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Abstract—Optimising the quality-of-results (QoR) of circuits
during logic synthesis is a formidable challenge necessitating the
exploration of exponentially sized search spaces. While expert-
designed operations aid in uncovering effective sequences, the
increase in complexity of logic circuits favours automated proce-
dures. Inspired by the successes of machine learning, researchers
adapted deep learning and reinforcement learning to logic synthe-
sis applications. However successful, those techniques suffer from
high sample complexities preventing widespread adoption.

To enable efficient and scalable solutions, we propose BOiLS,
the first algorithm adapting modern Bayesian optimisation to
navigate the space of synthesis operations. BOiLS requires no
human intervention and effectively trades-off exploration versus
exploitation through novel Gaussian process kernels and trust-
region constrained acquisitions. In a set of experiments on EPFL
benchmarks, we demonstrate BOiLS’s superior performance com-
pared to state-of-the-art in terms of both sample efficiency and
QoR values.

Index Terms—Logic synthesis, Bayesian Optimisation

I. INTRODUCTION

During the pre-mapping stages of logic synthesis, designers
uncover a series of structural transformations that improve
circuit efficiencies by maximising performance criteria, such
as the Quality-of-Results (QoR) [1], [2]. Modernistic synthesis
tools administer those transformations by first representing
circuits as And-Inverter Graphs (AIGs) and then employing
technology-independent operations to reduce graph sizes while
adhering to delay constraints. Although experts devised a
plethora of QoR optimisers [3], [4], exponentially sized explo-
ration spaces, especially in large circuits, still pose formidable
challenges to the design of predefined synthesis flows. The
quest for scalable and sample efficient solvers has, in turn,
stimulated novel research trends that benefit from state-of-the-
art developments in machine learning (ML) when tailored to
logic synthesis applications.

Although ML techniques emerged as active areas of research
within the holistic electronic design automation pipeline (e.g.,
in design space reduction [5], placement [6], routing [7],
testing and verification [8], [9] and in manufacturing), their
examination in logic synthesis only recently started to gain
attention. Ere to this work, the authors in [10] distinguish a
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Fig. 1. Average QoR results over 10 EPFL circuits to recover 97.5% of the
QoR values achieved by BOiLS after only 200 sequence trials. We notice that
BOiLS attains best QoR values while requiring 1.5 fewer evaluations than
standard Bayesian optimisation (SBO), 2.8 times less compared to genetic
algorithms (GA), and over 5 times with respect to deep reinforcement learning.

handful of ML-inspired approaches based on deep neural net-
works and reinforcement learning to obtain optimal structural
transformations. For instance, the work in [11] adopts (deep)
convolutional neural networks to solve multi-class classification
problems mapping synthesis flows to QoR levels. Recently [18]
also propose an LSTM-based approach for QoR optimisation.
The authors in [12], [13], on the other hand, extend deep
reinforcement learning (DRL) to pre-mapping applications by
defining novel Markov decision processes and policies that
capture the intricate complexities of logic synthesis.

Albeit their widespread usage, both deep learning and re-
inforcement learning techniques exhibit high sample (data)
complexities [14] especially in high-dimensional combinatorial
spaces. When applied to logic synthesis, such high data de-
mands amount to numerous evaluations within a given circuit,
e.g., 10,000 sequences per circuit when adopting convolutional
deep networks [11], or over thousands of agent environment
interactions in DRL (see Section IV).

Contributions: This paper contributes to the above prob-
lems by introducing BOiLS, the first Bayesian optimisation
(BO) solver for logic synthesis. BOiLS demands no human
intervention and efficiently searches combinatorial spaces by
trading-off exploration versus exploitation. On a high level, our
method operates in two steps. First, we fit a surrogate Gaussian
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process (GP) to QoR data utilising kernels geared towards
transformation sequences of AIG graphs. This GP enables both
sample efficiency and calibrated uncertainty estimation, which
we then exploit in the second step to suggest new synthesis
flows for evaluation. Here, we harness concepts from local
trust-region acquisition function maximisation to effectively
handle high-dimensionalities. In a set of experiments on the
comprehensive EPFL benchmark [15], we demonstrate superior
QoR performance and better sample efficiencies compared
to deep reinforcement learning [12], graph neural network
policies [13], genetic algorithms and other search strategies,
as well as against the best results from the EPFL leadership
board [15] in 8 out of 10 circuits. Succinctly, our contributions
can be summarised as follows: i) Formulating logic synthesis
as an instance of black-box combinatorial optimisation; ii)
Proposing BOiLS as the first Bayesian optimisation solver
for logic synthesis applications; iii) Proposing AIG tailored
Gaussian process kernels and acquisition optimisers that handle
high-dimensional search spaces; iv) Outperforming state-of-
the-art techniques in 8 out of 10 circuits from the EPFL
benchmark [15]; and v) Open-sourcing code to ease the re-
producibility of our findings in case of acceptance.

II. PROBLEM DEFINITION

In logic synthesis we aim to find an equivalent yet simpler
representation of a logic design using a series of primitive
transformations. Modern tools [17], [19] express a circuit,
C, as a directed and acyclic graph, referred to as an AIG,
to denote a structural implementation of the circuit’s logical
functionality. AIGs consist of two-input nodes representing log-
ical conjunction, terminal nodes labelled with variable names,
and edges (optionally) containing markers indicating logical
negation [20]. Our goal is to uncover a sequence seq =
[s1, . . . ,sK ] ∈ AlgK of at most K > 1 operations to optimise
the graph’s structure. Here, Alg = {A1, . . . ,An} denotes a
set of n transformation algorithms (e.g., resub, rewrite,
refactor; see [19] for the full list of possible operations)
that can be executed to alter the AIG.

We employ QoR to assess the performance of an evaluated
sequence. Precisely, having applied seq to an AIG, we regis-
ter both the area, AreaC(seq), and the delay, DelayC(seq)
after executing FPGA mapping. Specifically, we correspond
AreaC(seq) to the number of lookup tables used for mapping
the AIG (LUT-count) and DelayC(seq) to the longest path
between primary inputs and outputs of the resulting graph
(Levels). Then, we compute the overall effectiveness of seq:

QoRC(seq) =
AreaC(seq)

AreaC(ref)
+

DelayC(seq)

DelayC(ref)
, (1)

where AreaC(ref) and DelayC(ref) denote area and de-
lay of a resulting application of a reference sequence (e.g.,
resyn2 [19]). Our QoR definition in Equation (1) is reason-
ably standard, measuring relative decrements in area and delay
against reference series of operations. Hence, an optimal seq?

is that sequence in AlgK which minimises QoRC(seq):

seq? ∈ arg min
seq∈AlgK

QoRC(seq) ≡ arg max -QoRC(seq)︸ ︷︷ ︸
This paper’s focus

. (2)

Finding seq?: We note two difficulties when seeking seq?:
• QoRs as Black-Box Functions: From Equation (1), we

discern that a closed analytical form of QoRC(·) as a
function of seq is challenging to obtain for any circuit C.
Such difficulties stem from the fact that QoR computations
involve complex algorithmic processes executed over AIG
graphs. For example, operation applications, as well as area
and delay calculations perform highly optimised C/C++
instructions; see [19]. In machine learning, we refer to
functions of unknown analytical forms as black-boxes and
seek efficient data-driven solvers that optimise for seq?

based on a handful of sequence evaluations.
• Exponentially Sized Search Spaces: In attempting a data-

driven solution, we remark an exponential growth in the
search space even for one circuit C. Specifically, since the
cardinality of the search space |AlgK | equates to nK (1120

in our experiments), an exhaustive exploration of AlgK is
unrealistic in practice. Moreover, due to the black-box nature
of QoR(·), it is difficult to assume desirable characteristics
like linearity or submodularity that facilitate searching for
seq? [23]. Hence, the problem in Equation (2) is generically
combinatorial by nature making it impossible to design exact
solvers without exploring the whole search space.

III. BAYESIAN OPTIMISATION FOR LOGIC SYNTHESIS

A. Primer on Bayesian Optimisation & Gaussian Processes

BO is a gradient-free technique used to optimise expensive-
to-evaluate black-box functions. BO tackles global optimisation
sequentially, where at each round t, the learner selects an input
probe xt for evaluation and acquires a corresponding (noisy)
black-box function value g(xt). Typically, inputs and outputs
take on continuous values in bounded domains, whereby xt ∈
X ⊆ Rd with d denoting the search space’s dimensionality and
g(xt) ∈ R. The goal is to rapidly (in terms of function evalu-
ations) approach the maximum x? = arg maxx∈X g(x) [16],
[24], [25]. To achieve the above goal, BO relies on historical
data (e.g., 〈x1, g(x1)〉 , . . . , 〈xt, g(xt)〉 at round t) to i) build
a surrogate of the actual black-box and ii) utilise the learnt
surrogate to decide on the new input probe to evaluate in
the subsequent round. Since both g(·) and x? are unknown,
learners need to trade off exploitation and exploration during
the search process. A natural way of handling this dilemma
is basing decisions on the surrogate’s predictive distribution,
where we contrast fully trusting the surrogate’s mean prediction
or examining unseen inputs. Formalising such choices in BO
is accomplished via maximising acquisition functions that we
survey in Section III-A2. Equipped with a probabilistic model
and an acquisition function, a generic BO template of the above
steps is shown in Algorithm 1.

1) Probabilistic Modelling & Gaussian Processes: As des-
ignated in line 3 of Algorithm 1, the first step involves fitting a
surrogate model that provides well-calibrated uncertainty esti-
mates and is efficient in terms of black-box evaluations. Among
various machine learning candidates, Gaussian processes (GPs),
offer a flexible and sample-efficient procedure for placing priors
over unknown functions [27]. Formally, a GP is defined as:



Algorithm 1 Template of Bayesian Optimisation Algorithms
1: Inputs: Budget, initial data set D0 = {xl, yl ≡ g(xl)}n0

l=1

2: for t = 0, . . . ,Budget− 1 do
3: Use data to fit a surrogate probabilistic model
4: Determine xnew by maximising an acquisition function
5: Evaluate new probes acquiring ynew ≡ g(xnew)
6: Augment data Dt+1 = Dt ∪ 〈xnew, ynew〉
7: end for
8: Output: x? ∈ arg maxx∈DBudget g(x).

Definition 3.1 (Gaussian Process [27]): A GP is an infinite
collection of random variables any finite number of which have
a joint Gaussian distribution.

We can use GPs to directly define distributions over func-
tions, where we write g(x) ∼ GP(m(x), k(x,x′)). Here,
m(x) = E[g(x)] and k(x,x′) = E[(g(x) − m(x))(g(x′) −
m(x′))] denote the mean and covariance functions that fully
specify a GP. Following [27], we set the mean function to zero,
thus having g(x) ∼ GP(0, k(x,x′)).

Covariance kernels encode our (smoothness) assumptions
about the function g(x) that we wish to learn. GP kernels
usually impose a similarity postulate that close input points
are likely to have similar target values. That is, GPs mea-
sure the covariance between g(x) and g(x′) as a decreasing
function of the distance between the two inputs x and x′,
i.e., Cov(g(x), g(x′)) ≡ k(x,x′) = Ψ(d(x,x′)) for some
decreasing function Ψ and distance function d(·, ·). In terms
of the kernel choice, there are a wide array of options with
squared exponential (SE) kSE(·, ·), and Matérn(5/2) being the
most common in BO [25]. Throughout our exposition, we focus
on kSE(x,x′) that measures covariances as a function of L2
distances between two inputs such that the closer x gets to
x′, the higher the correlation between g(x) and g(x′), i.e.,
kSE(x,x′) ∝ exp (−||x− x′||22/2). Given a finite set of input
data points x1:n ≡ {xi}ni=1, we can now utilise Definition 3.1
to derive the jointly Gaussian prior distribution on the corre-
sponding outputs g ≡ {g(xi)}ni=1: g ∼ N (0,K(x1:n,x1:n)),
where K(x1:n,x1:n) ∈ Rn×n is the covariance matrix with its
(i, j)th entry computed as [K(x1:n,x1:n)]i,j = k(xi,xj).

Predictions using GPs: Given training input-output obser-
vations {xi, g(xi)}ni=1, we would like to construct the output
predictive distributions at ñ test points {x̃j}ñj=1. Assuming
that training and test outputs share the same data generating
distribution, as is the case in any supervised learning setting,
the joint distribution over training and testing function values
g and g̃ ≡ {g(x̃j)}ñj=1 follows:[

g
g̃

]
∼ N

(
0,

[
K(x1:n,x1:n) K(x1:n, x̃1:ñ)
KT(x1:n, x̃1:ñ) K(x̃1:ñ, x̃1:ñ)

])
,

where K(x1:n, x̃1:ñ) ∈ Rn×ñ and K(x̃1:ñ, x̃1:ñ) ∈ Rñ×ñ
denote the covariances matrices evaluated at all pairs of training
and test points and those between test points. To arrive at
predictive output distributions, we condition the above multi-
variate Gaussian leading to:

g̃|g, {xi}ni=1, {x̃j}ñj=1 ∼ N (µposterior,Σposterior) , (3)

where the posterior mean and covariance are given by:

µposterior = K(x1:ñ,x1:n)K−1(x1:n,x1:n)g

Σposterior = K(x1:ñ,x1:ñ)

−K(x1:ñ,x1:n)K−1(x1:n,x1:n)K(x1:n,x1:ñ).

Learning in GPs: So far, we have specified a probabilistic
framework capable of producing output predictions on unseen
inputs. The remaining ingredient in a GP pipeline involves
introducing the kernel hyperparameters that are tuned using
marginals to fit a given dataset best. In SE kernels, for
example, we can inject a length-scale parameter per each
input-dimension writing: kSE

θ (x,x′) = exp(−1/2r2) with r =√
(x− x′)Tdiag(θ2)−1(x− x′). Here, θ ∈ Rd denotes the

d length-scale hyperparameters that need to be fit, such that
θ2 is executed element-wise and diag(v) represents a diagonal
matrix of a vector v. In standard GPs [27], θ are determined
by minimising the negative log marginal likelihood leading us
to the following optimisation problem:

min
θ
J (θ) =

1

2
det(Kθ(x1:n,x1:n)) +

1

2
gTK−1

θ (x1:n,x1:n)g,

(4)
where det(Kθ(x1:n,x1:n)) is the determinant of the covari-
ance matrix Kθ(x1:n,x1:n) such that [Kθ(x1:n,x1:n)]i,j =
kSE
θ (xi,xj). To remedy the need to invert an n×n covariance

matrix, one can follows new advancements in modern GPs [26].

0 2 4

−2

0

2

Prior - kSE(·, ·) kernel

0 2 4
−2

−1

0

1

2
Posterior - kSE(·, ·) kernel

Fig. 2. (Left) Samples generated from a GP priors with kSE(·) before observing
any data. (Right) Samples from the GP posterior (Equation (3)) after training
the kernel’s hyperparameters (Equation (4)).

2) Acquisition Functions: Having introduced a distribution
over latent black-box functions, we now discuss the process
by which novel query points are suggested for collection in
order to improve the surrogate model’s best guess for the global
x?. In BO, proposing novel query points is performed through
maximising an acquisition function that trades off exploration
and exploitation using the fitted GP’s posterior distribution.
In this paper, we adopt the expected improvement (EI) [28],
which determines new query points by maximising expected
gain relative to the function values observed so far, although
other options are possible [24]. At round t of Algorithm 1,
EI is therefore given by αEI(x|Dt) = EGP-predictive[max{g(x)−
g(x+

t ), 0}], where x+
t = arg maxx∈{x`}t`=1

g(x) and the ex-
pectation is computed using the posterior of the learnt GP
(3). When x is continuous, the maximisation step in line 4
of Algorithm 1 can be executed using standard optimisation
tools.



B. BOiLS: Bayesian Optimisation for Logic Synthesis

The Bayesian optimisation machinery described in the pre-
vious section assumes continuously valued optimisation vari-
ables. Unfortunately, in logic synthesis, sequential and cate-
gorical optimisation variables render a direct deployment of
BO inapplicable. Now, we introduce BOiLS, a logic-synthesis-
specific BO algorithm that generalises recent works in com-
binatorial BO [16], [29] for sequential optimisation. BOiLS
modifies GP kernels and acquisition maximisers to achieve
state-of-the-art QoR results (see Section IV) as we detail next.

1) GP Kernels for Logic Synthesis: The first step during
BO is building a GP surrogate model from QoR data Dt =
{seqi,−QoRC(seqi)}nt

i=1 with nt denoting the number of
attempted sequences up-to round t. To do so, we assume that
−QoRC(seq) ∼ GP(0, k

(LS)
θ (seq,seq′)). Here, we used LS

as the kernel’s super-script to signify the need for new logic-
synthesis functions that measure similarity between categorical
sequences of operations applied to AIG graphs rather than
between continuously-valued inputs. To define such kernels, we
represent sequences in logic synthesis as strings of operations,
with each character being an algorithm from Alg. Similar
to [29], [31], we measure the similarity between strings through
the number of sub-strings they have in common. Namely, we
employ the sub-sequence string kernel (SSK) that uses sub-
sequences of characters as similarity features. Formally, an
`th order SSK between two strings seq and seq′ is defined
as: k(LS)

θ (seq,seq′) =
∑
u∈Σ` cu(seq)cu(seq′), where Σ`

denotes the set of all possible ordered collections of up to
` characters from our alphabet. Moreover, cu(seq) measures
the contribution of sub-sequence u to seq which is defined
using two tunebale hyperameters θm ∈ [0, 1] and θg ∈ [0, 1]
that control the relative weighting of long and highly non-
contiguous sub-strings:

cu(seq) = θ|u|m
∑

i=(i1,...,i|u|)

1≤i1<···<i|u|≤|seq|

θgap(u,i)
g Iu(seqi)

where |u| is the length of the sub-sequence, seqi =
(seqi1 , . . . ,seqi|u|), gap(u, i) = i|u| − i1 + 1 − |u|, and
Ix(y) is the indicator function assessing if strings x and y
match. We illustrate this kernel in Table I on some logic
synthesis sequences. For clarity, consider the first row and
column in Table 1. First, we observe a match between u
and seq. Given that |u| = 5, we can already set θ5

m. Now,
we notice that we can construct two matchings between u
and seq on indices i = (1, 2, 3, 6, 7) or i′ = (1, 2, 5, 6, 7).
Therefore, the summation in the computation of cu(seq) runs
over i and i′. In both cases, gap(u, i) = gap(u, i′) = 2 thus
cu(seq) = 2θ5

mθ
2
g in this case. Once the kernel has been set,

the match and gap decays θ = (θm, θg) ∈ [0, 1]2 still have to be
learnt from historical data Dt = {seqi,−QoR(seqi)}nt

i=1. To
do so, we make use of Equation 4 while following projected
gradients to ensure feasibility in the [0, 1]2 range: θupdate =
Projection[0,1]2 (θcurrent − η∇θJ (θcurrent)), with η being a step-
size. In practice, we implement the above update using a
projected version of Adam [30].

Contribution of the sub-sequence u
seq RwRfDsBlRw RwRfDsFr RwRf

RwRfDsSoDsBlRw 2θ5mθ
2
g 0 θ2m

RwRfDsSoDsBlRw - RwRfDsSoDsBlRw

RwRfDsFrSoBlRw θ5mθ
2
g θ4m θ2m

RwRfDsFrSoBlRw RwRfDsFrSoBlRw RwRfDsFrSoBlRw

RwRfDsFrBlSoBl 0 θ4m θ2m
- RwRfDsFrBlSoBl RwRfDsFrFrSoBl

TABLE I
CONTRIBUTION cu(seq) OF THREE SUB-SEQUENCES IN THREE SEQUENCES.
Rw, Rf, Bl, Fr, So, Bl, Ds RESPECTIVELY STAND FOR REWRITE, REFACTOR,

BALANCE, FRAIG, SOPB, BLUT, AND DSDB.

Algorithm 2 BOiLS: BO for Logic Synthesis
1: Input: Circuit C, maximum number of evaluations Nmax,

maximum number of transformations per sequence K
2: Initialisation & kernel tuning:
3: Construct D0 = {seqi,QoRC(seqi)}Ninit

i=1 by randomly
sampling Ninit sequences

4: Set the TR radius to RNinit = K
5: Optimisation loop:
6: for t = 0, . . . , Nmax − 1 do
7: Use Dt to fit a GP (Section III-B1)
8: Get seqt+1 ∈ arg maxseq∈TR(ŝeqt,ρt)

αEI(seq|Dt)
9: Evaluate QoRC(seqt+1) & augment data

10: Update the TRs radius ρt+1 (Section III-B2)
11: end for
12: Ouptut: The best sequence of operations ŝeqNmax

found

2) Trust-Region Local Search Acquisition Maximisers: As
in standard BO, BOiLS executes an acquisition maximisa-
tion step after fitting a GP with the kernel above, effec-
tively solving maxseq∈AlgK αEI(seq|Dt). The combinatorial
nature of this acquisition maximisation step poses difficulties
to global search techniques. To remedy those challenges, we
equip BOiLS with a local search strategy around an adaptive
trust region. At each round t, we use ŝeqt to denote the
best sequence observed so far and define a trust-region as:
TR(ŝeqt, ρt) = {seq ∈ AlgK : Hamming(ŝeqt,seq) ≤
ρt}, where Hamming(a,b) is the Hamming distance count-
ing the number of positions with different symbols between
a and b, and ρt is an adjustable trust-region radius that
we heuristically schedule as follows: 1) ρt = ρt−1 + 1
if we observe 3 improving sequences in a row, 2) ρt = ρt−1−
1 if we observe 20 non-improving sequences in a row, or 3)
keep ρt unchanged otherwise. In case, ρt arrives at 0, the trust
region is empty and the algorithm restarts in an attempt to
avoid the current local minimum. With TR(ŝeqt, ρt) defined,
we use a simple local search strategy from [16] to maximise
αEI(seq|Dt). Our strategy operates as follows: we randomly
sample an initial configuration seq0 in the trust region and
evaluate αEI(seq0|Dt). We then randomly select a neighbour
point of a Hamming distance 1 to seq0 in the TR, evaluate
its acquisition function αEI(·|Dt), and move from seq0 if the
neighbour has a higher acquisition function value. We repeat
this process until a preset budget of queries is exhausted
and dispatch the best configurations for objective function
evaluation.



IV. EXPERIMENTAL RESULTS

Now, we assess BOiLS’ performance against existing auto-
mated and heuristic-based solutions on 10 circuits from the set
of EPFL arithmetic benchmarks [15]. Our results indicate that
in 8 out of 10 circuits, BOiLS attains best QoR values across
all methods while reducing sample complexities.

A. Experimental setup

Our experiments were performed on two machines with
Intel Xeon CPU E5-2699 v4@2.20GHz, 64GB RAM, running
Ubuntu 18.04.4 LTS and equipped with one NVIDIA Tesla
V100 GPU. All algorithms were implemented in Python 3.7
relying on ABC v1.01. Area and delay characteristics were
measured after FGPA mapping (performed through if -K 6
command) using the print_stats command of ABC. For
each circuit C, we ran BOiLS and alternative synthesis flow
tuning methods to solve the optimisation problem in Equa-
tion (2) with K = 20 primitive transformations that included
the following algorithms: Alg = [rewrite, rewrite -z,
refactor, refactor -z, resub, resub -z, balance,
fraig, sopb, blut, dsdb]. We compared BOiLS to a large
set of solvers and ran each experiment across five random seeds
to record statistically significant results for all the optimisers
we considered:
• Deep Reinforcement Learning: We benchmarked against

DRiLLS [12] and Graph-RL [13]. In terms of Graph-RL,
we followed the work in [13], and for DRiLLS we employed
the code provided by the authors [12] attempting both PPO
and A2C policy update rules. We modified the rewards to
account for our goal from Equation (2).

• Standard Bayesian optimisation (SBO): To assess the
importance of designing logic-synthesis specific kernels and
acquisitions introduced by BOiLS, we also included standard
BO as a benchmark relying on the implementation from [25].

• Genetic Algorithm (GA): Rather than building surrogate
models, one could also solve (2) using genetic algorithms
that support mutation and cross-over. Although such methods
are known to be more sample intensive, we included GA
algorithms from [22] as additional baselines to understand
how sequences from BOiLS compare to those generated by
evolutionary search.

• Random Search (RS): Although generally omitted, we add
random search as a baseline. Our implementation relied on
the Latin hypercube samplers from pymoo [21].

• Greedy Algorithm: We also contrast with a greedy al-
gorithm, which builds a unique sequence of length K by
appending transformations that provide the largest immediate
QoR improvement.

• EPFL best (count / lvl): Those results are the best known
solutions achieved for each circuit in [15]. Of course, current
heuristics disjointly consider area (count) or delay (lvl),
where no one heuristic can simultaneously optimise both.
As such, those aggregated values form a new baseline.

B. Experimental Results

Next, we provide answers to the following three questions:

• Q.I. With budget constraints, does BOiLS produce new state-
of-the-art QoRs?

• Q.II. If given a higher budget, would other methods im-
prove?

• Q.III. Do generated sequences belong to the Pareto-Front
between area and delay?
1) BOiLS is Efficient with High QoRs: In this section, we

affirmatively answer both Q.I and Q.II.
A.I. State-of-the-Art QoRs: The table in the top row of

Figure 3 reports the best-achieved QoR results across all
circuits while restricting the interaction budget Nmax =
200 across all algorithms. Those values are averaged over
five random seeds and computed as a relative improve-
ment (in %) compared to resync2 using (QoRC(resyn2) −
QoRC(ŝeqt))/QoRC(resyn2). From this table, we can see
that BOiLS achieves the best results on average over 8/10
designs and that SBO is best in Log2 circuits and is mostly
second to BOiLS. Such results indicate that BO is a vital
alternative to consider in logic-synthesis and that the sequential
modifications from Section III-B further improve performance.
Finally, we remark that DRL-based approaches and greedy
strategy perform comparably to RS.

A.II. Sample Efficiency: We ran additional experiments to
assess sample efficiency, increasing the allowable budget for all
other algorithms except for BOiLs. The goal was to understand
how many trials would take algorithms to recover the QoRs
offered by BOiLS. We terminated the loop if methods achieved
97.5% values of BOiLS QoRs or until exhausting a total of
Nmax = 1000 iterations. We report those results in the middle
row of Figure 3 on five large circuits; average results on all
10 has been previously shown in Figure 1. We realise that: 1)
SBO recovers our QoRs but requires 1.5 more trials, 2) GA
algorithms need 2.8 times more attempts than BOiLS, and 3)
DRL necessitate over 5 times additional sample complexity.

A Remark on RS as a Valuable Baseline: Our results
show that RS is a competitive baseline. We noticed that
RS provides similar results to DRL even after 1000 trials.
We also ran GA for an Nmax of 1000 to assess further
improvements. We realised that after 1000 trials, GA attains
4.3% improvement to RS while being ≈ 1% worst than
BOiLS. DRL on the other hand, only achieved ≈ 0.12%
improvements to RS. We urge the community to consider RS
as an alternative baseline when operating ML techniques.

2) BOiLS solutions are Pareto-Efficient: Finally, we inves-
tigated the area and delay profiles provided by each algorithm
over each circuit. The bottom row of Figure 3 displays the
profiles obtained by the best found solutions after Nmax = 200
iterations for each of the five seeds. Considering 5 random seeds
in those large circuits, we show that solutions from BOiLS are
on the Pareto front 55% of the time, compared to 20% for SBO,
15% in GA, and 0% for RS and DRL.

V. CONCLUSION & FUTURE WORK

We proposed BOiLS, the first modern Bayesian optimisation
solver for logic synthesis applications. BOiLS utilises sequen-
tial kernels and trust-region constrained acquisition optimisers



DRiLLS (PPO) DRiLLS (A2C) Graph-RL GA RS Greedy SBO BOiLS EPFL best (lvl) EPFL best (count)
Adder 22.62 24.59 24.48 24.80 24.27 23.36 25.02 25.57 21.36 -55.76
Barrel Shifter 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Divisor 40.40 42.66 - 44.82 43.78 40.46 45.49 47.36 -59.52 14.04
Hypotenuse 00.81 00.89 - 01.66 01.75 -0.04 01.77 5.99 -68.80 01.62
Log2 07.02 07.48 - 07.96 07.77 04.70 09.01 08.70 06.25 -33.34
Max 29.28 30.49 31.51 31.97 30.76 28.14 31.04 31.77 35.61 -164.0
Multiplier 18.56 19.15 - 20.20 19.25 18.32 20.33 21.13 20.67 00.00
Sine 01.64 02.18 01.64 02.70 01.88 00.79 02.64 03.82 -23426.71 -26.21
Square-root 12.47 14.07 13.23 13.06 13.70 08.19 13.79 14.10 00.00 11.14
Square 36.65 37.77 37.88 38.01 37.78 36.56 38.27 38.90 38.88 -21.81
Average 16.94 17.93 - 18.52 18.09 16.05 18.77 19.74 -2343 -29.66
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Fig. 3. (Top Row): Tabular report of QoR improvement (in %) for all ten circuits averaged over five random seeds. Please note that high computational demands
associated with extracting large circuit graphs limit the applicability of graph RL algorithms to small settings. (Middle Row): Results on the four largest circuits
demonstrating that BOiLS acquires improved QoR results after about 200 iterations. Standard BO and GAs present competitive baselines. DRL, on the other
hand, rarely outperforms RS strategies. (Bottom Row): Pareto front comparisons on the same four large circuits with a restricted budget of Nmax=200 evaluations.

to search in combinatorial spaces. Our empirical results sig-
nify the importance of BO methodologies in logic synthesis,
demonstrating improved QoR values and reduced sample com-
plexities. Although we chose to optimise QoRs, we note that
BOiLS is not tied to a specific black-box and can be utilised
with other quantities of interest, e.g., area or delay disjointly
by simply modifying Equation (1).

In future work, we plan to extend BO beyond logic synthesis
to other steps in the electronic design automation workflow.
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