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Abstract: Magnesium and magnesium alloys have great application potential in the field of or-
thopaedics. Compared with traditional inorganic nonmetallic materials and medical polymer materi-
als, magnesium alloys have many advantages, such as better strength, toughness, fatigue resistance,
and easy processing. Its mechanical properties are suitable and controllable. It can meet the same
elastic modulus, cell compatibility, and biodegradability as human cortical bone. There are also some
drawbacks for biodegradability, as magnesium and its alloys, with their high degradation rate, can
cause insufficient integrity of the mechanical properties. This paper summarises the research on
magnesium and its magnesium alloy materials in the field of bone implantation, looking at what
magnesium and its magnesium alloys are, the history of magnesium alloys in bone implant materials,
the manufacturing of magnesium alloys, the mechanical properties of magnesium alloys, the bio-
compatibility and clinical applications of magnesium alloys, the shortcomings, and the progress of
research in recent years.

Keywords: magnesium alloy; bone implant material; biomechanical properties; biocompatibility;
biodegradability

1. Introduction

Bone consists of live cells and minerals surrounded by an extracellular matrix (ECM) [1,2].
The surgical treatment of bone injuries has become commonplace, and millions of patients
with bone injuries are seen in emergency departments each year due to involvement in
strenuous physical activity, social instability, traffic accidents, and extended human lifes-
pans [3–5]. Bone defects are mainly caused by traumatic avulsions, sequelae of bone isolation
due to infection, congenital malformations, or tumour resections, leaving us with the great
challenge of reconstructive surgery. The need to induce bone regeneration to repair struc-
tural bone defects has stimulated the research and development of a large number of bone
repair materials [2,6].

Bone repair is a physiological process influenced by a variety of biomechanical, bio-
chemical, cellular, hormonal, and pathological factors. Continuous bone deposition, re-
sorption, and remodelling, as well as an adequate blood supply, promote bone repair [7].
Based on the basic principles of bone tissue healing, different bone repair materials have
been developed. Autograft bones have long been considered the gold standard for bone
repair materials when replacing damaged or lost bone because they have all the necessary
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properties of osteoconductivity, osteogenesis, and osteoconductivity to stimulate new bone
growth. However, these autologous grafts are scarce, and secondary surgery adds to the
pain experienced by patients. In addition, there may be donor site complications that
do not guarantee clinical benefit, and there is a high incidence of associated complica-
tions [4,8,9]. A large number of alternative bone repair materials are increasingly being
used to replace autograft bone and are marketed as bone substitutes. The most commonly
used products are synthetic composites consisting of calcium phosphate (Ca) ceramics,
calcium sulphate, bioactive glass, natural materials, and biomaterials [10–15]. However,
the clinical performance of these materials has not been satisfactory. For example, some
have mechanical properties and clinically show limited osteoinduction [16,17]. Metallic
materials are another alternative used to repair or replace diseased or damaged bone tissue.
Metal materials that are currently widely used in orthopaedics include stainless steel and
titanium alloys because of their mechanical strength and resistance to fractures [18–21].
However, metal ions or particles may be released through corrosion or abrasion, which
can trigger an inflammatory response, reduce biocompatibility, and lead to tissue loss.
Once the fracture has fully healed, these inert implants also usually need to be removed by
invasive secondary surgery. To minimise trauma to patients and reduce healthcare costs,
biodegradable implants can be used to replace conventional metal implants and eliminate
the need for secondary surgery [22–26].

Magnesium (Mg) alloys have been hailed as revolutionary biodegradable metal ma-
terials for orthopaedic applications due to their good biocompatibility, biodegradability,
and acceptable mechanical properties [27–30]. As the fourth most abundant cation in the
human body, Mg is one of the most essential nutrients in the body, second only to Ca, K,
and Na. The normal Mg content in adults is 21–28 g, of which about 53% is found in bones,
27% in muscle tissue, 19% in soft tissues, and a small amount in the blood and organs such
as the liver, brain, and kidneys. Mg can catalyse and activate more than 300 enzymes and
is an important activator of various enzymes in cellular metabolic activities, participating
in various physiological activities such as protein and DNA synthesis, energy storage and
transport, nerve signal transmission, and muscle contraction. Mg deficiency may lead to
heart arrhythmia, hypertension, ischaemic heart disease, cerebral infarction, osteoporosis,
and other diseases. The World Health Organization recommends a daily Mg intake of
280–300 mg for adults and 250 mg for children [31,32]. Therefore, magnesium alloys have
a good biosafety basis as biodegradable medical materials. Moreover, magnesium has
good osteoinductive properties. Numerous studies have shown that magnesium ions have
a role in inducing new bone production. Zhang et al. [33] investigated the osteogenesis
of Mg and found that Mg ions stimulated the release of more neurotransmitters (mainly
calcitonin gene-related peptide (CGRP)) from sensory nerve terminals in the periosteum,
and the increased CGRP further promoted the osteogenic differentiation of stem cells in
the periosteum. Figure 1 is a schematic diagram of the mechanism of magnesium ion bone
production [33]. The osteoinductive properties of Mg can promote fracture healing, and it is
an ideal material for bone repair. Due to the presence of Cl− in the physiological environment,
the magnesium alloy degrades in the body, thus eliminating the need for secondary surgery to
remove the implant. Mg2+ is a corrosion product of magnesium implants and does not cause
unexpected complications, as excess Mg cations are easily eliminated in the urine [34–37]. In
addition, magnesium alloys have mechanical properties similar to those of bones. Magnesium
alloys are lightweight and have a density (1.7–1.9 g/cm3) very similar to that of human
cortical bone (1.75 g/cm3), unlike titanium alloys (Ti-6Al-4V 4.47 g /cm3) and stainless steel
(approx. 7.8 g/cm3). Compared to the modulus of elasticity of titanium alloys and stainless
steel (110 and 200 GPa, respectively), magnesium alloys have a modulus of elasticity of
approximately 45 GPa, which is relatively close to that of natural bone at 3–20 Gpa, miti-
gating stress shielding against the significant mechanical mismatch between natural bone
and metal implants [38–40]. Thus, magnesium alloys are expected to be biocompatible,
biodegradable, lightweight, and load-bearing orthopaedic implants [22,41–43].
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Figure 1. Schematic diagram of the mechanism of magnesium ions for bones [33]. Reprinted with
permission from [33]. 2016, Elsevier.

Although significant progress has been made in research into magnesium alloys as
bone implants over the past 20 years, the rapid degradation of these materials in the human
body remains a major obstacle to their use in the clinic. As a biodegradable material, it is
important that the implant degrades at a rate that matches the rate of healing of the bone
tissue, which typically includes an early inflammatory phase lasting 3 to 7 days and leading
to a remodelling phase lasting approximately 3–4 months, followed by a remodelling phase
lasting several months to years [44–46]. Therefore, the implant must remain stable for
at least 12 weeks [22]. However, the currently available magnesium alloys degrade too
quickly to hold up well during injection. This rapid degradation leads to the formation
of hydrogen cavities, rapid loss of the mechanical integrity of the implant, and adverse
reactions in the host tissue, such as local swelling and significant pain in the first week
after surgery [47,48]. Many opportunities and challenges have recently emerged in the
development of magnesium alloys for bone repair. Therefore, it is necessary to summarise
the findings of researchers in this field. Compared to recently published reviews [27,49–55],
this paper is more focused and specifically discusses biodegradable magnesium alloys for
bone repair. We review the fabrication of alloying and the mechanical properties as well
as the in vitro and in vivo biocompatibility of magnesium alloys in bone repair. This is
shown in Figure 2.
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Figure 2. Fabrication, mechanical properties, and in vitro and in vivo biocompatibility of magnesium
alloys in bone repair.

2. The Development of Magnesium Alloys and Preparation Processes
2.1. Magnesium Alloy Development

Magnesium alloys have a long history of research as bone repair materials. The first
attempt to apply Mg nails, Mg plates, and intramedullary nails to bone repair was made
by Payr [1] in 1900. However, no further clinical trials were carried out, as the results
of animal studies showed that the degradation of Mg formed a layer of fibrous tissue
that prevented further bone healing. In 1906, Lambotte [56] first used magnesium alloys
for the clinical internal fixation of fractures, using magnesium plates and steel nails to
treat a fracture of the lower leg in a 17-year-old patient. Subsequently, Verbrugge [57]
applied the Mg-8Al alloy to 21 fracture operations, and no significant toxicity or irritation
was observed. From 1938 to 1945, pure Mg, MgAl-Mn alloy, Mg-10Al alloy, and Mg-Cd
alloy were reported for the clinical internal fixation of fractures [58,59]. In one of them,
Troitskii and Tsitrin [60] performed 34 procedures using a Mg-Cd alloy and found that
Mg promoted bone scab formation, suggesting that the alkaline environment formed
during Mg degradation was conducive to osteogenesis. Overall, these early studies all
showed that Mg and magnesium alloys were not significantly toxic and could promote
bone healing, but the rate of degradation was generally too rapid while not providing
effective long-term fixation support [61]. With the widespread use of inert metals such as
stainless steel in the field of orthopaedics, magnesium alloy bone repair materials have
gradually been fading out of sight. At the end of the 20th century, biodegradable polymer
materials and bioactive ceramics began to gain attention for their degradability and good
biocompatibility. However, the poor mechanical properties of polymers and ceramics
compared to metallic materials severely limit their widespread clinical use. In 2005, the
German scholar Witte et al. [62] reintroduced the use of magnesium alloys as a bone repair
material. Four magnesium alloys, AZ31, AZ91, WE43, and LAE442, were implanted into
the bone marrow cavity of a guinea pig femur. The results at 18 weeks post-operatively
showed that LAE442 had the slowest rate of degradation, with a cross-sectional loss of
approximately 18% and far more new bone around the magnesium alloy than in the PLA
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(Polylactic acid) group, demonstrating good osteoconductivity. Since then, degradable
medical magnesium alloys have gradually become a research hotspot. Among others,
the German HZG Centre for Materials and Coastal Research has received 5 million EUR
in annual funding support for the development of biodegradable medical magnesium
alloys since 2007. The NSF (National Science Foundation) invested 18 million USD in 2008
to establish the revolutionary National Engineering Research Center for Medical Metals
(ERC-RMB) at North Carolina A&M University for research on new medical metals such as
biodegradable magnesium alloys. A large number of new medical magnesium alloys are
being developed, including Mg-Ca, Mg-Zn, and Mg-RE systems. Studies have shown that
magnesium alloys have good biocompatibility and can induce new bone formation and
promote fracture healing. The degradation rate of magnesium alloys is also gradually being
controlled through the addition of alloying elements and surface modification techniques.
In addition, porous Mg scaffolds have been prepared by laser processing or by using
techniques such as powder metallurgy with pore-forming agents, which are expected to
be used as bone-defect-filling materials [63,64]. In 2013, MAGNEZIX® magnesium hollow
compression screws from Syntellix in Germany received the first European CE mark for
clinical use (as shown in Figure 3, applied to the correction of foot bunions), mainly for
the treatment of hand and foot fractures, as well as for non-union fractures [65–67]. More
than 25,000 pieces of the MAGNEZIX® range are currently in clinical use. In 2015, the
K-MET screw (Mg-Ca alloy) produced by U&I in Korea obtained the approval of the
Korea Drug Administration (KFDA) for clinical application. Its clinical observations in
the internal fixation of hand fractures have shown good fracture healing and complete
screw degradation within 6 to 18 months [68]. In China, Shanghai Jiao Tong University,
Peking University, and the Institute of Metals of the Chinese Academy of Sciences have
also carried out a large amount of relevant research and have achieved promising results.
Among them, Dongguan Yi’an Technology and Zhongshan Hospital of Dalian University
have collaborated to apply high-purity Mg screws for the autograft fixation of femoral head
necrosis, and hundreds of clinical trials have been conducted [69]. One year after surgery,
the screw diameter was reduced by approximately 25%, and the bone density around
the screw was significantly increased compared to the control group, with no significant
increase in serum Mg content.
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2.2. Magnesium Alloy Preparation Process

At present, the traditional manufacturing methods of magnesium alloys are commonly
used for material reduction manufacturing, including turning, milling, and drilling. The
common manufacturing methods are selective laser melting (SLM) and wire arc additive
manufacturing (WAAM). The heat source is mainly the laser and arc. The materials required
for processing are magnesium alloy powder and wire, respectively.
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2.2.1. Reduced Material Manufacturing

Traditional material reduction manufacturing, such as milling, turning, and drilling,
is an economic manufacturing technology. Danes [70] and others have simulated and
compared low-temperature-assisted manufacturing and the dry turning of the AZ31 mag-
nesium alloy. The research shows that the heat generated in the low-temperature turning
process is eliminated faster and effectively (up to 60%), and the surface roughness is reduced
(56%) (see Figure 4). This prevents accidental explosions due to excessive temperatures
during processing [71]. Bertolini [72] et al. have conducted similar research. Davis and
Singh [73] conducted a series of studies on AZ31B and AZ91D, and the research shows
that the surface corrosion passivation of turning and milling at low temperature has been
improved to some extent. Moreover, Davis and Singh [74] tested three different milling
environments (wet, low-temperature, and mixed) and low-temperature treated and un-
treated milling cutters to mill the AZ31B magnesium alloy. The results show that, in the
mixed environment, the surface integrity of magnesium alloy was improved by the milling
cutter after the low-temperature treatment. Figure 5 introduces the SEM of the milling
passivation layer of the low-temperature milling cutter in different milling environments
and mixed environments, as well as the existing elements and the wear of two end milling
cutters shown on energy-dispersive X-ray spectroscopy (EDS).
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results of the temperature distribution amid the turning of the Mg alloy AZ31. Reprinted with
permission from [70]. 2017, Elsevier.
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Figure 5. (i) Schematic diagram of three different milling environments of machining Mg alloy
AZ31B; (ii) SEM demonstration of the featureless oxide layer on the surface hybrid-milled (wet +
cryo) by cryo-treated end mill; (iii) EDS and SEM image of the surface hybrid-milled by cryo-treated
end mill; (iv) SEM images displaying tool wear in both the end mills. Reprinted with permission
from [74]. 2020, Elsevier.

2.2.2. Additive Manufacturing

Selective laser melting technology uses the laser as the heat source. Its workflow
is as follows: The powder is pre-laid on the powder bed first. Then, the heat source, in
accordance with the set laser scanning path, melts the powder. After the completion of
a table layer, the equipment re-lays the powder, where computer control is used to repeat
the operation of the previous layer. Layer-by-layer stacking is used to achieve the additive
manufacturing of parts, and the selective laser melting technology equipment schematic
diagram is shown in Figure 6 [75]. Selective laser melting, the most commonly used method
in additive manufacturing technology today, has several characteristics. (1) It has a smaller
spot diameter, hence more concentrated energy input can be generated. It also has the
ability to shape small complex parts which are similar to biomedical stents, and improve
the surface quality for molding specimens. (2) The low internal stresses generated by the
growth process can reduce the residual stresses within the growth specimen and reduce
crack generation. (3) The powder requirements are high, and the metal powder requires
good flowability in order to improve the uniformity of the spread. The low utilisation of
powder in the additive process leads to high additive manufacturing costs, and the quality
of the moulding is sensitive to the particle size and shape of the metal powder. (4) The
high porosity and low melting and boiling points of magnesium alloys are due to high
laser energy input, which can easily cause the oxidation and volatilisation of magnesium
elements. This not only affects the composition of the alloy, but it also increases the porosity
within the specimen. Although numerous authors have obtained specimens of the AZ91D
alloy with a relative density of 99.5% by adjusting the process parameters [76,77], and
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although the strength and hardness exceed those of the die-cast AZ91D, it is still difficult to
obtain a fully dense metal specimen.
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Wire arc additive manufacturing technology is an additive manufacturing method
based on fusion deposition and stacking technology using an electric arc as the heat source
and a metal wire as the material that is continuously stacked on top of the original stacked
layer, as shown in Figure 7 [78–82]. Commonly used wire arc additive manufacturing
methods include gas metal arc welding (GMAW), tungsten-gas-shielded welding (GTAW),
and cold metal transition arc welding (CMT) [81]. The deposition rate of GMAW is faster
than that of GTAW, but it is prone to smoke and spatter during the welding process,
which affects the quality of the specimens. As a cold metal transition technique with
minimal energy input, CMT is an arc additive manufacturing method that is suitable for
low-melting-point metals and can reduce the oxidation and volatilisation of the metal.
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Wire arc additive manufacturing technology is characterised by the following. (1) High
deposition rate: Wire arc additive manufacturing has the highest stacking rate compared
to other additive manufacturing methods, reaching 666 cm3/h with reasonable process
parameters [83]. Moreover, wire arc additive manufacturing allows for the machining
of large parts and simple processing equipment. (2) High energy efficiency: Comparing
different additive manufacturing techniques, laser and powder-based additive manufac-
turing methods for magnesium alloys have a deposition efficiency of only 14% and an
energy efficiency of 20% to 50% [84,85]. The main reason is that the powder has a certain
reflection effect on the energy beam and that the unmelted powder around the melt pool is
also affected by the heat source. In contrast, wire arc additive manufacturing technology
based on filaments and arcs can reach 100% deposition efficiency and 54% to 88% energy
efficiency [86,87]. (3) Poor quality of formed parts: Wire arc additive manufacturing has a
large melt pool size, high molten metal temperature, and high fluidity. This results in poor
surface quality on the sides of the specimen, low specimen forming accuracy compared
to laser additive manufacturing, and difficulty in precision machining. Arc additive parts
cannot be applied directly and must be post-treated for arc additive specimens. As additive
manufacturing technologies mature, additive manufacturing technologies for magnesium
alloy materials are also being developed. For example, in response to the problems of
volatile and oxidisable magnesium elements and poor molding quality, researchers have
proposed the use of high-pressure chambers for laser additive manufacturing [88]. The high
pressure applied to the working area increases the evaporation temperature of the mag-
nesium, thereby inhibiting its evaporation, However, due to the size of the high-pressure
chamber, only small parts can be processed, and the active nature of magnesium makes
additive manufacturing in high-pressure chambers very dangerous. Shen et al. [89] investi-
gated the effect of the GMAW–GTAW composite additive manufacturing method on the
properties of the AZ31B alloy by using an experimental method. By regulating the process
parameters, the final obtained additive manufactured magnesium alloy was of good qual-
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ity and proved that GMAW–GTAW is a suitable method for the additive manufacturing
of magnesium alloys.

2.3. Magnesium Alloy Material Surface Modification Technology

Surface modification is a common means of improving the performance of medical
magnesium alloys. By preparing a suitable coating on the surface of the magnesium alloy,
this not only effectively reduces its corrosion rate, but it also improves the biocompatibility
of the surface. Commonly used surface modification methods for medical magnesium al-
loys include chemical conversion, micro-arc oxidation or anodic oxidation, electrochemical
deposition, bionic deposition, the sol-gel method, ion injection, and the lifting and spin
coating methods applied to polymer coatings. The various surface modification methods
are summarised separately below (Table 1).

2.3.1. Chemical Conversion Method

Chemical transformation methods are used to form a film layer on the surface of the
sample through chemical reactions, mainly including fluorination and alkali heat treatment.
The fluorination treatment involves immersing the magnesium alloy sample in a 40% HF
solution for various times to form a dense MgF2 film layer on the surface of the magnesium
alloy. The thickness of the film layer depends on the time of immersion and is typically
a few microns. Chiu et al. [90] prepared a 1.5 mm-thick MgF2 film layer on the surface
by immersing pure Mg in a HF solution for 48 h. Electrochemical tests showed that the
self-corrosion current density of the treated sample was reduced to 1/40th of the original.
Witte et al. [91] first immersed LAE442 samples in a NaOH solution to form a Mg(OH)2
film layer on the surface and then immersed them in a HF solution for 96 h to convert
them to a MgF2 film layer of 150–200 mm thickness. The samples were implanted into the
femoral condyles of rabbits, and the results show that the coating reduced the corrosion
rate of the magnesium alloy to some extent but increased localised corrosion. Overall, the
fluorination process is simple and inexpensive, and the coating bonds well to the substrate.
However, due to the thin MgF2 film layer, its protective effect on the magnesium matrix
is limited. In addition, fluorination is often used as a pretreatment process for other coat-
ings [92]. The alkali heat treatment involves immersing the sample in an alkaline solution
such as NaOH or NaHCO3 for a period of time, followed by a heat treatment, resulting
in a tens-of-microns-thick layer of Mg(OH)2, MgO, or MgCO3. The alkali heat treatment
process is simple, the coating is biocompatible, and it can protect the magnesium alloy
substrate to some extent. Gu et al. [44] treated Mg-1Ca by immersion in Na2HPO4, Na2CO3,
and NaHCO3 solutions for 24 h, followed by holding at 773 K for 12 h. The soaking
results show that all three treatments significantly reduced the corrosion rate of Mg-1Ca, in
the following descending order: Na2CO3 group > Na2HPO4 group > NaHCO3 group.
Maurya et al. [93] showed by this method that, in a 3.5% aqueous solution of NaCl,
the corrosion current densities of the PCC-coated LAT971 and LATZ9531 alloys were
6.74 × 10−7 mA/cm2 and 5.39 × 10−7 mA/cm2 respectively, well below the uncoated
LAT971 (0.82 mA/cm2) and LATZ9531 (0.34 mA/cm2), with a corrosion protection effi-
ciency of 99%, as shown in Figure 8.
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2.3.2. Anodic and Micro-Arc Oxidation Methods

Anodising is the process whereby a magnesium alloy is placed as an anode in a suitable
electrolyte, and an oxide film is formed on the surface of the sample by loading it with
a certain amount of current. Micro-arc oxidation (MAO) is a modification of the anodic
oxidation method, which involves the formation of an oxide-based film layer on the surface
of magnesium alloys by arc discharge at high temperatures in an electrolyte and at a certain
voltage [94]. The coatings obtained by these two processes have the advantages of high
hardness, good bonding, and good biocompatibility. However, the method is complex, the
coating is mostly defective and brittle, and some of the coating does not degrade easily.
Gu et al. [95] subjected Mg-1Ca alloy to micro-arc oxidation and found that the thickness
of the film and pore structure could be modulated by varying the voltage, thus affecting
the corrosion rate of the sample. Gao et al. [96] prepared nano-HA by micro-arc oxidation
on a Mg-Zn-Ca alloy, which has twice the binding strength compared to electrochemical
deposited coatings and can effectively reduce the corrosion rate of the alloy. Cui et al. [97]
studied the factors influencing the corrosion of micro-arc oxidised Mg-Ca alloys. The
results show that the corrosion rate of the MAO-coated Mg-Ca alloy is mainly related to the
corrosion resistance of the substrate, the porosity of the coating, and the electric coupling
effect between the coating and the substrate, and the coating thickness has no significant
effect on the corrosion resistance of the coating. Figure 9 shows that through-holes and
micro-cracks in the MAO coating are the main contributors to the electrochemical corrosion
of the magnesium–calcium alloy substrate. As the number of through-holes increases, the
galvanic corrosion effect becomes more severe, resulting in higher degradation rates.
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2.3.3. Electrochemical Deposition Method

Electrochemical deposition is the deposition of ions from a solution onto the surface
of a sample under the action of an electric field. By varying parameters such as current,
voltage, electrolyte concentration and pH, the thickness and organisation of the coating
can be regulated. Its coating composition is generally calcium and phosphorus salts,
which are biocompatible, but the coating bond is average. Wang et al. [98] prepared
calcium-deficient HA coatings on Mg-Zn-Ca surfaces by a pulsed electrodeposition method
with significantly improved coating bonding. Song et al. [99] prepared three coatings of
fluorinated hydroxyapatite (FHA), HA, and perovskite (DCPD) on a Mg-Zn alloy and found
that the corrosion resistance of FHA and HA was better than that of the DCPD coating.

2.3.4. Bionic Deposition Method

The bionic deposition method involves immersing a magnesium alloy sample in a suitable
solution to deposit calcium and phosphorus salts on the surface of the sample. It is a simple
process with good biocompatibility but poor binding. Keim et al. [100] and Zhang et al. [101]
prepared calcium and phosphate coatings on the surface of the samples by immersing pure
Mg in simulated body fluid (SBF), respectively, and showed that the coatings slowed down
the corrosion of pure Mg and facilitated the growth of cell adhesion. Gray-Munro et al. [102]
concluded that solutions that are more acidic are more suitable for the deposition of calcium
and phosphorus salts on the surface of magnesium alloys. Wang et al. [103] immersed AZ31B
in an electrolyte at pH 4 for 24 h and successfully prepared a calcium–phosphorus coating that
was about 20 µm-thick and that showed good corrosion resistance and biocompatibility.
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2.3.5. Sol-Gel Method

The sol-gel method uses a colloidal solution as a precursor to polymerise on the
surface of the magnesium alloy to form a three-dimensional mesh-like gel, which is then
dried and cured to finally form a coating. Its coatings are biocompatible but have average
binding power. Hu et al. [104] prepared a layer of a nano-TiO2 coating on the surface
of an AZ31 magnesium alloy by the sol-gel method and found that the coating particle
size and degradation rate increased with increasing curing annealing temperature. Roy
et al. [105] prepared approximately 50 µm-thick porous Si-containing calcium and phos-
phorus coatings on Mg-4Y samples by the gel-solution method and found that Si promoted
the crystallisation of HA.

2.3.6. Ion Injection Method

The ion injection method involves injecting high-energy ions into the surface of the
sample to form compounds that improve the hardness, wear resistance, corrosion resistance,
etc., of the surface. Its coating thickness is generally less than 1µm, it is firmly bonded to
the substrate, the elements are selectable, and the process can be controlled. The elements
commonly used today are Ti, Zn, N, and Zr. Wan et al. [106] injected Zn into the surface of
a Mg-Ca alloy and found that the surface hardness of the sample increased significantly,
whereas the corrosion rate decreased. Wu et al. [107] injected N and Ti ions onto the
surface of AZ31 samples, respectively, and found that the N-treated samples had better
corrosion resistance.

2.3.7. Polymer Coating

The main polymer coatings are polycaprolactone (PCL), poly(L-lactic acid) (PLLA),
poly(lactic acid)-hydroxyacetic acid copolymer (PLGA), chitosan, etc. They are generally
prepared by the Dip and Lift method and the spin coating method. The disadvantages are
the acidic nature of the degradation products, which can cause inflammation, and the poor
abrasion resistance of the coating. The mass of a polymer coating is generally determined
by the molecular weight of the solute and the concentration of the solution. Li et al. [108]
prepared PLGA coatings on Mg-6Zn samples by lifting and found that the thickness of the
coatings prepared in a 4% solution ((72 ± 5) µm) was much greater than those prepared in
a 2% solution ((33 ± 5) µm), but the difference in corrosion resistance between the two was
not significant [109].

Table 1. Common surface modification techniques and their characteristics.

Classification Features References

Chemical conversion
method

Fluoridation
Simple process, low cost, and good bonding of the
coating to the substrate, but can increase localised

corrosion.
[90]

Alkali heat treatment
Simple process, good biocompatibility of the coating,
and a certain degree of protection of the magnesium

alloy substrate.

Anodising and
micro-arc oxidation

Anodising High hardness, good bonding, and good
biocompatibility. However, the method is complex,
the coatings are mostly defective and brittle, and

some of them do not degrade easily.

[95]

Micro-arc oxidation
(MAO)

Electrochemical
deposition

Good biocompatibility, but average coating
adhesion. [98]
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Table 1. Cont.

Classification Features References

Bionic deposition
method

It is a simple process with good biocompatibility but
has poor binding power. [101]

Sol-gel method Improves surface hardness, wear resistance, and
corrosion resistance. [104]

Ion injection method Improves surface hardness, wear resistance, and
corrosion resistance. [106]

Polymer coatings

Dip and Lift Method
It is relatively homogeneous and dense, has a

controlled composition thickness, and is available
for subsequent drug loading. The disadvantage is

that the degradation products are acidic and
inflammatory, and the coating is less wear-resistant.

[108]

Spin coating method

3. Mechanical Properties of Magnesium Alloys
3.1. A Study of the Modulus of Elasticity

By changing the percentage of alloying elements, the microstructure of the alloy is changed,
which in turn affects the mechanical properties of the alloy, resulting in magnesium alloys
with excellent overall properties. Wang et al. [110] investigated the effect of the variation of
Sr content in Mg-Sr binary alloys on the mechanical properties. Among the three contents
of 0.5 wt%, 1 wt%, and 2 wt%, the cast Mg-Sr binary alloy with a content of 1wt% had the
best mechanical properties. Its tensile strength, yield strength, and elongation were 92.67 MPa,
56.0 MPa, and 1.27%, respectively, and the properties were not very satisfactory. Under the
same process conditions, the alloy with a Sr content of 0.2 wt% has optimum properties, at
which point the tensile strength, yield strength, and elongation are 233 MPa, 117 MPa, and 15%,
respectively [111]. Heat treatment is also a way of increasing the strength of magnesium alloys.
Maier et al. [112] found that the yield strength of the Mg-Y-Nd alloy after T6 heat treatment was
133.3 MPa, the tensile strength was 235.5 MPa, and the elongation was 15.4%. The yield strength
of 108.7 MPa, tensile strength of 237.7 MPa, and elongation of 19.2% were all changed compared
to the alloy before the heat treatment, mainly due to the precipitation of the second phase, which
increased the strength of the matrix. Chen et al. [113] compared the ZK60 alloy in the as-cast,
T5 (170 ◦C, 10 h) heat-treated, and T6 (500 ◦C, 2 h, air-cooled, and then treated at 170 ◦C for
10 h) heat-treated states, and the microscopic results showed that the alloy in the T5 state had
a small and homogeneous second phase, and therefore it had the best mechanical properties and
corrosion resistance. Plastic deformation is another method of processing magnesium alloys,
and extrusion deformation is the predominant deformation method for magnesium alloys.
Mahallawy et al. [114] extruded a Mg-6Sn-4Zn alloy at an extrusion temperature of 350 ◦C and
an extrusion ratio of 40:1 and obtained grain sizes of 11–13 µm, tensile strengths of 276 MPa,
and an elongation of 23.1%. Forging is also often used to improve the mechanical properties of
magnesium alloys. Li et al. [115] subjected an annealed Mg-2Zn-2Gd alloy to multiaxial forging
and obtained a grain size of (416± 140) nm. The alloy had a yield strength of 227 MPa, a tensile
strength of 272 MPa, and an elongation of 32%, with excellent strong plasticity matching. In
recent years, equal-channel angular extrusion (ECAE) has been an effective method of grain
refinement. Krajňák et al. [116] found that the average grain size of an AX41 magnesium alloy
with ECAP after eight passes of the type A processing method reached 220 nm, with a maximum
strength of 223 MPa, an increase of 30% compared to the extruded state, and the elongation of
all samples was higher than 15% at room temperature, with a large amount of dislocation slip
and strong grain refinement causing the high strength and elongation. Current research has
shown that the strength and plasticity of magnesium alloys can be significantly improved by
alloying, heat treatment, and plastic deformation, often by using two or a combination of these
three methods, and much research has been conducted in this area (as shown in Figure 10).
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Figure 10. (a) Comparison of the yield strength of individual magnesium alloys (the mean of 0 is not
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mentioned in the references); (b) Comparison of the tensile strength of individual magnesium alloys;
(c) Comparison of the elongation of individual magnesium alloys.

3.2. Frictional Wear Properties of Magnesium Alloys
3.2.1. Frictional Wear of Mg-Al-Zn Alloys

Mg-Al-Zn alloys are widely used, and relatively more research has been conducted on
friction and wear properties [117–125], mainly on Mg-3Al-1Zn (AZ31), Mg-9Al-1Zn (AZ91),
etc. The addition of Al and Zn not only refines the grain, but it also forms a reticulated
Mg17Al12 phase, thus improving the mechanical properties and wear resistance of the
material. Studies have shown [117] that, under the same conditions, the coefficient of
friction and wear rate of the AZ31 alloy are much lower than those of pure magnesium. Das
et al. [118] studied the microstructural evolution of AZ31 alloy at high temperatures and
found that, at 673 K, the material transferred to the counter-abrasive surface underwent
violent deformation and partial recrystallisation. Dynamic recrystallisation and grain
growth occurred in the subsurface grains of the contact surfaces due to large plastic
deformation, and the plastic strain reached 100% for subsurfaces up to 10 µm and even
300% for surfaces up to 5 µm. This phenomenon is also consistent with the superplastic
deformation behaviour of AZ31 at the same temperature. Surface damage and material
transfer occur continuously, resulting in a dynamic equilibrium in the friction process and
a constant wear rate. Zafari et al. [119,120] investigated the wear mechanism of the AZ91
magnesium alloy under different loading and sliding speed conditions. Chen et al. [121]
also investigated the wear mechanism of the AZ91 magnesium alloy and classified the
wear into minor and severe wear (Figure 11). Minor wear is subdivided into oxidation
wear and spalling wear, and severe wear can also be subdivided into plastic deformation
and melting wear. The experimental results summarise the relationship between load and
velocity and surface temperature, showing that the transition from light wear to severe
wear depends on a certain critical surface temperature. In the case of the AZ91 alloy, severe
wear occurs when the surface contact temperature is above 347 K. Other studies [126]
have shown that the wear rate of the AZ91D alloy at low loads decreases with increasing
temperature (25–200 ◦C). The reason for this may be that, at higher temperatures, an oxide
layer is produced on the friction surface, preventing direct contact between the metals,
so the wear rate is reduced. Wang et al. [122] showed that high temperatures increased
the thickness of the mechanical mixed layer, which had a hardness of 110–120 HV, greater
than the alloy hardness of 80–90 HV, thus alleviating wear. The same phenomenon was
found in the AM60 alloy [127]. This shows that, below the critical temperature, the effect of
temperature on frictional wear is not the same as at high temperatures.

3.2.2. Frictional Wear of Mg-Al-Si Alloys

The Mg-Al-Si alloy is one of the most heat-resistant magnesium alloys. The strength-
ening phase Mg2Si in Mg-Al-Si alloys has a high melting point (1085 ◦C), a high modulus
of elasticity (120 GPa), and a low coefficient of thermal expansion (7.5 × 10−6 K−1), thus
greatly improving the properties of the material [128,129]. Studies on the AS21 (2.0% Al,
0.70% Si, 0.20% Zn, 0.36% Mn, Mg residual) alloy have pointed out that the wear resistance
of the AS21 alloy at room temperature was not as good as that of the AZ91D alloy, mainly
because the Vickers hardness of the AS21 alloy was 60.24, which was not as high as that of
AZ91D (83.7) [130].
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Figure 11. Wear transition map for AZ91 showing the region of dominance of wear mechanisms and
the transition boundaries between them; BB: mild wear to severe wear transition; AA: transition
between the oxidational wear (#) and delamination (3) wear in the mild wear regime; CC: transition
between severe deformation induced wear (4) and melt wear (9) [121]. Reprinted with permission
from [121]. 2000, Elsevier.

3.2.3. Frictional Wear of Mg-Al-Ca and Mg-Zn-Zr Alloys

The Mg-5Al-3Ca-0.12Sr (AXJ530) alloy developed by General Motors has good tensile
properties, creep resistance, corrosion resistance, and casting properties, and it is compa-
rable in cost to the AZ91D alloy, with a yield strength of 196 MPa at 175 ◦C, close to the
A380 (3.0–4.0% Cu, 7.5–9.5% Si, 0–1% Mg, 0–2.0% Fe, 0–3.0% Zn, 0–0.5% Mn, 0–0.5% Ni,
0–0.35% Sn, Al balance) aluminium alloy. The study of the frictional wear properties of
this alloy is of great relevance due to the high melting point and good thermal stability of
the Al12Ca, Mg2Ca, or (Mg,Al)2Ca reinforced phases of the alloy. Hu et al. [131] studied
five different AXJ casting alloys with different grain sizes and found that as the grain size
within a certain range becomes smaller, the wear resistance becomes higher. For example,
under the same friction conditions, the wear rate of an alloy with a grain size of 54.8 µm
is greater than that of an alloy with a grain size of 32.3 µm. The reason for this is that, as
the grain size becomes smaller, the mechanical properties and hardness become higher,
which improves wear resistance. For example, the strength and elongation of AXJ alloys
obtained using high-pressure casting with a grain size of 4.5 µm are significantly higher
than those of ordinary cast alloys, but the wear resistance is not as high as when the grain
size is 32.3 µm [131]. Another similar study [132] showed that the wear properties of ZK60
(Mg-6Zn-0.6Zr) decreased with decreasing grain size at very small grain sizes. It shows
that wear resistance is related to grain size. When the grain size is small, the coefficient of
friction increases due to the influence of adhesive wear. The friction surface is subjected to
large plastic deformation, and the wear rate increases. Conversely, alloys with larger grains
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have a wear mechanism of abrasive wear, rather than plastic deformation, and therefore
have improved wear properties. Due to the transition from adhesive wear to abrasive wear,
the wear resistance of high-pressure-cast AXJ gold is lower than that of ordinary cast alloys.
However, the wear rate of the ZK60 alloy grain size of a 100µm sample is still less than
that of a 40µm grain sample, and this result is not the same as AXJ gold. It can be seen that
fine grain strengthening can improve the wear resistance of the alloy to some extent, but
the wear resistance of magnesium alloys with particularly fine grains is not necessarily
good. There are not many relevant studies yet, and more experimental data are needed to
prove it.

3.2.4. Frictional Wear of Rare Earth Magnesium Alloys

Because rare earth elements have the advantages of improving the heat resistance of
magnesium alloys, refining grain size, and improving casting properties, the application
in magnesium alloys has gradually increased in recent years, and many scholars have
also been involved in research on the frictional wear properties of rare earth magnesium
alloys [133–135]. A systematic study on the frictional wear of Mg-3.85Zn-1.27Ce-0.53Zr
(ZE41A) magnesium alloy was conducted in [136,137], and the results show that the
coefficient of friction decreases with increasing load and sliding speed, and the wear rate
increases with increasing load and sliding speed. There is a gradual increase in the wear rate
with increasing load in the slight wear regime and a sharp increase in the wear rate above
a certain critical load. At different loads and sliding speeds, the main wear mechanisms
are divided into five categories: abrasive wear, oxidation wear, spalling wear, plastic
deformation, and melt wear. The wear mechanism of the ZE41A alloy can be controlled
by the load and sliding speed. The findings are the same as those for the Mg-Al-Zn
alloy, and the friction coefficient varies with friction conditions in the same way as for the
Mg-Al-Si alloy. Hu et al. [138,139] studied the wear of two heat-resistant magnesium alloys,
Mg-10Gd-3Y-0.4Zr (GW103K) and Mg-11Y-5Gd-2Zn (WGZ1152), under the conditions
of a load of 3–15 N, a speed of 0.03–0.24 m/s, and a temperature of 25–200 ◦C. The
counter-wear substrate was a 6 mm-diameter AISI52100 steel ball. The comparison with the
AC8A (11.3% Si, 0.81% Mg, 1.25% Cu, 1.34% Ni, Al balance) aluminium alloy was carried
out, and it was found that the WGZ1152 alloy had the best wear resistance under dry
friction conditions, followed by the GW103K alloy. The wear resistance of the WGZ1152
alloy was found to be the best under dry friction conditions, followed by the GW103K
alloy, and the wear rate of both magnesium alloys changed very little with increasing
temperature, whereas the dry friction wear rate of the AC8A aluminium alloy increased
significantly with increasing temperature. It can be seen that the rare earth phases in the
alloy, i.e., the Mg-Y-Gd square phase in the WGZ1152 alloy and the Mg24(Gd,Y)5 phase in
GW103K, can improve the wear resistance of the magnesium alloy and obtain better high-
temperature wear resistance by improving the high-temperature mechanical properties of
the alloy [140,141]. In the authors’ work on the frictional wear of Mg-Gd-Y alloys, it was
found that peel wear occurs at lower speeds, whereas most studies suggest that peel wear
occurs at high speeds. Under reciprocal friction conditions at 200 ◦C, the wear rate of the
alloy decreases, but the size of the chips increases. The scans show that the chips adhere to
the friction surface and act as a protective layer. An et al. [142] investigated the frictional
wear properties of the Mg97-Zn1Y2 alloy and compared it with the AZ91 alloy. The results
show that the friction coefficient and wear rate of this alloy are lower than those of the AZ91
alloy at high loads, due to the good thermal stability and high temperature mechanical
properties of the intergranular compound of the Mg97Zn1Y2 alloy. The strengthening
phase in the AZ91 alloy is the Mg17Al12 phase, which melts at a very low temperature and
rapidly softens and coarsens when the temperature rises, losing the strengthening effect.
The Mg12YZn phase at the grain boundaries of the Mg97Zn1Y2 alloy has good thermal
stability, maintains a certain proportion at elevated temperatures, and continues to provide
reinforcement. The role of rare earths in increasing the wear resistance of magnesium alloys
mainly has two aspects: (1) Inhibit tissue loosening and reduce defects, hence reducing the
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generation of crack sources during friction. (2) By adding the rare earths elements, they
can form needle-like or block-like new phases with other elements, which are not easy to
fall off from the matrix. Besides, new phases have higher chemical stability and higher
melting points. The diffusion rate of rare earth elements is very slow when temperature
rises, which can effectively hinder the sliding of grain boundaries and the propagation of
cracks, thereby improving the high temperature properties of the alloy.

Itoi et al. [143] compared four materials: pure magnesium, the AZ31 alloy, the AZ91
alloy, and the Mg90.5-Cu3.25Y6.25 alloy (where a long period phase is present), and they
found that the wear rate of the Mg90.5Cu3.25Y6.25 alloy was significantly less than that of the
AZ31 and AZ91 alloys at high loads. As determined by XRD and EBSD analysis, the base
surfaces of both the magnesium and long period phases were parallel to the wear surface
after the friction test. Magnesium substrates are susceptible to slip deformation at low
critical shear stresses, so forming a substrate parallel to the friction surface has a negative
impact on wear resistance. The Mg90.5Cu3.25Y6.25 alloy, on the other hand, produces
kink deformations in the long-period phase after friction (these kink deformations can be
observed in the longitudinal section at the wear site), making parallel movement between
the base and wear surfaces difficult, therefore significantly improving wear resistance.
In addition, the high hardness of the long period phase is responsible for the high wear
resistance of the Mg90.5Cu3.25Y6.25 alloy.

4. In Vitro, In Vivo, and Clinical Experimental Studies of Magnesium Alloys
4.1. Biocompatibility Studies In Vitro

The organisation of Mg-based metals can be improved by adding alloying elements
or adjusting heat treatment regimes and processing methods, thereby modulating their
degradation properties and biocompatibility [144,145]. To date, magnesium alloys in
various alloy systems such as Mg-Ca, Mg-Sr, Mg-Zn, Mg-Sn, Mg-Cu, and Mg-Nd-Zn-Zr
have been developed, and their biocompatibility has been investigated.

4.1.1. Mg-Ca Series Alloys

Ca is an essential metal element and is involved in a large number of metabolic
activities in the body. Moreover, Ca is the main inorganic component of bones and teeth
and has good biocompatibility. As an alloying element for Mg, the addition of Ca not
only enhances the mechanical properties of the alloy, but it also improves the corrosion
resistance and biocompatibility of the alloy [146–149]. Gu et al. [150] prepared Mg-3Ca
binary alloys using two smelting methods: single-roll melt spinning and casting, and
they showed that the Mg-3Ca binary alloys prepared by single-roll melt spinning had
better corrosion resistance and were not toxic to mouse fibroblasts (L-929) compared to
the casting method, with better cell adhesion and proliferation than the casting method.
Yin et al. [151] developed new Mg-Zn-Ca ternary alloys with Ca contents of 1%, 2%, and 3%
(mass fraction, below) using 99.99% pure Mg ingots, 99.99% Zn pellets, and a Mg-25% Ca
master alloy as raw materials, respectively. It was shown that the Mg-5Zn-1% Ca ternary
alloy was not cytotoxic and did not kill red blood cells. Li et al. [152] found that the cell
viability of the extracts of an extruded Mg-1Ca alloy co-cultured with L-929 cells for 2, 4,
and 7 d was significantly higher than that of the control group, showing improved in vitro
cytocompatibility.

4.1.2. Mg-Sr Series Alloys

Sr and Ca are homologous elements with similar chemical properties and biologi-
cal functions. Sr is an essential trace element that regulates the differentiation of bone
marrow mesenchymal stem cells (BMSCs) into osteoblasts and promotes the synthesis
and precipitation of bone matrix proteins. Thus, Sr has a promotional effect on osteoblast
differentiation and bone formation [153]. In addition, the addition of Sr can effectively
improve the mechanical properties and corrosion resistance of magnesium alloys [154–156].
The study of Mg-Sr alloys has therefore attracted widespread interest from researchers.
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Currently, there are more studies reported on binary Mg-Sr alloys. Tie et al. [157]
conducted a biocompatibility study on water-quenched and age-treated Mg-1Sr binary
alloys. After culturing primary human osteoblasts on the surface of the material, it was
found that the Mg-1Sr binary alloy exhibited a higher cell survival rate than pure Mg.
Comparisons of the haemolytic properties of the two Mg-based metals revealed that the
haemolysis rate of Mg-1Sr was only 2.54%, which meets the minimum requirement for
the haemolysis rate of medical implants (less than 5%), and the haemolysis rate of pure
Mg was as high as 7.13%, indicating that the addition of Sr is beneficial for improving
the cytocompatibility and haemocompatibility of Mg-based metals. Gu et al. [155] inves-
tigated the cytocompatibility of Mg-xSr binary alloys (Sr = 1–4%) in the rolled state and
showed that Mg-2Sr alloys exhibited the least cytotoxicity and the highest ALP activity
compared to other Sr-containing alloys, showing the best in vitro cytocompatibility. Bor-
napour et al. [153] co-cultured Mg-0.5Sr alloy extract with human umbilical vein vascular
endothelial cells (HUVECs) for 1, 4, and 7 d and found that cell survival was greater than
95%, indicating that the Mg-0.5Sr extract did not produce any toxic or adverse effects on
HUVECs. In addition, they found that the degradation of the Mg-Sr alloy resulted in
the formation of a layer of hydroxyapatite (HA) with Sr replacing Ca, which facilitated
bone mineralisation and tissue healing. In addition, studies on the biocompatibility of
Sr-containing multi-Mg alloys have also been reported, with Li et al. [158] finding that the
degradation rate of ternary Mg-1Zn-xSr alloys increased significantly when the Sr content
exceeded 0.8%. In vitro studies on Mg-1Zn-0.8Sr revealed that its extract promoted the
proliferation and growth of L-929 cells, indicating that the degradation product has good
cytocompatibility and that strontium alloying of Mg-Zn alloys is also expected to be used
in the development of new orthopaedic implant materials. Wang et al. [159] introduced
two elements, Sr and Ca, into the Mg-Si binary alloy to develop a new Mg-1.38Si-xSr-yCa
quaternary alloy. In vitro studies have shown that the Mg-Si-Sr-Ca tetrameric alloy can
effectively promote the proliferation of mouse pre-cranial osteogenic fine (MC3T3-E1) with
a cytotoxicity grade of 0~1, meeting the biosafety criteria for orthopaedic clinical applica-
tions. Numerous studies have shown that the addition of Sr significantly contributes to the
in vitro cytocompatibility, haemocompatibility, and osteogenesis of magnesium alloys.

4.1.3. Mg-Zn Series Alloys

Zn is an essential trace element and a component of biological enzymes and tran-
scription factors. It is associated with stabilising the normal structure and function of
proteins and plays an extremely important role in important physiological processes such
as skeletal growth and development, reproductive genetics, immunity, and endocrinology
in humans [160,161]. In addition, Zn can improve the mechanical properties of Mg through
solid solution strengthening and secondary strengthening, while being able to improve
the corrosion resistance of Mg [162]. In a study of binary Mg-Zn alloys, Yu et al. [163]
evaluated the in vitro biocompatibility of extruded Mg-6Zn alloys. When intestinal ep-
ithelial cells (IEC-6) were co-cultured in 20% and 40% alloy extracts for 1, 3, and 5 d,
reverse transcription–polymerase chain reaction (RT–PCR) assays showed that the expres-
sion levels of intestinal epithelial tight junction-related genes Occludin and ZO-1 mRNA
were higher than those of the control group. It indicates that its extracts can induce the
expression of tightly linked related genes at certain concentrations. Yan et al. [162] used
powder metallurgy to introduce Zn into magnesium-based metals to obtain Mg-Zn binary
alloys with different Zn contents. It was found that increasing the Zn content increased
the micro-electro-coupling corrosion of the alloy and increased the corrosion rate. The
extruded Mg-6.2% Zn can be aged to reduce the segregation of Zn, resulting in a denser
and more uniform layer of corrosion products on the metal surface and improved corrosion
resistance. Cytocompatibility experiments evaluating Mg-6.2% Zn binary alloys revealed
that the alloy was not toxic to L-929 cells. In a study of multi-magnesium alloys containing
Zn, He et al. [164] developed a Mg-1Ca-0.5Sr-xZn (x = 0, 2, 4, and 6, mass fraction, %)
tetrametallic alloy. In vitro studies have shown that the Mg-1Ca-0.5Sr-6Zn alloy not only
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has good antibacterial properties but also effectively promotes the proliferation of MC3T3-
E1 cells and exhibits good biocompatibility. The Mg-Zn series of alloys developed so far
has a high potential for clinical application, as it has outstanding performance in enabling
bones and fighting bacterial infections.

4.1.4. Mg-Sn Series Alloys

Sn is an important element in the body, is relatively non-toxic, has a high biosafety
profile, and can be excreted via the kidneys [165]. The addition of Sn elements to Mg-
based metals not only improves the strength of Mg-based metals at room temperature
but also reduces the secondary dendrite spacing in the a-Mg phase, thereby refining the
structure [166–168]. Zhao et al. [167] developed a Mg-Sn binary alloy using a subrapid
solidification technique. It was found that, as the Sn content increased, the increase in the
second phase Mg2Sn made the corrosion resistance decrease. In vitro experiments have
shown that the cytotoxicity levels of the two alloys, Mg-1Sn and Mg-3Sn, are 0 to 1, meeting
the cytotoxicity requirements for orthopaedic implant materials. Next, they reported on
extruded Mg-Sn binary alloys on the basis of subrapid solidification [168] and found that
the extruded Mg-Sn binary alloys were similarly non-cytotoxic. The good cytocompatibility
exhibited by Mg-Sn binary alloys provides a basis for their use as in vivo implant materials,
but little research has been reported on their histocompatibility and haemocompatibility.

4.1.5. Mg-Cu Series Alloys

Cu is a trace element that is an important component of many enzymes in the human
body. Cu also plays an important role in the immune system [169,170], restoring the
rate of bone resorption to normal levels [171] and promoting the deposition of collagen
fibres [172]. A lack of Cu affects osteoinduction and osteoclast activity [173], in addition to
Cu’s ability to stimulate endothelial cell proliferation and promote angiogenesis [174,175].
Liu et al. [176] developed a new degradable Mg-Cu binary alloy and found that the metal
ions and OH- dissolved by the degradation of Mg-Cu alloy did not produce cytotoxicity
to HUVECs cells and MC3T3-E1 cells in a cytocompatibility study. In particular, the Mg-
0.03Cu extract was effective in increasing the survival rate, ALP activity, extracellular matrix
mineralisation, collagen secretion, and expression of osteogenic-related genes and proteins
in MC3T3-E1 cells compared with pure Mg extract. It also promotes the expression of genes
and proteins related to cell proliferation and migration, endothelial tubule formation, and
angiogenesis in HUVECs. In addition, the Mg-Cu binary alloy has long-lasting antibacterial
properties and is expected to be used in orthopaedic clinics in the future [177]. Although
the study of Mg-Cu binary alloys is still in its infancy, their excellent biocompatibility and
antibacterial properties both in vivo and ex vivo make them highly promising for future
clinical applications.

4.1.6. Mg-Nd-Zn-Zr Alloys

Compared to conventional commercial alloys AZ31, WE43, and pure Mg, the new medi-
cal Mg-Nd-Zn-Zr (JDBM) quaternary alloy uses Nd, Zn, and Zr as alloying elements with
high biosafety compared to the conventional commercial alloys AZ31, WE43, and pure Mg.
The alloy not only has good strength and a toughness match, but it also exhibits a different
corrosion degradation pattern from most magnesium alloys in a body fluid environment,
i.e., homogeneous degradation, thus showing a unique advantage among many medical
magnesium alloys [178,179]. Wang et al. [180,181] found that the JDBM alloy was not toxic
to MC3T3-E1 cells and did not affect the normal growth of the cells. Wang et al. [182] sys-
tematically compared the effects of the JDBM alloy and pure Mg on MC3T3-E1 cells by
scanning electron microscopy (SEM) observation, a cellular thiazole blue staining (MTT) assay,
and a succinomycin staining assay. The JDBM alloy was found to be effective in promot-
ing the adhesion, proliferation, and mineralisation of MC3T3-E1 cells. By the JDBM alloy’s
superior corrosion resistance to pure Mg, the appropriate degradation rate as an implant
material provides a suitable growth environment for cells and facilitates cytocompatibility.
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Liao et al. [183] investigated the compatibility of JDBM alloys with chondrocytes for the
application of magnesium-based metals in cartilage tissue engineering. The results showed
no significant differences in the cytotoxicity of the JDBM alloy and in the expression of the
chondrocyte-associated genes type II collagen mRNA and aggregated proteoglycan mRNA
compared to pure Mg, indicating that the JDBM alloy has similar chondrocyte compatibility to
pure Mg. Wang et al. [184] investigated the haemocompatibility of JDBM alloys and showed
that the effects of JDBM alloys on blood cell aggregation and platelet and protein adsorption
were not significantly different from Ti-6Al-4V, indicating that JDBM alloys have good haemo-
compatibility. JDBM alloys exhibit uniform and controlled degradation characteristics, good
ex vivo cytocompatibility, histocompatibility, and haemocompatibility, giving them poten-
tial for clinical application. Table 2 [150–153,155,158,159,162,167,176,180,185] summarises the
effects of alloying on the cytocompatibility of biomedical Mg-based metals. Overall, most
of the new biomedical magnesium-based metals developed through alloying exhibit good
cytocompatibility and haemocompatibility and have good application prospects.

Table 2. In vitro cellular biocompatibility of different magnesium alloys.

Alloy Processing Test Cells
Cell Viability

Assay
Cell Culture Time (Day)

References
One Two Three Four Five Six Seven

Mg-3Ca Rapid
solidified L-929 MTT >90 >90 >90 [150]

Mg-5Zn-1Ca As-cast L-929 MTT >100 >90 >80 [151]

Mg-1Ca As-
extruded L-929 MTT >90 >90 >90 [152]

Mg-0.5Sr As-cast HUVECs Alamar blue >95 >100 >110 [153]
Mg-1Sr As-cast MG63 MTT >70 >90 >80 [155]

pure Mg As-rolled MG63 MTT >60 >70 >70 [155]

Mg-1Zn-0.8Sr Backward
extruded L-929 MTT >80 >90 >100 [158]

Mg-1.38Si-
0.5Sr-0.6Ca As-cast MC3T3-E1 CCK-8 >60 >100 >100 [159]

Mg-6%Zn As-
extruded L-929 MTT >80 >80 >80 [162]

Mg-Zn As-cast rBMSCs CCK-8 >50 >70 >90 [185]

Mg-1Sn Sub-rapid
solidified MG63 MTT >100 >100 >100 [167]

Mg-3Sn Sub-rapid
solidified MG63 MTT >100 >100 >100 [167]

Mg-0.03Cu As-cast MC3T3-E1 MTT >100 >100 >100 [176]
HUVECs >100 >100 >100

Mg-Nd-Zn-Zr MC3T3-E1 MTT >70 >90 >80 [180]

4.2. In Vivo Biocompatibility Studies

The element Al is an element commonly used to improve the properties of magnesium
alloys. Yu et al. [186] established a rabbit femoral defect model to evaluate the degradation
and bone volume changes in fluorine-coated magnesium–aluminium alloy porous scaffolds
and found that the fluorine coating enhanced the corrosion resistance of the magnesium al-
loy and made it more biocompatible, inducing more new bone formation. Miura et al. [187]
implanted magnesium–aluminium alloy plates into the head, dorsal subcutaneous, and
femoral subperiosteum of rats and found that they corroded fastest in the head, followed
by the dorsal, and they were the slowest in the femur. There was also vascularised fi-
brous capsule formation around the plate that matured over time, and the loss of alloy
volume at different anatomical sites was found to correlate with capsule thickness. A study
by Sato et al. [188] also found that magnesium alloy plates showed the fastest volume
reduction in the abdomen, followed by the head, back, tibia, and femur. The fluorine-coated
magnesium–aluminium alloy in the above study showed good biocompatibility, and the
rate of degradation in the animals was found to be related to their environment, which
could be a guide for future clinical work.
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As another essential trace element in the human body, Zn is involved in various
physiological reactions and has good biocompatibility. Jiang et al. [189] investigated the
biodegradation properties and biological characteristics of MgF2-coated magnesium alloys,
implanted with MgF2-coated and uncoated magnesium alloys into rabbit femurs. The
results showed a more uniform increase in the density of the surrounding cancellous bone
and the relative structural integrity of the bone trabeculae in the coated group. This leads
to the conclusion that the MgF2 coating is effective in reducing the in vivo degradation rate
of magnesium alloys, delaying the release of magnesium ions, and that the coating itself
has good biocompatibility and bioactivity. Zhang et al. [190] conducted a similar study
and found that micro-arc oxidised Mg-Zn-Ca alloy scaffolds were effective in repairing
critical bone defects. It also improves the bone repair effect, corrosion resistance, and
biocompatibility of the Mg-Zn-Ca alloy scaffold. The results of these studies confirm that
the surface coating of magnesium alloys can effectively improve the corrosion resistance
of magnesium alloys, resulting in better biocompatibility and bone repair. Li et al. [191]
constructed magnesium-based implants integrated with the anti-catabolic drug zoledronic
acid. The results of 12 weeks of implantation of intramedullary nail fixation of femoral
fractures in a rat model of osteoporosis showed that the magnesium-based implant en-
hanced the repair of osteoporotic fractures by promoting bone crust formation compared to
conventional stainless steel, and that the treatment in combination with the implant-coated
topical release of zoledronic acid further improved bone regeneration rates. Significant
improvements were observed in bone quality and mechanical strength due to the syn-
ergistic effect of the two, which inhibits osteoclasts and bone remodelling. In vitro and
in vivo studies have shown that it stimulates new bone formation while inhibiting bone
remodelling, which is attributed to the local release of magnesium degradation products
and zoledronic acid. This suggests that magnesium-based implants can slowly release
magnesium-based degradation products and zoledronic acid in a controlled manner and
can be a superior alternative for osteoporosis-related fracture reconstruction. This experi-
ment confirms that the magnesium-based implant enhances fracture repair in animals with
osteoporotic fractures, suggesting that this biodegradable magnesium alloy orthopaedic
implant has great potential and may, in the future, replace the internal fixation devices
currently used to treat osteoporotic fractures. Such studies combining magnesium alloys
with specific drugs where the two work synergistically could inform the design of clin-
ical trials. Xu et al. [192] studied the performance of magnesium–zinc alloy scaffolds in
anterior cervical discectomy and fusion in sheep and assessed the surface degradation of
magnesium–zinc alloy scaffolds modified by micro-arc oxidation. The results show that
the scaffold had ideal biocompatibility and biomechanical properties, but the fusion status,
as assessed radiologically and histologically, was poor. The degradation rate of the Mg-Zn
alloy scaffold was controlled but slower than expected by micro-arc oxidation modification,
ultimately showing that the scaffold degraded in an over-controlled and fusion-failed
manner. This shows that further research is needed in the future to improve the properties
of this type of magnesium-based material and to provide an experimental basis for future
clinical applications. Ca is one of the most alloying elements of magnesium, and its addition
not only enhances the mechanical properties of the alloy, but it also improves the corrosion
resistance of the alloy. Some researchers found that, after 4 weeks of the implantation
of the magnesium–calcium alloy into rat femurs, the alloy implant was well-integrated
with the surrounding bone, and slow and uniform degradation could be observed without
adverse effects on the surrounding tissue, suggesting that the alloy could be used as a new
temporary implant material [193].

In addition, in order to improve the mechanical properties and corrosion resistance of
the alloy, rare earth elements are also used as an effective element to improve the properties
of the alloy. Schaller et al. [194] conducted a study of WE43 in a porcine rib model, where
a coated WE43 plate/screw system, an uncoated WE43 plate/screw system, and a titanium
plate/screw system were implanted into porcine ribs; the main components were yttrium
(Y), zirconium (Zr), and rare earth metals (RE), where W represents the element yttrium,
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E represents the element rare earth, 4 represents the mass percentage of yttrium, and
3 represents the mass percentage of rare earth elements. The results revealed a higher
amount of gas formation in the group of uncoated magnesium plates fixed to the ribs.
A total of 12 weeks after surgery, there was better bone healing around the coated group
compared to the uncoated group, and no negative effects of magnesium degradation
on bone healing were observed upon histological examination. This study shows that
WE43 with coatings has good osteogenic properties and provides positive support for the
further development of magnesium plate/screw systems for bone fixation. Lin et al. [195]
constructed functionalised TiO2/Mg2TiO4 nanospheres on the surface of WE43 using
a plasma immersion ion implantation technique and performed animal studies. A study
showing a significant increase in new bone formation around ionomer-infiltrated treated
magnesium compared to controls at 12 weeks post-operation, with the Young’s modulus of
the new bone being 82% of that of the surrounding mature bone. In addition, this particular
TiO2/Mg2TiO4 layer was found to exhibit some bacterial disinfection when irradiated by
UV light, which was attributed to the production of intracellular reactive oxygen species.
From these observations, it can be concluded that TiO2/Mg2TiO4 nanolayers on magnesium
implants treated by ionomer immersion can significantly promote new bone formation and
inhibit bacterial infection while improving the corrosion resistance of magnesium alloys.
Marukawa et al. [196] assessed the biological response of the WE43 implant in vivo and
its effectiveness as a plate/screw fixation system. The WE43 magnesium alloy and poly-
1-lactic acid are materials commonly used in clinical practice to assess the effectiveness
of magnesium implants as a plate/screw fixation system using a canine tibial fracture
model. WE43 was found to be strong enough to fix and support the healing of canine tibial
fractures. This study shows its great potential for use in orthopaedics, oral and maxillofacial
surgery, etc., for fracture fixation in load-bearing areas, so these biodegradable magnesium
alloys can be considered good candidates to replace biodegradable polymers. Oshibe
et al. [197] studied the degradation and biocompatibility of WE43 by implanting WE43
round rods with and without anodic oxidation into rat tibiae. At 1 year post-operation,
mature bone structures appeared around the implants in both groups, indicating that the
WE43 implants show good long-term stability and biocompatibility in the bone tissue.
Torroni et al. [198] tested the biocompatibility and degradation properties of untreated
(cast) and artificially aged (T5) WE43 as subperiosteal implants on a sheep model. Studies
have shown that both alloys exhibit excellent biocompatibility, with WE43-as (as-cast)
showing a higher degradation rate and increased bone remodelling capacity. WE43-T5
shows greater stability at the bone/implant interface and is more suitable for manufacturing
intraperiosteal screws. In this investigator’s previous study, WE43-as and WE43-T5 were
implanted subperiosteally in the frontal nasal region of sheep to test local biocompatibility.
The results showed that the WE43-T5 alloy had stronger mechanical properties compared
to WE43-as, and both alloys showed good biocompatibility and osteogenesis-promoting
properties [199]. The scholar’s study confirms the excellent biocompatibility and bone-
enabling ability of WE43, providing the basis for further research into the use of magnesium
alloys in the maxillofacial fracture environment, and it demonstrates that WE43-T5 exhibits
higher stability and lower degradation rates than WE43-as. Niu et al. [200] used JDBM
screws coated with DCPD (mainly CaHPO4-2H2O) to implant in rabbit mandibles. A total
of 7 months after implantation, the screws had been largely degraded, and the screw
necks were fractured and largely unsupported. After 18 months of implantation, the
screw had lost its original shape, and the remaining volume was only about 10.7% of the
original volume, as shown in Figure 12. Bai et al. [201] prepared composite coatings on
magnesium alloy surfaces using the micro-arc oxidation technique and coated the coatings
for 2 h and 24 h using hydrothermal deposition. The results of implanting each of the
prepared samples into rabbit femoral marrow cavities showed that the degradation rate of
the composite-coated magnesium alloy was slowed down and that the degradation rate of
the composite-coated magnesium alloy after a 24 h hydrothermal treatment was slower
than that of the magnesium alloy after a 2 h hydrothermal treatment. The study shows
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that hydrothermal deposition can further slow down the degradation of magnesium alloys
based on the micro-arc oxidation technique, which provides a basis for future research
directions. The results of the animal experiments with magnesium alloy implants are
shown in Table 3.
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Table 3. Results of in vivo tests on the biocompatibility of magnesium alloy implants.

Alloy Types and Author Implant Form and Site
Duration of

Implantation
(Weeks)

Degradation References

Magnesium and aluminium
alloy

Miura et al.

Metal plates; rat ventral, head,
dorsum, and femur 4

Abdomen > Head
> Back > Femur

Bone
[187]

Magnesium and aluminium
alloy

Sato et al.

Metal plates; rat ventral, head,
back, tibia, femur 4

Abdomen > Head,
Back > Tibia Bone

and femur
[188]

Magnesium and aluminium
alloy

Yu et al.
Porous scaffold, rabbit femur 18 Reduce [186]

Magnesium-zinc-zirconium alloy
Jiang et al. Screws, rabbit femur 24 Reduce [189]

Magnesi-um-zinc-zirconium
alloy

Li et al.
Intramedullary nail, rat fe-mur 12 Reduce [191]

Magnesium, zinc and calcium
alloys

Zhang et al.
Stents, rabbit ulna 12 Reduce [190]
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Table 3. Cont.

Alloy Types and Author Implant Form and Site
Duration of

Implantation
(Weeks)

Degradation References

Magnesium rare earth alloys
Bai et al.

Intramedullary nail, rabbit
femoral medullary cavity 12 Reduce [201]

Magnesium rare earth alloys
Torroni et al.

Plate nail fixation system,
sheep forehead, nasal bone 6 Reduce [199]

Magnesium rare earth alloys
Marukawa et al. Bone screws, canine tibia 4 Not described [196]

Magnesium rare earth alloys
Oshibe et al. Intramedullary nail, rat tibia 48 Volume loss after

48 weeks 27.7% [197]

Magnesium rare earth alloys
Lin et al. Screws, rat femur 12 Reduce [195]

Calcium magnesium
alloyCihova et al. Intramedullary nail, rat femur 4 Reduce [193]

4.3. Clinical Trial Studies

Even though no study has yet clarified which alloy has the best therapeutic effect
(Table 4), a number of in vivo animal studies have confirmed the good therapeutic effect
of different magnesium alloys. As a new type of orthopaedic implant, magnesium alloys
have achieved certain clinical progress, where Mg-Y-RE-Zr (magnesium–yttrium–rare earth
element–zirconium) alloys, Mg-5Ca-1Zn alloys, and also pure magnesium have all been
clinically tested. In 2010, Plaass used Mg-Y-RE-Zr screws from Syntellix, Germany, for
bunion orthopaedic surgery, and the fracture ends healed well after surgery without ad-
verse effects in patients [202]. The company subsequently introduced magnesium screws for
the treatment of extremity fractures and non-union fractures, all with good results [66,68].
In 2013, in a clinical trial for the treatment of bunions, Syntellix, Germany, observed the
radiographs of the distal metatarsal foot of one 29-year-old woman (Figure 13). The screw
almost completely remodelled the bone 16 months after surgery. This clinical trial obtained
the CE mark on the biodegradable magnesium alloy screw [66]. In 2015, Mg-Ca-Zn screws
manufactured in Korea were approved for clinical use in the treatment of non-healing inter-
nal fixation of navicular and distal radius fractures, with clinical observations showing that
patients had good fracture line healing and that the screws could be completely degraded
within 6~18 months [68]. Pure magnesium screws were used for free iliac bone grafting in
femoral head necrosis by Zhao Dewei, Zhongshan Hospital, Dalian University. At a 1-year
post-operative follow-up, bone growth around the degraded screws was significantly better
than in the control group, showing good osteogenic properties [69]. These clinical trials
all used single pure magnesium or a magnesium alloy screw, implanted in a non-weight
bearing area, with good clinical results. It is still unknown whether the magnesium alloy
endoskeleton is able to provide sufficient mechanical strength, considering that, in the
future, it may be used in long bones that need to provide strong support or torsional forces.
Hel-mecke et al. used Mg-Y-RE-Zr magnesium alloy interference screws to fix artificial
ligaments to artificial bone, which required more force to extract than ordinary interference
screws and provided better stability for ligament fixation [203]. None of the current clinical
trials have had significant gas accumulation in the bone and soft tissues surrounding pure
magnesium and magnesium alloy screws. Only radiolucent areas are seen in the surround-
ing bone as well as a small amount of gas accumulation in the surrounding soft tissues,
with the former disappearing within 4–6 weeks post-operation and the gas in the soft
tissues being completely absorbed within 2 months post-operation [66,68]. The reason for
the small amount of gas may be related to the relatively small size of the screw in relation
to the body. If a larger number of screws or larger magnesium plates or prostheses are used
at a later stage, the degradation process may produce a large amount of gas that collects
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in the surrounding tissue. Control of the rate of degradation is particularly important at
this time, and slowing down the rate of degradation is key to controlling gas production.
Current clinical trials have demonstrated that pure magnesium and magnesium alloy
screws provide the required support at the site for orthopaedic clinical applications, while
being highly biocompatible and not degrading too rapidly [66,68]. The clinical trials have
provided valuable data and a solid foundation for future clinical applications of magnesium
alloys in orthopaedics. As more clinical trials are conducted, they will be a huge boost for
the use of magnesium alloys in orthopaedics.

Table 4. Clinical trials with magnesium alloys.

Magnesium Alloy
Material Types Part Sample

Numbers Country Degree of Healing References

Mg-Y-RE-Zr screws Bunion correction 13 Germany All healed [202]

Mg-5 wt%Ca-1 wt%Zn
Internal fixation of

fractures of the metacarpal
and carpal bones

53 Korea All healed [68]

Mg-Y-RE-Zr screws Bunion orthopaedics 40 Germany
79% healing after 6
weeks, 90% healing

after 12 weeks
[202]

Pure magnesium screws
Femoral head ischaemic

necrosis graft tape;
vascular bone flap fixation

48 China
No displacement or
collapse of bone flap

after operation
[69]

Mg-Y-RE-Zr screws Bunion orthopaedics 100 Germany All healed [202]
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5. Conclusions and Outlook

Despite significant developments and numerous achievements in the field of medical
magnesium alloys for bone repair in recent years, a number of fundamental scientific
questions remain to be further elucidated. (1) Mechanisms of in vivo degradation of
magnesium alloys: Various factors in the complex environment of the human body, such
as different cells, the composition of body fluids, force conditions, etc., can affect the
degradation behaviour of magnesium alloys, and only by examining the influence of
these factors can the degradation of magnesium implants in the human body be finally
predicted, and the design of magnesium implants can be further guided. (2) The metabolic
pathways of the absorption of magnesium alloys in the body, with particular reference to
the metabolic mechanisms of the alloying elements: This relates to the biosafety basis of
magnesium alloys and is a question that must be answered before clinical application. In
addition, although our research scholars have achieved world-recognised first-class results
in the field of biodegradable medical magnesium alloys, they have lagged behind Germany
and South Korea in terms of clinical application and transformation, and there is an urgent
need to accelerate the domestic magnesium alloy clinical transformation process. This
requires the cooperation of researchers, government review experts, and companies. It is
believed that, in the near future, our self-developed biodegradable medical magnesium
alloy will be able to be widely promoted clinically for the benefit of patients.
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