
An Introduction to Machine Unlearning

Salvatore Mercuri1, Raad Khraishi1,2, Ramin Okhrati2

Devesh Batra1, Conor Hamill1, Taha Ghasempour1,?, and Andrew Nowlan1

1 Data Science & Innovation, NatWest Group, London, United Kingdom†

2 Institute of Finance and Technology, UCL, London, United Kingdom‡

Abstract. Removing the influence of a specified subset of training data from a machine learning model
may be required to address issues such as privacy, fairness, and data quality. Retraining the model from
scratch on the remaining data after removal of the subset is an effective but often infeasible option, due
to its computational expense. The past few years have therefore seen several novel approaches towards
efficient removal, forming the field of “machine unlearning”, however, many aspects of the literature
published thus far are disparate and lack consensus. In this paper, we summarise and compare seven
state-of-the-art machine unlearning algorithms, consolidate definitions of core concepts used in the field,
reconcile different approaches for evaluating algorithms, and discuss issues related to applying machine
unlearning in practice.

Keywords: Machine unlearning · Exact unlearning · Approximate unlearning · Data removal · Data
privacy.

? No longer at institute1

† Correspondence to: salvatore.mercuri@natwest.com
‡ Correspondence to: raad.khraishi@ucl.ac.uk

ar
X

iv
:2

20
9.

00
93

9v
1

 [
cs

.L
G

]
 2

 S
ep

 2
02

2

Table of Contents

1 Introduction . 3
2 Terminology . 4
3 Evaluation Approaches for Unlearning Algorithms . 8

3.1 Efficiency . 8
3.2 Effectiveness . 8
3.3 Consistency . 9
3.4 Certifiability . 9

4 Exact Unlearning Algorithms . 11
4.1 SISA . 11
4.2 DaRE Forests . 13

5 Approximate Unlearning Algorithms . 17
5.1 Fisher . 17
5.2 Influence . 19
5.3 DeltaGrad . 21
5.4 Descent-to-Delete . 23
5.5 DeepObliviate . 24

6 Discussion . 27
6.1 Exact Unlearning Algorithms . 28
6.2 Approximate Unlearning Algorithms . 28
6.3 Machine Unlearning from a Practitioner’s Perspective . 31

7 Conclusion . 33
Appendix A Datasets . 36

1 Introduction

Widely used machine learning algorithms are able to learn from new data using batch or online training
methods but are incapable of efficiently adapting to data removal. Data removal, however, may be required
to address various issues around privacy, fairness, and data quality. For example, the “Right to be Forgotten”
in the European Union’s General Data Protection Regulation (GDPR) provides individuals with the right
to request the removal of their data from an organisation’s records. Though data may be removed from
databases, any machine learning model previously trained on the removed data will retain its information,
and proposed legislation such as the European Union Artificial Intelligence Act3 may require further ac-
tion. Beyond privacy, other applications include data correction by removing erroneous data (Biggio et al.,
2013), bias reduction (Quenouille, 1956), model explainability (Doshi-Velez and Kim, 2017), and uncertainty
quantification (Shafer and Vovk, 2008). One way to remove the information of deleted data from trained
models is to remove the specified data from the training dataset and then retrain the model from scratch
on the remaining data. Though this “näıve” retraining approach is effective in removing the influence of the
removed data, it is often inefficient and may entail large computational costs. For example, modern deep
learning models may take several weeks to train and can cost millions of dollars.4

The field of “machine unlearning” addresses the problem of removing subsets of training data, through
the development of algorithms that guarantee the removal of the subset data’s information from the trained
model more efficiently than näıve retraining. The term machine unlearning originates from Cao and Yang
(2015), in which they develop one of the first systematic unlearning algorithms. The theory has since seen a
number of proposed approaches which can broadly be categorised as exact or approximate unlearning. Exact
unlearning algorithms reduce the large computational cost of näıve retraining by structuring the initial
training so as to allow for more efficient retraining; in doing so they replicate the same model that would
have been produced under näıve retraining. In contrast, approximate unlearning algorithms avoid the need
for full retraining, speeding up the process of unlearning by allowing a degree of approximation between the
output model and the näıve retrained model. Approximate methods typically leverage at least one of the
following in order to unlearn: information about the data to be removed (Golatkar et al., 2019), information
about the remaining data after removal (Guo et al., 2020; He et al., 2021), or information cached during the
original machine learning training (He et al., 2021; Wu et al., 2020).

The evaluation approach of an unlearning algorithm often depends on the application and the category of
the unlearning approach, resulting in evaluation frameworks and measures that are inconsistent throughout
the literature. In particular, there is little consensus in measuring how well an unlearning algorithm has
removed the information of the deleted data. These inconsistencies even extend to core definitions used in
the field including what defines an unlearning algorithm. The prior work of Mahadevan and Mathioudakis
(2021) offers a benchmarked comparison between different machine unlearning methods and is a key review
paper, however, it only considers three approximate methods with a focus on linear classification methods
trained with gradient descent. Moreover, there is a lack of discussion around applying machine unlearning
techniques in practice.

In the present paper, we first provide standardised definitions of concepts which occur throughout the
literature in Section 2. The measures used to evaluate unlearning methods are collated in Section 3 and
we discuss their applicabilities and limitations. Section 4 and Section 5 review a total of seven state-of-the-
art unlearning methods – exact and approximate respectively – and summarise their scope, benefits and
limitations. Finally, in Section 6, we bring together our findings from this review, providing comparisons
among the different unlearning techniques. We also discuss aspects of taking unlearning theory into practice,
by giving proposals for algorithm selection and monitoring procedures.

Selection criteria. We select seven methods that unlearn data points from machine learning models, covering
a broad scope of applicability across both exact and approximate unlearning, so that we include at least
one method that may be applied to gradient-descent based models, decision-tree based models, those with

3 https://artificialintelligenceact.eu/the-act/
4 https://lambdalabs.com/blog/demystifying-gpt-3/

3

https://artificialintelligenceact.eu/the-act/
https://lambdalabs.com/blog/demystifying-gpt-3/

convex loss functions and those with non-convex loss functions. We aim to avoid including more than one
unlearning algorithm that covers the same or highly similar applicability, unlearning type, and algorithmic
methodology.

These selection criteria naturally mean that many works are excluded, but not from lack of merit or
significance, and here we mention their achievements. In a relatively early contribution, Ginart et al. (2019)
develop an exact unlearning algorithm applied to the k-means algorithm and in the appendix they are the
first to propose the notion of approximate unlearning. This work is significant for inspiring a strain of methods
based around statistical approximation and indistinguishability, of which we include further developments
in this paper, most directly by Guo et al. (2020); Neel et al. (2020). Schelter et al. (2021) develop a method
applicable to decision-tree based models; this has similar applicability and similarly strong empirical results
as Brophy and Lowd (2021), which is included in this paper. In Aldaghri et al. (2021), the authors develop
an exact unlearning method that uses a similar sharding methodology as seen in SISA, Section 4.1. Gupta
et al. (2021) highlight issues that are caused by the implicit assumption that the deletion requests are
independent of the prior machine learning model, and they modify the SISA algorithm to work for so-called
adaptive sequences of deletion requests. Indeed, it may well be the case that a user is more likely to request
data deletion upon knowledge of model decisions concerning them. In Golatkar et al. (2020), the authors
extend their method considered in Section 5.1 to apply to deep neural networks. A similar task to the one
of unlearning data points is of unlearning classes, which we do not consider in this paper, but is considered
by Golatkar et al. (2019) and by others such as Baumhauer et al. (2020). Wu et al. (2022) extend the
general methodology of the Influence method (Guo et al., 2020) that we discuss in Section 5.2. We note that
there has been research in applying unlearning to recommender systems and regression problems, notably by
Schelter (2020) for item-based collaborative filtering recommender systems, k-nearest neighbours, and ridge
regression. In addition, Chen et al. (2022) extend the ideas of the SISA algorithm to recommender systems.
Finally, an area not considered in this paper concerns Markov Chain Monte Carlo models, for which the first
unlearning methods have recently been developed (Fu et al., 2022; Nguyen et al., 2022).

2 Terminology

In this section, we give formal definitions of the fundamental concepts in machine unlearning, which appear
throughout the literature and the rest of this paper. Due primarily to the varying approaches towards
achieving unlearning in the literature, definitions of a machine unlearning algorithm vary substantially. The
key aim of this section is to provide a definition of unlearning that unifies these approaches.

Throughout this paper, we let X denote the feature space and Y denote the output space. A data point
is an element of Z = X × Y, and we let Z∗ denote the space of datasets. Explicitly, a dataset D ∈ Z∗ is a
multiset of data points, allowing for duplicate entries.

The objective of our learning framework is to learn, from a dataset D, a hypothesis function h : X → Y,
which assigns an output y = h(x) ∈ Y to a given input x ∈ X . A training algorithm can therefore be viewed
as a map A : Z∗ → H, where H is the space of all hypothesis functions, whose objective is to minimise a
non-negative real-valued loss function L(h,D). All training algorithms we consider are randomised, by which
we mean that they admit some degree of randomness, for example through random initialisation of weights
or through random selection of training data as in stochastic gradient descent.

In the setting of unlearning, the initial training data D is fixed with n ≥ 1 samples and a dimensionality
of p ≥ 1. Due to the randomness of A, the output A(D)(x) at a point x ∈ X can be viewed as a random
variable. If A is parametric, then there exists a space of parameters θ ∈ Θ of fixed dimension determining
the hypothesis function hθ = A(D), and in this case we use θ and hθ interchangeably to denote our trained
model. The goal of an unlearning algorithm is to remove the influence of a subset Du ⊆ D of m samples from
the trained machine learning model A(D). The rest of this section is dedicated to formalising the notion of
machine unlearning.

In the following definition we define an update mechanism, which is one of two core components to an
unlearning algorithm.

4

Definition 1 (Update Mechanism). An update mechanism is a map

U : H×Z∗ ×Z∗ → H,

which takes as input a model h ∈ H, two datasets D,Du ∈ Z∗, and outputs a new model U(h,D,Du) ∈ H.

Remark 1. In the case of unlearning, we have Du ⊆ D and the output of the update mechanism aims
to remove as much information about Du as possible from the model h in a way that we make precise
in the rest of this section; in this case we may also use removal mechanism as a synonym for update
mechanism. Definition 1 above gives the minimal inputs needed to define an update mechanism. In reality,
update mechanisms typically require additional inputs, which are clearly defined in each specific case in later
sections. In the initial application of U in unlearning, we have h = A(D), however subsequent applications
of U may be applied to models that are not necessarily the result of applying A, but from some preceding
application of U itself, for example. In all cases considered in this paper, the mechanism U is randomised in
the same manner as randomised training algorithms.

One way of ensuring the removal of Du from a trained model is to stipulate that the removal mechanism
is equivalent to applying the training algorithm A on the dataset D with Du removed. This is so-called exact
removal which is defined as follows.

Definition 2 (Exact Removal Mechanism). An update mechanism U for a randomised training algo-
rithm A is said to be an exact removal mechanism if and only if it achieves the same model that would have
been achieved by retraining from scratch. Formally, U is exact if and only if, for all D ∈ Z∗, Du ⊆ D, and
x ∈ X , the random variables U(A(D), D,Du)(x) and A(D \Du)(x) admit the same distributions.

The simplest example of exact removal is to just retrain from scratch on D\Du. This is the näıve removal
mechanism defined as follows.

Definition 3 (Näıve Removal Mechanism). Given a randomised training algorithm A, the näıve re-
moval mechanism U∗ is the update mechanism defined by

(A(D), D,Du) 7→ A(D \Du),

where Du ⊆ D.

Whilst näıve removal is a simple method to implement and achieve unlearning, it can be computation-
ally expensive and time consuming. Some of the key developments in the unlearning literature involve the
development of alternative exact removal mechanisms to näıve removal, as we shall see in Section 4.

Exact removal is not the only option, however, and Ginart et al. (2019) proposed mechanisms that achieve
removal through alternative means, which are so-called approximate removal mechanisms. The probability
distribution of these mechanisms no longer match that of näıve removal, and we must therefore resort to
alternative means of guaranteeing that information on Du has been removed from the model h – this guar-
antee is known as the certifiability of the update mechanism. For example, Guo et al. (2020) guarantee this
by proving statistical indistinguishability between the update mechanism and näıve unlearning, as follows.

Definition 4 (ε-certifiability, Guo et al. (2020)). Let ε > 0 be given, we say that an update mechanism
U is an ε-certified removal mechanism with respect to the randomised training procedure A if for all datasets
D ∈ Z∗, removal subsets Du ⊆ D, inputs x ∈ X and output subsets T ⊆ Y, we have

e−ε ≤ Pr[U(A(D), D,Du)(x) ∈ T]

Pr[A(D \Du)(x) ∈ T]
≤ eε. (2.1)

Intuitively, ε-certified removal gives a bound of eε on the probability that one can distinguish between the
updated model and the model obtained through näıve removal. The notion of ε-certified can be weakened
slightly to give (ε, δ)-certified removal as follows.

5

Definition 5 ((ε, δ)-certifiability, Guo et al. (2020)). Let ε, δ > 0 be given. We say that an update
mechanism U is an (ε, δ)-certified removal mechanism with respect to the randomised training procedure A
if for all datasets D ∈ Z, removal subsets Du ⊆ D, inputs x ∈ X , and output subsets T ⊆ Y, we have

Pr[U(A(D), D,Du)(x) ∈ T] ≤ eε Pr[A(D \Du)(x) ∈ T] + δ,

Pr[A(D \Du)(x) ∈ T] ≤ eε Pr[U(A(D), D,Du)(x) ∈ T] + δ.
(2.2)

The above discussion motivates a definition of unlearning that consists of two components, an update
mechanism along with a guarantee of certifiability of this mechanism. However, the varying methods for
showing certifiability in the literature make it difficult to consolidate this notion into a standard definition.
This is perhaps partly due to a lack of clarity in current regulations concerning the application of unlearning
methods in practice, which makes it difficult to argue for the use of certain certifiability guarantees over
others. To circumvent this, we stipulate only that the update mechanism be accompanied by a verifiable
set of theoretical guarantees and empirical results concerning the mechanism’s ability to remove information
about Du from A(D). The required nature and degree of certifiability is left up to external judgement by
theoreticians, practitioners and auditors.

We now give a straw man concept for a theoretical certificate of unlearning, which should be provided in
any theoretical development of an unlearning algorithm. This should be extended to a formalised certificate
of unlearning concept that applies also in practice, on the same level of rigour as the “Proof of Learning”
concept from Jia et al. (2021). In practice, this should provide enough information (for example source code)
for auditors to recreate any historical removals, and subsequently recompute and verify the certificate of
unlearning. The need for such a concept has also been identified in Thudi et al. (2021), who provide their
own “Proof of Unlearning”.

Definition 6 (Certificate of Unlearning). Given a randomised training algorithm A and update mech-
anism U , a certificate of unlearning, CU of U , is a set of verifiable claims with which certifiability may be
(re-)computed and analysed externally. The claims should show that, for any dataset D and subset Du ⊆ D,
the model U(A(D), D,Du) contains a sufficiently small amount of information about Du. The precise sense
of “sufficiently small” depends on the particular certifiability claim, which could, for example, be a proof of
exactness (Definition 2) or ε-certifiability (Definition 4).

Definition 7 (Machine Unlearning Algorithm). Given a randomised training algorithm A, a machine
unlearning algorithm is a pair (U , CU) consisting of an update mechanism U (Definition 1) and a certificate
of unlearning CU (Definition 6).

Remark 2. As we shall see later, some of the unlearning algorithms provide only empirical results for the
certificate of unlearning. While empirical results and measures are a helpful addition to the certificate of
unlearning, given the privacy-sensitive nature of many applications of unlearning, they are not enough alone.
The addition of empirical results to the certificate of unlearning is most useful in the case of approximate
removal, where removal of data is only guaranteed to an approximate degree.

For the rest of this section, we fix a randomised training algorithm A and drop the dependence on A
from notation. We give the baseline example of an unlearning algorithm in this framework.

Definition 8 (Näıve Unlearning). The näıve unlearning algorithm is (U∗, CU∗), where U∗ is the näıve
removal mechanism (Definition 3). The certificate of unlearning in this case contains the trivial fact that U∗
is exact.

Definition 9 (Exact and Approximate Unlearning Algorithms). An exact unlearning algorithm is
a pair (U , CU), where U is an exact unlearning mechanism (Definition 2); in this case CU includes a proof
that U is an exact removal mechanism. An approximate unlearning algorithm is an unlearning algorithm
that is not exact.

6

While we have mostly formulated the process of machine unlearning above for a one-time batch removal,
in reality unlearning may be required to occur over a sequence of removals, as in the case where a user
requests the deletion of their data. As a result, analysis of an unlearning algorithm over arbitrary sequences
of removals is helpful. The simplest case of sequences of single removals is considered by Neel et al. (2020),
whose method we detail later in Section 5.4. They introduce the notion of strong, weak and (α, β)-accurate
unlearning algorithms, as follows. Let {zi | 0 ≤ i ≤ m} ⊆ D be a sequence of data points to be unlearned,
and let

D0 = D, Di = Di−1 \ {zi−1}, h0 = A(D0), hi = U(hi−1, Di−1, zi−1), 1 ≤ i ≤ m, (2.3)

be the sequence of datasets and unlearned models, respectively, occurring in the unlearning process. The
(α, β)-accuracy provides a theoretical guarantee of the obtained parameters of an unlearning algorithm over
the length of the sequence, whereas strong vs. weak characterises algorithms based on their unlearning speed
over the length of the sequence.

Definition 10 ((α, β)-accuracy, Neel et al. (2020)). Let h∗i = A(Di−1 \ {zi−1}) be the result of näıve
removal on hi−1 for i = 1, . . . ,m. Given α > 0 and, 0 < β < 1, we say that (U , CU) is (α, β)-accurate if,
for all 0 ≤ i ≤ m, we have

Pr [L(hi, Di)− L(h∗i , Di) > α] < β. (2.4)

In other words, the probability that the unlearned loss and the näıve retrained loss differing by more than α
is at most β.

Definition 11 (Strong and Weak Unlearning, (Neel et al., 2020)). Let Ci denote the time taken to
perform the ith removal. Assume that (U , CU) is (α, β)-accurate and that α and β are independent of m.

(i) The unlearning algorithm (U , CU) is said to be strong if the update time is at most logarithmic in the
length of the update sequence. That is, for all 1 ≤ i ≤ m we have

Ci/C1 = O(log(i)).

(ii) We say that (U , CU) is weak if the update time is polynomial in the length of the update sequence. That
is, for all 1 ≤ i ≤ m we have

Ci/C1 = Ω(poly(i)).

To finish this section, we define two concepts which are closely related to the theory of machine unlearning.
Differential privacy inspired the definition of (ε, δ)-certifiability in Guo et al. (2020), and we can see the
similarities of the definition of differential privacy below to that of Definition 5. Intuitively, differential
privacy bounds the effect on the output of a query of changing a singleton’s data; as a result, it constrains
the amount of information an attacker could extract about an individual in a dataset.

Definition 12 (Differential Privacy, Dwork and Roth (2014)). We say that a randomised training
algorithm A is (ε, δ)-differentially private if for all pairs of datasets D1 and D2 that differ by a singleton’s
data, for all inputs x ∈ X and output subsets T ⊆ Y, we have

Pr[A(D1)(x) ∈ T] ≤ eε Pr[A(D2)(x) ∈ T] + δ. (2.5)

Definition 13 (Catastrophic Forgetting, Kirkpatrick et al. (2017)). Catastrophic forgetting is the
rapid decline in predictive ability of a model on previously learned tasks when fine-tuned for a new task.

Remark 3. Catastrophic forgetting is unsuitable for machine unlearning as information on the original train-
ing set can still be extracted from the weights of the fine-tuned model, as discussed in Golatkar et al. (2019).

7

3 Evaluation Approaches for Unlearning Algorithms

Comprehensive evaluation of a machine unlearning algorithm (U , CU) is achieved through consideration of
four key properties – efficiency, effectiveness, consistency, and certifiability (EECC) – defined as follows.

Definition 14 (Efficiency). The efficiency of (U , CU) is the relative speed-up of the removal mechanism
U over the näıve removal mechanism U∗.
Definition 15 (Effectiveness). The effectiveness of (U , CU) is the test set performance of the unlearned
machine learning model, U(A(D), D,Du), in comparison to the näıve retrained model’s test set performance.

Definition 16 (Consistency). The consistency of (U , CU) is a measure of similarity between the unlearned
model, U(A(D), D,Du), and the näıve retrained model.

Definition 17 (Certifiability). The certifiability of (U , CU) is the ability of the removal mechanism U to
remove the information of Du from the unlearned model, U(A(D), D,Du). Precise measures and guarantees
of this ability form the contents of CU .

Typically in the literature, these four measures are evaluated empirically on real-world and synthetic
datasets, often accompanied by additional theoretical analysis. In experiments, a range of datasets are chosen
to reflect varying task complexities.

Within each method, empirical performances for EECC can be tuned through certain parameters. There
are pairwise trade-offs between efficiency, effectiveness, and certifiability as demonstrated in Mahadevan and
Mathioudakis (2021). In addition, there are trade-offs between efficiency, effectiveness and consistency. Each
method contains parameters that directly control the efficiency of the method, which are called efficiency
parameters; these can be used to improve efficiency at the cost of effectiveness and certifiability. Approximate
methods may also have certifiability parameters that directly control the certifiability of the method.

We detail EECC in the following sections, giving empirical measures for them. Performance metric refers
to a metric that is used to evaluate the machine learning models, for example, accuracy.

3.1 Efficiency

Efficiency of an unlearning algorithm (U , CU) is empirically measured by the ratio of the time taken to
obtain the unlearned model hU = U(A(D), D,Du) to the time taken to obtain the näıve retrained model
h∗ = U∗(A(D), D,Du), defined as follows:

Efficiency(hU) :=
time taken to obtain h∗

time taken to obtain hU
. (3.1)

In practice, this is usually achieved by measuring time taken to obtain h∗ and hU directly, averaged over a
number of deletion requests. In Brophy and Lowd (2021), efficiency is measured by the number of samples
that can be unlearned in the time it takes to unlearn one instance by näıve retraining; this measure is
equivalent to the definition in (3.1) above. Time complexities are often provided as theoretical guarantees,
which highlight the role of certain parameters as efficiency parameters.

3.2 Effectiveness

Effectiveness can be empirically measured by comparing the test set performance of the unlearned model
to the test set performance of the näıve retrained model. Let y∗pred and yUpred be predictions from the
näıve retrained and unlearned model on a test set ytest. Given a real-valued performance metric M, let
M∗test = M(y∗pred, ytest) and MUtest = M(yUpred, ytest) denote the test set performance, respectively, of the
näıve retrained model and the unlearned model. An example of a measure of the effectiveness of a machine
unlearning algorithm (U , CU) is then given by the absolute difference of these two quantities:

Effectiveness(hU) := |MUtest −M∗test|. (3.2)

The smaller Effectiveness is, the closer in performance the unlearned model is to the näıve retrained
model, and so smaller values of Effectiveness are preferable.

8

3.3 Consistency

Consistency is a measure of how close an unlearned model is to the näıve retrained model; that is, a measure
of whether the unlearning algorithm is producing the ideal machine learning model as its output. Exact
unlearning methods are guaranteed a high level of consistency. In contrast to efficiency and effectiveness,
the literature we consider contains a number of measures for consistency, which differ in their usage and
applicabilities. In this section we include three different measures.

Consistency of a machine unlearning algorithm (U , CU) applied to parametric models can be measured
by the distance between the unlearned and näıve retrained parameters:

Consistencyθ(h
U
θ) := ‖θU − θ∗‖2, (3.3)

where θU and θ∗ are the parameters of hU and h∗ respectively, and ‖ · ‖2 denotes the `2-norm. This is used,
for example, in Wu et al. (2020). Lower values of Consistencyθ are preferable as they indicate that the
parameters of the unlearned model are close to those of the näıve retrained model.

In He et al. (2021), a measure of consistency that is applicable to classification models is considered.
Consistency is given as the proportion of predictions that agree between näıve retrained and unlearned:

Consistencyy(hU) :=
100

ntest

ntest∑
i=1

1y∗pred,i=yUpred,i , (3.4)

where y∗pred,i and yUpred,i are the näıve retrained and unlearned model predictions, respectively, on a test
set containing ntest samples. Higher values of Consistencyy are preferable, since they indicate that test-
set predictions of the unlearned model are similar to those of the näıve retrained model. Note that lower
consistency may be acceptable if effectiveness and certifiability remain high. In this case, the correct predic-
tions of the unlearned model differ but high performance on a test set is maintained; consistency, particularly
Consistencyy, is still useful in this situation as a measure of divergence from the näıve retrained model’s pre-
dictions but it does not necessarily indicate an undesirable machine unlearning algorithm. The Consistencyy

measure is limited to classification models only, however analogues for regression tasks may be considered.
In Golatkar et al. (2019), the Kullback-Leibler (KL) divergence is minimised as part of the loss function.

KL-divergence measures the similarity of two probability distributions P and Q as follows

KL(P‖Q) := EX∼P
[
log

(
p(X)

q(X)

)]
,

where p and q, respectively, are the probability functions (either mass or density) of P and Q. By Gibbs’
inequality, we have KL(P‖Q) ∈ [0,∞). Smaller values of KL give higher similarity between P and Q. This
gives a measure of consistency of an unlearning algorithm applied by measuring the KL-divergence of the
unlearned model distribution to that of the näıve retrained model:

ConsistencyKL(hU) := KL(Pr[hU (x)] ‖Pr[h∗(x)]). (3.5)

Lower values of ConsistencyKL are preferable. The KL-divergence may also be used to measure similar-
ity of probability outputs between the unlearned model and the näıve retrained model, when applied to
classification tasks.

3.4 Certifiability

Certifiability is assurance that the unlearned model has removed information about the deleted data point and
that an unlearning request has been fully complied to with respect to regulations. An important part of this
involves quantifying and minimising vulnerability to inference attacks on the deleted data, which involve the
identification of the deleted data by external attackers. Exact unlearning methods are guaranteed to remove
the influence of the data point to be forgotten, however they may still be vulnerable to inference attacks

9

based around the deleted data points. In such a case, the näıve retrained model is also equally vulnerable
to such inference attacks. To minimise this vulnerability, changes may need to be made to the training
procedure, such as the addition of noise to gradient updates.

Consistency, from the previous section, is something of a precursor to certifiability, and certifiability was
developed in order to address the insufficiency of consistency for guaranteeing deletion, see, for example,
Guo et al. (2020, p. 2). We keep them separate because some definitions and measures of certifiability do not
guarantee consistency and, moreover, the notion of certifiability is slightly removed from that of consistency
on a fundamental level. Consistency is a correctness guarantee, whereas certifiability is a security guarantee.

Measures and guarantees of certifiability differ greatly across the literature. Often, only theoretical guar-
antees are given and proven, such as ε- and (ε, δ)-certifiability (Definitions 4, 5) in Guo et al. (2020). Empirical
measures are given in He et al. (2021), Mahadevan and Mathioudakis (2021), and Golatkar et al. (2019),
which we outline in the rest of this section.

The accuracy of the näıve retrained model on the removed data Du quantifies the amount of information
that the model can be expected to have on the removed data, having never seen this data. This might be
quite high if the remaining data contains similar data, for example. This accuracy is therefore a baseline
with which the accuracy of the unlearned model on Du can be compared, as done in Mahadevan and
Mathioudakis (2021). Here, we extend this to a general performance metric M. Let M∗u := M(y∗u, yu)
and MUu := M(yUu , yu) denote the performance on Du, respectively, of the näıve retrained model and the
unlearned model after unlearning Du. Certifiability is measured by:

Certifiability(hU) :=
|MUu −M∗u|
|MUu |+ |M∗u|

· 100. (3.6)

The right-hand side of Equation (3.6) is called the symmetric absolute percentage error – SAPE(MUu ,M∗u) –
of M∗u and MUu . It is used here to penalise deviations more when M∗u is small, guided by the intuition that
M∗u = 0% and MUu = 10%, say, represents perhaps a more serious breach of information than M∗u = 80%
and MUu = 90%.

Large values of Certifiability imply that the unlearned model contains information about the deleted
data that it should not, so this measure can indicate degradation of certifiability between models, or of
a single model over time. However, since Certifiability measures only the similarity of performance
on the deleted set, small values do not necessarily imply high levels of certifiability such as those seen in
theoretical guarantees. For example, if the näıve unlearned model has high predictive performance on Du and
Certifiability is small, then the success rate at predicting on Du is similar for all three models – original,
näıve, and unlearned. In this case, small Certifiability does not distinguish whether the unlearned model
has forgotten the data, since it will achieve high performance on Du whether Du is present in the training
data or not. To address this issue, He et al. (2021) adapt and apply the backdoor verification experiment
from Sommer et al. (2020). In this experiment, Du is “augmented” and a specific target label is associated
to this augmented data; such augmented data and corresponding label is called backdoor data. The result
is that a model is likely to predict the correct specific backdoor label only if it has been trained on Du.
Hence the näıve retrained model is guaranteed to have poor predictive performance on Du, which allows
Certifiability to be a more meaningful measure of certifiability.

In Golatkar et al. (2019), the Shannon Mutual Information is used as a measure of certifiability. This
measures the amount of information that two random variables X and Y share and is defined by

I(X;Y) := Ex[KL(PY |X‖PY)], (3.7)

where PY |X is the conditional probability distribution of Y with respect to X, and PY is the probability
distribution of Y . By treating the removal subset Du as a random variable (through, for example, random
selection of removal points), the mutual information that Du and the unlearned model share is given by
I(Du;U(A(D), D,Du)). It is shown (Golatkar et al., 2019, Proposition 1, Lemma 1) that this mutual infor-
mation is bounded from above by a specific KL-divergence that is more readily computable. In particular,
once Du is chosen and fixed, the consistency measure ConsistencyKL of (3.5) provides an empirical upper
bound on the mutual information. This procedure is specific to their method and is not applicable in general.

10

4 Exact Unlearning Algorithms

In this section we describe two exact unlearning algorithms. First we describe the SISA algorithm, which
is one of the most broadly applicable methods we include, before considering a highly specialised algorithm
called DaRE, which applies only to decision-tree based machine learning models.

4.1 SISA

The SISA algorithm is an exact unlearning algorithm introduced in Bourtoule et al. (2021), borrowing
aspects from both ensemble learning and distributed training to efficiently unlearn. This is achieved by a
reorganisation of the training dataset, known as sharding and slicing, which reduces the time needed to
retrain from scratch with the specified data removed.

The full SISA algorithm is applicable to any machine learning model that has been trained incrementally,
for example, via gradient descent. The loss function for such models need not be strongly convex, and
Bourtoule et al. (2021) apply SISA successfully to deep neural networks (DNN) in a variety of architectures.
SISA without slicing is applicable to all machine learning models, including decision trees.

4.1.1 Methodology. Bourtoule et al. (2021) define the SISA training process to consist of four key steps
– Sharded, Isolated, Sliced, and Aggregated – which can be seen in Figure 1 and which are described below.
The resultant machine learning model is an ensemble of weak learners. Pseudocode for the SISA training
algorithm can be found in Algorithm 1.

Fig. 1: SISA training, taken from Bourtoule et al. (2021). The training data is split into S shards, which are
further split into R slices. S independent models are trained incrementally on the slices, and predictions of
these models are aggregated to form a final output. The data to unlearn is highlighted in red in this diagram.
To unlearn this data point, only M2 needs to be retrained, and this process starts from slice D2,2. In our

notation (Algorithms 1, 2) model M2 is denoted by h2, and the saved intermediary model state h̃2,j , for each
1 ≤ j ≤ R, correspond to the model trained on the slices

⋃
r≤j D2,r.

(i) Sharded. The original training dataset is separated into approximately equal-sized shards, with each
training data point contained in exactly one shard. This contrasts with other ensemble modelling tech-
niques, in which training data points can be present in many of the learners that make up the ensemble
model.

11

(ii) Isolation. Each of the shards is trained in isolation from the other shards, restricting the influence of
each data point to a single shard.

(iii) Slicing. Each of the shards are sub-divided into slices, which are presented to the algorithm incrementally
as training proceeds. The trained model states are saved after each slice.

(iv) Aggregation. To form the final model prediction for a data point, the predictions of each sharded model
are aggregated, which can be done through a variety of methods.

Whenever a removal request for a single data point comes in, only the model trained on the shard containing
the particular data point needs to be retrained and, moreover, retraining needs only begin from the slice
containing the data point. As a result, the expected retraining time is faster compared to näıve retraining;
the exact speed-up depends on the number of shards and slices used, as discussed below. Algorithms 1 and
2 contain pseudocode for the training and unlearning procedures, which assume no prior knowledge of the
distribution of deletion requests, choosing shards and slices randomly. Prior knowledge of the distribution of
deletion requests allows improvement of the SISA method and is discussed in Bourtoule et al. (2021, Section
VIII). In Algorithms 1, 2, the function Train(D | h̃) produces a model by initialising at the model state h̃
and training on the dataset D.

Several approaches to aggregating during the inference phase are possible. A simple label-based majority
vote involves each constituent model contributing equally to the ensemble model’s final decision. Other
options include averaging the output vectors of class or continuous predictions from each individual model.
The latter method was not found to have a noticeable effect on accuracy for simple datasets, compared to
the label-based majority vote, however mean vector aggregation has higher accuracy for the more complex
ImageNet task (Bourtoule et al., 2021, Figure 13, 14).

Algorithm 1 Initial training with SISA.

Input: training data D, number of shards S, number of slices R, number of epochs for each slice e.
Output: ensemble of models h = (h1, . . . , hS) and intermediary model states h̃ = ({h̃i,0, . . . , h̃i,R})Si=1.

1: procedure SisaTrain(D; S, R, e)
2: split the data randomly into shards D1, . . . , DS and save shard indices for each data point
3: split each shard Di randomly into R slices Di,1, . . . Di,R and save slice indices for each data point

4: randomly initialise (h̃1,0, . . . , h̃S,0)
5: for i = 1; i ≤ S; i+ + do
6: for j = 1; j ≤ R; j + + do

7: hi,j ← Train
(
Di,1 ∪ · · · ∪Di,j | h̃i,j−1

)
for ej epochs

8: save model state h̃i,j of model hi,j
9: end for

10: hi ← hi,R
11: end for
12: return h = (h1, . . . , hS), h̃U = ({h̃i,0, . . . , h̃i,R})Si=1.
13: end procedure

4.1.2 Performance. The datasets used for the evaluation of the SISA algorithm include the Purchase
(Sakar et al., 2018), svhn (Netzer et al., 2011), and the ImageNet (Deng et al., 2009) datasets.

Efficiency. With 20 shards and 50 slices per shard, 8 unlearning requests on the Purchase dataset resulted
in an Efficiency of 4.63×, with 18 unlearning requests on svhn resulting in a Efficiency of 2.45×. The
removal of 39 data points from the more complex ImageNet learning task gave a Efficiency of 1.36×.

The number of shards, S, is an efficiency parameter. As discussed in Bourtoule et al. (2021, Section
VII.A), increasing the number of shards increases the efficiency of SISA, but will degrade the predictive
performance of the resultant machine learning model compared to a lower number of shards. For the simpler
learning tasks tested (svhn and Purchase datasets) increasing S > 20 entails a more noticeable drop in
accuracy. Increasing the number of slices in each shard, R, reduces the retraining time but this does not

12

Algorithm 2 SISA removal mechanism.

Input: ensemble of models h = (h1, . . . , hS), saved intermediary states h̃ = ({h̃i,0, . . . , h̃i,R})Si=1, data D
with saved shard-slice indices, removal data Du, number of shards S, number of slices R, epochs e.
Output: unlearned model hU = (hU1 , . . . , h

U
S) and intermediary model states h̃U = ({h̃Ui,0, . . . , h̃Ui,R})Si=1.

1: procedure SisaUnlearn(h, h̃, D, Du; S, R, e)
2: for i = 1; i ≤ S; i+ + do
3: initialise model hUi,R ← hi and states {h̃Ui,0, . . . , h̃Ui,R} ← {h̃i,0, . . . , h̃i,R}
4: if ∃z ∈ Du with shard index i then
5: ri ← find minimal slice index for all z ∈ Du that have shard index i
6: for j = ri; j ≤ R; j + + do
7: D′i,j ← Di,j \ (Du ∩Di,j)

8: hUi,j ← Train
(
Di,1 ∪ · · · ∪Di,ri−1 ∪D′i,ri ∪ · · · ∪D

′
i,j | h̃Ui,j−1

)
for ej epochs

9: save model state h̃Ui,j for hUi,j
10: end for
11: end if
12: hUi ← hUi,R
13: end for
14: return hU = (hU1 , . . . , h

U
S)i, h̃

U = ({h̃Ui,0, . . . , h̃Ui,R})Si=1

15: end procedure

degrade accuracy provided that the epochs in training are carefully chosen (Bourtoule et al., 2021, Sections
V, VII). However, an increase in R does come at increased storage costs due to the increased number of saved
model states. As discussed in ibid., (Appendix C), the efficiency-storage trade-off of R may be preferable to
the efficiency-effectiveness trade-off of S. Bourtoule et al. (2021) derive a maximum theoretical efficiency of
(R+1)S

2 ×.

Effectiveness. The experiments on simple tasks – Purchase and svhn – outlined above resulted
in Effectiveness values of less than 2%. The more complex ImageNet removal observed a larger
Effectiveness of 18.76%.

Consistency. Consistency is guaranteed by the exact nature of the SISA removal mechanism.

Certifiability. Bourtoule et al. (2021) argue that as the SISA mechanism inherently retrains without the
removed data, this shows that SISA is exact. The certificate of unlearning is therefore provided by exactness
in this case. However, if an attacker has access to the model before and after an unlearning request is made,
then the SISA method is vulnerable to having information about the deleted data points inferred, as discussed
in Golatkar et al. (2019).

4.2 DaRE Forests

In ‘Machine Unlearning for Random Forests’, Brophy and Lowd (2021) introduce an exact (ibid., Theorem
3.1) unlearning algorithm that is specific to decision-tree and random-forest based machine learning models
for binary classification. This is done through the development of Data Removal-Enabled (DaRE) trees,
and the ensemble of these to form DaRE Forests (DaRE RF). Through the use of strategic thresholding at
decision nodes for continuous attributes, high-level random nodes, and caching certain statistics at all nodes,
DaRE trees enable efficient removal of training instances.

4.2.1 Methodology. The DaRE forest is an ensemble consisting of DaRE trees in which each tree is
trained independently on a copy of the training data, which differs from the data bootstrapping of traditional

13

random forests. Aside from this, the DaRE forest ensembles in the same way as a random forest, in particular
a random subset of p̃ features are considered at each split.

In the rest of this section, we focus on DaRE trees, which must be initially trained in the DaRE method-
ology of Algorithm 3. As in regular decision trees, DaRE trees are trained recursively by selecting, at most
nodes, an attribute and threshold that optimises a split criterion (Gini index in Brophy and Lowd (2021)).
They differ from regular decision trees in three key ways as follows.

(i) Random nodes. The top drmax levels of nodes in a DaRE tree are random nodes, where drmax is
an integer hyperparameter. Random nodes are defined as nodes for which both an attribute a and a
threshold in the attribute range [amin, amax) are chosen uniformly at random.

(ii) Threshold sampling. During training and deletion, DaRE trees randomly sample k valid thresholds
at any node that is neither a random node nor a leaf. These are thresholds that lie between two adjacent
data points with opposite labels. Doing so reduces the amount of statistics one needs to store at each
node and speeds up computation.

(iii) Statistics caching. At each node, the number of data points |Dnode| and |Dnode,1| are stored and
updated, where Dnode is the input dataset to the node and Dnode,1 ⊆ Dnode is the subset of positive
instances. For each of the k candidate valid thresholds v, various additional statistics are stored and
updated. The exact form of these depends on the type of node (see Brophy and Lowd, 2021, Appendix
A.6). In each case these statistics are sufficient to recompute the split criterion scores and to determine
the validity of the current thresholds. At leaf nodes, pointers to the training data at that leaf are stored.
As a result, the removal mechanism is able to recall training data from the stored leaf instances, meaning
that training data is not required as an explicit input to the mechanism.

Deletion of a data point z is given in Algorithm 4. Only those subtrees that have been trained on z
are considered. At each decision node that is neither random nor a leaf, statistics are recalculated and the
split criterion is updated for each attribute-threshold pair. If a different optimal threshold is found then
the subtree rooted at this node is retrained. At the relevant leaf node, the pointer to z is deleted. Random
nodes are rarely retrained, only if the randomly chosen threshold no longer lies within the attribute range
[amin, amax).

The DaRE RF inherits the following hyperparameters of random forests: p̃ is the number of random
attributes to consider at each split; dmax is the maximum depth for each tree; T is the number of trees in
the forest. DaRE RFs have two additional hyperparameters: k is the number of random valid thresholds to
sample at each split; drmax is the number of top layers that are used for random nodes.

4.2.2 Performance. The authors evaluate DaRE RFs on 13 real-world binary classification datasets
and one synthetic dataset via efficiency and effectiveness; the proof of exactness, (Brophy and Lowd, 2021,
Theorem 3.1), covers certifiability.

For the experiments considered by Brophy and Lowd (2021), hyperparameters are chosen or tuned as
follows. The parameter p̃ is set at b√pc. The parameters dmax, T , and k are tuned using 5-fold cross-
validation, with drmax = 0 fixed, to maximise the relevant performance metric for the task at hand, using
the Gini index as the split criterion. The parameter drmax is incremented from drmax = 0 until the 5-fold
cross-validation score breaches four separate absolute error loss tolerances {0.1, 0.25, 0.5, 1.0} relative to the
DaRE RF with drmax = 0, yielding four DaRE RFs with varying proportions of random nodes. Larger error
tolerances lead to larger values of drmax (Brophy and Lowd, 2021, Appendix B.2, Table 6). Performance of
all five DaRE RF models – drmax = 0 and the four tuned drmax – are considered.

Efficiency. Efficiency is measured as the number of training instances that can be deleted by DaRE RF in
the time it takes to delete one instance via näıve retraining, which is equivalent to Efficiency (3.1). When
deleting points at random, the average Efficiency of DaRE RFs is 2–4 orders of magnitude. In the best
case, DaRE RF achieves a Efficiency of 35,856×, achieved on the higgs dataset and with the highest
proportion of random nodes; the average Efficiency across all 14 datasets for the highest drmax DaRE RF

14

Algorithm 3 DareTrain(D, 0; drmax, k) trains a single DaRE tree (Brophy and Lowd, 2021).

Input: data Dnode, depth d, random node depth drmax, threshold candidate size k.
Output: trained subtree rooted at a level-d node.

1: procedure DareTrain(Dnode, d; drmax, k)
2: if stopping criteria reached then
3: node← LeafNode()
4: save instance counts |Dnode|, |D1|
5: save leaf-instance pointers(node,Dnode)
6: compute leaf value(node)
7: else
8: if d < drmax then
9: node← RandomNode()

10: save instance counts |Dnode|, |Dnode,1|
11: a← randomly sample attribute(Dnode)
12: v ← randomly sample threshold ∈ [amin, amax)
13: save threshold statistics(node, Dnode, a, v)
14: else
15: node← GreedyNode()
16: save instance counts |Dnode|, |Dnode,1|
17: A← randomly sample p̃ attributes(Dnode)
18: for a ∈ A do
19: C ← get valid thresholds(Dnode, a)
20: V ← randomly sample k valid thresholds(C)
21: for v ∈ V do
22: save threshold statistics(node, Dnode, a, v)
23: end for
24: scores← compute split scores(node)
25: select optimal split(node, scores)
26: end for
27: end if
28: Dleft, Dright ← split on selected threshold(node, Dnode)
29: node.left = DareTrain(Dleft, d+ 1; drmax, k)
30: node.right = DareTrain(Dright, d+ 1; drmax, k)
31: end if
32: return node
33: end procedure

is 1,272×. A worse-case deletion strategy called worst-of-1000 is also considered, giving average Efficiency

of 1–3 orders of magnitude.
Note that DaRE RF training has the same time complexity, O(T p̃ndmax), as the training for a traditional

random forest (Brophy and Lowd, 2021, Theorem 3.2). Time complexities for deleting a single instance are
given in ibid. (Theorem 3.3); the best-case time complexity occurs when the tree structure is unchanged and
all attribute thresholds remain valid, which is O(p̃kdmax), with additional costs occurring when thresholds
become invalid and subtrees require retraining.

Effectiveness. Test set performance of each DaRE RF is compared to the DaRE RF with no random nodes.
In most cases, Effectiveness < 1%. Larger proportions of random nodes generally degrades performance,
particularly for the Credit Card and higgs datasets, for which we see Effectiveness ≈ 2%.

In Brophy and Lowd (2021, Appendix B.2.), the predictive performances of the various DaRE RFs are
compared to the scikit-learn implementation of random forests. As shown in Table 5, ibid., DaRE RFs with
random nodes have worse performance than the standard random forest across all datasets, but in some
cases the DaRE RF with no random nodes improves on performance over the scikit-learn random forest.

15

Algorithm 4 Deleting a training instance from a DaRE tree, (Brophy and Lowd, 2021).

Require: start at the root node.
Input: node, data point to remove z, depth d, random node depth drmax, threshold candidate size k.
Output: retrained subtree rooted at node.

1: procedure DareUnlearn(node, z, d; drmax, k)
2: update instance counts |Dnode|, |Dnode,1|
3: if node is a LeafNode then
4: remove z from leaf-instance pointers(node, z)
5: recompute leaf value(node)
6: remove z from database and return
7: else
8: update decision node statistics(node, z)
9: if node is a RandomNode then

10: if node.selectedThreshold is invalid then
11: Dnode ← get data from the set of leaf instances(node) \ {z}
12: if node.selectedAttribute(a) is not constant then
13: v ← resample threshold ∈ [amin, amax)
14: Dnode,`, Dnode,r ← split on new threshold(node, Dnode, a, v)
15: node.`← DareTrain(Dnode,`, d+ 1; drmax, k)
16: node.r ← DareTrain(Dnode,r, d+ 1; drmax, k)
17: else
18: node← DareTrain(Dnode, d; drmax, k)
19: end if
20: remove z from database and return
21: end if
22: else
23: if ∃ invalid attributes or thresholds then
24: Dnode ← get data from the set of leaf instances(node) \ {z}
25: resample invalid attributes and thresholds(node, Dnode)
26: end if
27: scores← recompute split scores(node)
28: a, v ← select optimal split(node, scores)
29: if optimal split has changed then
30: Dnode.left, Dnode.right ← split on new threshold(node, Dnode, a, v)
31: node.left← DareTrain(Dnode.left, d+ 1; drmax, k)
32: node.right← DareTrain(Dnode.right, d+ 1; drmax, k)
33: remove z from database and return
34: end if
35: end if
36: if xa ≤ v then
37: DareUnlearn(node.left, z, d+ 1; drmax, k)
38: else
39: DareUnlearn(node.right, z, d+ 1; drmax, k)
40: end if
41: end if
42: end procedure

16

The level of random nodes in a DaRE RF, drmax, is an efficiency parameter, with larger values entailing
faster unlearning at the cost of predictive performance. This is demonstrated in Brophy and Lowd (2021,
Appendix B.2, Table 6), in which higher error tolerances lead to higher proportions of random nodes. Test
set error is shown to increase dramatically once drmax gets too large (Brophy and Lowd, 2021, Figure 2). The
number of valid thresholds to consider, k, is another efficiency parameter. Reducing k will increase efficiency,
however predictive performance suffers (Brophy and Lowd, 2021, Figure 3). Predictive performance plateaus
after k = 5 for the Surgical dataset, which gives an optimal choice of k = 5 in this case.

Consistency and certifiability. Consistency and certifiability of the DaRE algorithm are guaranteed by the
exact nature of the removal mechanism, as proven by Brophy and Lowd (2021, Theorem 1.3). The certificate
of unlearning for DaRE is therefore provided by exactness.

5 Approximate Unlearning Algorithms

Approximate unlearning algorithms originate from a proposal in the work of Ginart et al. (2019). In this
section we describe five approximate methods, some of which build upon the ideas of Ginart et al. (2019).
They are given in chronological order.

5.1 Fisher

The Fisher algorithm, introduced by Golatkar et al. (2019), applies to parametric models and is an approx-
imate unlearning algorithm that updates the parameters of a pre-trained convex model in a time-efficient
manner. The method facilitates the removal of the information about certain data without retraining the
model from scratch, via a strategic mix of Newton correction and noise injection. Precise upper bounds on
the amount of information that can be extracted about the removed data can be calculated.

5.1.1 Methodology. Golatkar et al. (2019) develop a batch unlearning removal mechanism in which a
subset of the data Du ⊆ D is unlearned from a trained parametric model. They formalise the definition of
“complete” forgetting by introducing the condition that forgetting of information can only be guaranteed if
the KL divergence, (3.5), between the probability distributions of outputs from the unlearned and the näıvely
retrained models, is zero. By Golatkar et al. (2019, Proposition 1), this also ensures that there is zero Shannon
Mutual Information, I(Du;U(hθ, D,Du)) = 0, as defined in Equation (3.7), between the deleted data Du

and the unlearned model, U(hθ, D,Du). The authors therefore stress on minimising the KL divergence as
part of the unlearning objective function. This can be achieved by updating the parameters of the initial
model through a single Newton step on the remaining data, or by adding Gaussian noise in the direction
of this Newton step, or both (see Golatkar et al., 2019, Corollary 1). Upon Newton correction and noise
injection to the weights of the original model, the Fisher training and unlearning method are respectively
expressed as:

θ : = sgd(L(θinit, D)) + σF−
1
4 b, (5.1)

θU : = θ − F -1∆rem︸ ︷︷ ︸
Newton step

+ σF -1/4b,︸ ︷︷ ︸
noise injection

(5.2)

where sgd is the stochastic gradient descent algorithm; θinit are the initialised parameters; θU are the
unlearned parameters; σ > 0 is the noise parameter; F is the Fisher Information Matrix (Golatkar et al.,
2019, Eq. (8)); b ∼ N (0, 1)p is Gaussian noise, where recall that p is the dimensionality of the training data;
and

∆rem : = ∇L(θ,D \Du), (5.3)

17

denotes the gradient of the loss function of θ on the remaining data. The Fisher Information matrix is used
as an approximation to the Hessian as the Fisher matrix is less expensive to compute. In some cases, such as
when the loss function is the log-likelihood (for example, Mahadevan and Mathioudakis (2021) who consider
linear logistic regression), the Fisher Information Matrix and Hessian coincide. The algorithm for the deletion
of data points in mini-batches from (Mahadevan and Mathioudakis, 2021) using this method is shown in
Algorithm 5.

Algorithm 5 Fisher removal mechanism, (Golatkar et al., 2019; Mahadevan and Mathioudakis, 2021).

Input: trained model parameters θ, training dataset D, subset of data to be removed Du, noise parameter
σ, mini-batch size m′.
Output: unlearned model parameters θU .

1: procedure FisherUnlearn(θ, D, Du; σ, m′)
2: assign the number of batches s← d mm′ e (m is the number of samples in Du)
3: split Du into s mini-batches D1

u, D2
u,...,Ds

u, each of size m′

4: initialise D′ ← D
5: initialise θU ← θ
6: for i = 1; i ≤ s; i+ + do
7: D′ ← D′ \Di

u

8: ∆← ∇L(θU , D′)
9: F ← compute Fisher Information Matrix of L and D′, (Golatkar et al., 2019, Eq. (8))

10: θU ← θU − F -1∆
11: if σ > 0 then
12: draw b ∼ N (0, 1)p

13: θU ← θU + σF -1/4b
14: end if
15: end for
16: return θU

17: end procedure

5.1.2 Performance.

Efficiency. Apart from the original paper, Mahadevan and Mathioudakis (2021) evaluate the performance
of the Fisher method across datasets varying in dimensionality and size. They show that the Fisher method
is a moderately efficient unlearning method across the range of dimensionalities (ranging from 28 to 3072)
and sizes (from ∼ 104 to ∼ 106) of the datasets. Controlling for the noise parameter, σ = 1, and using only
one mini-batch, they found that the method offered an Efficiency of up to 50× for the low-dimensional
datasets while only around 1.8× for the high-dimensional datasets. The large difference in the algorithm’s
performance across different dimensionalities is due to the difference in the cost of computing the inverse
Hessian matrix, which is much faster to calculate when the dimensionality is low.

The mini-batch size m′ used by Mahadevan and Mathioudakis (2021) is an efficiency parameter. It
controls a trade-off between efficiency and both effectiveness and certifiability (ibid. (Figures 3, 4)), since
a smaller number of batches (large mini-batch size) ensures that the Fisher matrix is calculated a fewer
number of times at the cost of fewer Newton steps. When measuring the effectiveness-efficiency trade-off,
the authors find that the method suffers a huge loss in efficiency, especially in the high dimensional setting
where the Efficiency of the method reduced to as low as 0.4×. The authors attribute this poor efficiency to
the computational effort it takes to inject noise post update, which takes longer when the dimensionality is
high. In the low dimensionality setting, Efficiency reduced to 9×, and high effectiveness was maintained.

Effectiveness. In Golatkar et al. (2019, Table 1), effectiveness of the Fisher method when unlearning a subset
of 100 images from the Lacuna-10 and cifar-10 datasets is approximately 4 − 5% in each case, measured
with Effectiveness. This translates to approximately 2−3% in percentage error, which is the measure used

18

by Mahadevan and Mathioudakis (2021, Eq. (19)), who achieve percentage error of ≤ 1% across all 6 tested
datasets. The better effectiveness observed in Mahadevan and Mathioudakis (2021) results from the use of
mini-batches in the update stage.

Consistency. Consistency is given in Golatkar et al. (2019, Proposition 2) by providing a computable upper
bound for the KL-divergence measure ConsistencyKL of (3.5). This bound is 3.3 for the Lacuna-10 dataset
and 33.4 for cifar-10. Consistency is not measured in Mahadevan and Mathioudakis (2021).

Certifiability. As shown by Golatkar et al. (2019), the KL-divergence measure (3.5) is an upper bound for the
Shannon Mutual Information. Therefore, the Shannon Mutual Information between Du and the unlearned
model is at most 3.3 kNATs for the Lacuna-10 dataset and 33.4 kNATs for cifar-10. In Mahadevan and
Mathioudakis (2021, Figure 3), certifiability is shown using Certifiability for different values of the
noise parameter σ. For small volumes and σ = 0, Certifiability mostly has values between 0% and
1%, however a notable large value of Certifiability ≈ 10% is observed for the higgs dataset. Values
of Certifiability decrease for σ = 1, entailing better certifiability. Note, however, that the increase in σ
degrades the effectiveness of the method since large amount of noise yields less optimal parameters and lower
accuracy for such models.

5.2 Influence

The Influence algorithm, introduced by Guo et al. (2020), is an approximate unlearning algorithm that
applies to parametric models and leverages the ML influence theory (Koh and Liang, 2020) to unlearn.
Specifically, the method performs unlearning by quantifying the influence of the deleted data on the original
model’s parameters and applying a Newton update to these parameters to remove the identified influence
of the deleted data. Despite employing a Newton update removal mechanism for unlearning similar to the
Fisher method (Section 5.1), this method takes a different approach to noise injection in order to guarantee
certifiability. More specifically, the noise in this method is added to the gradient loss at every step of the
initial training of the model, unlike in the Fisher method in which noise is added at the end of the training
and unlearning procedures. The authors justify this choice by stressing that the direction of the gradient
residual at the time of parameter update may reveal information about the deleted data, which can be
prevented by adding the noise at the time of training.

5.2.1 Methodology. The noise-injected objective function used for training this method is expressed as:

Lσ(θ,D) := L(θ,D) +
σbT θ

|D|
, (5.4)

where σ is the noise control parameter, θ is the vector of model parameters, b ∼ N (0, 1)p is Gaussian noise.
Training for Influence optimises the noisy loss (5.4). Note that noise is added at every step of the

optimisation procedure, in contrast to Fisher which adds noise only at the end. Moreover loss is only added
during training time and not during the removal mechanism (where the original loss function L(θ,D) is
used). To unlearn, a single Newton update on the model parameters θ is performed as follows:

θU := θ +H−1∆u, (5.5)

where

∆u : = ∇L(θ,Du), (5.6)

H : = ∇2L(θ,D \Du), (5.7)

denote, respectively, the gradient of the loss function on the deleted data and the Hessian of the loss function
(without noise) on the remaining data. The so-called influence function H−1∆u gives the direction, H, and

19

magnitude, ∆u, of the step required to remove the influence of the deleted data from θ. The Influence removal
mechanism is shown in Algorithm 6.

Algorithm 6 Influence removal mechanism, (Mahadevan and Mathioudakis, 2021).

Input: trained model parameters θ, original train dataset D, subset of data to be deleted Du, mini-batch
size m′.
Output: unlearned model parameters θU .

1: procedure InfluenceUnlearn(θ, D, Du; m′)
2: assign the number of batches s← d mm′ e (m is the number of samples in Du)
3: split Du into s mini-batches D1

u, D2
u,...,Ds

u, each of size m′

4: initialise D′ ← D
5: initialise θU ← θ
6: for i = 1; i ≤ s; i+ + do
7: D′ ← D′ \Di

u

8: ∆m′ ← ∇L
(
θU , Di

u

)
9: H ← ∇2L

(
θU , D′

)
10: θU ← θU +H−1∆m′

11: end for
12: return θU

13: end procedure

5.2.2 Performance.

Efficiency. Mahadevan and Mathioudakis (2021) evaluate the performance of the Influence method across
datasets varying in dimensionality and sizes of the training datasets, as described in Section 5.1. Controlling
for the noise parameter, σ = 1, they found that the method offered a Efficiency of up to 200× for the
low-dimensional datasets while only around 5× for the high-dimensional datasets on bulk removals. The
large difference in the method’s performance across different dimensionalities is due to the difference in the
cost of computing the inverse Hessian matrix, which is much faster to calculate when the dimensionality is
low.

As in the Fisher method, Section 5.1, the mini-batch size m′ acts as an efficiency parameter, which is
because smaller mini-batch sizes lead to a larger number of calculations of the Hessian of the loss function. The
effect of the trade-off between efficiency and both effectiveness and certifiability is discussed in Mahadevan
and Mathioudakis (2021, Figures 3, 4).

Effectiveness. Mahadevan and Mathioudakis (2021) found that despite being highly efficient, the Influence
method did not compromise effectiveness too much. For example, Influence is no more than 1% less effective
than Fisher when evaluated using the percentage error (ibid., Eq. (19)).

Consistency. In Guo et al. (2020), consistency is measured by considering the `2-norm of the gradient
residual ‖∇L(θU , D \Du)‖2. For the true optimiser minθ L(θ,D \Du) this gradient residual is zero, hence
the value ‖∇L(θU , D \Du)‖2 measures the error of the parameters θU in approximating the true optimiser.
Upper bounds for this gradient residual are provided in ibid. (Theorems 1, 2; Corollary 1, 2), which give
non-data-dependent and data-dependent bounds for single and batch deletion. These are empirically verified
on mnist in ibid. (Fig. 2). Consistency is not measured in Mahadevan and Mathioudakis (2021).

Certifiability. For a desired ε > 0, the Influence method is shown to be ε- and (ε, δ)-certified for an ε-dependent
choice of σ given in Guo et al. (2020, Theorem 3). In Mahadevan and Mathioudakis (2021), certifiability is
measured using Certifiability. Increasing σ allows for smaller ε and gives larger Certifiability values,
thereby increases the certifiability of the model, however, as shown in Guo et al. (2020, Figure 1) and
Mahadevan and Mathioudakis (2021, Figure 5), this comes at the cost of a degradation in effectiveness. It

20

is interesting to note that in Guo et al. (2020), test accuracy is relatively stable until a certain value of σ,
after which it experiences dramatic decline.

5.3 DeltaGrad

The DeltaGrad algorithm is first described in Wu et al. (2020). It is an approximate unlearning algorithm
that uses information cached from the initial training process to more efficiently compute model parameters
after data points have been removed. DeltaGrad is only applicable to parametric machine learning models
trained using gradient descent or mini-batch stochastic gradient descent, with loss functions that are strongly
convex and smooth (Wu et al., 2020, Section 2.3).

5.3.1 Methodology. Throughout this section, L(θ) = L(θ,D) denotes the empirical loss function on the
full training dataset. An initial model is trained using a gradient descent algorithm, giving a vector of trained
model parameters θ. At each step of training, t, the model parameters {θ0, θ1, ...θt} and the gradients of the
loss function {∇L(θ0),∇L(θ1), ...∇L(θt)} are saved.

In contrast to the Fisher and Influence methods of Sections 5.1, 5.2 which unlearn by performing gradient
descent steps starting from the original optimised model parameters, DeltaGrad performs gradient descent
from the same initial parameters of the original training procedure and recalculates all gradient descent
steps. The time to retrain is reduced from that of näıve retraining by calculating only some of the gradient
descent steps exactly and approximating all other steps. Specifically, the first j0 steps and every T0 step
thereafter are calculated explicitly, where j0, T0 > 0 are integer hyperparameters.

Gradient steps, when deleting m data points with indices in M (i.e., Du = {zi | i ∈ M} ⊆ D), are
approximated by first rewriting the gradient descent update formula as follows (Wu et al., 2020, Eq. (2)):

θUt+1 ← θUt −
ηt

n−m

[
n∇L(θUt)−

∑
i∈M
∇Li(θUt)

]
, (5.8)

where n is the number of data points in D. The value n∇L(θUt) is approximated, with the rest of the terms
in (5.8) calculated explicitly; under the assumption m � n the latter explicit calculation is comparatively
inexpensive. The quantity n∇L(θUt) can be expressed, using the Cauchy mean-value theorem (Wu et al.,
2020, Eq. (3)), in terms of an integrated Hessian Ht. The L-BFGS algorithm5 then approximates the vector
product Ht · v as a quasi-Hessian product Bt · v. Put together, this allows the gradient step of (5.8), to be
approximated as:

θUt+1 ← θUt −
ηt

n−m

[
n(∇L(θt) +Bt · (θUt − θt))−

∑
i∈M
∇Li(θUt)

]
. (5.9)

To compute the quasi-Hessian Bt, L-BFGS uses k previously stored parameter and gradient differences,
θUj − θj and ∇L(θUj) − ∇L(θj), where k > 0 is an integer hyperparameter. The two differences are stored
only during the explicitly computed gradient steps, during the first j0 steps and every T0 step thereafter.

DeltaGrad is extended to mini-batch stochastic gradient descent in Wu et al. (2020, Section 3), with
a randomly sampled mini-batch B of size B. Algorithm 4, ibid., further extends DeltaGrad to DNNs by
checking whether a loss function is convex and smooth locally. In this case, the arrays of historical parameter
updates ∆G and gradients ∆W are only saved when local convexity holds and an exact GD update is used
otherwise. This extension of the method adds an additional computational cost to unlearning.

The work of Mahadevan and Mathioudakis (2021, Equation 16) expands this algorithm slightly by follow-
ing the removal mechanism, described in Algorithm 7, with the injection of a Gaussian noise vector controlled
by a noise parameter, σ, in order to control the trade-off between effectiveness and certifiability.

5 https://link.springer.com/article/10.1007/BF01589116

21

https://link.springer.com/article/10.1007/BF01589116

Algorithm 7 DeltaGrad removal mechanism, (Wu et al., 2020)

Input: model training parameters θ := {θ0, θ1, ...θt}, training data D, indices of removed training
samples M , stored training gradients ∇L(θ) := {∇L(θ0),∇L(θ1), ...∇L(θt)}, period T0, total iteration
number T , history size k, burn-in iteration number j0, learning rate ηt.
Output: unlearned model parameters θU = θUT .

1: procedure DeltaGradUnlearn(θ, D, M ; ∇L(θ), T0, T , k, j0, ηt)
2: initialise θU0 ← θ0

3: initialise an array ∆G← []
4: initialise an array ∆Θ← []
5: `← 0
6: for t = 0; t ≤ T ; ++ do
7: if [(t0 − j0) (mod T0) == 0] or t ≤ j0 then
8: compute ∇L(θUt) exactly
9: compute ∇L(θUt)−∇L(θt), using the cached gradient ∇L(θt)

10: ∆G[`]← ∇L(θUt)−∇L(θt)
11: ∆Θ[`]← θUt − θt
12: `← `+ 1
13: compute θUt+1 by using exact GD update
14: else
15: Bjk ← L-BFGS(∆G[−k :],∆Θ[−k :])
16: ∇L(θUt)← ∇L(θUt) +Bjk(θUt − θt) approximate the gradient
17: compute θUt+1 via the modified gradient formula, Eq. (5.9), using approximated ∇L(θUt)
18: end if
19: end for
20: return θUt
21: end procedure

5.3.2 Performance. Wu et al. (2020) evaluate DeltaGrad applied to logistic regression for the mnist,
Covtype, higgs, and rcv1 datasets. With the inclusion of noise injection, Mahadevan and Mathioudakis
(2021) compared the performance of DeltaGrad to Fisher and Influence methods of Sections 5.1, 5.2.

Efficiency. Wu et al. (2020) show that Efficiency values for DeltaGrad are 2.5×, 2×, 1.8× and 6.5× on
the mnist, Covtype, higgs, and rcv1 datasets, respectively. It is noted by this work that the theoretical
efficiencies that would be expected from this method are not fully achieved, suggesting that a significant
portion of this discrepancy originates in the L-BFGS computation of the Hessian projection. Mahadevan
and Mathioudakis (2021, Fig. 3(b)) shows that the DeltaGrad method with noise injection is actually slower
than näıve retraining for the low and medium dimensionality datasets (Covtype, higgs, mnist), but gives
Efficiency of ∼2.0-2.5× for the high-dimensionality datasets of cifar2 and Epsilon.

Under the five assumptions of Wu et al. (2020, Section 2.3), DeltaGrad guarantees convergence at the rate
o
(
m
n

)
(ibid., Theorems 1, 2). This shows that DeltaGrad is strong (Definition 11), since we have m = 1 for

sequential deletions, yielding a convergence rate, o
(

1
n

)
, that is independent of the position in the sequence.

Effectiveness. In their experiments, Wu et al. (2020, Table 1) obtain the same predictive performances,
within error, after DeltaGrad as for after näıve retraining on the mnist, Covtype, higgs and rcv1 datasets,
indicating very high effectiveness. In contrast, however, Mahadevan and Mathioudakis (2021, Fig. 4) show
that the effectiveness of DeltaGrad is generally lower than the Fisher and Influence algorithms. It can also
be seen there that the hyperparameter T0 is an efficiency parameter, decreasing it will increase efficiency due
to fewer explicit gradient steps, but causes a slight drop in effectiveness.

Consistency. In Wu et al. (2020, Table 2), consistency is measured via Consistencyθ, which measures the
`2 distances between the unlearned parameters and the näıve retrained parameters. Deletion from the mnist
dataset showed the largest parameter difference of 2 × 10−4, with deletion from the rcv1 dataset showing

22

the smallest difference in parameters of 3.5 × 10−6. Theorem 1, ibid., provides a theoretical guarantee of
consistency.

Certifiability. While certifiability is not discussed in the original paper (Wu et al., 2020), the certifiability of
the model is measured in Mahadevan and Mathioudakis (2021) using Certifiability. The hyperparameter
σ acts as a certifiability parameter, increasing it will increase certifiability by providing lower Certifiability
scores, however this generally comes at the cost of efficiency and effectiveness, as demonstrated by Mahadevan
and Mathioudakis (2021, Figs. 3, 5). It is also shown there that DeltaGrad generally achieves comparable
values of Certifiability to the Fisher and Influence methods across all datasets when σ = 1.

5.4 Descent-to-Delete

In ‘Descent-to-Delete: Gradient-Based Methods for Machine Unlearning’, Neel et al. (2020) propose several
gradient-based unlearning algorithms for convex parametric models. These algorithms apply to arbitrary
length sequences of addition as well as removal requests in which each request gets handled immediately
before the next comes in, however we focus only on removal requests here. The requests are handled using
gradient descent steps starting from the optimum of the original model for the first request and from the
state after the most recent update for future requests. They prove that under certain assumptions these
approaches offer constant or logarithmic run-time in relation to the number of requests. In addition, under
stronger assumptions they also offer (ε, δ)-certifiability (Definition 5) of the full internal model state. Their
paper, however, focuses on theoretical results and does not offer any empirical evidence of performance.

Their work also contributes several terminologies to the unlearning literature. Firstly, they distinguish
perfect and imperfect unlearning algorithms. Perfect unlearning algorithms require (ε, δ)-certifiability of the
full internal state (i.e., all optimised parameters obtained throughout the deletion sequence) of the algorithm
versus the less stringent requirement of (ε, δ)-certifiability of only the final outputs (Neel et al., 2020, Defini-
tion 2.4). Secondly, their paper introduces the concept of a strong unlearning algorithm (Definition 11) that
updates in at most logarithmic run-time in relation to the sequence of delete requests.

5.4.1 Methodology

Basic perturbed gradient descent. Their first algorithm unlearns a sequence of data points {zi}i≥0 from
models that have strongly convex loss functions and applies projected gradient descent updates upon each
deletion request using the projection function ProjΘ(θ) = arg minθ′∈Θ ‖θ − θ′‖2. This is followed by a small
perturbation of the model’s parameters to guarantee (ε, δ)-certifiability. This noise removes the ability of an
attacker, with access to the model before and after unlearning, to identify data points that were forgotten.
After each unlearning procedure, updated datasets Di and unlearned models hθi form the basis of the input
for the following procedure in the sequence of requests, as specified in (2.3). If perfect deletion is not required,

the unlearned parameters of the ith update, θ̂i, in Algorithm 8 may be used as the input for the subsequent
update instead of the published output parameters θ̃i. They also extend this algorithm to the non-strongly
convex case by introducing a variant with `2 regularization.

A key hyperparameter of these algorithms is the number of gradient descent updates to take following a
deletion request, Ti. In the regularized model, the number of updates must be balanced against the amount
of noise added to the final parameters. Another key hyperparameter is the variance of the noise, σ, which is
calculated using estimates of the Lipschitz constant and the smoothness of the convex loss function in Neel
et al. (2020, Theorems 3.1, 3.2) for the unregularized and regularized versions of the algorithm, respectively.

Perturbed distributed descent. Neel et al. (2020) also introduce a second algorithm, perturbed distributed
descent, following the same vein as the work of Zhang et al. (2013) and Bourtoule et al. (2021), suitable
for larger datasets but that requires modifying the training process. The algorithm partitions the data into
K parts, trains separate models on each partition, averages the parameters across the trained models, and
then perturbs the final parameters. Upon each deletion request, the models affected may be retrained using

23

Algorithm 8 Perfect ith unlearning for basic perturbed gradient descent, (Neel et al., 2020).

Input: published model parameters θ̃i−1, dataset Di−1, update data point zi−1, number of iterations
Ti, noise parameter σ > 0.
Output: published unlearned parameters θ̃i.

1: procedure PGDUnlearn(θ̃i−1, Di−1, zi−1; Ti, σ)
2: initialise θ′0 ← θ̃i−1

3: Di ← Di−1 \ {zi−1}
4: for t = 1; t ≤ Ti; t+ + do
5: θ′t ← ProjΘ(θ′t−1 − ηt∇L(θ′t−1, Di))
6: end for
7: θ̂i ← θ′Ti
8: draw Z ∼ N (0, σ2Ip)

9: return θ̃i = θ̂i + Z
10: end procedure

the basic perturbed gradient descent algorithm described above. This may offer some improvements over
Bourtoule et al. (2021) by removing the need for näıve retraining of the affected model. The authors also
introduce a form of reservoir sampling prior to the gradient descent updates to ensure that the data post-
deletion is distributed as i.i.d. samples drawn from the current dataset with replacement. This is required
for the guarantees on the out-of-sample error rate, described in Zhang et al. (2013), to hold. In addition,
Neel et al. (2020) extend their algorithm by training C different copies in parallel and publishing the one
that achieves the lowest loss, in order to achieve stronger guarantees on consistency of the unlearned model.
The pseudocode for these procedures can be found in Neel et al. (2020, Algorithms 5, 6, 7).

5.4.2 Performance. Neel et al. (2020) provide theoretical performance of the algorithms and do not pro-
vide any empirical evaluations. However, the theoretical guarantees performances and guarantees are explicit
and demonstrate clearly the role of parameters in controlling the trade-offs between efficiency, consistency
and certifiability. The performance of the algorithms depends on the convexity, smoothness, and Lipschitz
property of the loss function (see Neel et al., 2020, Lemma 2.12) as well the required unlearning guarantees.

Efficiency. The authors measure efficiency in terms of the gradient descent iterations required for the ith
deletion request relative to the run-time required for the first request, I. For example, the imperfect strong
perturbed gradient descent algorithm requires log(εn√p) fewer iterations than näıve retraining and the perfect

version requires I+log(εn√p)− log(i)I fewer iterations, where n is the dataset size and p is the dimensionality.

Consistency. The (α, β)-accuracy (see Definition 10) guarantees of these unlearning methods depend on
whether they are required to be strong or weak. The (α, β)-accuracy of the distributed methods are analysed
in depth by (Zhang et al., 2013). For the perturbed gradient descent method, the (α, β)-accuracy ranges

from pe−I

ε2n2 for the unregularized version to (
√
p

εn
√
I)2/5 for the strong-regularized version.

Certifiability. The authors prove the certifiability of the perfect and imperfect versions of their algorithms.
Given ε and δ, Neel et al. (2020, Theorems 3.1, 3.2, 3.4, 3.5) define an explicit choice for the noise parameter
σ, which depends on values for the smoothness, convexity, and Lipschitz constant of the loss function as well
as ε and δ. They prove that this choice of σ guarantees (ε, δ)-certifiability.

5.5 DeepObliviate

DeepObliviate is an approximate unlearning algorithm developed by He et al. (2021) that applies broadly
to deep neural networks and follows a similar procedure to the slicing component of SISA, Section 4.1.
The method further improves on slicing by using the so-called temporal residual memory to identify which
intermediate models need to be retrained, adding approximation into the process.

24

5.5.1 Methodology. DeepObliviate modifies conventional model training by dividing D into B disjoint
subsets {D1, . . . , DB}, so that D =

⋃
iDi and

⋂
iDi = ∅, and performs multi-epoch model training on each

data block successively. Data blocks are uniform in two respects: (i) each block is of size |D|/B or |D|/(B+1),
and (ii) the number of data points with the same label is uniform in each block. Model parameters are
saved after each training block and are used as the initial parameters for the next training block, giving B
intermediate models {h1, . . . , hB}, with their associated parameters {θ1, . . . , θB} being saved during training.
All parameter vectors are assumed to be in a fixed topological order so that weights corresponding to neural
network edges going from the ith layer have smaller vector indices than those going from the jth layer, when
i < j.

DeepObliviate identifies affected intermediate models that need to be retrained via the temporal residual
memory, defined below. Given a data point to unlearn, z ∈ Dd, belonging in the dth data block (1 ≤ d ≤ B),
He et al. (2021) empirically observe that the temporal residual memory of z on hd is relatively large, but
decays exponentially on successive models hd+1, . . . , hB . As such, the blocks of data can be divided into
four distinct groups, see Fig. 2, as follows: (i) unseen area, where the data point was not included in model
training; (ii) deleted area, which includes the data to be deleted, z, and where model retraining needs to
start from; (iii) affected area, covering the models with prominent residual memory which also need to be
fully retrained; and finally (iv) unaffected area, where the residual memory decay stabilises to the point that
models do not need to be retrained and the remaining models can be easily approximated using the original
intermediate models. This approach gives a probabilistic guarantee of speed-up over the näıve approach,
since it is unlikely that retraining occurs on all blocks.

Fig. 2: Unlearning in DeepObliviate where deleted data resides in block Dd (He et al., 2021).

We let Train({D1, . . . , DB} | h) := (Train(DB | ·) ◦ · · · ◦Train(D1 | ·))(h) denote recursively training the
initialised model h on the datasets D1, . . . , DB . The unlearning procedure can then be summarised as:

hU = Train({D′d, Dd+1, . . . , Dd+t}|hd−1)⊕ (hB 	 hd+t), (5.10)

where hU is the unlearned model, D′d = Dd \ {z} excludes the unlearning data from Dd, ⊕ and 	 implement
vector addition and subtraction on the corresponding model parameters, and t is the number of data blocks
after which unlearning influence can be ignored and so retraining can stop.

The value of t is determined by the temporal residual memory. He et al. (2021) define the temporal
residual memory as the `1 distance (or Manhattan distance) between the influence of the deleted data z on
successive models when z is included in training and when it is not. Formally, the temporal residual memory
∆t at step t is:

∆t := ||I(Dd+t|hd+t−1)− I(Dd+t|hUd+t−1)||1, (5.11)

I(Di|hi−1) : = hi 	 hi−1, (5.12)

where 0 ≤ t ≤ B − d, I denotes the temporal influence of block Di on hi−1, and ‖ · ‖1 is the `1 norm
(i.e., ‖(x1, . . . , xN)‖1 = |x1|+ · · ·+ |xN |) . Once ∆ is small enough and stable, retraining can stop, i.e., the
influence of deleted data can be ignored for downstream models.

He et al. (2021) use detrended fluctuation analysis or DFA (Peng et al., 1994) to eliminate noise in ∆ and
systematically determine whether ∆ has stabilised. DFA is used to determine the statistical self-affinity of
a time-series signal by fitting ∆t with a decaying power-law function, whose derivative is easily-computable
and can be used to determine stationarity.

5.5.2 Performance. He et al. (2021) evaluate the unlearning method on five public datasets: mnist,
cifar-10, svhn, Purchase and ImageNet. Their evaluation considers ranges of volumes of deletion data and

25

Algorithm 9 Unlearning with DeepObliviate, (He et al., 2021).

Input: parameters for intermediary trained models θ = {θ1, . . . , θB}, training data D = D1 ∪ · · · ∪DB ,
data point to be removed z ∈ Dd, stationarity hyperparameter ε.
Output: unlearned model hU .

1: procedure DeepObliviateUnlearn(θ, D, z; ε)
2: initialise hU ← hd−1

3: initialise θUd−1 ← θd−1

4: Dd ← Dd \ {z}
5: for t = 0; t ≤ B − d; t+ + do
6: hU ← Train(Dd+t | hU)
7: θUd+t ← hU get parameters from hU

8: compute temporal influence Vd+t ← θd+t − θd+t−1 of Dd+t on θd+t−1

9: compute temporal influence V Ud+t ← θUd+t − θUd+t−1 of Dd+t on θUd+t−1

10: compute temporal residual memory ∆d+t ← ||Vd+t − V Ud+t||1
11: compute power-law exponent using DFA α← DFA({∆d,∆d+1, . . . ,∆d+t})
12: Y (x) := ax−α + b
13: f(x) := ∂Y (x)/∂x = a · (−α) · x−α−1

14: a, b← arg mina,b(Y (x)−∆x) using least squares, x ∈ {d, . . . , d+ t}
15: g ← f(d+ t)
16: if |g| < ε then
17: break
18: end if
19: end for
20: hU ← hU ⊕ (hB 	 hd+t)
21: {θd, . . . , θd+t} ← {θUd , . . . , θUd+t}
22: Return hU

23: end procedure

of block position for the unlearned data. We summarise performances for the deletion of a single data point;
all performances degrade for larger volumes of deletion, though consistency is more robust to increases in
deletion volume than efficiency, effectiveness and certifiability. Full results can be found in He et al. (2021,
Tables II-VI). Results are also benchmarked in (ibid., Table VII) against the SISA method of Section 4.1 by
selecting the number of shards S and slices R so that B = SR.

Efficiency. DeepObliviate is shown to achieve Efficiency of 75.0×, 66.7×, 33.3×, 29.4×, 13.7× on svhn,
mnist, cifar-10, Purchase, and ImageNet datasets, respectively. It is shown in He et al. (2021, Table VII)
that DeepObliviate has significant efficiency improvements over the SISA method for all datasets.

The hyperparameter ε determines the minimum stationarity value of the residual memory decay, under
which retraining procedure stops. Therefore it is an efficiency parameter, with larger values increasing the
efficiency of the DeepObliviate. This can be observed in the ε values shown in ibid. (Tables II-V).

Effectiveness. Effectiveness across datasets is < 1%. DeepObliviate achieves better values for
Effectiveness than SISA for all datasets. Increasing ε will degrade Effectiveness.

Consistency. Consistency is measured using Consistencyy, which measures the proportion of predictions
that the unlearned model and näıve retrained model agree on. Consistencyy ranges from ∼96% to > 99%.

Certifiability Certifiability of DeepObliviate is measured using the backdoor verification method described
in Section 3.4 and Sommer et al. (2020). As noted in Section 3.4, this is comparable to the use of
Certifiability but ensures that näıve retraining has poor predictive performance on the deleted data,
making Certifiability more meaningful. To compute Certifiability, 500-1,000 data points are deleted
and accuracies of predicting on the augmented deleted data are reported for both DeepObliviate and näıve

26

retraining. For ε = 0.05, this gives a Certifiability range of [0.9%, 10%]. Certifiability decreases for larger
ε, demonstrating the efficiency-certifiability trade-off, e.g., Certifiability ∈ [2.7%, 12.5%] for ε = 0.1.

6 Discussion

In this section, we discuss and compare the seven methods described in the previous sections. In addition, we
discuss some aspects of moving the field of machine unlearning towards practice, framed around approaches
for empirical method selection and method monitoring. Table 1 gives statistics on open-source datasets that
have been used in the literature to obtain experimental results for the seven methods we have reported on.
Many of these datasets are commonly-used benchmarking datasets across the machine learning literature;
further descriptions of the datasets can be found in Appendix A.

Table 1: Summary of the datasets used in the experiments of the papers discussed. Dimensionality refers to
the number of prediction features. When datasets have separate and designated training and testing splits,
Size refers to the number of samples in the training dataset, else it gives the number of samples in the whole
dataset. Class balance is given only for datasets with binary label and reports the percentage of positive
labels amongst the number of samples in the Size column. Descriptions of the datasets can be found in
Appendix A.

Dataset Dimensionality Size Classes Class balance Appears in

mnist 784 60,000 10 N/A
(Mahadevan and Mathioudakis, 2021),
(Guo et al., 2020), (Wu et al., 2020),

(Golatkar et al., 2019), (He et al., 2021)

Covtype 54 581,012 7 N/A
(Mahadevan and Mathioudakis, 2021),

(Wu et al., 2020)

higgs 28 11,000,000 2 53.00%
(Mahadevan and Mathioudakis, 2021),

(Brophy and Lowd, 2021), (Wu et al., 2020)
Epsilon 2,000 400,000 2 50.00% (Mahadevan and Mathioudakis, 2021)
cifar-2 3,072 12,000 2 50.00% (Mahadevan and Mathioudakis, 2021)
cifar-10 3,072 60,000 10 N/A (Golatkar et al., 2019), (He et al., 2021)
cifar-100 3,072 60,000 100 N/A (Bourtoule et al., 2021)

lsun 65,536 1,000,000 10 N/A (Guo et al., 2020)
sst 215,154 11,855 5 N/A (Guo et al., 2020)
svhn 3,072 73,257 10 N/A (Guo et al., 2020), (He et al., 2021)
rcv1 47,236 20,242 2 52.00% (Wu et al., 2020)

Purchase 600 250,000 2 N/A (Bourtoule et al., 2021)
ImageNet 150,528 1,281,167 1000 N/A (Bourtoule et al., 2021), (He et al., 2021)

Mini-ImageNet 150,528 128,545 100 N/A (Bourtoule et al., 2021)
Surgical 25 14,635 2 25.24% (Brophy and Lowd, 2021)
Vaccine 36 26,707 2 46.40% (Brophy and Lowd, 2021)
Adult 14 48,842 2 23.92% (Brophy and Lowd, 2021)

Bank Mktg. 17 45,211 2 11.30% (Brophy and Lowd, 2021)
Diabetes 20 101,766 2 46.10% (Brophy and Lowd, 2021)
No Show 14 110,527 2 20.19% (Brophy and Lowd, 2021)
Olympics 15 206,165 2 14.60% (Brophy and Lowd, 2021)
Census 40 299,285 2 6.20% (Brophy and Lowd, 2021)

Credit Card 30 284,807 2 0.17% (Brophy and Lowd, 2021)
ctr 39 1,000,000 2 2.91% (Brophy and Lowd, 2021)

Twitter 15 1,000,000 2 16.93% (Brophy and Lowd, 2021)
Lacuna-10 1,024 ≥ 5, 000 10 N/A (Golatkar et al., 2019)
Lacuna-100 1,024 ≥ 50, 000 100 N/A (Golatkar et al., 2019)

Additionally, we provide two tables (Table 2 and Table 3) that summarise the algorithms that we have
described in this paper. These tables are summaries and should be used as a guide to the performances

27

of individual algorithms, as reported by the relevant literature. In particular, they should not generally be
used for comparisons between algorithms. Table 2 provides a summary of the methods considered in this
paper, which categorises the various methods according to their applicability and certificate of unlearning,
including some empirical results of certifiability. Table 3 summarises the empirical and theoretical results
demonstrated in the literature. We can observe the efficiency-effectiveness trade-off in Table 3 for methods
with multiple efficiency parameter values. For example, the bottom row of DaRE, corresponding to highest-
tested drmax, sees lower effectiveness values but higher efficiency than the top row, corresponding to lowest-
tested drmax. Likewise for DeepObliviate, Fisher, and Influence. We observe an efficiency-consistency trade-
off for DeepObliviate, and an efficiency-certifiability trade-off in the Certificate of Unlearning column for
DeepObliviate, Fisher, and Influence.

6.1 Exact Unlearning Algorithms

In Section 4, we described SISA, whose full method applies to any incrementally-trained machine learning
model, and DaRE forests, which applies to decision trees and random forests. Both SISA and DaRE forests
each come with two efficiency parameters in order to control the unlearning efficiency, usually at the cost
of effectiveness. However, unlike approximate unlearning methods, such parameters are also involved in the
initial training procedure, which means that they can be tuned during training to maximise efficiency with
respect to a satisficing bound on effectiveness.

Brophy and Lowd (2021) obtained strong empirical results for DaRE forests, reporting an average value
of Efficiency of 2-3 orders of magnitude across the 14 tested datasets, up to a maximum of 5 orders of
magnitude, when removing single data points. Results of a similar magnitude to DaRE are reported for
another decision-tree based unlearning method in Schelter et al. (2021), which may suggest that decision
tree models are more amenable to efficient unlearning. SISA achieves a maximum Efficiency of 4.63× in
the original paper (Bourtoule et al., 2021), when unlearning 8 data points from the Purchase dataset. He
et al. (2021) obtained Efficiency of up to 73× for single removals with SISA.

Exact methods have the benefit of a high degree of consistency and certifiability, as given by their proven
equivalence with the näıve removal mechanism, however they may share with the corresponding näıve removal
mechanisms a vulnerability to membership inference attacks on the deleted data. SISA and DaRE therefore
require a level of trust in the security of the pre- and post-unlearning machine learning models. This could be
alleviated by the addition of noise into the training procedure, like many approximate methods do, however
this will likely degrade efficiency. While SISA is broadly applicable, it struggles to provide a significant
efficiency or decent effectiveness for more complex learning tasks, as seen with the Efficiency of 1.36× and
Effectiveness of 18.76% on ImageNet. The efficiency of DaRE is more pronounced on balanced datasets,
such as higgs, and reports lower efficiencies on datasets with extreme class imbalances, e.g., Credit Card.
The DaRE methodology is not currently applicable to boosting ensembles, suggesting a natural next step
for the development of this algorithm. Finally, both exact methods come with additional storage costs for
storing statistics and parameters during the training and unlearning; these storage operations may also incur
additional computational cost, however, this is not explicitly mentioned in either Bourtoule et al. (2021) or
Brophy and Lowd (2021).

6.2 Approximate Unlearning Algorithms

In Section 5, five approximate algorithms were described. Three of these, Fisher, Influence, and Descent-to-
Delete, apply parameter updates starting from the optimised parameters of the original machine learning
model; Descent-to-Delete performs first-order updates, Fisher performs a second-order Newton update using
the remaining data D \ Du, and Influence performs a second-order Newton update using the deleted data
Du. DeltaGrad applies gradient descent updates starting from the same initialised parameters as the original
training procedure, and approximates the gradient descent steps of the näıve unlearning mechanism by
using cached historical training information. Finally, DeepObliviate takes the slicing procedure of the SISA
unlearning algorithm and turns this into an approximate algorithm by stopping the retraining procedure

28

Table 2: Summary table of unlearning algorithms considered in this paper. In the table, SC = strongly
convex loss function, BG = bounded gradients for loss function (Wu et al., 2020, Assumption 4), SI = strong
independence (Wu et al., 2020, Assumption 5), LQ = locally quadratic. This table is a summary only and
empirical results contained in the table should not be used for comparison due to the use of different datasets,
experimental design, and machine specifications.

Unlearning Type

Method Applicability Properties
Certificate

of Unlearning

SISA
Incrementally trained Exact

Exact
modelsa Weakb

DaRE
DaRE trees

Exact Exact
DaRE RF

Fisher
LQ loss

Approximate 3.3, 33.4 kNATsc
0.0%d (m′ = bm/8c)

function 0.26% (m′ = m)

Influence
SC, BG, Approximate

(ε, δ)-certified
0.1%d (m′ = bm/8c)

Lipschitz Hessian Weake 1.1% (m′ = m)

DeltaGrad
SC, smooth loss, BG, Approximate

N/Ag

Lipschitz Hessian, SI Strongf

Descent-to- SC, smooth Approximate
(ε, δ)-certified

Delete (Bounded, Lipschitz Hessian)h Strongi

DeepObliviate
Any deep-learning Approximate 6.39% (ε = 0.05)

model Strong 8.28% (ε = 0.1)j

a. Sharding-only SISA is applicable to any machine learning model, including decision-tree based models;
the full SISA algorithm is applicable to any model that has been trained incrementally, for example via
gradient descent.
b. See Equations (6) and (8), of Bourtoule et al. (2021, Section V.C.).
c. Certifiability of Fisher in Golatkar et al. (2019) is given by an upper bound on the information retained.
Empirical results are given only for two datasets, Lacuna-10 and CIFAR-10, with the model retaining at
most 3.3 kNATs of information 33.4 kNATs of information, respectively, about the deleted data.
d. Certifiability of Fisher and Influence in Mahadevan and Mathioudakis (2021) is given by Certifiability.
We report the geometric mean across datasets for two extremes of the efficiency parameter m′, fixing σ = 1
and for the smallest deletion volume m considered.
e. The convergence error grows linearly with number of points removed, see (Guo et al., 2020, p.4).
f. When deleting a single point (i.e., r = 1) the convergence rate is o(1/n) regardless of position in sequence
(see Wu et al., 2020, Theorem 1). This is expected since DeltaGrad computes gradient descent from scratch
each time.
g. Certifiability is used in Mahadevan and Mathioudakis (2021), but certifiability is not measured in
the original paper (Wu et al., 2020).
h. Strongly convex can be relaxed to convex by using regularised perturbed gradient descent (Neel et al.,
2020, Theorems 3.4, 3.5). Bracketed assumptions are additional assumptions required for distributed per-
turbed gradient descent.
i. All descent-to-delete algorithms are strong apart from that of Neel et al. (2020, Theorem 3.5), which is
designed to be weak in order to allow better consistency.
j. Certifiability values for DeepObliviate are taken from He et al. (2021, Table VI) which applies the backdoor
verification experiment. We show the two different values of the efficiency parameter ε, and assume the
deleted data is in the first block (top row of each dataset in Table VI, ibid.). Values are then passed through
Certifiability, and we report the geometric mean across all tested datasets.

29

Table 3: Summary of efficiency, effectiveness, and consistency performances of the algorithms considered as
reported by the literature. Note that this table is a summary only and should not be used for comparison,
since the results are obtained using different datasets, experimental design and machine specifications.

Performance

Method
Efficiency

Effectiveness
Consistency

min g. mean max min g. mean max

SISAa Bourtoule
et al. (2021)

1.36× 2.49× 4.63× < 2% (18.76%)
Exact

He et al.
(2021)

14.0× 39.6× 75.0× < 5% (15.1%)

DaREb min drmax 10× 366× 9735× ≤ 0.5%
Exact

max drmax 145× 1272× 35856× ≤ 2.5%

Fisherc
m′ = bm/8c 1.0× 3.3× 36.8× ≈ 0.0%

N/A
m′ = m 1.5× 13.0× 282.4× < 0.2%

Influencec
m′ = bm/8c 0.3× 5.9× 75.7× < 0.55%

N/A
m′ = m 2.5× 38.2× 215.1× < 0.57%

DeltaGradd 1.6× 2.7× 6.5× ≈ 0.0% 1.7× 10−6 1.1× 10−5 1.4× 10−4

PGD 1 + I−1 log(εn/
√
p)

N/A

p/(eIε2n2)

Descent-to- sRPGD I− 3
5 (εn/

√
p)

2
5

(√
p

εnI

) 2
5

Deletee wRPGD I− 3
4

√
εn/
√
p

√ √
p

εp
√
I

DPGD
min{I−1 log n, 2 exp

(
−In

4−3ξ
2

)
ε2n2 + 1

nξn
4−3ξ

2 + I−1 log(εn/
√
p)}

DeepObliviatef
min ε 6.17× 13.97× 45.45× < 0.18% 97.25 98.82 99.95
ε = 0.1 9.26× 22.81× 66.67× < 0.35% 95.78 97.61 99.85

a. The top row gives results from the original paper (Bourtoule et al., 2021). Results are reported for
multiple deletions (8, 18, or 39) depending on the dataset. Effectiveness is < 2% for simpler learning tasks
and 18.76% for ImageNet. The second row gives results from He et al. (2021), which is for single deletions,
and give 15.1% effectiveness reported for ImageNet.
b. Actual value of minimum and maximum drmax depends on the dataset, and determined with respect
to CV error tolerances of 0.1% and 1.0%, respectively, in cross-validation, see Section 4.2 and Brophy and
Lowd (2021, Table 6).
c. Results are taken from Mahadevan and Mathioudakis (2021) for a fixed noise parameter σ = 1 and for
the smallest volume of data deleted, which volume depends on the specific dataset. The parameter m′ is the
mini-batch size used in the update, and m is the volume of data deleted.
d. Consistency of DeltaGrad is measured by Consistencyθ; results are from Wu et al. (2020).
e. PGD = perturbed gradient descent; sRPGD/wRPGD = strong/weak variant of regularized perturbed
gradient descent; DPGD = distributed perturbed gradient descent. Results are extracted from Neel et al.
(2020, Table 1). Efficiency is given by reporting the number of iterations for näıve retraining divided by the
number of iterations for the first deletion I. ε is the value in the (ε, δ)-certified guarantee of the method.
ξ ∈ [1, 4/3] is a parameter in distributed descent. Consistency is given by (α, β)-accuracy (Definition 10).
f. In DeepObliviate, we take values from He et al. (2021, Tables I, II, III, V), corresponding to four exper-
iments that use multiple ε values (Tables IV and VII use only a single ε value). Within each experiment,
there are different choices of the number of data unlearned, the position of data to be unlearned and the
choice of hyperparameter ε. We fix the smallest volume of data unlearned, and earliest block position to
give worst-case efficiency results. We fix ε at two extremes, and report for each; minimum ε depends on the
dataset (either 0.04 or 0.05) and maximum ε is always 0.1. Consistency is measured by Consistencyy.

30

at an appropriate point and approximating the tail end of the retraining by using cached parameters from
the initial training procedure. The applicability of approximate unlearning algorithms is generally narrow.
Fisher, Influence, DeltaGrad, and Descent-to-Delete are primarily applicable to models with strongly-convex
loss functions, although extensions of Fisher, Influence, and DeltaGrad to non-convex models are discussed
in their respective papers. DeepObliviate is notable for being widely applicable to any neural network.

Due to differing experimental design, direct comparisons between the five approximate algorithms are
difficult. However, since Mahadevan and Mathioudakis (2021) benchmark Fisher, Influence, and DeltaGrad
applied to a logistic regression model, we can make some inferences on their performances. In general,
Influence observes better Efficiency values than Fisher, which can be seen in the efficiency column of
Table 3. This was noted in ibid., with Efficiency being most pronounced on high-dimensional datasets,
cifar2 and Epsilon, and less pronounced on the low-dimensional datasets, Covtype and higgs. However, the
Influence method has weaker effectiveness than the Fisher method. Across most scenarios, the efficiency and
effectiveness of DeltaGrad is outperformed by the Influence and Fisher algorithms. Note that the original
DeltaGrad is supplemented by Mahadevan and Mathioudakis (2021) with the addition of noise, in order to
guarantee a degree of certifiability, however this appears to degrade the efficiency results of DeltaGrad. An
additional reason for DeltaGrad’s poorer performance is due to the computational cost of SGD iterations
in DeltaGrad being higher than inverting the Hessian in Fisher and Influence. DeepObliviate is directly
benchmarked against the SISA method in He et al. (2021), achieving better Efficiency and Effectiveness

than SISA in most cases.
Mahadevan and Mathioudakis (2021) measure certifiability using the Certifiability measure of (3.6)

without the backdoor verification method. As discussed in Section 3.4, the backdoor verification method can
make the Certifiability measure more meaningful, which is done by He et al. (2021). Finally, Descent-
to-Delete suffers from non-existent empirical evaluation. A thorough benchmarking of all seven algorithms
would be a beneficial next step.

6.3 Machine Unlearning from a Practitioner’s Perspective

The evaluation of a single machine unlearning algorithm is complex and multidimensional. On top of this,
evaluation measures in the literature differ, making comparisons between established algorithms difficult. In
this section, we explore a framework for machine unlearning algorithm selection.

Candidate selection. The various columns of Tables 2 and 3 correspond to key factors to consider when
selecting an unlearning algorithm. We can use Table 2 to select algorithms that are applicable with respect
to initial constraints. The Applicability column indicates which machine learning models the algorithm can
be applied to. For example, a tree-based model is required for DaRE forests.

The remaining columns of Table 2 are of a high priority if the unlearning method is being applied in order
to comply with regulations concerning removal requests. This compliance depends on the particular external
regulations, for example, in the EU, unlearn requests must comply with the user’s Right to be Forgotten.
Future clarification of these regulations may rule out approximate algorithms, or they may impose strict
constraints on the certificate of unlearning. So it is a key responsibility of researchers and practitioners to
define and select algorithms with a suitable certificate of unlearning. Another consideration here is in removal
immediacy. If data points must be removed immediately on request, then the strong and weak classification
becomes important, whereas if not, then methods that allow batch unlearning may be more appropriate.

Parameter trade-offs and method selection. Given a set of candidate methods that are all applicable to the
use case, we now discuss how to select among them. Currently, direct comparisons between algorithms are
difficult for two main reasons: (1) experiments in papers vary greatly and, with the exception of Mahadevan
and Mathioudakis (2021), there has been no extensive empirical benchmark comparison of algorithms; (2)
evaluation of unlearning algorithms is multidimensional, with various trade-offs that must be navigated
relevant to the use case. As a result, Table 3 should be viewed as a guide to each individual algorithm and
care should be taken with direct comparisons.

31

Because of the difficulties in direct comparison, it makes sense to perform an empirical algorithm selection
procedure once at the start of the pipeline, as is the current standard for machine learning. We now discuss a
proposal for this procedure. Due to the computational expense of evaluating the unlearning algorithms, this
procedure is advisable only if multiple unlearning processes are expected as a result of sequential deletion
requests. First, according to both user specification (for example, the type of machine learning model in
production and intended application of unlearning) as well as external certifiability constraints (for example,
regulations), a list of candidate unlearning algorithms should be produced as discussed above. Candidates
are both applicable to the problem and sufficiently certifiable. Additionally, the user should set tolerances for
empirical results for effectiveness and certifiability (along with consistency, if desired); these are the minimal
acceptable levels one expects to see in results for each evaluation criterion (for example, an effectiveness
tolerance of 2% means that algorithms that achieve < 2% for Effectiveness are desired).

Once candidates and preset tolerances are chosen, an empirical evaluation routine is performed for each
of the candidate algorithms. To speed up the process, this process may be performed on a random subsample
of the training data. If the candidate algorithm is exact then, as is done by Brophy and Lowd (2021), one
may first tune the efficiency parameter so that efficiency is maximised with respect to the preset effectiveness
tolerance. For example, with DaRE forests the parameter drmax may be incremented and the cross-validation
performance of the resultant trained DaRE RF is measured. Once this performance degrades beyond the
preset effectiveness tolerance, then the efficiency parameter is set. This is possible for exact methods since
the efficiency parameter is a parameter in both the training and the removal mechanisms, and because there
are strong guarantees for consistency and certifiability.

Finally, a deletion distribution is chosen and then deletion points are drawn from the training data
according to this distribution. If the candidate is exact then, using the tuned efficiency parameter, deletion
points are unlearned and values for Efficiency and Effectiveness are measured and reported. If the
candidate is approximate, then an appropriate range of efficiency and certifiability parameters are chosen and,
for each choice of parameters, values for Efficiency, Effectiveness, Consistencyy, and Certifiability

are measured and reported. The user may then choose the algorithm that achieves the best Efficiency

whilst remaining within the preset tolerances for the other evaluation criteria.

Machine unlearning monitoring and auditing. Effectiveness and certifiability (and sometimes consistency)
are treated as satisficing metrics, so preset tolerances for each are implicit inputs in algorithm selection.
At certain points it will be necessary to perform full näıve retraining of the model. This is to ensure that,
as the volume of deletions increases, effectiveness, consistency, and certifiability do not breach the preset
tolerances. Effective unlearning monitoring is used to decide when it is appropriate to fully retrain. The
issue, however, is that monitoring of all four areas of evaluation involves comparison with the näıve retrained
model. Computing this baseline model after every deletion defeats the purpose of unlearning in the first
place. Therefore it is necessary to introduce proxies to measure evaluation after deletions. Consistency is
difficult to estimate, and is less of a concern if we have good estimates for the other three areas, so we do
not focus on this here.

For simplicity, we assume that additions are not made to the training data during the deletion pipeline
and that removals of only single data points are performed. Let U be a removal mechanism, h0 = h be the
original machine learning model, and D0 = D be the training data for h0. Suppose that we have a sequence
of models {hi}m−1

i=0 and datasets Di, where each hi = U(hi−1, Di−1, zi−1) and Di = Di−1 \ {zi−1} are the
results of unlearning a point zi from the previous model. We assume that there is a subset of k indices {ij}
for which, after obtaining hij , a näıve retraining has occurred, giving k näıvely retrained models {h∗ij}

k
j=1;

the subsequent model hij+1 = U(h∗ij , Dij , zij) is obtained by unlearning on h∗ij . We explore how we might
monitor the mth deletion.

For certifiability, we can overestimate Certifiability by the test error loss to the last retrained model
as follows. Given a performance metric M, let Mtest,m denote the performance of hm on a test set and let
M∗test,ik

denote the test performance of h∗ik . We define

˜Certifiability := cik SAPE(Mtest,m,M∗test,ik
),

32

where cik can be estimated empirically after each full retraining as shown in Mahadevan and Mathioudakis
(2021, p. 13), and SAPE is as in (3.6). This was shown, ibid., to give an overestimation of Certifiability.

In a similar way, we may overestimate Effectiveness by

˜Effectiveness := eik |Mtest,m −M∗test,ik
|

where eik is estimated empirically by replacing Certifiability in the calculation of cik with Effectiveness.
Efficiency is a key measure that should be monitored to ensure that the expected unlearning time is not

consistently being exceeded, although it may not necessarily be used to decide when to retrain. We use the
time taken to train the latest retrained model h∗ik as a proxy for the time taken to fully retrain. Since we
assume that there have been no additions to the dataset, we have len(Dij) > len(Dm) so

˜Efficiency :=
time taken to train h∗ik

time taken to unlearn zm+1

provides a conservative estimate of Efficiency.

After obtaining hm, ˜Effectiveness, and ˜Certifiability are calculated. If these values exceed a preset
threshold for effectiveness and certifiability, then full retraining should occur to obtain h∗ik+1

. Additionally,

˜Efficiency should be calculated, and consistently poor ˜Efficiency compared to those seen in the initial
algorithm selection should be investigated. Also, unlearning algorithms with lower certifiability will not only
be more likely to breach regulations, but they will need to be retrained more often as well, entailing higher
cost in the long run. The estimates introduced here may also be applicable to the situation of unlearning
algorithm selection described previously.

Auditing may occur at the request of regulators. The precise formalisation of the certificate of unlearning
in practice remains an open problem, but source code and enough information to recalculate the sequence
of models {hi}i above are likely to be requested. The regulator may then recreate the sequence of deletions
and calculate certifiability according to their own measures, the failure of which will lead to fines or other
regulatory actions. It is therefore important that effective monitoring and regular näıve retraining take place.

7 Conclusion

In this review paper, we give a broad introduction to and assessment of the field of machine unlearning. We
provide a standardised unlearning and evaluation framework, along with the theory and implementations
of seven state-of-the-art unlearning algorithms. Finally, in the Discussion section (Section 6) we begin to
address some of the theoretical and practical gaps identified in the field, however, more research is required
to fully resolve these gaps. Whilst we are able to make some comparisons between the algorithms considered
here, extensive empirical benchmarking between them is lacking in the literature, which could be a useful
future contribution. In addition, there is a current lack of research into applying unlearning in practice and
certifiability is a key concern in this regard. In order to verify that unlearning algorithms are removing
sufficient information about the deleted data, a formalised certificate of unlearning that is applicable in
practice, along with a robust monitoring pipeline, is a necessary piece of research, which is a sentiment
also echoed elsewhere in the literature (Thudi et al., 2021). Finally, there is a general difficulty in developing
unlearning algorithms that are applicable to modern deep neural networks, and more work in this area would
be beneficial.

Acknowledgements. The authors would like to thank Greig Cowan and Graham Smith of NatWest Group’s
Data Science & Innovation team for the time and support needed to develop this research paper.

33

Bibliography

Aldaghri, N., Mahdavifar, H., and Beirami, A. (2021). Coded machine unlearning. IEEE Access, 9:88137–
88150.

Baumhauer, T., Schöttle, P., and Zeppelzauer, M. (2020). Machine unlearning: Linear filtration for logit-
based classifiers. arXiv e-prints, page arXiv:2002.02730.

Biggio, B., Nelson, B., and Laskov, P. (2013). Poisoning attacks against support vector machines. arXiv
e-prints, page arXiv:1206.6389.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C., Jia, H., Travers, A., Zhang, B., Lie, D., and Pa-
pernot, N. (2021). Machine unlearning. In Proceedings of the 42nd IEEE Symposium on Security and
Privacy, San Francisco, CA.

Brophy, J. and Lowd, D. (2021). Machine unlearning for random forests. In Meila, M. and Zhang, T.,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 1092–1104. PMLR.

Cao, Y. and Yang, J. (2015). Towards making systems forget with machine unlearning. In 2015 IEEE
Symposium on Security and Privacy, pages 463–480.

Chen, C., Sun, F., Zhang, M., and Ding, B. (2022). Recommendation unlearning. arXiv e-prints, page
arXiv:2201.06820.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255.

Doshi-Velez, F. and Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv
e-prints, page arXiv:1702.08608.

Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy. Found. Trends Theor.
Comput. Sci., 9(34):211–407.

Fu, S., He, F., and Tao, D. (2022). Knowledge removal in sampling-based bayesian inference. In International
Conference on Learning Representations.

Ginart, A., Guan, M. Y., Valiant, G., and Zou, J. (2019). Making AI forget you: Data deletion in machine
learning. arXiv e-prints, page arXiv:1907.05012.

Golatkar, A., Achille, A., Ravichandran, A., Polito, M., and Soatto, S. (2020). Mixed-privacy forgetting in
deep networks. arXiv e-prints, page arXiv:2012.13431.

Golatkar, A., Achille, A., and Soatto, S. (2019). Eternal Sunshine of the Spotless Net: Selective Forgetting
in Deep Networks. arXiv e-prints, page arXiv:1911.04933.

Guo, C., Goldstein, T., Hannun, A., and van der Maaten, L. (2020). Certified data removal from machine
learning models. arXiv e-prints, page arXiv:1911.03030.

Gupta, V., Jung, C., Neel, S., Roth, A., Sharifi-Malvajerdi, S., and Waites, C. (2021). Adaptive machine
unlearning. arXiv e-prints, page arXiv:2106.04378.

He, Y., Meng, G., Chen, K., He, J., and Hu, X. (2021). DeepObliviate: A Powerful Charm for Erasing Data
Residual Memory in Deep Neural Networks. arXiv e-prints, page arXiv:2105.06209.

Jia, H., Yaghini, M., Choquette-Choo, C. A., Dullerud, N., Thudi, A., Chandrasekaran, V., and Papernot,
N. (2021). Proof-of-learning: Definitions and practice. arXiv e-prints, page arXiv:2103.05633.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C., Kumaran, D., and Hadsell, R. (2017).

Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences,
114(13):3521–3526.

Koh, P. W. and Liang, P. (2020). Understanding black-box predictions via influence functions. arXiv e-prints,
page arXiv:1703.04730.

Mahadevan, A. and Mathioudakis, M. (2021). Certifiable Machine Unlearning for Linear Models. arXiv
e-prints, page arXiv:2106.15093.

Neel, S., Roth, A., and Sharifi-Malvajerdi, S. (2020). Descent-to-Delete: Gradient-Based Methods for Machine
Unlearning. arXiv e-prints, page arXiv:2007.02923.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading digits in natural
images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised Feature
Learning 2011.

Nguyen, Q. P., Oikawa, R., Mon Divakaran, D., Chan, M. C., and Low, B. K. H. (2022). Markov Chain
Monte Carlo-Based Machine Unlearning: Unlearning What Needs to be Forgotten. arXiv e-prints, page
arXiv:2202.13585.

Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., and Goldberger, A. L. (1994). Mosaic
organization of DNA nucleotides. Physical Review E, 49(2):1685–1689.

Quenouille, M. H. (1956). Notes on Bias in Estimation. Biometrika, 43(3-4):353–360.

Sakar, C. O., Polat, S. O., Katircioglu, M., and Kastro, Y. (2018). Real-time prediction of online shoppers’
purchasing intention using multilayer perceptron and LSTM recurrent neural networks. Neural Computing
and Applications, 31(10):6893–6908.

Schelter, S. (2020). Amnesia - machine learning models that can forget user data very fast. In CIDR 2020,
10th Conference on Innovative Data Systems Research, Amsterdam, The Netherlands, January 12-15,
2020, Online Proceedings. www.cidrdb.org.

Schelter, S., Grafberger, S., and Dunning, T. (2021). Hedgecut: Maintaining randomised trees for low-
latency machine unlearning. In Proceedings of the 2021 International Conference on Management of
Data, SIGMOD ’21, page 1545–1557, New York, NY, USA. Association for Computing Machinery.

Shafer, G. and Vovk, V. (2008). A tutorial on conformal prediction. J. Mach. Learn. Res., 9:371–421.

Sommer, D. M., Song, L., Wagh, S., and Mittal, P. (2020). Towards probabilistic verification of machine
unlearning. arXiv e-prints, page arXiv:2003.04247.

Thudi, A., Jia, H., Shumailov, I., and Papernot, N. (2021). On the necessity of auditable algorithmic
definitions for machine unlearning. arXiv e-prints, page arXiv:2110.11891.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., and Wierstra, D. (2016). Matching networks for
one shot learning. In Proceedings of the 30th International Conference on Neural Information Processing
Systems, NIPS’16, page 3637–3645, Red Hook, NY, USA. Curran Associates Inc.

Wu, G., Hashemi, M., and Srinivasa, C. (2022). Puma: Performance unchanged model augmentation for
training data removal. In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI-
2022), Vancouver, Canada.

Wu, Y., Dobriban, E., and Davidson, S. B. (2020). DeltaGrad: Rapid retraining of machine learning models.
arXiv e-prints, page arXiv:2006.14755.

Zhang, Y., Duchi, J. C., and Wainwright, M. J. (2013). Communication-efficient algorithms for statistical
optimization. The Journal of Machine Learning Research, 14(1):3321–3363.

35

Appendix A Datasets

Descriptions of the datasets included in Table 1 are given below.

a. mnist is a 10-class image classification dataset containing images of digits 0–9
(http://yann.lecun.com/exdb/mnist/ [accessed: 31-August-2022]). mnist binary is also used in
Mahadevan and Mathioudakis (2021) by taking digits 3 and 8. This has 11,982 samples with 49.00%
class balance.

b. Covtype is a multi-class classification dataset derived from US Geological Survey and
USFS involving cartographic feature variables and forest cover type as the target variable
(https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html#covtype [accessed: 31-
August-2022]). Mahadevan and Mathioudakis (2021) consider the binary version of Covtype
which has the same number of samples as the non-binary version with 49.00% class balance
(https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html#covtype [accessed: 31-
August-2022]).

c. higgs measures kinematic properties of particle detectors in the Higgs boson accelerator and
derived values as features, with whether the signal represents a Higgs boson as the target
(https://archive.ics.uci.edu/ml/datasets/HIGGS [accessed: 31-August-2022]).

d. Epsilon is the Epsilon dataset from the PASCAL Large Scale Learning Challenge 2008
(https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#epsilon [accessed: 31-August-
2022]) .

e. cifar-10/100 are 10- and 100-class image classification datasets respectively representing various an-
imals and objects (http://www.cs.toronto.edu/ kriz/cifar.html [accessed: 31-August-2022]). cifar-2 is
extracted in Mahadevan and Mathioudakis (2021) from cifar-10 by only considering the cat and ship

labels.
f. lsun is a 10-class image classification dataset representing 10 scenes such as dining room, bedroom, and

so on (https://www.yf.io/p/lsun [accessed: 31-August-2022]) .
g. sst is an NLP dataset consisting of movie reviews for sentiment analysis

(https://nlp.stanford.edu/sentiment/index.html [accessed: 31-August-2022]) .
h. svhn is a 10-class image classification dataset consisting of house numbers taken from Google Street View,

where the objective is to identify the digits 0–9 (http://ufldl.stanford.edu/housenumbers/ [accessed: 31-
August-2022]).

i. rcv1 is a collection of manually labelled news articles from Reuters taken from the period 1996-
1997 (https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#rcv1.binary [accessed: 31-
August-2022]).

j. Purchase consists of consumer purchase history with the target variable being whether a customer
will repeat purchase (https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data [accessed: 31-
August-2022]). In Bourtoule et al. (2021), Purchase is curated in Bourtoule et al. (2021) from the original
Purchase dataset by choosing the top 600 most purchased items based on the category attribute.

k. ImageNet is a large-scale image dataset which have been annotated according to the WordNet hierarchy,
with the 1000-class target variable being the annotation’s synset (https://www.image-net.org/ [accessed:
31-August-2022]). Mini-ImageNet is a supervised classification version of ImageNet created by the process
of Vinyals et al. (2016).

l. Surgical is a binary-classification dataset with the goal of predicting whether a surgery involved com-
plications (https://www.kaggle.com/datasets/omnamahshivai/surgical-dataset-binary-classification [ac-
cessed: 31-August-2022]).

m. Vaccine is a binary-classification dataset on whether a person had got a flu vaccine
(https://www.drivendata.org/competitions/66/flu-shot-learning/ [accessed: 31-August-2022]).

n. Adult is a binary-classification dataset determining whether a person has an annual income of over $50,000
(http://archive.ics.uci.edu/ml/datasets/Adult [accessed: 31-August-2022]).

o. Bank Mktg. consists of a Portuguese bank marketing call details with whether a contacted customer
subsequently subscribed as the target variable (http://archive.ics.uci.edu/ml/datasets/Bank+Marketing
[accessed: 31-August-2022]).

36

http://yann.lecun.com/exdb/mnist/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#covtype
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#covtype
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#epsilon
http://www.cs.toronto.edu/~kriz/cifar.html
https://www.yf.io/p/lsun
https://nlp.stanford.edu/sentiment/index.html
http://ufldl.stanford.edu/housenumbers/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.image-net.org/
https://www.kaggle.com/datasets/omnamahshivai/surgical-dataset-binary-classification
https://www.drivendata.org/competitions/66/flu-shot-learning/
http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Bank+Marketing

p. Diabetes is a binary-classification dataset of diabetic patients whose target variable is hospital readmission
(https://archive.ics.uci.edu/ml/datasets/diabetes [accessed: 31-August-2022]).

q. No Show is a binary-classification dataset with whether a patient missed a doctor appointment as the tar-
get variable (https://www.kaggle.com/datasets/joniarroba/noshowappointments [accessed: 31-August-
2022]).

r. Olympic is a binary-classification dataset for predicting whether an athlete received an Olympic medal
for the event participated (https://www.kaggle.com/datasets/heesoo37/120-years-of-olympic-history-
athletes-and-results [accessed: 31-August-2022]).

s. Census is a binary-classification dataset for predicting whether a person has an annual income of
over $50,000 based on census data (https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD) [ac-
cessed: 31-August-2022]).

t. Credit Card is a highly-imbalanced binary-classification dataset for predicting fraudulent European credit
card transactions in September 2013 (https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud [ac-
cessed: 31-August-2022]).

u. ctr is curated by Brophy and Lowd (2021) by taking the first 1,000,000 instances and 13 numeric
attributes from Criteo’s original dataset; each row represents an ad that was displayed and the binary
target variable indicates whether the ad was clicked on (https://ailab.criteo.com/download-criteo-1tb-
click-logs-dataset/ [accessed: 31-August-2022]).

v. Twitter is curated by Brophy and Lowd (2021) by taking the first 1,000,000 tweets from the
HSpam14 dataset (https://www3.ntu.edu.sg/home/AXSun/datasets.html [accessed: 31-August-2022]).
This dataset has a binary target variable indicating whether a tweet is spam or not.

w. Lacuna-10/100 are 10- and 100-class image classification datasets consisting of the faces of 10 and
100 different celebrities, respectively, extracted by Golatkar et al. (2019) from the VGGFaces2 dataset
(https://www.robots.ox.ac.uk/vgg/data/vgg face2/ [accessed: 31-August-2022]).

37

https://archive.ics.uci.edu/ml/datasets/diabetes
https://www.kaggle.com/datasets/joniarroba/noshowappointments
https://www.kaggle.com/datasets/heesoo37/120-years-of-olympic-history-athletes-and-results
https://www.kaggle.com/datasets/heesoo37/120-years-of-olympic-history-athletes-and-results
https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://www3.ntu.edu.sg/home/AXSun/datasets.html
https://www.robots.ox.ac.uk/ vgg/data/vgg_face2/

	An Introduction to Machine Unlearning
	1 Introduction
	2 Terminology
	3 Evaluation Approaches for Unlearning Algorithms
	3.1 Efficiency
	3.2 Effectiveness
	3.3 Consistency
	3.4 Certifiability

	4 Exact Unlearning Algorithms
	4.1 SISA
	4.2 DaRE Forests

	5 Approximate Unlearning Algorithms
	5.1 Fisher
	5.2 Influence
	5.3 DeltaGrad
	5.4 Descent-to-Delete
	5.5 DeepObliviate

	6 Discussion
	6.1 Exact Unlearning Algorithms
	6.2 Approximate Unlearning Algorithms
	6.3 Machine Unlearning from a Practitioner's Perspective

	7 Conclusion
	Appendix A Datasets

