the packets transmitted, thus avoiding crypto-analysis [37]. Finally,
we assume reportLog(), verifyLog(), and the other supporting
functions do not contain implementation errors. We consider this
reasonable since these functions are specialized for this task.

T reports a new action 𝐴 through instrumented code (described
in §4.1). 𝐴 is given as an input to reportLog() that encrypts and
transfers it to M over an insecure channel. First, reportLog() cre-
ates a mac by using a hash function 𝐻1 and the concatenation of 𝐴
and the key K (algorithm 1 line 2). Then, it generates 𝐶 by xor-ing
the concatenation of action 𝐴 and mac with the key K (algorithm 1
line 3). At this point, it generates a new key K by hashing the cur-
rent key K with the function 𝐻2 (algorithm 1 line 4). Finally, the
function writes 𝐶 into an insecure channel (algorithm 1 line 5).

On the other side, M relies on verifyLog() to decrypt and vali-
date the encrypted packets 𝐶 . We also assume that M receives the
packets in order.1 First, M decrypts the pair (𝐴|mac) by xor-ing
the packet 𝐶 and the key K (algorithm 2 line 2 ). Then, M verifies
the correctness of the packet received by independently computing
mac′ (algorithm 2 line 3). If mac and mac′ does not agree, 𝐶 was
tampered with during the transmission and M sets T as untrusted
(algorithm 2 line 5). Otherwise, 𝐴 is considered correct and is pro-
cessed as described in §5.6 (algorithm 2 line 7). Finally, M generates
the next key K similarly to T (algorithm 2 line 9).

in-use

Enclave
initialization/deinitialization
phase ...

non-in-use

ERESUME
EENTER

EEXIT
AEX

Figure 3: Standard Finite-State Machine representation of
SGX Enclaves [23].

5 SGXMONITOR: THE ENCLAVE MODEL
We model the normal enclaves’ behavior by extending the standard
Finite-State Machine of SGX enclave life-cycle, which is shown in
Figure 3.2 This model assumes the host interacts with a correctly
loaded enclave by means of the opcodes in §2. The enclave state
can assume only two values: non-in-use and in-use. In particular,
an enclave transits to in-use state when an EENTER or ERESUME is
issued. Then, the state returns to non-in-use when an EEXIT or
AEX happens. The microcode already implements this model in the
microcode: the same thread cannot enter (i.e., EENTER) in an enclave
which is already in in-use state; it cannot exit (i.e., EEXIT) when
the enclave is in non-in-use. However, this model does not provide
fine-grain information about enclave health, i.e., an attack against
the enclave execution [14, 31, 47] cannot be traced thus precluding
provenance analysis a-priori.

Analyzing intrusion techniques for SGX enclaves, we noticed two
patterns. Attacks either hijack the enclave execution flow [47, 76],
or corrupt internal enclave structures [14, 31]. Therefore, we design
the SgxMonitor model to recognize those patterns. Specifically, our
model is composed of four elements:
• states, that represent the runtime values of global structures
(§5.1).
• actions, that are meaningful binary level events (e.g., EENTER,
function call) (§5.2).
• graphs of actions, that are computed offline and used to
validate runtime transactions (§5.3).
• transactions, that are sequences of actions leading an enclave
from one state to the next. They express correct execution
paths (§5.4).

In the rest of the section, we also describe the Model Extractor and
Verifier in §5.5 and §5.6, respectively

5.1 State Definition
Our model integrates important global structures used by the Intel
SGX SDK to handle outside function invocation and exception han-
dling (§2). These structures are targeted in known attacks [14, 47],
thus reveal information about the tactic adopted for the intrusion.

Since SGX supports multi-threading, SgxMonitor traces a state
for each thread [1]. The state is a triplet defined as (𝑢𝑠𝑎𝑔𝑒, 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒,
𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛). In particular, usage recalls the FSM meaning seen in
1We assume a reliable channel like TCP as in [71].
2This model is a simplified version of [23].
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Figure 3 and assumes two values: in-use and non-in-use. Structure,
instead, is an hash representation of the current structure used
(or ⊘ if no structure is used). Finally, operation represents if the
structure was generated (i.e., G), consumed (i.e., C), or null if no
operation has been performed (i.e., ⊘).

In our proof of concept, we trace the generation and consumption
of (i) ocall_context, used in the outside functions invocation; and
(ii) sgx_exception_info_t, used in the exception handing. These
two structures are handled at thread granularity, thus they fit our
model. In Appendix A, we show their FSM representation.

5.2 Action Definition
Generally speaking, an action is a meaningful software event. We
use the actions to represent runtime enclave transactions (§5.4),
that allow the evolution of the enclave state; and to build graphs of
actions (§5.3), that we use to validate the runtime transactions. In
particular, we distinguish two types of actions: generic and stop.

Generic actions. They identify standard software behaviors
such as: (i) control-flow events; e.g., jmp, call, ret; (ii) conditional
branches (e.g., jc); and (iii) function pointer/virtual table assign-
ment. Generic actions do not alter the state of the enclave and
identify correct executions [28, 39, 43, 71, 89].

Stop actions.We consider SGX opcodes and structure manip-
ulation that alter the state of the enclave. For SGX opcodes, we
consider EENTER, EEXIT, and ERESUME, moreover, we distinguish
between EEXIT used for an ERET or an OCALL, respectively. These
actions alter the first field of the state (i.e., usage): when an appli-
cation enters an enclave, usage becomes in-use, while it turns to
non-in-use otherwise. For structures manipulations, instead, we
trace whenever the enclave generates or consumes a structure.
These actions alter the fields structure and operation of the state;
i.e., when an action generates a structure, we store its hash and set
operation as G, while we set structure to null (i.e., ⊘) and operation
to C when the structure gets consumed.

Both generic and stop actions are formalized as a triplet:

𝑎 = (𝑡𝑦𝑝𝑒, 𝑠𝑟𝑐, 𝑣𝑎𝑙𝑢𝑒)𝑐𝑜𝑛𝑑 ,

where type identifies the nature of the action (e.g., function call,
EENTER), src is the virtual address where action occurred, and value
depends on the action semantic. For instance; value contains the
callee address for a function call; a boolean value for conditional
branches; or null if not required. Finally, cond contains extra condi-
tions (e.g., 𝑣𝑎𝑙𝑢𝑒 ≥ 0). We provide the complete action list in Table 1
grouped by generic and stop.

5.3 Graphs of Actions Definition
Graphs of actions are composed of vertexes and edges, whose ver-
texes are in a bijective relationship with actions: each vertex is
paired with exactly one action and each action is paired with ex-
actly one vertex. The edges, instead, are combinations of actions
that appear at runtime.

The graph representation simplifies loops detection, that other-
wise would require an unpredictable sequence of actions. Moreover,
the graphs of actions allow us to implement a shadow stack. We
describe the model extraction and verification in §5.5 and §5.6,
respectively.

Table 1:Actions used to define valid transactions grouped by
generic and stop, respectively.

Actions

Generic

(E, src|⊘, dst|⊘) Function call, ind. jump, or ret inst.
src and dst can assume null value
(i.e., ⊘)

(B, src, 0|1) Conditional branch
(0: not taken, 1: taken)

(A, src, addr) Function pointer assignment
(V, src, vptr) Virtual pointer assignment

(for C++ virtual classes)
Stop

(G, src, ctx) ocall_context generation
(C, src, ctx) ocall_context consumption
(J, src, ctx) sgx_exception_info_t

generation
(K, src, ctx) sgx_exception_info_t

consumption
(N, src, idx) EENTER for the secure function idx
(R, src, ⊘) ERESUME
(T, src, ⊘) EEXIT from enter_enclave

(ERET)
(D, src, ⊘) EEXIT from do_ocall

(OCALL)

5.4 Transaction Definition
A transaction identifies a valid execution path in an enclave and
is composed of a valid sequence of actions (§5.2) that makes the
enclave state evolve. Formally, we indicate a transaction 𝑃 as fol-
lowing 𝑃 = [𝑔1, . . . , 𝑔𝑛, 𝑠], which is a sequence of generic actions 𝑔𝑖
that terminates with a stop action 𝑠 . Intuitively, an enclave should
reach a new state only through valid transactions, otherwise we ob-
serve an anomalous enclave behavior. We perform the transaction
validation by matching the actions received from the monitored
enclave with its graphs of actions. We provide the full validation
algorithm in §5.6. The combination of transactions and graph of
actions allows one to recognize intrusion tactics [47, 76].

5.5 Model Extractor
The goal of the Model Extractor ( 1 in Figure 1) is to automatically
infer the behavior for a given enclave. A naive approach would use
a symbolic execution [42] over the entire enclave. However, this
strategy does not scale to the whole code base. Another approach
would use insensitive static analysis [22] to extract the control-flow
graphs of each function. However, this approach introduces impos-
sible paths that increase the attacker surface. In our scenario, we
assume that the code in an enclave implements straightforward
functionality, such as a software daemon that implements different
features [3] and not arbitrarily complex like, e.g., aWeb-browser. An
enclave contains a relatively small number of indirect calls and its
software base is given. Therefore, we take inspiration from previous
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Algorithm 3: Extracting model algorithm, it takes as input
the target enclave and returns the relative model.
1 extractModel(T)
2 𝑚 ← ∅
3 for 𝑓 ∈ 𝑇 .instr_functions do
4 setSymbolicGlobalVars(𝑇 )
5 loopAnalysis(𝑓 )
6 setSymbolicFreeArgs(𝑓 )
7 𝑟 ← symbolicExploration(𝑓 )
8 if 𝑟 .isTimeout() then
9 𝑟 ← insensitiveAnalysis(𝑓 )

10 end
11 𝑚 ←𝑚 ∪ (𝑓 , 𝑟 .graph_of_action)
12 end
13 return𝑚

compositional analyses [17] that treats individual functions sepa-
rately. More precisely, we extract a model for each function of the
enclave with a combination of symbolic executions and insensitive
static analysis.

The Model Extractor takes as input a target enclave T which has
been instrumented at compilation time for tracing actions; and out-
puts a graph of action for each traced function in the enclave. T is
compiled without debug information, we solely rely on global sym-
bols to identify the functions entry point and the global variables.
The global symbols do not contribute to the enclave measurement,
thus we strip them out after extracting the model [40].

Overall, the extraction algorithm is described in algorithm 3.
Given an instrumented target enclave T, we analyze each instru-
mented function separately (algorithm 3 line 3). The rest of the
section details each point of the analysis.

Symbolic Global Variables (algorithm 3 line 4): Global vari-
ables might contain default concrete values that affect the symbolic
exploration. We mitigate this issues by setting all the global vari-
ables as unconstrained symbolic objects for each function analyzed.

Loop Analysis (algorithm 3 line 5): Unbounded loops can
lead to infinite symbolic explorations [57]. Sincewe are interested to
reduce false positive alarms, we employed a postdominator tree [62]
over the static control-flow-graph to identify the loops header in
each function. This approach is conservative and allows us to ex-
plore more execution paths, which is our main goal. We set the
maximum to three loop iterations, similarly to previous works [83].
Our experiments show that we reach good coverage while keeping
low false positive.

Free Arguments Inferring (algorithm 3 line 6): Some func-
tion requires pointers as arguments (e.g., structures, objects, ar-
ray), however, current symbolic explorations do not fully handle
symbolic pointers, that might lead to a wrong or incomplete explo-
ration [22]. Since we are interested to reduce false positive alarms,
we opted for a conservative approach based on static backward slic-
ing [86] to identify pointers passed as function arguments. For each
free argument, we build an unconstrained symbolic object to help
the exploration. This solution allows us to achieve a good coverage
in the majority of the case, as also shown in our experiments. We

also introduce custom analysis to handle corner cases, which are
though a limited number. Finally, we deal with function pointers
by employing a conservative function type analysis [3].

Symbolic Exploration (algorithm 3 line 7):We primarily em-
ploy a symbolic exploration [42] to avoid impossible paths that,
otherwise, might increase the attacker surface. We execute the
symbolic exploration after tuning the function as previously de-
scribed. Through the exploration, we build a graph of action for
each function.

Insensitive Static Analysis (algorithm 3 line 9): Since few
functions of our use case experienced a symbolic execution timeout
due to their complexity (i.e., too many nested loops). We employed
a fallback approach based on an insensitive static analysis [64] in
which we traverse the static control-flow-graph of the function to
build the function graph of action. These cases are rare and they are
used only if the symbolic approach fails. We measure the frequency
of this case in our evaluation.

Building a Model (algorithm 3 line 11): The final enclave
model is an association between functions and their model that is
finally sealed in the monitor enclave host to avoid tampering.

5.6 Model Verifier
The Model Verifier ( 4 Figure 1) receives a stream of actions from
the target enclave T and checks whether they adhere to theModel D.
Every actionmoves T from a state to the next one, the forward jumps
are validated directly against the Model D, while the back jumps
(e.g., ret instructions) are validated against a shadow stack [71].
These mechanisms ensure the sequence of actions follow a correct
path. Moreover, the Model Verifier tracks the running state of T
and identifies when the enclave reaches a wrong state. Failing to
adhere to the model D gives insights about the intrusion tactic used
to control the enclave.

6 IMPLEMENTATION
We provide technical details about the Compilation Unit, the Model
Extractor, and the secure communication channel.

Compilation Unit: The Compilation Unit takes as input the tar-
get enclave source code and emits the instrumented enclave T. The
instrumentation injected at compilation time is considered trusted
since SGX disallows an OS to arbitrary change the enclave’s page
permission, thus avoiding code replacement [40]. The unit is imple-
mented as an LLVM pass for the version 9 (367 LoC) and a modified
version of Clang 10 that instruments virtual pointer assignments
(15 LoC added). In the link phase, we link T with an instrumented
SGX SDK to trace specific parts of the code, e.g., in do_ocall and
asm_oret to handle ocall_context generation/consumption; and
enter_enclave to trace the entrance/exit from the enclave. We
opted for this solution because Intel does not officially support the
compilation of the SGX SDK with Clang [2]. We based the instru-
mented SGX SDK on the version 2.6. In this process, we also include
an extra secure function that issues the secure communication chan-
nel, and extra checks that avoid the interaction between T and the
Application before the channel is established (see §4.2).

Model Extractor: TheModel Extractor is based on angr version
8.18 and implements the algorithms described in § 5.5. We use
PyVex [68] to navigate the static CFG of the functions, and angr
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symbolic engine to extract the graphs of actions. TheModel Extractor
is composed of 8416 LoC in total.

Secure Communication Channel: The communication be-
tween the target enclave T and themonitor enclaveM is implemented
by combining a TCP connection and a switchless mechanism [70].
T writes encrypted actions (see §4.2) into a ring-buffer that resides
in the untrusted host. The buffer is then flushed into a TCP socket
that connects T and M. On the M side, another ring-buffer feeds the
Module Verifier. We employ this design to reduce context switch
delays [70]. For the functions reportLog() and verifyLog(), we
use the sha256 implementation provided by Intel SGX SDK. We can
improve the efficiency adopting other secure functions such as the
Intel SHA extension [34] or Blake2 [9].

7 EVALUATION
We adopt the guidelines described in [78] to avoid benchmark-
ing flaws. Our evaluation revolves around two main questions:
(RQ1) what insights SgxMonitor provides in a provenance anal-
ysis? (RQ2) can I use SgxMonitor in a real scenario? We answer
R1 in §7.1 by testing the SgxMonitor security guarantees against a
set of modern SGX attacks. We answer RQ2 in §7.2 by measuring
micro/macro-benchmark, and discussing the model extraction.

7.1 RQ1 - Security Evaluation
We evaluate the security guarantees of SgxMonitor from multiple
perspectives. First, we demonstrate the provenance capability of
SgxMonitor to intercept modern execution-flow attacks (§7.1.1).
Then, we illustrate a security analysis of the SgxMonitor design
against a battery of protocol/side-channel/non-control data attacks
to prove our solution does not amplify such threats (§7.1.2).

7.1.1 Execution-flow attacks. We choose two security benchmarks
to test SgxMonitor: SnakeGX [31], which is an enclave infector
for SGX enclaves; and a security benchmark that evaluates the
correctness of the shadow stack defense.

SnakeGX. This is a data-only malware designed to implant a
permanent backdoor into legitimate SGX enclaves. SnakeGX is
composed of two phases: (i) an installation phase, that uses a classic
ROP-chain [18] to install the payload inside the target enclave; and
(ii) a backdoor activation, that exploits a design error of the Intel SGX
SDK to trigger the payload previously installed. SnakeGX managed
to bypass the current SGX protections. Therefore, once installed,
an external observer cannot realize the presence of SnakeGX in
the target enclave. For our evaluation, we deploy SgxMonitor into
the PoC delivered by the authors of SnakeGX, extract the model,
and finally, analyze the actions reported. The results show that Sgx-
Monitor recognizes either the installation phase and the backdoor
activation. In particular, the installation relies on a classic ROP-
chain, therefore, SgxMonitor identifies an unknown action pointing
to a gadget. In this way, SgxMonitor gives an insight about an intru-
sion inside the enclave. The backdoor activation, instead, restores a
corrupted ocall_context (crafted during the installation). In this
case, SgxMonitor observes the restoring an anomalous state. No-
tably, previous bug detection works did not identify the error design
used in the installation phase [21]. Recent introspection works [90],
instead, allow one to find traces of a payload. However, these works

are requested-based, therefore, the analyst has to inspect the en-
clave at the right time to find the payload in memory. Conversely,
SgxMonitor continuously traces the enclave, thus overcoming the
limitation of requested-based introspection techniques.

Shadow stack protection. We evaluate the shadow stack im-
plemented in SgxMonitor. In particular, we want to identify a cor-
rupted return address that points to a valid function. To this end, we
build a custom enclave that allows such attacks and deploy SgxMon-
itor in it. The results show that SgxMonitor managed to identify
execution flows incoherent with the call stack, thus pinpointing a
possible local buffer overflow and in which function it happened.
Again, recent introspection works [90] require to dump the enclave
context when the payload is still present in the enclave. However,
code-reuse attacks are considered one-shot, meaning they do not
leave consistent traces after their execution [31]. Therefore, the
introspection must happen before the payload is activated, which
we argue is unlikely in real cases. On the contrary, SgxMonitor
does not suffer from this limitation due to the stream of actions
reported.

Final Notes.We remark that standard mitigation deployed in-
side an enclave (e.g., CFI or shadow stacks) lacks any insight about
the attack performed. Moreover, request-based introspection must
catch the payload at the right timing. On the contrary, SgxMonitor
provides a continuous stream of fine-grain information about the
intrusion, that facilitates the detection.

7.1.2 Security Analysis of the System Design. We discuss the secu-
rity properties of the SgxMonitor design (§4) with respect to our
threat model (§3). Before discussing the following cases, we remark
all the packets have the same size by design, and the cryptographic
key changes at any packet reported (§4.2). Therefore, an adversary
can only observe the packets’ timestamp.

Attacks before protocol establishing. An adversary may tar-
get T before it establishes the secure channel with M. To mitigate
this attack surface, we enforce that all the security functions of T
are disabled until T and M completely initialize the security proto-
col. In particular, the Application must invoke a dedicated secure
function of T before it may use any other secure function. We insert
additional checks that ensure no other functionality of T is active
until T and M successfully established the channel. This design
avoids an adversary to attack T before M starts monitoring it.

Defense against a tampered enclave T. Our protocol resists
against an adversary that hijacks T. In this case, our code instru-
mentation encrypts and reports the malicious action before the
enclave traverses the hijacked edge (§4.1), thus producing a new
key K (§4.2). Here, we face three scenarios: (S1) the compromised
action reaches M, thus M recognizes the attack; (S2) the host drops
the action before reaching M, thus M recognizes the attack after a
timeout; and (S3) the adversary attempts to forge a new valid action,
however, she cannot retrieve K after reportLog() invocation (i.e.,
a new K is produced). In all these cases, M will observe an anomaly
in the protocol or T behavior, finally setting T as untrusted.

Sharing the same key K among the threads defeats the tactic
described in modern enclave attacks [47]. In their scenario, an
adversary exploits a thread to leak information (i.e., the key K) from
another thread. In our design, leaking K forces a thread to report an
action X representing the attack. Moreover, reportLog() ensures
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the actions follow a specific order. Therefore, either X reaches M,
thus revealing the attack; or X is dropped, thus showing an anomaly.

Side-channels attacks. We study the implication of SgxMoni-
tor in side-channel attacks. First, we focus on crypto analysis. In
this case, an adversary may use the number of packets reported to
attack the cryptographic algorithms in the enclave. However, mod-
ern cryptographic algorithms have been proven chosen-ciphertext
attack secure [11]. Therefore, leakage of ciphertext packets does not
improve the adversary’s capabilities [85]. An adversary may how-
ever count the packets exchanged by the communication protocol
to analyze the enclave execution and locate likely code positions.
We dissect this scenario in two cases. (i) The adversary manages
to use the code location to build execution-flow attacks, in this case
SgxMonitor simply detects the anomaly execution as discussed in
§7.1.1. (ii) The adversary uses the code location for non-control data
attacks [20, 38], we expand this case in the next paragraph.

Non-control data attacks. The communication protocol be-
tween monitor and target enclave may brace the adversary capabili-
ties in non-control data attacks [20, 38]. Intuitively, these attacks
do not hijack the execution-flow but exploit side effects, for in-
stance, considering a password checking algorithm that matches
one character at a time. The number of packets suggests the num-
ber of characters guessed, thus reducing the combination. We can
mitigate this attack with the introduction of dummy packets (from
0 to 𝑘) and adding a random dummy delay (from 0 to 𝑡 ). This will
increase the micro-benchmark overhead of a factor (𝑘 + 𝑡)x in the
worst case. However, such defenses would be applied to specific
code portions (e.g., in the password checking), thus incurring a
minimal overhead footprint overall. (The idea is similar to adding
countermeasures against timing-based attacks [13].)

Final Notes.With this analysis, we discuss crucial corner cases
handled by our protocol and the possible information leakage
caused by the packet transfers. In short, we argue SgxMonitor
does not introduce new attacker surface thus not breaking the SGX
isolation

7.2 RQ2 - Usage Evaluation
We describe the use cases, the experiment setup, and discuss the
impact of SgxMonitor in real projects.

Use Cases. We identified 10 open-source projects that use SGX.
Most of them do not compile because they refer to old SGX features
or they are incompatible with Clang. Among them, we choose five
ones: (i) Contact [7], the contact discovery service used by Signal
app [8]; (ii) an SGX porting of libdvdcss [79], a portable DRM algo-
rithm used by VLC media player [60]; (iii) StealthDB [81], a Post-
greSQL [55] plugin that uses SGX to encrypt tables; (iv) SGX-Biniax2 [12],
an SGX porting of the open-source game Biniax2 [74]; and (v) a
unit-test to validate corner cases of the enclave behaviors not cov-
ered previously, like exception handling.

We use Contact, StealthDB, SGX-Biniax2, and the unit-test to
stress micro-benchmarks (§7.2.1). We use libdvdcss, StealthDB, and
SGX-Biniax2 for macro-benchmarks (§7.2.2). All the five use cases
are used for model extraction analysis (§7.2.3).

Experiment Setup. All the experiments were performed on a
Linux machine with kernel version 4.15.0 and equipped with an

bx1 bx2 bx3 bx4 bx5 bx6 bx7 ct1 ct2 ct3 ct4 ct5 ct6 sd1 sd2 ut1 ut2 ut3
Secure function

1x

10x

100x
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StealthDB
unit-test

Figure 4: Overhead of vanilla secure functions versus Sgx-
Monitor secure functions of Contact (ctx), SGX-Biniax2
(bxx), StealthDB (sdx) and unit-test enclave (utx) expressed
in logarithmic scale. Median overhead is around 3.9x and is
depicted as a dashed line.

Intel i7 processor and 16GB of memory. We set the CPU power
governor as power save. Moreover, we perform a warm-up round
for each secure function before actually recording the performances.

7.2.1 Micro-benchmark. In this experiment, we measure the over-
head of the single secure functions with SgxMonitor and without
(i.e., vanilla). We perform this experiment on Contact, SGX-Biniax2,
StealthDB and the unit-test enclave. The results are shown in Fig-
ure 4. In most of the cases, SgxMonitor introduces an overhead less
than or equal to 10x (bx1-7, ct1-2, ct4, ct6, ut1-3) with a median
overhead of 3.9x. Only two secure functions show an overhead
over 100x (ct3 and ct5). A major source of overhead is incurred by
the hash functions in the secure communication protocol (§4.2), as
observed in similar works [4, 5, 71]. Different hash functions can
ease the overhead, e.g., the Intel SHA extension [34] or Blake2 [9].
However, This result does not really affect the performance of
SgxMonitor that is in line with similar works [71] for final user
experience (§7.2.2).

7.2.2 Macro-benchmark. We investigate the impact of SgxMonitor
in three real applications. (A1) StealthDB [81], which is a plugin
for PostgreSQL [55] based on SGX. (A2) libdvdcss [79], which is a
DRM library used in VLC media player [60]. (A3) SGX-Biniax2 [12],
which is an SGX porting of the open-source game Biniax2 [74].

StealthDB. We replicate the same experiments described in the
original paper [81]: we deploy StealthDB over a PostgreSQL [55]
version 10.15 and run the benchmark OLTP [25] using same scale
factors. Figure 5a and Figure 5b show the requests per second
and the latency. For each scale factor, we run 10 experiments and
indicate average and standard deviation. Overall, SgxMonitor in-
troduces an average slowdown of 1.68x and an overhead of 1.25%
in terms of requests per second and latency, respectively.

libdvdcss. We measure the CPU impact of SgxMonitor over
libdvdcss, which is an DRM library used in VLC media player [60].
We use a VLC version 3.0.8, on which we deployed three versions
of libdvdcss [79]: vanilla, with SGX, and with SgxMonitor. We play
a DVD for around one hour and half while sampling the CPU usage
every second. Figure 6a shows the result of our experiment, after
a first adjusting phase, the overhead reaches a plateau below 10%.
Furthermore, we do not experience any delay or interruption while
playing the DVD in any of the three configurations.
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Figure 5: StealthDB [81] performances measured against OLTP [25] benchmark and expressed as request per second and
latency. We evaluated StealthDB vanilla and with SgxMonitor, in particular, we run 10 measurements for each scale factor
(from 1 to 16) and plot average and standard deviation for requests per second and latency, respectively.
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Figure 6: Macro-benchmark of libdvdcss [79], deployed over VLC media player [60], and SGX-Biniax2 [12]. In both cases, we
measured the CPU usage and the overhead introduced by SgxMonitor versus the vanilla version of the software.

SGX-Biniax2.We measure the CPU impact of SgxMonitor over
SGX-Biniax2 [12], a video game that uses SGX for data protection.
We play the game for around 20 minutes and sample the CPU
usage every second. Figure 6b shows the result of our experiment.
Similarly to libdvdcss, we observe a first adjusting phase followed
by a plateau at around 5%. Furthermore, we do not experience any
delay or interruption while playing SGX-Biniax2 in any of the two
configurations.

Final Notes. Our results show that the overhead introduced by
SgxMonitor is overall limited, e.g., the slowdown in StealthDB is
lower than the micro-benchmarks (i.e., 1.6x vs 3.9x) and the CPU
overhead expressed by libdvdcss and SGX-Biniax2 shows a limited
plateau. Therefore, we conclude that SgxMonitor does not affect the
final user experience and can be included into projects that either
require occasional enclave interactions (like DRM protection) or
are more computational intense (like a database).

7.2.3 Model Extractor. In the context of SgxMonitor, the action
coverage is a suitable metric for estimating the quality of an ex-
tracted model. This comes from two observations. First, assuming
a sound symbolic execution, if no timeout is reached (e.g., 10 min-
utes), we can state the analysis covered meaningful actions. We
measure this with the percentage of traversed actions (over 91.4% in

our experiments). Conversely, if the symbolic execution times out,
we fallback to an insensitive static analysis. This traverses all the
CFG of a function, thus completing the exploration of the actions.
Of course, being the analysis insensitive, we trade-off precision for
a low overhead in the construction of the model: we might observe
rogue actions, which potentially increase the attack’s surface.

Table 2 shows our coverage results. We apply the analysis de-
scribed in §5.5 to our uses cases: Contact, libdvdcss, StealthDB,
SGX-Biniax2, and the unit-test. The five use cases show a vary-
ing degree of complexity; Contact contains the highest number of
single functions (71) among our use cases that are however quite
simple (12 actions on average). Conversely, StealthDB has fewer
(44) but more complex (18 actions on average) functions. libdvdcss
and SGX-Biniax2 have a complexity similar to StealthDB (18.29
and 8.55 actions on average, respectively). Finally, the unit-test is
self-contained and primarily leveraged to validate SgxMonitor and
exception handling of enclaves. Overall, our analysis covers from
91.4% to 96.6% of the actions.

In all our experiments, we do not encounter any false positive
from any of the micro- and macro-benchmark, we provide a thor-
ough discuss of the precision of our model in Appendix B.
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Table 2: Coverage analysis over our five use cases:Contact [7], libdvdcss [79], StealthDB [81], SGX-Biniax2 [12], and a unit-test.
The results show that the analysis covers from 91.4% to 96.6% of the actions in around 2 hours and 20minutes in total (8146.11s).
Furthermore, we did not observe any false positive during our experiments, meaning we covered a significant portion of code.
In the right part of the table, we indicate the actions explored adopting only static or symbolic execution (symex) and their
difference.

Use case # func. action edge % action # func. analysis time [s] trade-off actions explored
` 𝜎 ` 𝜎 explored static ` 𝜎 total static symex Δ(%)

Contact [7] 71 12.77 12.59 15.09 17.64 96.4% 1 20.20 85.9 1397.12 1042 998 4.41
libdvdcss [79] 56 18.50 18.98 23.84 26.06 91.4% 9 70.19 179.65 3790.19 904 747 21.02
StealthDB [81] 44 18.29 13.53 21.97 18.05 96.6% 0 6.16 24.5 258.89 967 1009 −4.16
SGX-Biniax2 [12] 49 8.55 8.75 9.29 11.71 91.6% 4 52.46 168.8 2465.62 451 413 9.20
Unit-test 17 6.88 7.47 7.17 10.52 94.0% 0 15.60 53.4 234.29 122 107 14.02
total 237 - - - - - 14 - - 8146.11 3486 3274 6.48

Final Notes Our results show that (i) the symbolic execution is
suitable to cover the small functions in SGX enclaves (i.e., only 14
functions out of 237 (5.9%) required an insensitive static analysis)
and effectively cuts out unused actions thus reducing the attack
surface; (ii) the static analysis can support the symbolic one in case
of timeout; (iii) our approach is practical since it can be completed
in around an hour (i.e., 60m for libdvdcss); and (iv) our analysis
explores a significant portion of the code since it does not rise false
positive alarms.

8 RELATEDWORKS
SgxMonitor shares common points with different research areas.
We discuss provenance analysis works, SGX memory-corruptions
and remote inspection.

Provenance Analysis. Many provenance tools are based on
instrumentation to collect logs from diverse sources [48, 51, 52].
SgxMonitor applies provenance to a novel area, we gather informa-
tion from an isolated enclave while the analysis runs in a zero-trust
environment. We overcome this issue with a novel technique to
collect enclave runtime fine-grain information in the presence of
a malicious OS. Other provenance techniques focus on long term
intrusion, such as APT [36, 88]. In our scenario, instead, we focus
on code-reuse attacks that affect SGX enclaves. SgxMonitor helps
an analyst to rebuild the intrusion by leveraging on a novel model
suited for enclaves. SgxMonitor shares some similarities with run-
time provenance works [61] that rely on a healthy OS to collect and
analyze logs. Conversely, SgxMonitor assumes a malicious OS that
may tamper with these operations. Overall, SgxMonitor is the first
provenance analysis suitable for the SGX environment. To achieve
this, we design a novel log collection and propose a novel model to
represent the normal behavior of an enclave.

SGXandMemoryCorruptionErrors.CFIs and shadow stacks [26,
28, 39, 43, 50] are orthogonal defenses to SgxMonitor and comple-
ment the protection of enclaves. In addition, one can remove corrup-
tions errors in SGX enclaves, as studied in several forms [21, 45, 53,
65, 82]. All these works can be considered orthogonal to SgxMon-
itor since they contribute to reduce the attack surface. However,
these solutions do not provide information about the intrusion.
SgxMonitor, instead, helps one rebuild the cause of an attack.

SGX Remote Inspection. In GuaranTEE [56], the authors pro-
pose a runtime attestation for SGX. However, their model is stateless
and cannot identify advancedmalware such as SnakeGX.On the con-
trary, both model and design of SgxMonitor are designed to cover
a broader attacker model, moreover, we performed a more compre-
hensive security evaluation. SMILE [90] is a novel request-based
introspection mechanism that allows a remote agent to securely
dump enclave memory regions. This tool can be used for foren-
sic analysis in SGX enclaves. However, request-based approaches
need to be manually activated thus leaving time to an intrusion to
clear any evidence. Conversely, SgxMonitor continuously dumps
runtime information, thus blocking evasion movements (§7.1.2).

9 CONCLUSION
We proposed SgxMonitor, a novel provenance analysis for SGX
enclaves. As enclaves are designed to secure code that performs
specific security- and privacy-sensitive tasks, SgxMonitor relies on
a combination of symbolic execution and static analysis to model
the expected behavior of enclaves with high code coverage and low
false positives. Moreover, SgxMonitor designs a novel protocol to
securely extract runtime enclave information in the presence of an
adversarial OS while not undermining the SGX isolation.

We assessed SgxMonitor security properties against novel SGX
code-reuse attacks. Moreover, we tested SgxMonitor across four
real use cases (i.e., Contact, StealthDB, libdvdcss, SGX-Biniax2) and
a unit test to validate enclaves’ corner cases.

SgxMonitor’s overhead is similar to the state-of-the-art prove-
nance analysis works showing lowmacro-benchmark overhead and
high precision with 96% code coverage and zero false positives sup-
port SgxMonitor in realistic deployments to extract insight about
runtime anomalous executions of SGX enclaves.
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A MODEL EXAMPLES
In this section, we discuss the application of SgxMonitor model
(§5) over two important Intel SGX SDK mechanisms: the outside
function interaction (§A.1) and the exception handling (§A.2).

Transaction syntax. For the sake of simplicity, we indicate the
transactions in tables 7a and 8a with the following syntax:

𝑇 = 𝑃 ∪ [𝑠] .

𝑇 is composed of any valid sequence of generic actions 𝑃 (according
to the specification of §5) that terminates with the stop action 𝑠 . In
case 𝑇 does not contain any generic action, we omit 𝑃 .
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A.1 Outside Function Modeling
Figure 7 shows the application of SgxMonitor to the enclave outside
function interaction.

After the enclave initialization, the host invokes a secure function,
which activates an EENTER opcode with the idx greater or equal
than zero (i.e., 𝑇 ECALL). From this point, the secure function can
evolve in two ways: (E1) it does not need any interaction with the
host, thus it performs an ERET; or (E2) it requires an interaction
with the host, thus it performs an ORET. In case (E1), the enclave
does not generate any context and, therefore, it performs a valid
execution path that ends with an EEXIT opcode (i.e., 𝑇 ERET). In
case (E2), instead, we need two steps to accomplish an OCALL:
(i) generating an ocall_context (i.e., 𝑇OCALL1), and (ii) invoking
the outside function (i.e., 𝑇OCALL2).

Once the outside function needs to resume the secure function
execution, it invokes an ORET, that is composed of two steps: (i) the
execution enters in the enclave (i.e., 𝑇ORET1), and (ii) the ocall_-
context is restored (i.e.,𝑇ORET2). From this point ahead, the secure
function can exit the enclave through an ERET (E1) or perform
further OCALLs (E2).

A.2 Exception Handling Modeling
In Figure 8b, we depict the SgxMonitor representation of the SGX
SDK exception handling. Overall, the SGX SDK handles exceptions
in two phases, called trusted handle (TH) and internal handle (IH),
respectively. In the first phase (TH), the SGX interrupts its execu-
tion as a result of an AEX, and passes the control to the host. As
soon as an exception is triggered, the microcode saves the CPU reg-
isters in a dedicated page, called SSA, for later stages [23]. After an
AEX, the SDK expects the invocation of a dedicated secure function,
called trts_handle_exception, which index is −3 (i.e., TTHD1).
This function fills an sgx_exception_info_t structure with the
values previously stored in the SSA (i.e., TTHD2). At the end of (TH),
the enclave is ready for the second phase (IH) and thus it leaves the
control to the host (i.e., TTHD3). The host invokes an ERESUME to
activate the internal_handle_exception routine (i.e., TERESUME).
Now, the enclave iterates among the custom handlers eventually
registered (i.e., TIHD1 and TIHD2). Each custom handler attempts
at fixing the exception by analyzing the sgx_exception_info_t,
possibly altering it. Therefore, we update the enclave internal state
at each iteration. After invoking all the internal handlers, the SGX
SDK uses the continue_execution routine to resume the secure
function (i.e., TCONT). Finally, if the exception is properly handled,
the secure function will continue, otherwise, a new AEX happens
and the exception workflow starts again.

B USE CASE ANALYSIS
Use cases complexity: As stated in introduction, we assume the
enclave’s code is simple enough to bemodeledwith a combination of
symbolic execution and static analysis (§5.5). The concept of simple
enclave has already appeared in previous works [21, 72], however,
they did not provide comparable metrics. In Table 3, we show a
set of metrics that describe the software analyzed in our use cases.
Specifically, we indicate the line of code (LoC), the number of secure
functions, and the cyclomatic complexity [29]. We additionally
measure the control-flow graph for each enclave’s function and

report the average (and standard deviation) number of nodes and
edges per function. Similar metrics have been previously used to
indicate the effectiveness of symbolic execution to explore a piece
of software [10]. Finally, we count the number of direct and indirect
function calls as the most important for the security guarantee.
Intuitively, the less indirect calls an enclave has, the less likely an
adversary can carry out a mimicry attack (e.g., COOP [66]). One
may argue that, since we assume an enclave with few indirect calls,
then bound checks can effectively stop the memory corruption
attacks. However, previous works [21] showed that a compromised
OS can input malicious pointers to internal enclave structures. This
allows an adversary to overwrite internal enclave data structures
even with boundary checks in place. Therefore, using only bounds
checks do not eradicate the problem in SGX enclaves, even for
simple ones.

Precision: We want to inspect if the unexplored actions caused
by symbolic execution timeout may cause false positives. To this
end, we extract threemodels for each use case, namely: symex, by us-
ing only symbolic execution and interrupting the exploration once
reached timeout; static, by using only insensitive static analysis; and
symex+static, which is the one described in §5.5. Using only symex
models, two secure functions in Contact generate false positives,
this due to the function crecip that was not explored completely.
Moreover, we observe similar cases in SGX-Biniax2 and libdvdcss,
in which critical functions for crypting/decrypting were not cor-
rectly explored with only symex. We register false positives also
using static models, in particular, one secure function in StealthDB
gave false positive because of a jmp not correctly resolved (see the
previous paragraph). Finally, symex+static models did not generate
any false positive when compared with all our tests, thus showing
that the combination of symex+static can significantly model the
enclave behavior. Specifically, we stress libdvdcss, StealthDB, and
SGX-Biniax2 with long macro-benchmarks (see §7.2.2). For Con-
tact and the unit-test, we first run our micro-benchmarks, without
observing any false positives. Then, we also manually investigated
the cause of the unexplored actions. In most of the cases, pruned
actions are corner cases that never happen in real executions (e.g.,
a function that tests a null-pointer that never happens).

Notably, the exception handler mechanism of Intel SGX SDK
always introduces a few non-traversed actions. This is caused by the
routine internal_handle_exception that relies on a list of point-
ers created at runtime. Our Model Extractor automatically infers
this structure and resolves the indirect call in internal_handle_-
exception (further details in Appendix Appendix C). Therefore,
our Model Extractor automatically prunes those paths that never ap-
pear at runtime, i.e., if the enclave does not contain custom handlers,
it will never execute part of internal_handle_exception.

C SGX SDK EXCEPTION HANDLING
In the following, we show an example of registration of a custom
exception handler, that happens by invoking the function sgx_-
register_exception_handler. The enclave passes the address
of the exception handler as an argument, e.g., divide_by_zero_-
handler. The Model Extractor (§5.5) parses the enclave code and
identifies all the sgx_register_exception_handler invocations.
Then, it performs a taint analysis to infer the address of the custom



Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

Transaction Definition

𝑇 ECALL [(N, src, idx)idx≥0]
𝑇 ERET 𝑃 ∪ [(T, src, ⊘)]
𝑇OCALL1 𝑃 ∪ [(G, src, ctx)]
𝑇OCALL2 𝑃 ∪ [(D, src, ⊘)]
𝑇ORET1 [(N, src, idx)idx=−2]
𝑇ORET2 𝑃 ∪ [(C, src, ctx)]

(a) Transaction definition of SgxMonitor model for the out-
side function interaction.

(in-use,
Ø, Ø)

(non-in-use, 
Ø, Ø)

(non-in-use,
context, Ø)

(in-use, 
context, G)<

(in-use, 
context, C)

TECALL TERET
TOCALL1

TOCALL2

TORET1

TORET2

Enclave
initialization/deinitialization 
phase ...

(b) SgxMonitor representation of outside functions interaction.

Figure 7: Example of outside functions interactionmodeling. We show the FSM representation and the transaction definitions,
respectively.

Transaction Definition

AEX handled at microcode level
𝑇THD1 [(N, src, idx)idx=−3]
𝑇THD2 𝑃 ∪ [(J, src, ctx)]
𝑇THD3 𝑃 ∪ [(T, src, ⊘)]
𝑇 ERESUME 𝑃 ∪ [(R, src, ⊘)]
𝑇 IHD1 𝑃 ∪ [(K, src, ctx)]
𝑇 IHD2 𝑃 ∪ [(J, src, ctx)]
𝑇CONT 𝑃 ∪ [(K, src, ctx)]

(a) Transaction definition of SgxMonitormodel for the excep-
tion handling interaction.

(non-in-use,
Ø, Ø)

(in-use, 
Ø, Ø)

(in-use, 
Ø, Ø)

AEX TTHD1

TTHD2

(in-use, 
context, G)

(non-in-use,
context, C)

TTHD3

(in-use, 
context, C)

(in-use, 
context, C)

TIHD1

TCONT

TIHD2

TERESUME

Enclave
initialization/deinitialization 
phase ...

(b) SgxMonitor representation of exception handling.

Figure 8: Example of exception handling modeling. We show the FSM representation and the transaction definitions, respec-
tively.

Table 3: Detailed information for the of five use cases used in our evaluation: Contact [7], libdvdcss [79], StealthDB [81],
SGX-Biniax2 [12], and a unit-test.

Use case LoC # secure cycl. cmplx. # nodes in CFG # edges in CFG # direct # indirect
function ` 𝜎 ` 𝜎 ` 𝜎 calls calls

Contact [7] 4138 6 5.03 5.04 24.89 22.74 26.67 27.82 1085 16
libdvdcss [79] 3438 4 6.55 6.07 38.71 31.28 39.67 37.95 1084 2
StealthDB [81] 10351 3 6.35 4.72 36.14 23.38 40.40 27.51 1203 2
SGX-Biniax2 [12] 4696 7 3.73 4.20 18.56 16.25 20.19 20.02 583 2
unit-test 583 3 4.06 5.25 18.44 17.53 18.75 21.95 137 2

exception handler passed as second parameter to sgx_register_-
exception_handler. Finally, it uses this information to build a
symbolic structure that will be used to explore the function inter-
nal_handle_exception, that actually dispatches the exception to
the correct handler, if any.

1 i f ( s g x _ r e g i s t e r _ e x c e p t i o n _ h a n d l e r ( 1 ,
d i v i d e _ by_ z e r o _h and l e r ) == NULL ) {

2 p r i n t f ( " r e g i s t e r f a i l e d \ n " ) ;
3 } e l s e {

4 p r i n t f ( " r e g i s t e r s u c c e s s \ n " ) ;
5 }
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