Zhang, Yuxin;
Ackels, Tobias;
Pacureanu, Alexandra;
Zdora, Marie-Christine;
Bonnin, Anne;
Schaefer, Andreas T;
Bosch, Carles;
(2022)
Sample Preparation and Warping Accuracy for Correlative Multimodal Imaging in the Mouse Olfactory Bulb Using 2-Photon, Synchrotron X-Ray and Volume Electron Microscopy.
Frontiers in Cell and Developmental Biology
, 10
, Article 880696. 10.3389/fcell.2022.880696.
Preview |
PDF
fcell-10-880696.pdf - Published Version Download (3MB) | Preview |
Abstract
Integrating physiology with structural insights of the same neuronal circuit provides a unique approach to understanding how the mammalian brain computes information. However, combining the techniques that provide both streams of data represents an experimental challenge. When studying glomerular column circuits in the mouse olfactory bulb, this approach involves e.g., recording the neuronal activity with in vivo 2-photon (2P) calcium imaging, retrieving the circuit structure with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT) and/or serial block-face scanning electron microscopy (SBEM) and correlating these datasets. Sample preparation and dataset correlation are two key bottlenecks in this correlative workflow. Here, we first quantify the occurrence of different artefacts when staining tissue slices with heavy metals to generate X-ray or electron contrast. We report improvements in the staining procedure, ultimately achieving perfect staining in ∼67% of the 0.6 mm thick olfactory bulb slices that were previously imaged in vivo with 2P. Secondly, we characterise the accuracy of the spatial correlation between functional and structural datasets. We demonstrate that direct, single-cell precise correlation between in vivo 2P and SXRT tissue volumes is possible and as reliable as correlating between 2P and SBEM. Altogether, these results pave the way for experiments that require retrieving physiology, circuit structure and synaptic signatures in targeted regions. These correlative function-structure studies will bring a more complete understanding of mammalian olfactory processing across spatial scales and time.
Type: | Article |
---|---|
Title: | Sample Preparation and Warping Accuracy for Correlative Multimodal Imaging in the Mouse Olfactory Bulb Using 2-Photon, Synchrotron X-Ray and Volume Electron Microscopy |
Location: | Switzerland |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3389/fcell.2022.880696 |
Publisher version: | https://doi.org/10.3389/fcell.2022.880696 |
Language: | English |
Additional information: | © 2022 Zhang, Ackels, Pacureanu, Zdora, Bonnin, Schaefer and Bosch. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
Keywords: | Science & Technology, Life Sciences & Biomedicine, Cell Biology, Developmental Biology, staining, warping, olfactory bulb, 2-photon calcium imaging, synchrotron X-ray, volume EM, correlative multimodal imaging, IN-VIVO PHYSIOLOGY, BRAIN-TISSUE, CELLS, LIGHT, CONTRAST, CIRCUIT, PERFUSION, FIXATION, ANATOMY, NETWORK |
UCL classification: | UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Neuro, Physiology and Pharmacology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences |
URI: | https://discovery.ucl.ac.uk/id/eprint/10156088 |
Archive Staff Only
View Item |