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central position in our future.[1] Over the 
last few decades, Li-ion batteries have 
emerged as the technology of choice for 
a range of portable energy storage solu-
tions due to their high energy densities 
and capacities. For full implementation 
of these devices in stationary grid applica-
tions or electric vehicles, improvements 
are required in terms of cycle life, power 
and energy densities, safety, and cost.[2] 
Li-ion batteries operate via a “rocking 
chair” mechanism, where Li-ions travel 
between a cathode and an anode during 
charge and discharge operations.[3] More 
specifically, most cathodes are formed by 
layered transition metal oxides that host 
Li-ions between different layers.[4] As cells 
are charged with the application of an 
electrical current, Li-ions de-intercalate 
from the cathode and traverse a liquid 
electrolyte to the anode, usually a carbo-
naceous material.[5] During discharge, the 
ions migrate back, releasing the stored 
electrical energy in an external circuit, 

accompanied by redox changes in the electrode materials. The 
complex electrode microstructures which are characteristically 
found in Li-ion batteries play a pivotal role in determining the 
electrochemical performance: there is a synergistic effect; not 
only can different cycling regimes influence the morphological 
evolution of the constituting particles, but the morphology 
of the particles themselves can have a determining effect on 
cycle life or rate capability of the batteries they are employed 
in. For example, internal stresses may arise due to the repeated 
intercalation of Li-ions during cycling, resulting in micro-, and 
nano-scale cracks throughout the particle volume.[6]

Different techniques such as focused-ion beam scanning 
electron microscopy (FIB-SEM), atomic force microscopy 
(AFM), and X-ray computed tomography (X-ray CT) have been 
employed to further elucidate the intrinsic link between elec-
trode morphology and battery performance.[7–11] X-ray CT has 
garnered particular interest due to its non-destructive nature 
and multi-scale and in situ capabilities. The technique involves 
collecting 2D radiographs at different angular rotations and 
reconstructing these to 3D datasets whereby the resulting 
attenuation of the X-ray is inversely proportional to the contrast 
of the resulting image.[12] After reconstruction, each voxel con-
tained in the image is segmented by assigning it to the phase of 
interest according to its grayscale value. For example, less dense 

X-ray computed tomography (X-ray CT) is a non-destructive characterization 
technique that in recent years has been adopted to study the microstructure 
of battery electrodes. However, the often manual and laborious data analysis 
process hinders the extraction of useful metrics that can ultimately inform 
the mechanisms behind cycle life degradation. This work presents a novel 
approach that combines two convolutional neural networks to first locate and 
segment each particle in a nano-CT LiNiMnCoO2 (NMC) electrode dataset, 
and successively classifies each particle according to the presence of flaws 
or cracks within its internal structure. Metrics extracted from the computer 
vision segmentation are validated with respect to traditional threshold-based 
segmentation, confirming that flawed particles are correctly identified as single 
entities. Successively, slices from each particle are analyzed by a pre-trained 
classifier to detect the presence of flaws or cracks. The models are used to 
quantify microstructural evolution in uncycled and cycled NMC811 electrodes, 
as well as the number of flawed particles in a NMC622 electrode. As a proof-
of-concept, a 3-phase segmentation is also presented, whereby each individual 
flaw is segmented as a separate pixel label. It is anticipated that this analysis 
pipeline will be widely used in the field of battery research and beyond.

ReseaRch aRticle

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/smtd.202200887.

1. Introduction

As the world is moving toward increased electrification of the 
energy grid and automotive fleet due to environmental con-
cerns, robust energy storage devices are increasingly taking a 

© 2022 The Authors. Small Methods published by Wiley-VCH GmbH. 
This is an open access article under the terms of the Creative Commons 
Attribution License, which permits use, distribution and reproduction in 
any medium, provided the original work is properly cited.

Small Methods 2022, 2200887

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsmtd.202200887&domain=pdf&date_stamp=2022-09-11


www.advancedsciencenews.com www.small-methods.com

2200887 (2 of 11) © 2022 The Authors. Small Methods published by Wiley-VCH GmbH

materials such as air or the carbon binder domain (CBD), will 
appear darker, whereas denser materials such as transition 
metal oxides appear lighter. This process allows quantifying dif-
ferent morphological characteristics and phenomena related to 
battery performance and electrode degradation.

Flaws and cracks can form in the active material particles as 
a result of synthesis, electrode manufacture or cell cycling.[13–15] 
Fracture of the active materials contained in electrodes is one of 
the main factors responsible for battery capacity fading: cyclical 
cracking eventually causes the active material to isolate and lose 
contact with the ionic and/or electronic pathways necessary for 
battery operation.[16] Furthermore, cracking exposes fresh sur-
faces of active materials that continuously react with the electro-
lyte, reducing cycling efficiency and accelerating electrolyte con-
sumption.[17] In order to characterize microstructural degradation 
or quantify the amount of new surfaces that are generated as a 
result, it is critical to accurately segment the dataset in 3D. How-
ever, during the segmentation process, separating such flaws 
from the surrounding pore space or CBD is a tedious task due to 
their common low attenuation properties that result in poor con-
trast. While manual segmentation and classification approaches 
can be used to separate and segment flawed particles, these are 
often impossible to carry out on large data sets and can contain 
many human errors due to the intricate microstructures, large 
number of particles and 3D nature of the data.

Machine learning-based techniques are gaining consider-
able interest for studying different facets of battery operation. 
For example, CNNs have recently been used for battery health 
prediction and crack detection in labelled data.[18–22] While 
CV approaches show great promise as an alternative route 
to analyze image data, their application to segmentation of 
3D  tomographic data remains limited. Two notable examples 
used semantic segmentation for an accurate multi-phase elec-
trode segmentation and object recognition and, semantic seg-
mentation of flawed particles.[23,24]

Building on these previous studies, we propose, for the first 
time to the authors’ knowledge, an automated process to seg-
ment and classify each particle in NMC-based Li-ion cathode 
nano-CT datasets. By combining the established instance seg-
mentation package Mask R-CNN with a simple VGG16 classi-
fier, we are able to automatically segment the active material 
phase in 3D nano-CT datasets, detect each individual particle 
and classify it according to the presence of flaws or cracks 
within its microstructure.[25] Furthermore a 3-phase segmenta-
tion of each particle can be obtained that shows the particle, 
external pore/CBD and internal flaw or crack as distinct phases. 
To improve the ability of the model to generalize on unseen 
data, an algorithm is provided that can automatically generate 
machine readable Microsoft Common Objects in Context (MS 
COCO) annotations from previously segmented data. This 
exponentially increases the number of single particle instances 
that can be used for training or validation.

As a proof of concept, the approach is applied to several 
battery tomogram datasets containing a multitude of flaws 
or cracks as a result of synthesis and cycling, that were pre-
viously unseen by the model. Excluding the time required to 
prepare data for model training, the automated nature of the 
process allows for a full electrode segmentation and particle 
classification in just a few hours, depending on resolution and 

dataset size. This is a stark contrast from any manual threshold-
based approach, where the accurate segmentation of a few indi-
vidual particles can take a considerable amount of time. For 
simplicity, we will refer to particles containing internal voids, 
flaws, or cracks as flawed, unless specified otherwise.

We believe the overall process, with future improvements 
in detection and segmentation accuracy, will be adaptable to 
a multitude of case studies in the field of Li-ion research and 
beyond. With the increased prevalence of X-ray CT as an anal-
ysis tool for Li-ion batteries, and the requirement for ever larger 
analysis volumes and datasets in order to provide statistical sig-
nificance to their analysis, inevitably, some form of automation 
in the segmentation and analysis of the data will occur. Coupled 
with this, acquisition times for CT data sets are ever-decreasing 
in both lab and synchrotron experiments, to the extent that CT 
is becoming a viable tool for quality assurance in battery manu-
facturing. The sheer volume of data being generated requires 
accurate automated analysis such as that which we propose 
here to extract useful information that enables rapid diagnosis 
of battery electrode microstructures.

2. Results

2.1. Automated Label Generation

The proposed segmentation and classification pipeline is pre-
sented in Figure 1.

MS COCO dataset is a large-scale collection of images 
divided in 91 common object categories.[26] Overall, the dataset 
contains 2 500 000 labeled instances in 328 000 images. These 
images are accompanied by a standardized format of catego-
rizing and annotating each object in the image, along with 
exact bounding box and segmentation coordinates. To train 
custom datasets, custom categories and segmentations can 
be created in COCO-style annotations using freely available 
tools such as VGG Image Annotator (VIA).[27] Here, image 
outlines can be selected via manual tools and assigned to  
categories of interest. While this method is undoubtedly  
effective when dealing with a small number of training sets, 
manually labeling the images is laborious and time-con-
suming, and is therefore unsuitable for routine segmentation 
of large data volumes.

An alternative method is proposed, whereby labels are auto-
matically generated from each 2D slice part of a 3D dataset. 
The code is available in our public repository. As an input, 
the code takes grayscale images and their respective bina-
rized label fields as 2D stacks of 3D datasets and automatically 
divides the images into training and validation sets according 
to the percentage decided by the user. Binary segmentations 
can be produced with automated methods that are more time-
efficient such as watershed or thresholding. Further manual 
optimization of the segmentation also has to be carried out 
to ensure that cracks and flaws are identified as part of the 
solid or particle phase: the training data needs to resemble the 
desired outcome as much as possible for the best result. Due 
to the 2D nature of the Mask R-CNN training, each separate 
3D particle can be considered as a collection of 2D instances 
that will be fed independently to the model. As a result, the 
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number of training or validation instances were exponentially 
higher than what is achieved manually using VIA for example, 
but with comparable, if not shorter, preparation times. Con-
sequently, from five datasets comprised of around 1640 slices 
in the XY axis, a total of over 49 000 single instance particles 
were obtained. As neighboring slices may contain similar  
features, the augmentation discussed in the methodology  
section introduces significant differences leading to an 
improved ability of the model to generalize on unseen data. 
An example of such augmentation is presented in Figure S3,  
Supporting Information.

2.2. Computer Vision Segmentation Validation

To evaluate the performance of the segmentation network, 
several metrics were extracted from the 2D slice segmenta-
tions as presented in Figure 2. Two different electrodes from 
the training sets were compared: having the ground truth 
segmentation previously generated with thresholding enables 
plotting the Precisions-Recalls curve and calculating the mean 
average precision (mAP). As a default in the Mask R-CNN 
package, these metrics were calculated at an intersection 
over union (IoU) of 50% (mAP@IoU50). The mAP@IoU50 
denotes the mean average precision calculated where there 
is an overlap of at least 50% between the detected bounding 
boxes and the ground truth segmentation. The precision of 
a classification model indicates what percentage of predic-
tions is correctly identified on all predictions, while the recall 
describes the percentage of correctly annotated objects in the 
ground truth. Two datasets were chosen, namely one without 
flawed particles, and one with, as presented in Figures  2a,b 
respectively.

As presented in the Precisions–Recalls curve for an indi-
vidual slice extracted from each dataset, most particles are 
detected correctly by the model. However, a slight decrease in 
recall is present for the flawed electrode. This is also shown in 
Figure  2b as the model struggled to recognize particles with 
uneven morphologies due to cracking or sample preparation, 
and smaller particles with irregular shapes and less-defined 
edges. Nonetheless, the mAP@IoU50 calculated on 50 random 
slices resulted in 97% and 82% for the unflawed and flawed 
electrodes respectively. These results imply that while the model 
didn’t always detect smaller particle fragments of uneven shape 
that might be uncommon to numerous datasets, (and, hence, 
under-represented in the training data), it performs sufficiently 
well in identifying larger particles, both unflawed and flawed or 
cracked. This can again be confirmed in Figure 2a,b.

After each 2D slice was segmented, these were assembled 
into a 3D stack with the resampling and filtering procedure 
described in the methodology, allowing it to be compared in 
3D with the segmentation and particle labelling obtained via 
thresholding, as presented in Figure 3.

The two main differences that can be observed from the 
labeled images in Figure  3b,c are the fragmented segmenta-
tion of the large, cracked particle and the presence of smaller 
particles. Due to the similarity in grayscale value between flaws 
and pores, traditional segmentation approaches cannot distin-
guish between the two clearly. Consequently, the watershed 
particle separation step may wrongly identify cracks and flaws 
as pores that run through the particle, dividing it into multiple 
sections. In contrast, as the model developed here was trained 
to recognize all particles as a single object, the cracked par-
ticle was correctly identified by the computer vision approach 
as a single entity. This is a vital requirement if cracking within 
battery materials is to be fully analyzed in an automated 

Figure 1. The proposed pipeline for generating annotations, segmenting, and classifying particles from a nano-CT dataset. COCO-style annotations 
were used to train a Mask R-CNN model which successively isolated individual particles in 3D nano-CT datasets. Separately, a classifier was trained to 
recognize whether a particle contains a crack or flaw. Each individual particle from the segmentation was then classified according to the presence of 
a crack or flaw and segmented in three phases.
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Figure 3. a) Grayscale slice extracted from the flawed tomography dataset. b) Slice extracted from the flawed tomography dataset segmented and 
labelled with thresholding. c) Slice extracted from the flawed tomography dataset segmented and labelled with the CV approach. d) Volume rendering 
of the threshold segmentation. e) Volume rendering of the CV segmentation.

Figure 2. a) Ground truth (green) versus prediction (red) for a slice extracted from the unflawed dataset. b) Ground truth versus prediction for a slice of 
the flawed dataset. c) Precisions-recalls curve for both slices. d) mAP calculated over 50 random slices at IoU of 50% for the unflawed and flawed datasets.
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manner:  it  allows for classification of each individual particle 
based on its microstructure as will be presented in the following 
section. This can also be visualized in the 3D representations in 
Figure 3d,e. Further comparisons between the thresholding and 
CV segmentation can be deduced by comparing the particle size 
distribution (PSD) and tortuosity factor as shown in Figure 4.

The PSD presented for the threshold segmentation excludes 
all particles with radii below 0.75  µm as these were regarded 
as pixel artefacts below the resolution limit that often come as 
a by-product of thresholding. Interestingly, these are not pre-
sent in the CV segmentation as small pixel-size artefacts are 
not detected as objects of interest. The full PSD including the 
removed artefacts is shown in Figure S8, Supporting Informa-
tion. The rest of the PSD shows that threshold segmentation 
detected more particles with radii below 3 µm. Furthermore, a 
single particle can be observed at the 12 µm radius for the CV 
segmentation, while three particles can be viewed in the 7–9 µm 
range for the threshold segmentation: these clearly indicate that 
the large particle is split in three sub-sections by the watershed 
separation discussed previously. Mean particle sizes of ≈1.0 and 

2.6 µm were calculated for the threshold and CV segmentation, 
respectively, which again confirms that traditional thresholding 
is more apt at identifying smaller fragments.

The tortuosity factor is also measured on the binary datasets: 
while there is no distinction between pore and CBD, leading 
to an underestimation of the value, this can give an indication 
of fidelity between the different segmentation algorithms.[28] A 
reduction in tortuosity factor can also be observed in all three 
directions, along with pore/CBD phase percentages of 44% 
and 37% for the CV and threshold segmentations, respectively. 
While these results indicate that the CV approach omitted 
some of the smaller particles and fragments, larger particles 
that are crucial for the purpose of flaw classification and quanti-
fication were correctly identified, in line with what is calculated 
via thresholding. Furthermore, the ability of the CV model to 
capture flawed particles as a single entity rather than separated 
objects is essential to correctly capture its bounding box coordi-
nates as will be described in the following section.

After the particles were identified in 2D and a 3D volume 
was reconstructed from each slice, each particle was labeled 

Figure 4. a) PSD calculated for the flawed tomography for threshold and CV approaches. The threshold PSD excludes particles with radii below 0.75 µm. 
The bin centers are in the middle of the two columns for each size. b) Tortuosity factor for the thresholding and CV segmentations. c) 3D representa-
tion of the three directions with respect to the dataset dimensions.
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individually using the cc3d package, which also provides the 
bounding box coordinates in 3D.[29] These are used to directly 
crop sub-volumes containing each particle in the original  
grayscale image.

2.3. Particle Classification

The classifier assigns a score of 0 if the particle is unflawed, 
and 1 if the particle contains a crack or a flaw. This was trained 
with an early stopping monitor of 15 epochs set on the valida-
tion accuracy; as a result, optimal training and validation accu-
racies of 93% and 92% were obtained in just over a few minutes 
as presented in Figure 5a,b.

Further information on the classifier performance is obtained 
by analyzing the area under the curve (AUC) receiver operating 
characteristics (ROC) and confusion matrix in Figures  5c,d, 

respectively. An AUC of 0.88 indicates that the classifier can 
correctly distinguish between unflawed and flawed particles. 
The false positives could be caused by varying grayscale pat-
terns in the core of the particles that might mimic thin hairline 
cracks, or edge artefacts resulting from the particle masking 
process used to generate training datasets. On the other hand, 
false negatives could be caused by the classifier not correctly 
identifying particles that have very faint flaws and were labelled 
as unflawed. These issues are common to manual or threshold 
segmentation as well, where correct identification of flaws is 
hindered by the resolution limit of the instrument used. Future 
improvements in image resolution will undoubtedly aid in 
generating more reliable training data and in turn enhancing 
classifier performance.

From the previous CV segmentation step, each particle’s 
grayscale image was separated from the rest of the electrode 
using the 3D masks generated with Mask R-CNN’s instance 

Figure 5. Training and validation a) losses and b) accuracies for the classifier network. c) AUC-ROC curve for the classifier network presenting the true 
positive and false positive rates. d) Confusion matrix showing classifier performance on validation set.
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segmentation. Ten evenly spaced grayscale slices were extracted 
throughout 80% of the total height of each particle as shown in 
Figure 6a.

Each slice was individually classified using the pre-trained 
classifier: a slice containing a flaw or a crack was assigned a score 
of 1. A mean particle score was then defined as the mean score 
from the ten slices. Due to the false positive rate and overall 
classifier performance presented in Figure  5, the particle was 
identified as flawed if there were at least 4 slices classified as 
flawed present. This value was determined by quantifying the 
percentage of flawed particles as the number of flawed slices 
considered was increased by 1 for a previously unseen dataset, 
where the effective number of flawed particles is determined 
to be negligible by visual examination. A summary of this pro-
cess is shown in Figure  6b. When one slice containing a flaw 
was deemed sufficient to consider a particle cracked, over 95% 
of the particles were classified as flawed, indicating that most 
of these slices are likely to be false positives. The percentage of 
particles classified as flawed drops from 6% to 1% when three 
and four slices respectively were deemed sufficient for a particle 
to be considered as flawed, confirming that below a threshold of 
four slices, most of the flawed particles are likely to be false posi-
tives. Visual confirmation was also carried out on all the particles 
detected as flawed and the remaining particles in the electrode 
dataset. The slicing only occurs in the XY direction: while in 
theory a crack could be missed were it completely parallel to the 
slicing plane, this does not occur based on the visual examina-
tion of an extensive number of datasets and individual particle 
slices. For reference, the structure of the classifier is presented in 
Figure S6, Supporting Information, with sample activation maps 
presented for each convolutional block, highlighting correct iden-
tification of internal flaws and cracks.

The CV segmentation step lasts between 1.0 and 1.5  h 
depending on the size of the dataset, while the classification 
process lasts less than a minute for 150–200 particles. While 
a certain degree of error and inaccuracies may be present at 
either of these steps, the equivalent process would take expo-
nentially longer were it to be carried out manually. Moreover, 
the output from the classification step can be utilized for fur-
ther automated analysis of the nano-CT images.

2.4. Case Studies: Cycled and Flawed Electrodes

As a case study, the segmentation and classifier models were 
applied to three previously unseen datasets: an uncycled 
NMC811 electrode, an electrode with the same composition 
after a single charge to 5  V and an uncycled NMC622 elec-
trode containing numerous flawed particles. A high cut-off 
voltage is key to unlock higher energy densities of these mate-
rials: however, particle cracking hinders long term usability 
as it accelerates cycle life degradation. These are presented in 
Figures  7a,d,g, respectively. After cycling, numerous cracked 
particles appeared in the NMC811 electrode, as shown in 
Figure 7d. As a first step, a 3D CV segmentation is carried out 
on each dataset and each particle is labeled individually.

Inter-granular cracking within NMC811 particles is thought 
to depend on the strain caused by the reduction and subse-
quent collapse of the interlayer spacing at high delithiation on 
primary and secondary particles.[30]

It is clear from the volume renderings in Figure 7 that the CV 
segmentation yields an excellent result; while some artefacts 
are present on smaller particles (e.g., below 2–3 µm radius), as 
described previously, most mid-sized and large particles (e.g., 
above 4 µm radius) are correctly segmented. While the edges of 
some of the smaller particles contain slice-like artefacts, these 
generally do not impede the bounding box extraction process 
and subsequent classification. Using the numerical threshold 
of flawed particles determined previously, the number of flawed 
and cracked particles are counted for each dataset and pre-
sented in Table 1.

While a certain degree of error is certainly associated with 
every classification process, the relatively high precision and 
recall of the classifier, and the rigorous particle slicing pre-
sented in the previous section, indicate that the model can 
rapidly and accurately identify microstructural trends within 
electrode nano-CT datasets. The percentage of cracked parti-
cles increased from a negligible 1.7% to 30.8% for the cycled 
electrodes. The automated nature of the process and the 
relatively short time required for classification are a great 
advantage; manually identifying cracked particles by scrolling 
through each individual slice can be time-consuming and 

Figure 6. a) Diagram depicting the slicing carried out for each particle prior to classification. b) Change in the percentage of flawed particles as a func-
tion of the number of slices considered for a flawed particle. The yellow circle indicates chosen threshold.
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inexact, as well as prone to human errors and judgement 
biases. Interestingly, the model excels at recognizing flawed 
particles with a different flaw morphology as well; this is due 
to the broad variety of images provided for training the clas-
sifier. Examples of such features are presented in Figure S7, 
Supporting Information.

2.5. 3-Phase Segmentation: Proof of Concept

Once each particle is classified, numerous image-based opera-
tions can be carried out on each of the classes. While improve-
ments in image collection and segmentation accuracy are 

required to fully automate this process and apply it to entire 
electrode datasets, a proof of concept 3-phase segmentation is 
carried out on flawed particles as presented in Figure 8. Again, 
separating the similar greyscale features of cracks from pores or 

Figure 7. a,d,g) Virtual slices containing a grayscale image from the uncycled NMC811, 5 V NMC811 and flawed NMC622 datasets. b,e,h) Virtual 
slices showing the CV segmentation for the uncycled, 5 V and flawed datasets. c,f,i) Volume renderings with individually labelled particles for the CV 
segmentation for the uncycled, 5 V and flawed datasets.

Table 1. Number and percentage of flawed particles detected for the 
uncycled, 5 V and flawed NMC622 datasets.

Dataset Unflawed Flawed % Flawed

Uncycled 225 4 1.7

5V 110 49 30.8

Flawed NMC622 99 48 32.6

Small Methods 2022, 2200887
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voids between the particles is a laborious and difficult process for 
manual segmentation; however, if cracks can be accurately seg-
mented as a separate phase from the void space it allows for valu-
able analysis of the size, provenance, and orientation of cracks, 
which can lead to significant insight into the microstructural 
effects of degradation of battery electrodes. Therefore, automa-
tion of this process is highly desirable as it can allow analysis 
of the many thousands of particles required for statistical signifi-
cance, which is currently not possible with manual segmentation 
or methods that only capture a small number of particles, such 
as single tomograms or cross-sectional SEM imaging.

To distinguish the pixels belonging to the flawed phase, the 
CV segmentation is overlaid with a mask obtained with thresh-
olding where the flaw contours are contained in the segmenta-
tion. By assigning unique numerical values to pore/flaw/crack 
and solid phases, the flaw can be segmented independently from 
the rest by multiplying the different components. An example 
of such masks is presented in Figure S9, Supporting Informa-
tion. The flaw volume or volume fraction can also be calculated 
by multiplying the number of flawed pixels with the image pixel 
resolution. A downside of this approach is that a mismatch 
between the two masks will create edge artefacts as shown 
in Figure  8b,e,h. Furthermore, issues may arise when excep-
tional features are present in the analyzed dataset but not in the 
training sets, leading to uncertain segmentation results as shown 
in Figure S9, Supporting Information. While this does not seem 
to impede the overall classification of the particle, the presence 
of unusual features may hinder this approach to segment flaws. 
Nonetheless, this is the first time to the authors’ knowledge 
where an autonomous process segments, classifies and finally 
separates different elements in an electrode and it is eminently 
possible to improve with additions to the training data sets and 
automated improvement of segmentation artefacts.

Potential avenues for improving the 3-phase segmenta-
tion range from implementing automated erosion and dila-
tion mechanisms to eliminate boundary artefacts to advances 
in image acquisition. Improvements in image resolution and 
quality will enable more accurate imaging and segmentation 
of finer hairline cracks, as well as edges between particles and 
the CBD where unique features can often confuse the initial 
CV segmentation step. Further improvements in the detection 
of edges could also be obtained by utilizing newer instance 
segmentation models (e.g., Pointrend[31]) or by increasing the 
training sets to encompass a wider collection of features; the 
latter approach however might result in an extremely laborious 
process to manually segment a large number of training sets. 
Alternatively, the CV segmentation output could be manu-
ally improved and recursively utilized for a further round of 
training, refining the model’s knowledge, and encompassing all 
the different families of features that could occur in the data.

While this proof of concept segmentation is relatively simple, 
it opens the opportunities for further analysis of cracks and 
flaws, for example by studying their internal surface areas and 
orientations.[32] Furthermore, the crack severity could be esti-
mated by measuring the distance of the crack to the particle 
surface. After labeling and classification, the electrode could be 
spatially reconstructed, and the flaw distribution could be spa-
tially localized throughout the depth of the electrode. All these 
metrics could then be related to the electrochemical performance 
of the electrode. Automated image quantification and classifica-
tion tasks are gaining increasing interest in the field of Li-ion 
battery research, as they allow for rapid insight in electrode  
morphology and microstructural evolution.[33,34] The develop-
ment of the concepts here presented will undoubtedly provide a 
valuable addition for the field of electrode research and beyond.

3. Conclusion

While X-ray CT enables non-destructive multi-length scale 
imaging of battery electrodes, traditional grayscale-based seg-
mentation approaches are hindered by their failure to distinguish 
between different features with similar intensity values. Here, we 
present a novel approach that combines an instance segmenta-
tion network with a convolutional classifier to locate and classify 
NMC particles in nano-CT tomograms in 3D. This allows for 
accurate and effective identification of a range of different mor-
phologies, particle classification and 3-phase segmentation in 3D.

The instance segmentation network operates in 2D by 
identifying individual particles in each slice composing a full 
electrode dataset. The slices are successively reconstructed in 
3D  with a series of morphological operations to smooth out 
any artefacts that may have been generated because of this pro-
cess. To ensure that the model generalizes well on unseen data, 
an automated method was developed to generate COCO-style 
annotations and exponentially increase the amount of training 
and validation sets while greatly reducing the time required.

After segmentation, each particle is individually labelled 
and sliced in ten sections through its height. These slices are 
then classified using the second network to detect whether 
the particle contains a manufacturing flaw or a crack. This 
enables us to rapidly obtain useful statistics on the electrode 

Figure 8. Grayscale slice, 3-phase segmentation and volume rendering 
for a–f) cracked particles extracted from the 5 V dataset and g–i) a flawed 
particle extracted from the flawed NMC622 dataset. Green arrow indi-
cates edge artefacts.

Small Methods 2022, 2200887



www.advancedsciencenews.com www.small-methods.com

2200887 (10 of 11) © 2022 The Authors. Small Methods published by Wiley-VCH GmbH

morphology and its variations as a result of synthesis or cycling. 
As a proof of concept, a 3-phase segmentation is also presented, 
where flaws and cracks are extracted as separate pixel values 
in the label images, which will lead to advanced automated 
analysis of the effects of degradation on battery materials.

The modular nature of the two networks working syner-
gistically will enable adapting the system for a multitude of 
case-studies and materials across different length-scales where 
sizeable training data is available.

4. Experimental Section
X-Ray CT Data Collection: The nano-CT datasets used to train the Mask 

R-CNN model were pillar samples prepared from electrode sheets using 
a laser machining procedure to mill 1  mm electrode disks to diameters 
between 80 and 100 µm. The full description of the sample preparation can 
be found elsewhere.[35] The datasets were collected on a lab-based X-ray 
CT system, Ultra 810 (Carl Zeiss Inc) in absorption contrast mode, using 
a pixel binning of 1, resulting in a pixel size of 64 nm. The exposure time 
varied depending on the overall diameter of the sample, ranging between 
30–60 s per projection. The radiographs were reconstructed using the 
commercially available Zeiss XMReconstructor (Carl Zeiss Inc) with a 
filtered back-projection algorithm. Reconstruction yields a .txm file that can 
be opened with Avizo 2019 (Thermo Fisher Scientific). These .txm datasets 
were converted into 2D .tiff stacks for the annotation generation steps.

Coin Cell Cycling: 15 mm discs of NMC811 (NEI NANOMYTE BE-50E 
cast NMC811) were employed in CR-2032 type coin cells assembled in 
an argon-filled glovebox, with an active material fraction of 90 wt%. 
Lithium metal was used as the counter electrode.  Due to the instability 
of electrolyte additives at higher voltages, LP57 (1 M solution of LiPF6 in 
EC/EMC = 3/7 (v/v)) was used. Celgard separator was used as separator 
(2400; Celgard). Samples were cycled using a BCS805 (BioLogic) coin 
cell cycler and were charged to 5 V using a current rate of 0.02C, which is 
an aggressive high-voltage protocol chosen to induce cracking. The cells 
were then disassembled in an argon-filled glovebox where the electrodes 
were washed in dimethyl carbonate (DMC) and left to dry before 
exposing them to air for ex situ analysis. The cycling curve is presented 
in Figure S1, Supporting Information.

Label Generation and Mask R-CNN Training: All machine learning 
training, validation, and application algorithms were run on a local 
workstation with an Intel Xeon Gold 6134 CPU, NVIDIA Quadro P5000 
running Windows Server 2016 Standard. The training and validation 
sets for the Mask R-CNN model were segmented with a combination of 
grayscale thresholding and manual paint brush tools in Avizo 2019: this 
was to ensure that each flaw or crack is segmented as the solid phase. 
The labels and grayscale images were exported to 8-bit 2D slices prior 
to the label generation step. All the following steps were carried out 
using Python 3.7. Most of the tools developed are available on our public 
GitHub repository. The spatial location of each particle was converted 
into a COCO-style annotation file using a custom Python script. The 
script loads individual 2D grayscale slices and their corresponding 
binary label image and separates these into training and validation 
subsets by copying them in separate folders. The spatial coordinates 
of each particle in 2D, generated from the segmentation outlines, were 
inscribed in a .json file. Separate folders and .json files were produced 
for training and validation sets and named in the correct style for loading 
within Mask R-CNN. The .json file is structured in the standard format 
that most computer vision packages can read and an example of the key 
features is provided in Figure S2, Supporting Information.

Particle detection in 2D was carried out using Mask R-CNN, a region-based 
convolutional network widely used for object detection. The model operated 
by using a region proposal network based on an established backbone to 
identify the possible locations of each object in the image. Successively, 
bounding boxes were predicted for each of the proposed regions. Finally, 
the model segmented the individual boundaries of each of the detected 

objects. In this work, the model used a Resnet101 backbone. To increase the 
object-recognition abilities of the model, it was initialized using the weights 
of the large-scale COCO dataset. The head of the model was then cyclically 
trained using the annotations generated for the NMC datasets. The model 
was trained for 450 epochs using 5 nano-CT datasets. Training of the Mask 
R-CNN component of the model took ≈75 hours to train on a dedicated GPU-
enabled workstation with system specifications described previously. Each 
slice was rotated and orthogonally flipped to increase the variability of the data 
and reduce similarity between neighboring slices. An example is presented in 
Figure S3, Supporting Information. A learning rate of 0.0001 was used.

To reconstruct the 2D segmented slices into a 3D volume, the data 
were resampled in all three directions (XY, XZ, YZ), segmented and 
re-combined in one 3D dataset. An example of the resampling process is 
presented in Figure S4, Supporting Information. To smooth out artefacts 
due to the 2D nature of the slice detection, a series of morphological 
operations such as erosion, hole removal and dilation were applied in 
series to the data. An example of the resulting data after these operations 
can also be viewed in Figure S5, Supporting Information. After filtering, 
the particles were separated in 3D using a watershed algorithm and the 
spatial coordinates of each particle were extracted using the connected-
components-3d package (cc3d).

Classifier Training and Validation: The classifier was built following a 
VGG16 architecture and was assembled using Tensorflow 2.2.0. A diagram 
highlighting the number of convolutional filters used is presented in 
Figure S6, Supporting Information. Two convolutional layers per number of 
filters were followed by a rectified linear unit (ReLU) activation before being 
fed into a maximum pooling layer with a stride of 2. A dropout of 10% was 
used to improve overall accuracy. A final dense layer fed the result into an 
output layer with a sigmoid activation function. The training and validation 
sets for the classifier consisted of 2D grayscale slices of masked particles 
and were extracted from a collection of previously gathered nano-CT 
datasets. Over the past decade, we have collected an extensive library of 
nano-CT data, some of which are available via public repositories.[36,37] 
Manual thresholding was used to create a binary mask that encompasses 
the entirety of each particle in 3D. The particles were then exported as 3D 
.tiff stacks and later re-sliced in 2D. An example of such slices is shown 
in Figure S6, Supporting Information. The classifier was trained on 755 
particle slices subdivided into two classes, unflawed, and flawed: any 
particle with visible cracks or flaws was assigned to the latter phase. The 
slices were resized to 128 × 128 pixels for the input layer dimensions of 
the classifier. The slices were augmented with a series of operations such 
as rotation, width/height shift, zoom range, and orthogonal flipping 
to increase variability between the slices. An early stopping monitor 
interrupted the training when no gains were detected in the validation 
accuracy after 15 epochs. Classifier training stopped after ≈40 epochs, 
with training and validation accuracies of 93% and 92% respectively. The 
training process took <10 min to complete. The classifier will be provided 
in our public repository and can be loaded in Keras/Tensorflow.

At the end of the particle detection step, each particle mask obtained 
using Mask R-CNN provides spatial coordinates of the particles in 3D. 
The spatial coordinates of each particle bounding box were used to 
crop the particles from the original grayscale volume and were fed into 
the classifier after resizing. Some slice-like artefacts were generated 
because of inexact instance segmentation. These were eliminated using 
a Mahalanobis multi-variate outlier detection algorithm.[38] As some 
of the particles were located on the edge of the nano-CT dataset, the 
resulting cropped bounding box may only represent a partial volume. 
Hence, arrays with >20% of the surface of a slice covered by boundary 
pixels were excluded as partial/incomplete particles.

Image Visualization and Analysis: 3D visualization and PSD calculations 
of the thresholded and CV segmentations were carried out with Avizo 
2019. The tortuosity factor was calculated using the TauFactor plugin in 
Matlab on an internal sub-volume measuring 605 × 761 × 366 pixels.[39]

Flaw Segmentation: Prior to classification, the particle slices were 
resized to 128 × 128 pixels as required by the model input layer. 
Classification is run on ten slices selected to be within 80% of the total 
height of the electrode. To classify a particle as flawed, the mean score 
returned by the classification must be ≥0.4.
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3-phase segmentation was carried out by overlaying the particle mask 
obtained via Mask R-CNN, where flaws were segmented as part of the active 
material phase, and a threshold segmentation carried out on the masked 
particle slice. By assigning distinct numerical values to the background and 
particle masks and multiplying the values of the two segmentations, the 
area of the masks where particle and flaw overlap will result in a unique 
numerical value that identifies the flaw. Threshold segmentation was carried 
out using the OpenCV package and using the triangle and binary modes. 
This part of the algorithm is provided in the public repository.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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