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Abstract
We study the problem of unbiased estimation of expectations with respect to (w.r.t.) π a

given, general probability measure on (Rd,B(Rd)) that is absolutely continuous with respect
to a standard Gaussian measure. We focus on simulation associated to a particular class of
diffusion processes, sometimes termed the Schrödinger-Föllmer Sampler, which is a simulation
technique that approximates the law of a particular diffusion bridge process {Xt}t∈[0,1] on Rd,
d ∈ N0. This latter process is constructed such that, starting at X0 = 0, one has X1 ∼ π.
Typically, the drift of the diffusion is intractable and, even if it were not, exact sampling of the
associated diffusion is not possible. As a result, [10, 16] consider a stochastic Euler-Maruyama
scheme that allows the development of biased estimators for expectations w.r.t. π. We show
that for this methodology to achieve a mean square error of O(ϵ2), for arbitrary ϵ > 0, the
associated cost is O(ϵ−5). We then introduce an alternative approach that provides unbiased
estimates of expectations w.r.t. π, that is, it does not suffer from the time discretization bias
or the bias related with the approximation of the drift function. We prove that to achieve a
mean square error of O(ϵ2), the associated cost (which is random) is, with high probability,
O(ϵ−2| log(ϵ)|2+δ), for any δ > 0. We implement our method on several examples including
Bayesian inverse problems.
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1 Introduction
Let π be a probability measure on (Rd,B(Rd)), d ∈ N, with positive Lebesgue density – denoted
also π – assumed to be known up-to a normalizing constant. In many applications in applied
mathematics and statistics, it is often of interest to compute expectations of π-integrable function-
als, φ : Rd → R, that is compute π(φ) :=

∫
Rd φ(x)π(x)dx, see for instance [21] and the references

therein. There are numerous methodologies for the approximation of π(φ) often based upon the
simulation of Markov processes with the most prominent example being Markov chain Monte Carlo
(MCMC). In this article we consider approximations based upon independent samples, each of the
latter generated via an ‘embarrassingly’ parallel approach. Such schemes have become rather
popular in the recent literature [9, 8, 12].

We will consider a stochastic differential equation (SDE) on the time domain t ∈ [0, 1], starting
from X0 = 0 and satisfying a terminal constraint X1 ∼ π. This is an instance of a more general
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problem of assigning an initial and final distribution to a Markov process, which was initially
formulated by Schrödinger in [22] and later developed into a general stochastic bridge construction
by Jamison in [11], whereby an additive drift function is used to ensure the terminal constraint
X1 ∼ π will be satisfied. In our case π is absolutely continuous w.r.t. a standard Gaussian
measure, so this drift will be added to a d-dimensional Brownian motion, {Wt}t∈[0,1], whose terminal
distribution is known: W1 ∼ Nd(0, I), denoting the d-dimensional Gaussian distribution of mean
0 and identity covariance. This gives the following Rd-valued diffusion process:

dXt = b(Xt, t)dt+ dWt, X0 = 0, (1)

with
b(x, t) = ∇ logEx,t[f(W1)],

where for any (x, t) ∈ Rd × [0, 1], ∇ denotes the gradient w.r.t x, Ex,t denotes the expectation
w.r.t {Ws}s∈[t,1] starting at Wt = x and note that b(x, 1) = 0. We remark that f corresponds
to the analogous of a likelihood function for a standard Gaussian prior, i.e. for z ∈ Rd we
have f(z) = π(z)/ϕ(z), with ϕ(z) the standard d−dimensional Gaussian density. Using standard
manipulations the expression for b simplifies to

b(x, t) = ∇ logE[f(x+W1−t)] =
Eϕ[∇f(x+

√
1− tZ)]

Eϕ[f(x+
√
1− tZ)]

=
1√
1− t

Eϕ[Zf(x+
√
1− tZ)]

Eϕ[f(x+
√
1− tZ)]

,

with Eϕ denoting expectation w.r.t. a d-dimensional standard Gaussian. We refer to [11, 5] for a
generalizations of (1) and more details on a general existence result obtained by means of Girsanov’s
theorem and more importantly establishing that X1 ∼ π. Based on [11] there is existence of a weak
solution of (1) in [0, T ]. This requires f to be bounded and Ex,t[f(W1)] to be twice continuously
differentiable in x and once in t, i.e. in C2,1

(
Rd × [0, T )

)
; see [5] for more details. To ensure the

existence of a strong solution of (1) the drift b needs to satisfy certain conditions; see [16] for
details.

The formulation in (1) was proposed in [10, 16] as a sampling scheme for π and as an alterna-
tive to MCMC. The authors used the name Schrödinger-Föllmer Sampler (SFS) inspired by the
original Schrödinger problem in [22] and its links with the entropy based time reversal of SDEs by
Föllmer [7]. The approach of [10, 16] is to discretize the process in time via an Euler-Maruyama
scheme and to numerically approximate the drift using standard perfect Monte Carlo estimators.
This approach can then be parallelized to produce M ∈ N independent samples of X1 to ap-
proximate π(φ). This type of embarrassingly parallel estimators are extremely attractive for their
computational savings, versus conventional time averages that often appear in standard iterative
(non-parallelisable) MCMC simulation. The possibility of massive parallelization in SFS is also
quite competitive against various other recent MCMC schemes from ‘uncorrected’ discretized dif-
fusion schemes such as the unadjusted Langevin method [6, 19]. Indeed, here we do not need to
concern ourselves with long-time asymptotic behavior, as the solution of (1) at time 1 is exactly
distributed according to π. In addition, the stochastic bridge in (1) and its generalizations have
been to solve a certain optimal transport problem (see [5]). As a result, different sampling schemes
have been proposed recently in [1, 3] using iterative proportional fitting within Sequential Monte
Carlo and generative modeling respectively. Whilst these schemes are interesting and use variants
of (1), they are iterative in nature and cannot be parallelised to the extent of SFS.

In this article we make several contributions to the SFS, that we now list.

1. We show that for the method in [10, 16] to obtain estimators of π(φ) achieving a mean square
error (MSE) of O(ϵ2), the associated cost is O(ϵ−5) for an arbitrary ϵ > 0.
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2. We construct a doubly randomized estimator, based upon the ideas in [14]. This approach
delivers unbiased estimates of finite variance (in contrast to the method in [10, 16] that is
biased).

3. We show that the proposed estimator achieves an MSE of O(ϵ2) with an associated random
computing cost that is, with high probability, O(ϵ−2| log(ϵ)|2+δ), for any δ > 0. The term
high-probability simply means that to achieve the prescribed MSE with the given cost, this
latter cost is achieved with probability 1 − ζ for some small ζ ∈ (0, 1). We note that the
expected cost of our method is infinite. Remark 3.1 explains this in detail.

4. We apply our new approach for several examples, including Bayesian inverse problems, and
numerically verify the above theoretical findings.

The significance of our contributions can be explained as follows. In the context of 1. we establish
that due to the Monte Carlo error in the drift and the bias of the time discretization, one requires a
large computational effort to approximate π(φ) with high precision. Therefore, whilst the trivially
parallel nature of the estimator is intuitively appealing, the associated cost can be prohibitive. In
2. we then consider a methodology to remove the time discretization bias of the Euler-Maruyama
scheme, based upon the randomization schemes of [18, 20]. As the standard approach in those
papers cannot be implemented, due to the fact that the drift must be approximated using Monte
Carlo, we show that ideas related to [14] can be adapted in the context of SFS to overcome
biases due to both the time discretisation and the drift approximation. The overall methodology
delivers unbiased estimators of finite variance, using only simulation of standard Gaussian random
variables. This latter aspect of the new algorithm is particularly interesting, since the approaches
for instance in [9, 8, 12], also deliver unbiased estimators, but one must resort to complex coupling
techniques, whereas we show here that such involved constructs are not always needed. In 3.,
relying on tools from the analysis of time discretized diffusions, we show that our new method
provides a substantial reduction in cost over the original method in [16].

This article is structured as follows. In Section 2 we present the approach in [10, 16] and our
new unbiased algorithm. In Section 3 we show that a particular version of the Algorithm provides
unbiased estimators of finite variance. Section 4 contains our numerical results. Appendix A
collects some of the technical results are used in Section 3.

2 Algorithm
The apparent challenges with the simulation of the diffusion process in (1) are, firstly, that the
drift function b(x, t) is typically intractable and, secondly, even if b(x, t) is available point-wise,
exact simulation from (1) is not possible.

2.1 Approximate SFS using Euler-Maruyama discretization

Let ∆l = 2−l, with l ∈ N0 given. Then, the approach of [10, 16] considers the Euler-Maruyama
scheme, for k ∈ {0, 1, . . . ,∆−1

l − 1}:

X̃ l,N
(k+1)∆l

= X̃ l,N
k∆l

+ b̂(X̃ l,N
k∆l
, k∆l)∆l +W(k+1)∆l

−Wk∆l
, (2)

where independently of all other random variables we have (W(k+1)∆l
−Wk∆l

) ∼ Nd(0,∆lI). In
the following, N ∈ N will associated to the accuracy of the Monte Carlo estimator of the drift b.
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The quantity b̂ is a numerical approximation of b and is defined as:

b̂(x, t) =
1
N

∑N
i=1∇f(x+

√
1− tZi)

1
N

∑N
i=1 f(x+

√
1− tZi)

, (3)

where for i ∈ {1, . . . , N}, Zi i.i.d.∼ Nd(0, I) are random variables independent of the sequence
(W(k+1)∆l

−Wk∆l
). It should be noted that the Gaussian random variables are updated at each

simulation time. As we will see, this re-simulation is not necessary and in some instances one can
substantially improve the algorithm if such re-simulation is avoided. The exact method of [16] is
given in Algorithm 1.

Algorithm 1 Biased SFS with Euler-Maruyama and i.i.d. Monte Carlo estimation for b
Input: number of i.i.d. replicates, M ∈ N; number of samples, N ∈ N, for the approximation of
the drift function b; level of discretization, l ∈ N0.

1. Repeat for i ∈ {1, 2, . . . ,M}:

a. Initialise X̃ l,N
0 (i) = 0.

b. Repeat for k ∈ {0, 1, . . . ,∆−1
l − 1}:

i. Sample Zj
k(i)

i.i.d.∼ Nd(0, I), j ∈ {1, . . . , N}, and compute:

b̂(X̃ l,N
k∆l

(i), k∆l) =
1
N

∑N
j=1∇f(X̃

l,N
k∆l

(i) +
√
1− k∆lZ

j
k(i))

1
N

∑N
j=1 f(X̃

l,N
k∆l

(i) +
√
1− k∆lZ

j
k(i))

.

ii. Generate (W(k+1)∆l
(i)−Wk∆l

(i)) ∼ Nd(0,∆lI) and set:

X̃ l,N
(k+1)∆l

(i) = X̃ l,N
k∆l

(i) + b̂(X̃ l,N
k∆l

(i), k∆l)∆l + (W(k+1)∆l
(i)−Wk∆l

(i)).

2. Return X̃ l,N
1 (1), . . . , X̃ l,N

1 (M).

Using Algorithm 1 one can compute Monte Carlo estimators of π(φ), with φ : Rd → R a
π-integrable function, simply by using the sample average:

πM(φ) :=
1

M

M∑
i=1

φ(X̃ l,N
1 (i)). (4)

Now, to study the mean square error of this method, we consider the standard Euler-Maruyama
discretization:

X̃ l
(k+1)∆l

= X̃ l
k∆l

+ b(X̃ l
k∆l
, k∆l)∆l +W(k+1)∆l

−Wk∆l
. (5)

To assist our analysis, we make the following assumptions. For a vector x ∈ Rd (resp. matrix A)
we write the jth-element (resp. (j, k)th-element) as xj (resp. Ajk). Also, ∥ · ∥1 is the L1-norm.

(A1) a) There exist 0 < C < C < +∞ such that for any x ∈ Rd

C ≤ f(x) ≤ C, ∥∇f(x)∥1 ≤ C, ∥∇2f(x)∥1 ≤ C.

4



b) There exists C < +∞ such that for any (x, y) ∈ R2d

max
{
|f(x)− f(y)|, ∥∇f(x)−∇f(y)∥1, ∥∇2f(x)−∇2f(y)∥1

}
≤ C∥x− y∥2.

Below Lip(Rd) denotes the collection of measurable functions φ : Rd → R so that for a C <∞,
for all (x, y) ∈ R2d we have |φ(x) − φ(y)| ≤ C∥x − y∥2, with ∥ · ∥2 denoting the Euclidean norm.
Let Bb(Rd) be the collection of measurable and bounded functions φ : Rd → R.

We then have the result stated in Proposition 2.1 below. The associated technical result
(Lemma A.3 ) can be found in Appendix A.

Proposition 2.1. Assume (A1). Then for any φ ∈ Lip(Rd) ∩ Bb(Rd) ∩ C4
(
Rd
)

there exists a
C <∞ such that for any (l, N,M) ∈ N0 × N2 we have

E
[(
πM(φ)− π(φ)

)2] ≤ C
(

1
N
+ 1

M
+∆2

l

)
.

Proof. Throughout the proof, C is a finite, positive constant that does not depend on (l, N,M),
with a value that may change from line-to-line. We have that

πM(φ)− π(φ) = 1
M

M∑
i=1

{
φ(X̃ l,N

1 (i))− φ(X̃ l
1(i))

}
+ 1

M

M∑
i=1

{
φ(X̃ l

1(i))− πl(φ)
}
+
{
πl(φ)− π(φ)

}
.

Here, X̃ l
1(i), i ∈ {1, . . . ,M}, are i.i.d. samples obtained via recursion (5), starting at X l

0 = 0, up
until time instance 1. Also, πl(φ) is the expectation of φ w.r.t. the law of X̃ l

1. Via the C2-inequality
( E[|a + b|2] ≤ 2E[|a|2] + 2E[|b|2], where a, b are random variables of finite second moments), we
have the upper-bound

E
[(
πM(φ)− π(φ)

)2] ≤ C

(
E
[(

1
M

M∑
i=1

{
φ(X̃ l,N

1 (i))− φ(X̃ l
1(i))

})2]
+ E

[(
1
M

M∑
i=1

{
φ(X̃ l

1(i))− πl(φ)
})2]

+
{
πl(φ)− π(φ)

}2)
. (6)

For the first-term on the R.H.S. of (6) one can use the conditional Jensen inequality, the Lipschitz
property of φ followed by Lemma A.3 (note that in the latter result, the fact that the Z1, . . . , ZN

are refreshed at each time, does not affect the proof, so the result still holds for the recursion used
in Algorithm 1), to obtain

E
[(

1
M

M∑
i=1

{
φ(X̃ l,N

1 (i))− φ(X̃ l
1(i))

})2]
≤ C

N
.

For the second term on the R.H.S. of (6), one can use standard results for i.i.d. variables to yield

E
[(

1
M

M∑
i=1

{
φ(X̃ l

1(i))− πl(φ)
})2]

≤ C

M
.

For the third term on the R.H.S. of (6), standard weak error results for the Euler discretization of
diffusions ([17, Theorem 14.1.5]) give{

πl(φ)− π(φ)
}2 ≤ C∆2

l .

The proof is now complete.
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As a result of Proposition 2.1, to achieve a mean square error of O(ϵ2), for some given ϵ > 0,
one must choose N = O(ϵ−2), M = O(ϵ−2) and l = O(| log(ϵ)|), yielding a cost of O(ϵ−5).

Remark 2.1. The smoothness requirement of the test function, φ ∈ C4(Rd), is only used in the
final step to get a weak error of order 1 for the Euler approximation. Less smoothness will result in
lower order, for instance measurable and bounded Lipschitz derivatives would result to the relevant
term in the upper bound of Proposition 2.1 to be C∆l instead.

Remark 2.2. Compared to [5] we impose the more restrictive assumption (A1) as the analysis
here and in the subsequent results in Section 3 is clear this way. In more details, the assumption on
f in terms of the upper and lower bounds is one used often in the importance sampling literature
(see for example [13, Assumption 2.2]) and relates essentially to the ability of the Gaussian to
mimic the target π. This boundedness condition is purely qualitative and can be relaxed at quite
considerable complications to the proof. The closer π is to a Gaussian, the more likely one can verify
this assumption. Recall the drift coefficient can be written as b(x, t) = ∇ log h, where h(x, t) =
E[f(x +W1−t)]. The function h is smooth (because of the mollification by the heat kernel), but
in general f may not satisfy the upper and lower bounded condition required by (A1). Moreover,
as t → 1, the smoothness will vanish if f is not smooth. Nevertheless, we can treat the general
case by working with a "proxy" of X, in other words, we apply the algorithm and the theoretical
convergence argument to a process X̃ that satisfies the equation

dX̃t = b̃(X̃, t)dt+ dWt, X̃0 = 0,

where
b̃(X̃, t) = ∇ logE

[
f̃(x+W1+ϵ−t)

]
where f̃ is the original f "clipped" from above and below: f̃ = max {α,min{f, 1/α}} and we choose
ϵ and α sufficiently small to assume that the law of X and the law of X̃ are sufficiently close or
that the boundedness deduced in Proposition 2.1 remain the same.

2.2 Unbiased Estimation

[18, 20] present a methodology developed in the setting that Yn → Y∞ w.r.t. L2-norm, for squared
integrable random variables {Yn}n≥1, Y∞, and the objective is the unbiased estimation of E[Y∞].
Extensions of the initial approach developed in [14] will prove useful in the context of the current
work. Before we continue, we shall denote a consistent Monte Carlo based estimator of b(x, t)
with N samples as b̂N(x, t). Examples include (3) or a convergent MCMC algorithm with target
probability πx,t, as we now explain. For (x, t) ∈ Rd × [0, 1] we have

b(x, t) = Eπx,t

[
∇f(x+

√
1− tZ)

f(x+
√
1− tZ)

]
,

where Eπx,t denotes expectation w.r.t. the probability measure

πx,t(dz) ∝ f(x+
√
1− tz)ϕ(z)dz.

Thus, one can obtain a consistent estimator b̂(x, t) of b(x, t) using e.g. MCMC methods. The exact
form of the estimator is not specified for now.

6



We first assume access to two integer valued probability distribution PR and PP on N0 both
on N0. Further let 1 ≤ N0 < N1 < · · · be a sequence of integers such that Np → ∞, as p → ∞.
Higher values of Np will mean higher accuracy in estimation of b and at the limit this will lead to a
perfect estimator. We will use samples of PR and PP to set the number of discretization levels via
l and accuracy of b̂ via Np respectively. The objective is to develop an unbiased estimator of π(φ).
Following ideas in [14, Algorithm 5], we will now specify a method that aims to overcome both
sources of bias we are confronted with, in a way that computing costs are reduced. We achieve
debiasing via the ‘single term estimator’ approach, see [20]. The core idea of our method is to
work with the random variable:

π̂(φ) =

(
φ(XL

1 [NP ])− φ(XL−1
1 [NP ])

)
−
(
φ(XL

1 [NP−1])− φ(XL−1
1 [NP−1]

)
PR(L)PP (P )

(7)

with L ∼ PR, P ∼ PP . Also, X l
1[Np], for l, p ∈ N0, denotes the approximation of X1 obtained

via recursion (2) for time-step ∆l = 2−l and the same Np Gaussian variates for the estimation of
the drift b at all locations and time instances where it is needed. Critically, the four terms in the
nominator of (7) are carefully coupled. Also, simple conventions apply in the event that L = 0 or
P = 0. The detailed approach is described in Algorithm 2. Note that in Step 1b. we assume that
the computation of b̂ is dependent across levels, at coinciding time points. One way to achieve
this is to sample Np Gaussians and use an estimator of the type (3) at both levels with the same
Gaussians fixed once and for all – we believe this point is critical as illustrated in Figure 1. The
figure shows that the variance of the increments XL

1 [N ] −XL−1
1 [N ] decays much faster when the

sample {Zi}Ni=1 are fixed. In Step 1b(iii), the term ’concatenated Wiener increment’ means that
the Wiener increment from time k∆l−1 to (k + 1)∆l−1 at the coarser level l − 1, for l ∈ N, is the
sum of the two Wiener increments from time 2k∆l to (2k + 1)∆l and from time (2k + 1)∆l to
(2k + 2)∆l sampled at the finer level l, where k ∈ {0, · · · ,∆−1

l−1 − 1}. We note that an alternative
to the single term estimator is the independent sum estimator, see [20], that often performs better
in simulations; this latter estimator can be used with little extra difficulty in implementation.

3 4 5 6 7 8 9 10 11 12

-25

-20

-15

-10

-5

(a) Fixed Gaussian Samples

3 4 5 6 7 8 9 10 11 12
-15

-10

-5

0

5

(b) Unfixed Gaussian Samples

Figure 1: The log-variance of the level differences estimates for two cases: (a) The samples {Zi}Ni=1

are fixed for both levels l & l− 1 and all time points. (b) {Zi}Ni=1 are sampled at every time point
for both levels l & l − 1. For simplicity we use a one-dimensional Gaussian density π.

The estimator π̂(φ) developed in Algorithm 2 is unbiased. To show that it has finite variance,
one strategy is to establish a bound of the type, for fixed l, p ∈ N:

E
[(
φ(X l

1[Np])− φ(X l−1
1 [Np])− φ(X l

1) + φ(X l−1
1 )

)2]
≤ C∆l

Np

, (9)

7



Algorithm 2 Unbiased Estimator of π(φ).
Input: number of replicates, M ∈ N; sequence (Np)p∈N0 and two positive probability mass func-
tions, PR and PP , on N0.

1. Repeat for i ∈ {1, 2, . . . ,M}:

a. Sample Li ∼ PR and P i ∼ PP .

b. Sample the following variables.

i. Sample NP i Gaussians {Zj(i)}NPi

j=1 ∼ Nd(0, I). Sample the Wiener increments{
W(k+1)∆Li

−Wk∆Li

}∆−1

Li −1

k=0
∼ Nd(0,∆lI). Then generate XLi

1 [NP i ] from recursion
(2) with l = Li and b̂ = b̂NPi

using the same Gaussian variates, {Zj(i)}NPi

j=1 , at every
time instance.

ii. Sample NP i−1 Gaussians {Zj(i)}NPi−1

j=1 ∼ Nd(0, I). Generate XLi

1 [NP i−1] from re-
cursion (2) using the same Wiener increments as in (i.) with l = Li and b̂ = b̂NPi−1

using the same Gaussian variates, {Zj(i)}NPi−1

j=1 , at every time instance.

iii. Generate XLi−1
1 [NP i ] from recursion (2) with l = Li − 1 and b̂ = b̂NPi

– use the
same NP i Gaussian variates in (i.) and concatenated Wiener increments produced
by the ones used in (i.) via the identity:

W(k+1)∆Li−1
−Wk∆Li−1

= (W(2k+1)∆Li
−W2k∆Li

) + (W2(k+1)∆Li
−W(2k+1)∆Li),

(8)

with k ∈ {0, . . . ,∆−1
Li−1

− 1}.
iv. Generate XLi−1

1 [NP i−1] from recursion (2) with l = Li − 1 and b̂ = b̂NPi−1
– use the

same NP i Gaussian variates in (ii.) and the same concatenated Wiener increments
as in (iii.).

c. Set:

π̂(φ)(i) =

(
φ(XLi

1 [NP i ])− φ(XLi−1
1 [NP i ])

)
−
(
φ(XLi

1 [NP i−1])− φ(XLi−1
1 [NP i−1])

)
PR(Li)PP (P i)

.

Apply the conventions:
If Li = 0 then set φ(XLi−1

1 [NP i ]) = φ(XLi−1
1 [NP i−1]) = 0.

If P i = 0 then set φ(XLi

1 [NP i−1]) = φ(XLi−1
1 [NP i−1]) = 0.

2. Return π̂(φ)(i), i ∈ {1, 2, . . . ,M}.

where C does not depend upon l, Np and (X l
1, X

l−1
1 ) are sampled from the exact Euler discretization

under the same coupling procedure as the one described in Algorithm 2. Then, as in [14], setting
Np = 2p and PP (l) = PR(l) ∝ 2−l(l+1) log2(l+2)2, M = ϵ−2, to achieve a variance (the estimator
is unbiased) of O(ϵ2), for some ϵ > 0 given, the cost with high probability (the cost is random) is
O(ϵ−2| log(ϵ)|2+δ), for any δ > 0. The main challenge from here is to ascertain the bound (9).
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3 Theoretical Results

3.1 Verifying the Bound (9)
We now consider a proof of (9) for a particular example. To simplify the notations, we will set for
l ∈ {0, 1, . . . } and k ∈ {0, 1, . . . ,∆−1

l − 1}

X̃ l,N
(k+1)∆l

= X̃ l,N
k∆l

+ b̂(X̃ l,N
k∆l
, k∆l)∆l +W(k+1)∆l

−Wk∆l
,

where, for x ∈ Rd

b̂(x, k∆l) =
1
N

∑N
i=1∇f(x+

√
1− k∆lZ

i)
1
N

∑N
i=1 f(x+

√
1− k∆lZi)

,

and, for i ∈ {1, . . . , N}, Zi i.i.d.∼ Nd(0, I). The exact Euler scheme is such that for l ∈ {0, 1, . . . },
k ∈ {0, 1, . . . ,∆−1

l },

X̃ l
(k+1)∆l

= X̃ l
k∆l

+ b(X̃ l
k∆l
, k∆l)∆l +W(k+1)∆l

−Wk∆l
,

and note that the Brownian motions are all shared for both the approximated and exact Euler
discretizations. Now, let (l, t) ∈ N0 × [0, 1] be given and define τ lt := ∆l⌊ t

∆l
⌋.

We have the following result. Associated technical details can be found in Appendix A.

Theorem 3.1. Assume (A1). There exists C < +∞ such that for any (l, N) ∈ N2 we have

E
[∥∥∥(X̃ l,N

1 − X̃ l−1,N
1

)
−
(
X̃ l

1 − X̃ l−1
1

)∥∥∥2
2

]
≤ C∆l

N
.

Proof. We will consider for a fixed t ∈ (0, 1] the quantity

E
[∥∥∥(X̃ l,N

τ lt
− X̃ l−1,N

τ l−1
t

)
−
(
X̃ l

τ lt
− X̃ l−1

τ l−1
t

)∥∥∥2
2

]
and apply a Grönwall inequality type argument. Throughout all of our proofs C is a generic finite
constant with value the can change upon each appearance, but will not depend upon (l, N, t). We
have that for t ∈ (0, 1]

E
[∥∥ (X̃ l,N

τ lt
− X̃ l−1,N

τ l−1
t

)
−
(
X̃ l

τ lt
− X̃ l−1

τ l−1
t

) ∥∥2
2

]
= E

[∥∥T1 + T2
∥∥2
2

]
, (10)

where we have defined

T1 :=

∫ τ lt

τ l−1
t

(
b̂(X̃ l,N

τ ls
, τ ls)− b(X̃ l

τ ls
, τ ls)

)
ds,

T2 :=

∫ τ l−1
t

0

((
b̂(X̃ l,N

τ ls
, τ ls)− b̂(X̃ l−1,N

τ l−1
s

, τ l−1
s )

)
−
(
b(X̃ l

τ ls
, τ ls)− b(X̃ l−1

τ l−1
s
, τ l−1

s )
))
ds.

By the C2 and Jensen inequality, we have that

E
[∥∥T1∥∥22] ≤ C (τ lt − τ l−1

t )

∫ τ lt

τ l−1
t

E
[∥∥∥(b̂(X̃ l,N

τ ls
, τ ls)− b(X̃ l

τ ls
, τ ls)

)∥∥2
2

]
ds,

E
[∥∥T2∥∥22] ≤ C E

[∥∥∥∫ τ l−1
t

0

((
b̂(X̃ l,N

τ ls
, τ ls)− b̂(X̃ l−1,N

τ l−1
s

, τ l−1
s )

)
−
(
b(X̃ l

τ ls
, τ ls)− b(X̃ l−1

τ l−1
s
, τ l−1

s )
))
ds
∥∥2
2

]
.

9



We first treat the upper-bound for E
[∥∥T1∥∥22]. We have that

∫ τ lt

τ l−1
t

E
[∥∥∥(b̂(X̃ l,N

τ ls
, τ ls)− b(X̃ l

τ ls
, τ ls)

)∥∥2
2

]
ds ≤

C

{ ∫ τ lt

τ l−1
t

E
[ ∥∥∥(b̂(X̃ l,N

τ ls
, τ ls)− b̂(X̃ l

τ ls
, τ ls)

)∥∥2
2

]
ds+

∫ τ lt

τ l−1
t

E
[∥∥∥(b̂(X̃ l

τ ls
, τ ls)− b(X̃ l

τ ls
, τ ls)

)∥∥2
2

]
ds

}
.

Lemma A.1 followed by Lemma A.3 give

E
[∥∥∥(b̂(X̃ l,N

τ ls
, τ ls)− b̂(X̃ l

τ ls
, τ ls)

)∥∥2
2

]
≤ C

N
,

with C independent of s. Also, application of Lemma A.2 gives

E
[∥∥∥(b̂(X̃ l

τ ls
, τ ls)− b(X̃ l

τ ls
, τ ls)

)∥∥2
2

]
≤ C

N
.

Thus,

E
[∥∥T1∥∥22] ≤ C∆2

l

N
. (11)

We now turn to the upper-bound for E
[∥∥T2∥∥22]. Adding and subtracting b̂(X̃ l

τ ls
, τ ls)− b̂(X̃ l−1

τ l−1
s
, τ l−1

s ),
followed by use of C2 and Jensen inequality, gives

E
[∥∥T2∥∥22] ≤ C

{
E

[∥∥∥∫ τ l−1
t

0

((
b̂(X̃ l,N

τ ls
, τ ls)− b̂(X̃ l−1,N

τ l−1
s

, τ l−1
s )

)
−
(
b̂(X̃ l

τ ls
, τ ls)− b̂(X̃ l−1

τ l−1
s
, τ l−1

s )
))
ds
∥∥2
2

]

+ E

[∥∥∥∫ τ l−1
t

0

((
b̂(X̃ l

τ ls
, τ ls)− b̂(X̃ l−1

τ l−1
s
, τ l−1

s )
)
−
(
b(X̃ l

τ ls
, τ ls)− b(X̃ l−1

τ l−1
s
, τ l−1

s )
))
ds
∥∥2
2

] }
.

For the first expectation in the above right-hand term one can use Lemma A.6 and for the second
expectation one can apply Lemma A.9, to yield the following upper-bound

E
[∥∥T2∥∥22] ≤ C

{
∆l

N
+

∫ t

0

E
[∥∥∥(X̃ l,N

τ ls
− X̃ l−1,N

τ l−1
s

)
−
(
X̃ l

τ ls
− X̃ l−1

τ l−1
s

)∥∥2
2

]
ds

}
.

The proof is now concluded by applying Grönwall’s inequality and setting t = 1.

We will also use the notation that for a differentiable function ψ : Rd → R, ∇kψ(x) =
(∂ψ/∂xk)(x), k ∈ {1, . . . , d}.

Proposition 3.1. Assume (A1). Then for any φ ∈ Bb(Rd) with (∂φ/∂xk) ∈ Lip(Rd) ∩ Bb(Rd),
k ∈ {1, . . . , d} there exists a C < +∞ such that for any (l, N) ∈ N2 we have

E
[ ((

φ(X̃ l,N
1 )− φ(X̃ l−1,N

1 )
)
−
(
φ(X̃ l

1)− φ(X̃ l−1
1 )

))2 ]
≤ C∆l

N
.

Proof. For any (x, y, u, v) ∈ R4d we have the representation(
φ(x)− φ(y)

)
−
(
φ(u)− φ(v)

)
= T1 + T2,
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where we have defined

T1 =
d∑

k=1

∫ 1

0

(∇kφ)
(
y + λ(x− y)

)
×
(
(x− y)− (u− v)

)
k
dλ,

T2 =
d∑

k=1

∫ 1

0

{
(∇kφ)

(
y + λ(x− y)

)
− (∇kφ)

(
v + λ(u− v)

)}
× (u− v)k dλ.

Via the C2-inequality, it suffices now to bound the second moments of T1 and T2, when evaluated
at (x, y, u, v) = (X̃ l,N

1 , X̃ l−1,N
1 , X̃ l

1, X̃
l−1
1 ). For T1, since ∇kφ is bounded, one has the upper-bound

E
[∥∥∥(X̃ l,N

1 − X̃ l−1,N
1

)
−
(
X̃ l

1 − X̃ l−1
1

)∥∥∥2
2

]
that is bounded by C∆l/N via Theorem 3.1. For T2, the Lipschitz property of ∇kφ provides the
upper-bound

C × E
[ (∥∥X̃ l−1,N

1 − X̃ l−1
1

∥∥2
2
+
∥∥(X̃ l,N

1 − X̃ l−1,N
1

)
−
(
X̃ l

1 − X̃ l−1
1

)∥∥2
2

)
·
∥∥X̃ l

1 − X̃ l−1
1

∥∥2
2

]
.

For the term

E
[ ∥∥X̃ l−1,N

1 − X̃ l−1
1

∥∥2
2
·
∥∥X̃ l

1 − X̃ l−1
1

∥∥2
2

]
one can use Cauchy-Schwarz, Lemma A.3 and the convergence of the Euler approximation, to yield
a bound of C∆2

l /N . For the term

E
[ ∥∥(X̃ l,N

1 − X̃ l−1,N
1

)
−
(
X̃ l

1 − X̃ l−1
1

)∥∥2
2
·
∥∥X̃ l

1 − X̃ l−1
1

∥∥2
2

]
one can use a similar argument to yield a bound of C∆2

l /N . This concludes the proof.

Remark 3.1. We expect that the bound in Theorem 3.1 (and hence Proposition 3.1) can be made
sharper to O(∆2

l /N). However, even with this result, one could not obtain finite variance and
finite expected cost, as the rate of convergence of Monte Carlo estimators in L2 is O(N−1). That
is, to ensure that the variance and expected cost are simultaneously finite, one needs any positive
probability mass function PR,P on N2

0 such that∑
(l,p)∈N2

0

∆2
l

NpPR,P (l, p)
<∞,

∑
(l,p)∈N2

0

∆−1
l NpPR,P (l, p) <∞.

There is no PR,P where the above conditions are satisfied simultaneously. If both inequalities were
true, a straightforward application of the Cauchy-Schwartz inequality would give

∑
(l,p)∈N2

0

√
∆l <

∞, which cannot hold. One possible way to address this could be to increase the rate in N by using
Quasi-Monte Carlo estimators, which is something that we leave to future work. It may also be
possible to sharpen the rate associated to the estimator as it is, in terms of N , using the ideas in
[2]. However, the context of [2] is much simpler than that considered here and we expect that such
a task to be rather arduous.
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4 Numerical Results

4.1 MSE-to-Cost Rates

We now seek to verify Theorem 3.1 by computing the MSE-to-cost rates. Given φ(x) = x, we
estimate the expectation π(φ) by first running Algorithm 1 with both fixed and unfixed Gaussians
to return the estimator in (4), which we denote by πM,MC(φ), second a multilevel estimator defined
by the following collapsing sum identity, with Gaussians {Zi}Ni=1 are fixed for both levels l & l− 1,

πM,ML(φ) :=
1

M

M∑
i=1

L∑
l=L∗

1

Nl

{
φ(X̃ l,Nl

1 (i))− φ(X̃ l−1,Nl
1 (i))

}
,

with the convention that φ(X̃−1,Nl
1 (i)) = 0. Here L∗ ∈ N0 is a starting level of discretization, L

is the target level and Nl = O((L + 1)22L−l) (see e.g. [13] for more details on the choice of Nl).
Finally, we run the unbiased estimator which returns

πM,UB(φ) :=
1

M

M∑
i=1

π̂(φ)(i),

where the sequence {π̂(φ)(i)}Mi=1 is the output of Algorithm 2. The MSE is the average of 100
independent simulations of each algorithm given by

MSE =
1

100

100∑
j=1

[[
πM,·(φ)

]
j
− π(φ)

]2
,

where π(φ) is the reference expectation.

4.1.1 Simulation Settings

In practice, one has to truncate the values of P and L in Algorithm 2. In all models below, we set
PR(L) = 2−1.5LI{L∗,··· ,Lmax}(L), where L∗, Lmax ∈ N0 and L∗ < Lmax. Given L sampled from PR,
we sample P from PP |L(P |L) = g(P |L) I{P∗,··· ,Pmax}(P ) and set N = N02

P for some N0 ∈ N, where

g(P |L) =
{

24−P if P ∈ {P∗, · · · , 4 ∧ (Lmax − L)}
2−P P [log2(P )]

2 if P > 4

This is the same choice as in [14]. We consider four different probability densities described below
with φ(x) = x. For a given MSE = ϵ2 > 0, the cost to compute πM(φ) using Algorithm 1 is

CSingle := NM2L,

where it is assumed that the cost to simulate the SDE in (2) at a discretization level L is 2L. As
shown in Proposition 2.1, in order to have an MSE of order O(ϵ2), N , M and L must be chosen
such that N = O(ϵ−2), M = O(ϵ−2) and L = O(| log2(ϵ)|). The cost of the multilevel algorithm is

CML :=M

L∑
l=L∗

Nl 2
l,

12



where Nl = O((L−L∗+1)22L−l) and M & L as before. The expected cost of the proposed method
in Algorithm 2 is

CUb :=
1

100

100∑
j=1

Cj, Cj =
M∑
i=1

costi,

where

costi =


N0 2L∗ if Li = L∗, P

i = P∗

N0 (2L
i
+ 2L

i−1) if Li > L∗, P
i = P∗

(NP i +NP i−1) 2
L∗ if Li = L∗, P

i > P∗

(NP i +NP i−1) (2
Li

+ 2L
i−1) if Li > L∗, P

i > P∗

,

with Li ∼ PR, and NP i = N0 2P
i , with P i ∼ PP |L. The values of P∗, L∗, Pmax, Lmax and N0 for

the models below are described in Table 1.

Model P∗ Pmax L∗ Lmax N0

One-dimensional Gaussian 2 15 1 8 10
Two-dimensional Gaussian mixture 1 9 2 8 10
Bayesian logistic regression 1 9 3 9 10
Double-well potential 1 9 6 12 8

Table 1: The choices of the different parameters in Algorithm 2 for each model.

4.1.2 Models

(a) One-Dimensional Gaussian Distribution:
In the first example, we take π(x) = ϕ(x; 1, 2), a one-dimensional normal Gaussian density
with mean 1 (which is the reference expectation) and variance 2. Clearly the true reference is
π(φ) = 1.

(b) Two-Dimensional Gaussian Mixture Distribution:
We consider a two-dimensional Gaussian mixture distribution with density given by

π(x) =
1

16

16∑
i=1

ϕ(x;µi, 0.03 I2),

where I2 is the 2×2 identity matrix and µ = (µ1, · · · , µ16) = {−1,−0.5, 0.5, 1}×{−1,−0.5, 0.5, 1}
where µi ∈ R2. The reference expectation in this example is π(φ) = 1

16

∑16
i=1 µi.

(c) Bayesian Logistic Regression:
Next we consider the binary logistic regression in which the binary observations {Yi}ni=1 are
conditionally independent Bernoulli random variables such that Yi ∈ {0, 1} and

P(Yi = 1|Xi = xi, β) = ρ(βTxi),

where ρ : R → (0, 1) defined by ρ(w) = ew/(1 + ew) is the logistic function and Xi and β in
Rd are the covariates and the unknown regression coefficients, respectively. The prior density
for the parameter β is a multivariate normal Gaussian given by

pr(β) = ϕ(β; 0,Σβ)
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where Σβ is defined through its inverse Σ−1
β = 1

n
(
∑n

i=1XiX
T
i ). The covarites vectors {Xi}ni=1

are sampled independently from U{−1, 1}d which are then standardized. The density of the
posterior distribution of β is given by

π (β|{Xi = xi, Yi = yi}ni=1) ∝ exp

(
n∑

i=1

[
yiβ

Txi − log(1 + exp(βTxi))
]
− 1

2
βTΣ−1

β β

)
.

We set d = 5, n = 100 and sample the binary observations {yi}ni=1
i.i.d.∼ Bernoulli(ρ(βT

∗ xi)),
where β∗ = 1d, a vector of ones. We take the reference expectation to be the mean of 100
simulations of a random-walk Metropolis-Hastings MCMC with 107 samples and a burn-in of
103.

(d) Double-Well Potential:
Finally, we consider sampling from π(x) = exp (−U(x)), where U is the double-well
potential given by

U(x) =
1

4
∥x∥42 −

1

2
∥x∥22, x ∈ Rd.

The double-well potential is one of several quartic potentials of substantial impor-
tance in quantum mechanics and quantum field theory [15] for the investigation
of different physical phenomena or mathematical features.
In this example we test the algorithms in a high dimensional setting where we set
d = 30. The true reference expectation is π(φ) = 0.

4.1.3 Results

In Figure 2, we plot the MSE against the cost obtained by running the original SFS method
presented in Algorithm 1, where the Gaussians Zj

k, j ∈ {1, · · · , N}, in step 1b.i., either fixed for
all k ∈ {0, 1, · · · ,∆−1

l − 1} or sampled for each k, the multilevel method with fixed Gaussians and
finally the unbiased method presented in Algorithm 2. From the plots, we observe that to obtain
an MSE of order O(ϵ2), for some ϵ > 0, the cost of Algorithm 2 is of order O(ϵ−2) in all models.
The cost order is much higher in the case of Algorithm 1 with both fixed and unfixed Gaussians.
In both situations the cost is of order O(ϵ−(5+α)), α > 0, for models (a), (b) & (d), and O(ϵ−4)
for model (c). The cost order for the multilevel algorithm with fixed Gaussians is almost the same
for models (a) & (b) O(ϵ−3.7), but notably smaller for model (c) where it is of order O(ϵ−3.13)
and higher for model (d) where it is of order O(ϵ−4). In all examples we note that the unbiased
method of Algorithm 2 is more efficient for lower MSE followed by the multilevel implementation.
It is worth noting that we are only comparing the theoretical costs obtained from the formulae
in subsubsection 4.1.1, not the machine computational time. The algorithm presented here is
embarrassingly parallelizable over M , making it much faster on multi-core workstations.

4.2 Bayesian Elliptic Inverse Problem

The objective of this section is to compare between the original algorithm and the proposed here
in the context of Bayesian inverse problems. We consider estimates of expectations w.r.t. the
posterior measure on some unknown field of interest using a Bayesian statistics approach of inverse
problems that arise from the confluence of partial differential equations and observational data.
However, due to floating-point precision limitations and high variance associated with computing

14



1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

MSE

Co
st

Alg.1 (fixed Z) O(ε^-5.686)

Alg.1 (unfixed Z) O(ε^-5.438)

Alg.2 O(ε^-2.086)

Multilevel O(ε^-3.602)
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(c) Bayesian logistic regression
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(d) Double-well potential

Figure 2: MSE versus cost (as computed in subsubsection 4.1.1) of running Algorithm 1 with both
fixed (orange line) and unfixed (purple line) Gaussians, a multilevel algorithm (green line) and the
unbiased estimation Algorithm 2 (blue line).

f , the unbiased method as presented in Algorithm 2 will not work well in general. Typically, in
some cases, especially for high-dimensional distributions with densities that can be expressed as
π(x) ∝ exp (−U(x)), the variable f , which can be written as f(x) ∝ exp (−U(x) + 1

2
∥x∥2), will

register zero values in fixed point arithmetic, resulting in an infinite drift. Even with the common
log-sum-exp trick, the values of f(x +

√
1− tZ), Z ∼ ϕ(z), may not be within the representable

range of the computing machine. As a result, we advise using an alternative approach provided
in Algorithms 3–4. We should highlight however that this algorithm will not be mathematically
investigated in this study; instead, this will be the subject of future research.

4.2.1 Model

Consider a Bayesian inverse problem involving inference of the log-permeability coefficient of a 2D
elliptic PDE in a bounded and open region Ω ⊂ R2 with convex boundary ∂Ω ∈ C0, given noisy
measurements of (some components of, or functions of) the associated solution field. In particular,
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we consider the elliptic PDE

−∇ · (K(u)∇p) = F on Ω

p = 0 on ∂Ω. (12)

where p is the forward state, e.g. the pressure field in a porous media flow, K(u) is a scalar function
that represents the permeability filed e.g. of a subsurface rock, and F represents the external force
field. This represents a simplified model in groundwater flow. It is important to assume that
K(u) is positive in order to have a well-posed problem [23], and hence we write K(u) = exp(u)
and consider the problem of determining u given a set of noisy observations of the pressure in the
interior of Ω. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be Banach spaces. Then the inverse problem is to
determine u ∈ X, given the data

y = G(u) + η ∈ Y, (13)

where G : X → Y is the observation operator and η ∈ N (0,Γ) for some trace class, positive,
self-adjoint operator Γ on Y . The Bayesian approach to this inverse problem is to find a posterior
probability measure µy on X such that Bayes’ rule holds

dµy

dµ0

(u) ∝ l(u; y),

where l(u; y) is the measurement likelihood and µ0 is the prior, which here is assumed to be
Gaussian of the form µ0 = N (0, C), with C a trace class, positive, self-adjoint operator on X. The
likelihood can be obtained from (13) as

l(u; y) = exp

(
−1

2
∥Γ−1/2(y − G(u))∥2Y

)
.

Note that if G is linear and the prior is Gaussian, then the posterior µy will be Gaussian as well,
which is the case here as the differential operator associated with the above PDE is linear.

Clearly, for computer implementation, one needs to discretize the prior, the likelihood, and
hence the posterior. A standard finite element method (FEM) with linear triangular elements is
employed to solve the forward problem in (12). The induced mesh consists of right triangles in
the domain Ω = [0, 1]× [0, 1]. We denote by N̂ the set of nodes (vertices) in the mesh and n̂ the
number of nodes.

We assume the following additive noise-corrupted pointwise observation model

yj = p(xj) + ηj, j = 1, · · · , J,

where J is the total number of observation locations, {xj}Jj=1 the set of nodes of at which the
pressure p is observed, η = (η1, · · · , ηJ) a Gaussian noise distributed according to N (0,Γ), and yj
the actual noise-corrupted observation at node xj ∈ N̂ . For simplicity Γ is assumed to equal σ2

y IJ .
A finite-dimensional approximation of the prior is given by µ̂0 = N (0, C), with the entries of the
covariance matrix are given by

Cij(xi, xj) = σ exp (−∥xi − xj∥2/α),

where xi, xj ∈ N̂ , i, j = 1, · · · , n̂, ∥·∥2 is the Euclidean distance and σ, α > 0 are hyperparameters.

16



Algorithm 3 Alternative Coupling for SFS

1. Input: N ∈ N the number of samples used to approximate b and a level l ∈ N of discretization.

2. For k = 0, 1, · · · ,∆−1
l −1, generate the increments of Brownian motion, W l

(k+1)∆l
−W l

k∆l
, used

for the Euler approximation at level l. Concatenate the increments to generate W l−1
(k+1)∆l−1

−
W l−1

k∆l−1
for k = 0, 1, · · · ,∆−1

l−1 − 1. Set X l
0 = X l−1

0 = 0.

3. For k ∈ {0, 1, . . . ,∆−1
l−1 − 1} perform the following:

• Generate N samples from πXl−1
k∆l−1

,k∆l−1
and compute

b̂(X l−1
k∆l−1

, k∆l−1) =
1√

1− k∆l−1

1

N

N∑
i=1

Zi.

• Compute:

X l−1
(k+1)∆l−1

= X l−1
k∆l−1

+ b̂(X l−1
k∆l−1

, k∆l−1)∆l−1 +W l−1
(k+1)∆l−1

−W l−1
(k+1)∆l−1

.

• Then perform the following for m = 0, 1:

– Compute the weights and normalize

wi
[2(k−1)+m]∆l

∝
f
(
X l

[2(k−1)+m]∆l
+
√
1− [2(k − 1) +m]∆lZ

i
)

f
(
X l−1

(k+1)∆l−1
+
√

1− [2(k − 1) +m]∆lZi
) (14)

then compute

b̂
(
X l

[2(k−1)+m]∆l
, [2(k − 1) +m]∆l

)
=

N∑
i=1

wi
[2(k−1)+m]∆l

Zi. (15)

– Compute:

X l
[2(k−1)+m+1]∆l

=X l
[2(k−1)+m]∆l

+ b̂
(
X l

[2(k−1)+m]∆l
, [2(k − 1) +m]∆l

)
+W l

[2(k−1)+m+1]∆l
−W l

[2(k−1)+m]∆l
.

where the increments of the Brownian motion are concatenated from 2..

4. Return X l
1[N ] and X l−1

1 [N ].

4.2.2 Alternative Approach to Algorithm 2

Define a probability density for any fixed (x, t) ∈ Rd × [0, 1] as

πx,t(z) =
f(x+

√
1− tz)ϕ(z)∫

Rd f(x+
√
1− tz)ϕ(z)dz

. (16)
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Algorithm 4 Alternative Unbiased Estimator of π(φ).
Input: number of replicates, M ∈ N; sequence (Np)p∈N0 and two positive probability mass func-
tions, PR and PP , on N0, PR and PP .

1. Repeat for i ∈ {1, 2, . . . ,M}:

a. Sample Li ∼ PR and P i ∼ PP .

b. If Li = 0, generate XLi

1 [NP i ] and XLi

1 [NP i−1] from recursion (2) using the same Wiener
increments with l = 0 and b̂ as in (17).

c. Otherwise:

i. Run Algorithm 3 to return XLi

1 [NP i ] and XLi−1
1 [NP i ].

ii. Run Algorithm 3 to return XLi

1 [NP i−1] and XLi−1
1 [NP i−1] using the same Wiener

increments as in (i).

c. Set:

π̂(φ)(i) =

(
φ(XLi

1 [NP i ])− φ(XLi−1
1 [NP i ])

)
−
(
φ(XLi

1 [NP i−1])− φ(XLi−1
1 [NP i−1])

)
PR(Li)PP (P i)

.

Apply the conventions:
If Li = 0 then set φ(XLi−1

1 [NP i ]) = φ(XLi−1
1 [NP i−1]) = 0.

If P i = 0 then set φ(XLi

1 [NP i−1]) = φ(XLi−1
1 [NP i−1]) = 0.

2. Return π̂(φ)(i), i ∈ {1, 2, . . . ,M}.

Then we have that
b(x, t) =

1√
1− t

Eπx,t [Z].

Consider the discretized SDE in (2) with b̂ replaced by

b̂(X̃ l
k∆l
, k∆l) =

1√
1− k∆l

1

N

N∑
i=1

Zi, (17)

where {Zi}Ni=1 are samples generated from πX̃l
k∆l

,k∆l
(by using any sampling method, e.g. MCMC).

Moreover, for any (x, x̃, t) ∈ Rd × Rd × [0, 1) we can clearly write

b(x, t) =
1√
1− t

Eπx̃,t

[
Z f(x+

√
1−tZ)

f(x̃+
√
1−tZ)

]
Eπx̃,t

[
f(x+

√
1−tZ)

f(x̃+
√
1−tZ)

] . (18)

This enables us to produce a coupled pair of (approximate) samples from a pair of Euler discretiza-
tions of (1) as explained in Algorithm 3. With the new identity in (18), we hope that computing
the ratio f(x+

√
1− tZ)/f(x̃+

√
1− tZ), Z ∼ πx̃,t, on the log-scale will overcome the fixed point

arithmetic issue discussed in the introduction of subsection 4.2. Basically, we estimate the drift in
(2) using the identity in (17) at level zero and at the coarser level in the coupling step while using
(14–15) at the finer level.
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(a) The reference log-permeability
field in 3D

(b) Single-level SFS results in 3D (c) Unbiased SFS results in 3D

(d) The reference log-permeability
field in 2D

(e) Single-level SFS results in 2D (f) Unbiased SFS results in 2D

Figure 3: Results of running the single-level SFS in Algorithm 1 with b̂ computed as in (17) and as
in Algorithm 4. It took around 33.5 hours to run Algorithm 4, and for the same accuracy (RMSE
for both is ∼ 3.9), Algorithm 1 took around 168 hours.

4.2.3 Simulation Results

We set the number of nodes in the mesh to n̂ = 122 and consider observations generated from the
solution to the PDE on a finer mesh at 81 random nodes with σy chosen such that a prescribed
signal-to-noise ratio, defined as max{p}/σy, is equal to 100. The true log-premeability field utruth

used to generate the data is defined by the superposition of two Gaussians with covariances 0.05I2
and 0.07I2, centered at (0.5, 0.5) and (0.5, 0.95), with weights {0.6, 0.2} respectively. The external
force field F is defined by a superposition of four weighted two-dimensional Gaussian bumps with
covariance 0.03I2, centered at (0.3, 0.5), (0.4, 0.3), (0.6, 0.9), and (0.7, 0.1), and with weights
{2,−3, 1,−4}, respectively. In the covariance matrix of the prior, we take σ = 1.5 and α = 0.9.
We ran 52 independent simulations of Algorithm 1 with b̂ computed as in (17) with L = 8,
N = 300 and M = 300. We also ran 52 independent simulations of Algorithm 4 with L∗ = 6,
Lmax = 12 and M = 1040. The probability mass functions PR(L) and PP |L(P |L) are the same as in
subsubsection 4.1.1. These parameters are chosen such that both algorithms give almost the same
MSE. We remark that the reference log-permeability field was computed by taking the mean of
52 simulations of a preconditioned Crank-Nicolson (pCN) MCMC [4] with 107 samples a burn-in
period of 103. We also used the pCN-MCMC to sample from the density πx,t defined in (16).
Both algorithms were run on a workstation with 52 cores. Whilst aiming for similar precision, the
computing cost of Algorithm 1 was about a week, whereas for Algorithms 3-4 the cost was a day
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and a half. The results are shown in Figure 3 and in this example we managed to obtain with
Algorithms 3-4 more accurate estimates at a fraction of the computational cost.
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A Theoretical Results for the Proof of Theorem 3.1
The following Section contains a collection of Lemmata used to prove Theorem 3.1. Recall that
C is a generic finite constant with value that could change upon each appearance, but will not
depend upon (l, N) and as t is bounded by 1, not on t either. Recall, we use the notation that for
a differentiable function ψ : Rd → R, ∇kψ(x) = (∂ψ/∂xk)(x), k ∈ {1, . . . , d}.

Lemma A.1. Assume (A1). Then, there exists C <∞ so that for any (x, y,N, s) ∈ R2d×N×[0, 1]
we have, almost surely, that ∥∥b̂(x, s)− b̂(y, s)

∥∥
2
≤ C ∥x− y∥2.

Proof. It suffices to prove that, almost surely, for each j ∈ {1, . . . , d}:∣∣{b̂(x, s)− b̂(y, s)
}
j

∣∣ ≤ C ∥x− y∥2. (19)

We have the simple decomposition

A(x)

B(x)
− A(y)

B(y)
= A(x)

B(x)B(y)
·
(
B(y)−B(x)

)
+ 1

B(y)
·
(
A(x)− A(y)

)
,

where we have set

A(x) := 1
N

N∑
i=1

∇jf(x+
√
1− sZi), B(x) :=

1

N

N∑
i=1

f(x+
√
1− sZi).

By (A1) a. the terms

A(x)

B(x)B(y)
,

1

B(y)
,

are uniformly upper-bounded by a deterministic constant, so we have∣∣{b̂(x, s)− b̂(y, s)
}
j

∣∣ ≤ C
(
|B(y)−B(x)|+ |A(y)− A(x)|

)
.

Applying the triangular inequality multiple times and (A1) b. allows us to deduce the bound (19)
and thus the proof is concluded.

Lemma A.2. Assume that (A1). Then, for any p ∈ [1,∞) there exists a C < ∞ such that for
any (l, N, t) ∈ N0 × N× [0, 1]

E
∥∥b̂(X̃ l

τ lt
, τ lt )− b(X̃ l

τ lt
, τ lt )

∥∥p
2
≤ C

Np/2
.
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Proof. We consider a single co-ordinate of the vector b̂(X̃ l
τ lt
, τ lt )− b(X̃ l

τ lt
, τ lt ) and it suffices to bound

E
∣∣{b̂(X̃ l

τ lt
, τ lt )− b(X̃ l

τ lt
, τ lt )

}
j

∣∣p (20)

for any j ∈ {1, . . . , d}. We have the simple decomposition

AN

BN
− A

B
= AN

B·BN (B −BN) + 1
B
(AN − A),

where we have defined

AN := 1
N

N∑
i=1

∇jf(X̃
l
τ lt
+
√

1− τ ltZ
i), BN := 1

N

N∑
i=1

f(X̃ l
τ lt
+
√

1− τ ltZ
i),

A := Eϕ

[
∇jf(X̃

l
τ lt
+
√
1− τ ltZ) ], B := Eϕ

[
f(X̃ l

τ lt
+
√

1− τ ltZ)
]
.

Thus, using (A1) and the Cp-inequality we have the following upper-bound for (20)

C
(
E |B −BN |p + E |AN − A|p

)
.

As X̃ l
τ lt

is independent of Z1, . . . , ZN we can use standard results for iid random variables to deduce
that (20) is upper bounded by C/Np/2 and the proof is now completed.

Lemma A.3. Assume that (A1). Then, for any p ∈ [1,∞) there exists a C < ∞ such that for
any (l, N, t) ∈ N0 × N× [0, 1]

E
∥∥X̃ l,N

τ lt
− X̃ l

τ lt

∥∥p
2
≤ C

Np/2
. (21)

Proof. We have that

X̃ l,N

τ lt
− X̃ l

τ lt
=

∫ τ lt

0

(
b̂(X̃ l,N

τ ls
, τ ls)− b̂(X̃ l

τ ls
, τ ls)

)
ds+

∫ τ lt

0

(
b̂(X̃ l

τ ls
, τ ls)− b(X̃ l

τ ls
, τ ls)

)
ds.

Therefore, it easily follows that E
∥∥X̃ l,N

τ lt
− X̃ l

τ lt

∥∥p
2

is upper bounded by

C

∫ τ lt

0

{
E
∥∥b̂(X̃ l,N

τ ls
, τ ls)− b̂(X̃ l

τ ls
, τ ls)

∥∥p
2
+ E

∥∥b̂(X̃ l
τ ls
, τ ls)− b(X̃ l

τ ls
, τ ls)

∥∥p
2

}
ds.

For the first term in the integral one can use Lemma A.1 and for the second one can use Lemma A.2.
Thus, one can deduce the following upper bound for (21)

C
(∫ t

0

E
∥∥X̃ l,N

τ ls
− X̃ l

τ ls

∥∥p
2
ds+

1

Np/2

)
.

So, the proof is concluded by applying Grönwall’s inequality.

Lemma A.4. Assume that (A1). Then, there exists a C < +∞ such that for any (l, N, s) ∈
N0 × N× [0, 1] we have

E
∥∥∥(b̂(X̃ l,N

τ ls
, τ ls)− b̂(X̃ l,N

τ l−1
s
, τ l−1

s )
)
−
(
b̂(X̃ l

τ ls
, τ ls)− b̂(X̃ l

τ l−1
s
, τ l−1

s )
)∥∥∥2

2
≤ C∆l

N
.
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Proof. We will consider one co-ordinate of the vector

T :=
(
b̂(X̃ l,N

τ ls
, τ ls)− b̂(X̃ l,N

τ l−1
s
, τ l−1

s )
)
−
(
b̂(X̃ l

τ ls
, τ ls)− b̂(X̃ l

τ l−1
s
, τ l−1

s )
)

as the argument is essentially the same across all co-ordinates. We have that for any j ∈ {1, . . . , d}

Tj =
(Al,N

Bl,N
− C l,N

Dl,N

)
−
(Al

Bl
− C l

Dl

)
,

where we have defined

Al,N := 1
N

N∑
i=1

∇jf(X̃
l,N
τ ls

+
√

1− τ lsZ
i); Bl,N := 1

N

N∑
i=1

f(X̃ l,N
τ ls

+
√
1− τ lsZ

i),

C l,N := 1
N

N∑
i=1

∇jf(X̃
l,N

τ l−1
s

+
√

1− τ l−1
s Zi), Dl,N := 1

N

N∑
i=1

f(X̃ l,N

τ l−1
s

+
√

1− τ l−1
s Zi),

Al := 1
N

N∑
i=1

∇jf(X̃
l
τ ls
+
√

1− τ lsZ
i), Bl := 1

N

N∑
i=1

f(X̃ l
τ ls
+
√

1− τ lsZ
i),

C l := 1
N

N∑
i=1

∇jf(X̃
l
τ l−1
s

+
√

1− τ l−1
s Zi), Dl := 1

N

N∑
i=1

f(X̃ l
τ l−1
s

+
√

1− τ l−1
s Zi).

We use [13, Lemma C.5.] stating that for reals (a, b, c, d) and non-zero reals (A,B,C,D)(
a
A
− b

B

)
−
(

c
C
− d

D

)
=

1
A

(
(a− b)− (c− d)

)
− b

AB

(
(A−B)− (C −D)

)
+ 1

AC
(C − A)(c− d)

− 1
AB

(b− d)(C −D) + d
CBD

(B −D)(C −D) + d
ACB

(A− C)(C −D). (22)

One can consider all six terms, individually, by using the C2-inequality. However, as the terms

1
A

(
(a− b)− (c− d)

)
, b

AB

(
(A−B)− (C −D)

)
,

are similar, we treat only the former. In addition, as the last four terms on the right side of (22)
can be dealt with using similar calculations, we only deal with one of them. To that end, we seek
to bound the two terms:

Tj,1 := E
[ (

1
(Bl,N )2

·
(
(Al,N − C l,N)− (Al − C l)

)2 ]
,

Tj,2 := E
[

1
(Bl)2(Bl,N )2

· (Bl −Bl,N)2 · (Al − C l)2
]
.

For Tj,1 we easily obtain the upper-bound

C E
∣∣∣ (∇jf(Y

l,N
τ ls

)−∇jf(Y
l,N

τ l−1
s

)
)
−
(
∇jf(Y

l
τ ls
)−∇jf(Y

l
τ l−1
s

)
)∣∣∣2

where we have set

Y l,N
τ ls

:= X̃ l,N
τ ls

+
√

1− τ lsZ
1, Y l

τ ls
:= X̃ l

τ ls
+
√

1− τ lsZ
1,

Y l,N

τ l−1
s

:= X̃ l,N

τ l−1
s

+
√

1− τ l−1
s Z1, Y l

τ l−1
s

:= X̃ l
τ l−1
s

+
√

1− τ l−1
s Z1.
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Note now that(
∇jf(Y

l,N
τ ls

)−∇jf(Y
l,N

τ l−1
s

)
)
−
(
∇jf(Y

l
τ ls
)−∇jf(Y

l
τ l−1
s

)
)
= T̄j,1(1) + T̄j,1(2),

for the terms

T̄j,1(1) :=
d∑

k=1

∫ 1

0

∇k∇jf(Y
l,N

τ l−1
s

+ λ(Y l,N
τ ls

− Y l,N

τ l−1
s

)) ·
{
(Y l,N

τ ls
− Y l,N

τ l−1
s

)− (Y l
τ ls
− Y l

τ l−1
s

)
}
k
dλ,

T̄j,1(2) :=
d∑

k=1

∫ 1

0

(
∇k∇jf(Y

l,N

τ l−1
s

+ λ(Y l,N
τ ls

− Y l,N

τ l−1
s

))

−∇k∇jf(Y
l
τ l−1
s

+ λ(Y l
τ ls
− Y l

τ l−1
s

)
)
· {Y l

τ ls
− Y l

τ l−1
s

}k dλ

Then to obtain the required bound for Tj,1, it suffices to bound the second moments of T̄j,1(1) and
T̄j,1(2) respectively. For T̄j,1(1) we have

E
∣∣ T̄j,1(1) ∣∣2 ≤ C E

∥∥(X̃ l,N
τ ls

− X̃ l,N

τ l−1
s

)− (X̃ l
τ ls
− X̃ l

τ l−1
s

)
∥∥2
2
.

Also, since

(X̃ l,N
τ ls

− X̃ l,N

τ l−1
s

)− (X̃ l
τ ls
− X̃ l

τ l−1
s

)

=

∫ τ ls

τ l−1
s

((
b̂(X̃ l,N

τ lu
, τ lu)− b̂(X̃ l

τ lu
, τ lu)

)
+
(
b̂(X̃ l

τ lu
, τ lu)− b(X̃ l

τ lu
, τ lu)

))
du (23)

one can follow similar arguments that were used to deduce (11) to obtain

E
∣∣ T̄j,1(1) ∣∣2 ≤ C∆2

l

N
.

Using (A1) it follows that

E
∣∣ T̄j,1(2) ∣∣2 ≤ C E

[(∥∥Y l,N

τ l−1
s

− Y l
τ l−1
s

∥∥2
2
+
∥∥(X̃ l,N

τ ls
− X̃ l,N

τ l−1
s

)− (X̃ l
τ ls
− X̃ l

τ l−1
s

)
∥∥2
2

)
×
∥∥Y l

τ ls
− Y l

τ l−1
s

∥∥2
2

]
.

Using Cauchy-Schwarz, we obtain

E
∣∣ T̄j,1(2) ∣∣2
≤ C E

[
∥Y l

τ ls
− Y l

τ l−1
s

∥42
]1/2

×
(
E
[
∥Y l,N

τ l−1
s

− Y l
τ l−1
s

∥42
]1/2

+ E
[ ∥∥(X̃ l,N

τ ls
− X̃ l,N

τ l−1
s

)− (X̃ l
τ ls
− X̃ l

τ l−1
s

)
∥∥4
2

]1/2 )
= C E

[ ∥∥X̃ l
τ ls
− X̃ l

τ l−1
s

+ {
√

1− τ ls −
√
1− τ l−1

s }Z1
∥∥4 ]1/2

×
(
E
[ ∥∥X̃ l,N

τ l−1
s

− X̃ l
τ l−1
s

∥∥4
2

]1/2
+ E

[ ∥∥(X̃ l,N
τ ls

− X̃ l,N

τ l−1
s

)− (X̃ l
τ ls
− X̃ l

τ l−1
s

)
∥∥4
2

]1/2 )
.
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For the first factor term in the above upper bound, using standard results on Euler discretizations
and Gaussian random variables, we have

E
[ ∥∥(X̃ l

τ ls
− X̃ l

τ l−1
s

) + (
√
1− τ ls −

√
1− τ l−1

s )Z1
∥∥4
2

]1/2
≤ C∆l.

Then using Lemma A.3 and the above arguments one obtains

E
[
T̄j,1(2)

2
]
≤ C∆l

N
.

Thus we can conclude that
Tj,1 ≤

C∆l

N
.

For Tj,2, using (A1) and Cauchy-Schwarz it follows that

Tj,2 ≤ C E
[ (
f(X̃ l

τ ls
+
√
1− τ lsZ

1)− f(X̃ l,N
τ ls

+
√

1− τ lsZ
1)
)4 ]1/2

× E
[ (

∇jf(X̃
l
τ ls
+
√
1− τ lsZ

1)−∇jf(X̃
l
τ l−1
s

+
√

1− τ l−1
s Z1)

)4 ]1/2
.

For the first factor one can use (A1) b. and Lemma A.3, and for the second one can use (A1) b. and
standard properties of Euler-discretizations to give

Tj,2 ≤
C∆l

N
.

This completes the proof.

Lemma A.5. Assume that (A1). Then, there exists a C < +∞ such that for any (l, N, s) ∈
N2 × [0, 1] we have

E
∥∥∥(b̂(X̃ l,N

τ l−1
s
, τ l−1

s )− b̂(X̃ l−1,N

τ l−1
s

, τ l−1
s )

)
−
(
b̂(X̃ l

τ l−1
s
, τ l−1

s )− b̂(X̃ l−1

τ l−1
s
, τ l−1

s )
)∥∥∥2

2
≤

C
( ∆2

l

N
+ E

∥∥∥(X̃ l,N
τ ls

− X̃ l−1,N

τ l−1
s

)
−
(
X̃ l

τ ls
− X̃ l−1

τ l−1
s

)∥∥∥2
2

)
.

Proof. The proof is much the same as that of Lemma A.4. The only difference is that the term
∆2

l /N occurs as one considers the processes at the same time instance and that one will obtain an
additive term in the upper-bound of the type:

E
∥∥∥(X̃ l,N

τ l−1
s

− X̃ l−1,N

τ l−1
s

)
−
(
X̃ l

τ l−1
s

− X̃ l−1

τ l−1
s

)∥∥∥2
2
.

This latter term is upper-bounded by

C
(
E
∥∥∥(X̃ l,N

τ ls
− X̃ l,N

τ l−1
s

)
−
(
X̃ l

τ ls
− X̃ l

τ l−1
s

)∥∥∥2
2
+ E

∥∥∥(X̃ l,N
τ ls

− X̃ l−1,N

τ l−1
s

)
−
(
X̃ l

τ ls
− X̃ l−1

τ l−1
s

)∥∥∥2
2

)
.

The first-term above is easily proved to be O(∆2
l /N) (see (23) and the subsequent argument) and

this concludes the proof.
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Lemma A.6. Assume (A1). Then there exists a C < +∞ such that for any (l, N, t) ∈ N2 × [0, 1]
we have

E
∥∥∥∫ t

0

((
b̂(X̃ l,N

τ ls
, τ ls)− b̂(X̃ l−1,N

τ l−1
s

, τ l−1
s )

)
−
(
b̂(X̃ l

τ ls
, τ ls)− b̂(X̃ l−1

τ l−1
s
, τ l−1

s )
))
ds
∥∥∥2
2
≤

C
( ∆l

N
+

∫ t

0

E
∥∥∥(X̃ l,N

τ ls
− X̃ l−1,N

τ l−1
s

)
−
(
X̃ l

τ ls
− X̃ l−1

τ l−1
s

)∥∥∥2
2
ds
)
.

Proof. It is simple to establish that

E
∥∥∥∫ t

0

((
b̂(X̃ l,N

τ ls
, τ ls)− b̂(X̃ l−1,N

τ l−1
s

, τ l−1
s )

)
−
(
b̂(X̃ l

τ ls
, τ ls)− b̂(X̃ l−1

τ l−1
s
, τ l−1

s )
))
ds
∥∥∥2
2
≤

C

∫ t

0

E
∥∥∥(b̂(X̃ l,N

τ ls
, τ ls)− b̂(X̃ l−1,N

τ l−1
s

, τ l−1
s )

)
−
(
b̂(X̃ l

τ ls
, τ ls)− b̂(X̃ l−1

τ l−1
s
, τ l−1

s )
)∥∥∥2

2
ds

so we focus on the term inside the integrand. We have

E
∥∥∥(b̂(X̃ l,N

τ ls
, τ ls)− b̂(X̃ l−1,N

τ l−1
s

, τ l−1
s )

)
−
(
b̂(X̃ l

τ ls
, τ ls)− b̂(X̃ l−1

τ l−1
s
, τ l−1

s )
)∥∥∥2

2
≤

C

(
E
∥∥∥(b̂(X̃ l,N

τ ls
, τ ls)− b̂(X̃ l,N

τ l−1
s
, τ l−1

s )
)
−
(
b̂(X̃ l

τ ls
, τ ls)− b̂(X̃ l

τ l−1
s
, τ l−1

s )
)∥∥∥2

2
+

E
∥∥∥(b̂(X̃ l,N

τ l−1
s
, τ l−1

s )− b̂(X̃ l−1,N

τ l−1
s

, τ l−1
s )

)
−
(
b̂(X̃ l

τ l−1
s
, τ l−1

s )− b̂(X̃ l−1

τ l−1
s
, τ l−1

s )
)∥∥∥2

2

)
.

So, the proof is concluded by applying Lemmata A.4-A.5.

Lemma A.7. Assume (A1). Then there exists a C < +∞ such that for any (l, N, s) ∈ N2 × [0, 1]
we have

E
∥∥∥(b̂(X̃ l

τ ls
, τ ls)− b̂(X̃ l

τ l−1
s
, τ l−1

s )
)
−
(
b(X̃ l

τ ls
, τ ls)− b(X̃ l

τ l−1
s
, τ l−1

s )
)∥∥∥2

2
≤ C∆l

N
.

Proof. This can be proved using the same identity (equation (22)) as Lemma A.4. The subsequent
calculations are much simpler than the proof of Lemma A.4 and are hence omitted.

Lemma A.8. Assume (A1). Then there exists a C < +∞ such that for any (l, N, t) ∈ N2 × [0, 1]
we have

E
∥∥∥(b̂(X̃ l

τ l−1
s
, τ l−1

s )− b̂(X̃ l−1

τ l−1
s
, τ l−1

s )
)
−
(
b(X̃ l

τ l−1
s
, τ l−1

s )− b(X̃ l−1

τ l−1
s
, τ l−1

s )
)∥∥∥2

2
≤ C∆2

l

N
.

Proof. We will consider one co-ordinate of the vector

T :=
(
b̂(X̃ l

τ l−1
s
, τ l−1

s )− b̂(X̃ l−1

τ l−1
s
, τ l−1

s )
)
−
(
b(X̃ l

τ l−1
s
, τ l−1

s )− b(X̃ l−1

τ l−1
s
, τ l−1

s )
)
,

as the argument is essentially the same across all co-ordinates. We have that for any j ∈ {1, . . . , d}

Tj =
(C l

Dl
− El

F l

)
−
(C
D

− E

F

)
,
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where we have defined

C l := 1
N

N∑
i=1

∇jf(X̃
l
τ l−1
s

+
√

1− τ l−1
s Zi); Dl := 1

N

N∑
i=1

f(X̃ l
τ l−1
s

+
√

1− τ l−1
s Zi),

El := 1
N

N∑
i=1

∇jf(X̃
l−1

τ l−1
s

+
√

1− τ l−1
s Zi); F l := 1

N

N∑
i=1

f(X̃ l−1

τ l−1
s

+
√

1− τ l−1
s Zi),

C := Eϕ

[
∇jf(X̃

l
τ l−1
s

+
√

1− τ l−1
s Z)

]
, D := Eϕ

[
f(X̃ l

τ l−1
s

+
√
1− τ l−1

s Z)
]
,

E := Eϕ

[
∇jf(X̃

l−1

τ l−1
s

+
√

1− τ l−1
s Z)

]
, F := Eϕ

[
f(X̃ l−1

τ l−1
s

+
√
1− τ l−1

s Z)
]
.

Again, we use (22) and just give a proof for two terms

Tj,1 := E
[ 1

(Dl)2
(
(C l − El)− (C − E)

)2 ]
,

Tj,2 := E
[ 1

(Dl)2D2
(D −Dl)2(C − E)2

]
.

For Tj,1 applying (A1) a. and using the fact that (X̃ l
τ l−1
s
, X̃ l−1

τ l−1
s

) are independent of the iid Z1, . . . , ZN ,
we have

Tj,1 ≤
C

N
E
∣∣∣∇jf(X̃

l
τ l−1
s

+
√
1− τ l−1

s Z1)−∇jf(X̃
l−1

τ l−1
s

+
√
1− τ l−1

s Z1)
∣∣∣2.

Then using (A1) b. along with standard results for strong errors of diffusions we have

Tj,1 ≤
C∆2

l

N
.

For Tj,2 applying (A1) a. and the Cauchy-Schwarz inequality

Tj,2 ≤ C E
[ (

Eϕ

[
f(X̃ l

τ l−1
s

+
√
1− τ l−1

s Z)
]
− 1

N

N∑
i=1

f(X̃ l
τ l−1
s

+
√
1− τ l−1

s Zi)
)4 ]1/2

× E
[ (

Eϕ

[
∇jf(X̃

l
τ l−1
s

+
√
1− τ l−1

s Z)−∇jf(X̃
l−1

τ l−1
s

+
√
1− τ l−1

s Z)
] )4 ]1/2

.

For the first term on the right-hand-side one can use standard results for iid random variables and
for the second (A1) a. along with standard results for strong errors of diffusions to yield

Tj,2 ≤
C∆2

l

N
.

From here, one can complete the proof fairly easily.

Lemma A.9. Assume (A1). Then there exists a C < +∞ such that for any (l, N, t) ∈ N2 × [0, 1]
we have

E
∥∥∥∫ t

0

((
b̂(X̃ l

τ ls
, τ ls)− b̂(X̃ l−1

τ l−1
s
, τ l−1

s )
)
−
(
b(X̃ l

τ ls
, τ ls)− b(X̃ l−1

τ l−1
s
, τ l−1

s )
))
ds
∥∥∥2
2
≤ C∆l

N
.

Proof. The proof is essentially the same as that for Lemma A.6, except one must use Lemmata
A.7-A.8 instead of Lemmata A.4-A.5; therefore the proof is omitted.
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