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Viscoplastic materials cannot flow if the local stress falls below the yield stress of the5
material. Such materials tend to ‘clog up’ geometrical features like corners or side branches6
by forming rigid plugs, because the stress becomes insufficient to yield them. In this volume,7
Taylor-West & Hogg (2022) consider the problem of flow of an idealised viscoplastic fluid8
in a wedge forced by a disturbance far from the corner; this is the viscoplastic analogue of9
Moffatt’s famous corner eddies. They demonstrate and describe the details of how the fluid10
clogs up the corner of the wedge with a rigid plug bounded by a viscoplastic eddy. More11
generally, this study provides a way to explain some of the details of clogging in different12
geometries that have previously been observed in viscoplastic materials.13
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1. Introduction15

The generalisation or extension of classical problems from Newtonian viscous fluid me-16
chanics to more rheologically complex situations has a rich heritage in the pages of the17
Journal of Fluid Mechanics and elsewhere. This operation can, at times, be anticlimactic,18
with the associated non-Newtonian result appearing qualitatively similar to its Newtonian19
counterpart. Viscoplastic materials, however, tend not to disappoint: these materials exhibit20
a non-zero ‘yield stress’ g. , below which they do not flow and above which they do, and the21
presence of this critical stress can lead to fundamental changes from Newtonian behaviour,22
with flows exhibiting qualitatively different structures and new phenomenology.23
The most common feature of viscoplastic flows is the existence of rigid ‘plug’ regions,24

where the stress has fallen below the yield stress and the material is either stationary or moves25
as a solid body. A common example is pipe flow, where the vanishing centreline stress results26
in a central rigid plug that is carried downstream by lubricating sheared regions against the27
pipe wall. Other canonical features of viscoplastic flows include extended regions of almost28
perfectly plastic deformation, where the strain rate is very small and the stress is held very29
close to the yield stress, and localised narrow layers of high shear which act to lubricate30
plugs or plastic regions.31
These generic features have been explored and described in viscoplastic generalisations32

of numerous classical flow problems, including lubrication theory (e.g Balmforth & Craster33
1999), Stokes’ first and second problems (impulsive lateral motion, or oscillation, of one34
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boundary, respectively; e.g. Balmforth et al. 2009; Hinton et al. 2022), flow around a falling35
cylinder (e.g. Tokpavi et al. 2008) and slender-body theory (e.g. Hewitt & Balmforth 2018).36
Taylor-West & Hogg (2021) have previously considered converging viscoplastic flow in37
a wedge; in this volume the same authors tackle the problem of viscoplastic corner flow38
(Taylor-West & Hogg 2022).39
The flow of material past a corner is, of course, a commonplace occurrence. Materials40

with a yield stress tend to become clogged in the vicinity of corners where the stress is41
insufficient to yield them; similar clogging occurs near other geometrical features like side42
branches and local obstructions or expansions. The formation of such clogs or ‘dead zones’43
can be problematic in, for example, the food processing or cleaning industries, since no fresh44
fluid enters these regions. Various studies have also observed the formation of viscoplastic45
‘eddies’ or rotating rigid plugs in the vicinity of clogged regions (see e.g. Roustaei & Frigaard46
2013).47
Taylor-West & Hogg (2022) study the idealised problem of a simple yield-stress fluid48

(a Bingham fluid) in a wedge, linking their study directly to the equivalent Newtonian49
problem. Nearly 60 years ago, Moffatt (1964) presented a now-classical study demonstrating50
the existence of an infinite series of counter-rotating inertia-free ‘eddies’ that arise in slow51
viscous flow in a wedge forced by a disturbance far from the corner. Whilst others have drawn52
a qualitative analogy with these Moffatt eddies, Taylor-West and Hogg here present the first53
detailed analysis of the viscoplastic problem. In so doing, they illustrate how to describe the54
extent of the corner plug or ‘dead zone’ and the adjoining rotating viscoplastic eddy. Their55
work helps to rationalise the numerous observations of clogged backwaters and rotating eddy56
‘plugs’ that have been observed in the literature.57

2. Overview58

The existence of an infinite set of inertia-free eddies in a Newtonian fluid follows from59
solving the biharmonic equation in a wedge (with a half-angle U . 73◦) using separation60
of variables (Moffatt 1964). A crucial detail of this flow is that the size of the eddies and61
their rotation rate, and thus the fluid stress, all decay exponentially towards the corner. The62
decay rate depends on the wedge angle U, but is in all cases strong: Taylor-West & Hogg63
(2022) note that the strain rate moving away from the corner increases by a factor of at least64
1/0.0078 ≈ 128 between any two neighbouring eddies.65
As such, they are able to predict (a) that the stress will always fall below the yield stress66

sufficiently close to the corner, leading to a plug there, and (b) that only one eddy immediately67
neighbouring this plug will feel any appreciable effect from the yield stress of the fluid. That68
is because - using the Newtonian solution as a guide - the characteristic stain rates in the69
next eddy out will have increased by at least two orders of magnitude, meaning that the70
influence of the yield stress will be extremely small. Equivalently, the fluid’s yield stress g.71
and viscosity ` together define a characteristic rheological strain rate scale g. /`; this will72
only be comparable to the Newtonian eddy strain rate in at most one eddy.73
Thus they posit - and then demonstrate the validity of this construction by means of direct74

numerical simulations - that viscoplastic corner flow in an arbitrarily deep wedge will consist75
of a clogged corner plug bounded by one viscoplastic eddy, outside of which the flow is76
essentially well described by the classical Newtonian solution. Of course, in a finite-sized77
wedge the viscoplastic eddy - or even the clogged corner - may reach sufficiently far up78
the wedge as to interact with the external flow, which could change some details of the79
construction.80
Based on the Newtonian solution, one can combine the distance ! to the corner with81

a suitable eddy velocity scale * to compare with the plastic strain-rate scale g. /` and82



3

determine the location of the ‘critical’ viscoplastic eddy that will divide the plugged corner83
from the Newtonian outer flow. This eddy can be characterised by a local Bingham number84
— a dimensionless measure of the importance of the yield stress — �8 = g. !/`* = $ (1).85
The self-similarity of the underlying Newtonian solution is reflected in the viscoplastic86

case. Taylor-West &Hogg (2022) show that, having defined a suitable local Bingham number87
as outlined above, there is a critical value below which a new viscoplastic eddy forms, being88
‘carved out’ from the existing corner plug. This eddy takes the form of a thin roughly semi-89
circular shear layer that divides the static clogged corner from a rigidly rotating roughly90
crescent-shaped plug (see their figure 3a). As �8 is decreased, the shear layer widens, the91
rotating plug thins, and its rotation rate increases. For sufficiently low �8, the rotating plug92
essentially vanishes, and the eddy approaches the Newtonian solution, at which point a new93
viscoplastic eddy is carved from the remaining corner plug and the process repeats, but at an94
exponentially smaller length and velocity scale.95
Taylor-West & Hogg (2022) determine, based on a simple torque-balance argument,96

approximate values for these critical �8, and roughly determine the associated length of97
the static corner plug as the yield stress is varied. They go on to analyse the shear layers98
that bound the rotating viscoplastic eddy, using viscoplastic boundary-layer theory following99
Balmforth et al. (2017). When the Bingham number is close to its critical value, these layers100
essentially act as slip surfaces that separate both the clogged corner and the rigid walls of the101
wedge from a rotating rigid plug. Generically such shear layers in viscoplastic fluids can be102
‘purely viscous’, in the sense that they involve a balance of along-layer pressure gradients and103
viscous shear stress only, or they can be genuinely viscoplastic, in the sense that some non-104
linear plastic stresses also enter this balance. The difference between these two behaviours105
is typically related to whether the layer is located against a rigid surface (where the velocity106
must match that of the rigid wall) or is a ‘free shear layer’ linking two rigid plugs (against107
which, in addition, the stress must fall to equal the fluid’s yield stress).108
Here the lubricating layer features both behaviours: across the opening of the wedge there109

is a ‘free shear layer’ linking two rigid plugs, while against the wedge walls the layer is110
bounded on one side by a rigid surface (see e.g. figure 9b in Taylor-West & Hogg 2022).111
As such, the dominant balances in the layer vary along its length, as does its width: the free112
shear layer is asymptotically wider, and has a lower pressure gradient, than that against the113
wall. More specifically, Taylor-West and Hogg reveal by means of a detailed boundary layer114
analysis the manner in which the rotation rate Ω of the plug decays as the Bingham number115
approaches its critical value, and determine the widths of the two different boundary layer116
segments (found to be ∼ Ω1/3 and ∼ Ω2/3, respectively).117
The paper ends with an illustration of this behaviour in a ‘real’ flow setting (here flow118

past a triangular corner region driven by a moving plate; they also illustrate the case of flow119
past a rectangular opening in an appendix, showing that the same theory can be applied in120
that case). They find excellent agreement with their theoretical predictions. This comparison121
nicely demonstrates how one might apply this idealised theory for corner flow to other122
settings involving flow past any sort of corner or ‘backwater’ region, and thus determine the123
extent of any stagnant clog that will form in that region.124

3. The future125

Viscoplastic flow past a corner is a fairly generic scenario, and the question of what controls126
the extent of any clogged plug that forms there is a natural one. This study goes some way127
to answer that, at least in cases where the corner is sufficiently deep. A natural question to128
ask is what happens in cases where the corner is not deep enough to contain the Newtonian129
solution at all, such that either the rigid corner plug or the rotating viscoplastic eddy reach130
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out to the external flow. While there may be some quantitative differences in such cases, the131
general approaches of this paper should allow for a way of tackling such problems as well.132
The degree to which the qualitative construction outlined here - a clogged corner region133

bounded by a rotating viscoplastic plug - carries over into different three-dimensional134
geometries is not obvious, and exploration of this problem would certainly be an interesting135
extension. The role of inertia on these corner flows would also be worth exploring, since136
decaying inertial forces in the corner could disrupt the flow and affect the extent of the corner137
plug. This is presumably an important question in cleaning or batch processing applications138
where strategies for disturbing clogged corners are desired.139
Finally, the rheology of the material could affect the behaviour of the corner flow. The140

critical wedge angle for the formation of eddies, for example, varies with the power-law index141
of the fluid (Henriksen & Hassager 1989; Meyer & Creyts 2017). This feature is presumably142
echoed by viscoplastic models with a power-law viscous behaviour (as in the Herschel–143
Bulkley law), although it seems unlikely that there would be substantive differences in the144
extent of the plugged-up corner, which is predominantly controlled by the yield stress of the145
material. More involved rheological models that include time-dependence or elastic forces,146
on the other hand, could result in a disrupted plug structure and more complex dynamics.147
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