1 The Effect of Ophthalmic Surgery for Graves' Orbitopathy on Quality of Life – A

2 Systematic Review and Meta-analysis

- 3 Authors: Timothy Woo^{1*}, ChunHei Li^{1*}, Sashiananthan Ganesananthan^{1*}, Rathie Rajendram²,
- 4 Jimmy Uddin², Richard W.J. Lee^{2,3}, Colin Dayan⁴, Peter Taylor⁴
- 5 *These authors contributed equally to this work and are considered to be co-first authors
- 6 Affiliations
- 7 ¹Cardiff University School of Medicine, Cardiff, United Kingdom
- 8 ² Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- 9³ Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London,
- 10 United Kingdom
- ⁴ Thyroid Research Group, Systems Immunity Research Institute, Cardiff University School of
- 12 Medicine, Cardiff, United Kingdom
- 13
- 14
- 15 Authors:
- 16 Timothy Woo, timothy.woo1@nhs.net, MBBCh
- 17 ChunHei Li, <u>chunhei.li@nhs.net</u>, MBBCh
- 18 Sashiananthan Ganesananthan, <u>sashiananthan.ganesananthan@nhs.net</u>, MBBCh
- 19 Rathie Rajendram, <u>r.rajendram@nhs.net</u>, MD(RES)
- 20 Jimmy M Uddin, jimmy.uddin@nhs.net, FRCOphth
- 21 Richard Lee, richard.lee@ucl.ac.uk, MRCS, MRCOphth, PhD
- 22 Colin M Dayan. dayancm@cardiff.ac.uk, FRCP PhD
- 23 Peter N Taylor, <u>taylorpn@cardiff.ac.uk</u>, FRCP PhD
- 24
- 25
- 26
- 27 Running Title: Surgery on Quality of Life in Graves' Orbitopathy
- 28 Name and address of corresponding author: Peter Taylor, Thyroid Research Group, Systems
- 29 Immunity Research Institute C2 link corridor, UHW, Cardiff University School of Medicine,
- 30 Heath Park email: <u>taylorpn@cardiff.ac.uk</u>
- 31 telephone: + 44 (0)29 2074 8292 fax: +44 2920744671
- 32 Please send address for re-prints to <u>taylorpn@cardiff.ac.uk</u>

34	Key Words: Graves' Orbitopathy, Surgery, Decompression, Lid, Strabismus, GOQOL, Quality
35	of Life Systematic Review
36	
37	

38 Abstract

39 Background

40 Graves' orbitopathy has a profound negative impact on quality of life. Surgery is undertaken to

41 preserve vision, correct diplopia and improve aesthetics. We sought to quantify the effect of

- 42 different surgical approaches on quality of life.
- 43

44 Methods

Electronic databases Ovid–MEDLINE, EMBASE were used from inception until 22nd March,
2021 to identify studies assessing quality of life pre- and post-surgical intervention for Graves'
orbitopathy. Two reviewers independently extracted data and performed quality assessments.
Random-effects and Bayesian models for meta-analyses were utilised.

49

50 **Results**

10 articles comprising 632 patients with a mean age of 48.4 years (range 16-85 years) were
included. All used the Graves' Ophthalmopathy Quality of Life questionnaire (GO-QOL). For GOQOL appearance, the pooled standardised mean improvement for patients after surgery was +0.72
(95% CI 0.50-0.94) I² 69% (95% CI 52-80%). For GO-QOL visual functioning, the pooled SMD
for patients after surgery was +0.41 (95% CI 0.25-0.58) I² 60% (95% CI 36-74%).

56

For visual appearance, orbital decompression yielded the greatest improvement (SMD +0.84, 95%
CI 0.54-1.13) followed by eyelid surgery (SMD +0.38, 95% CI 0.05-0.70), while strabismus
correction had no significant effect (SMD +0.94, 95% CI -0.10-1.99). Conversely strabismus
correction was associated with the greatest improvement (SMD +1.25, 95% CI 0.29-2.21) in visual

functioning, outperforming orbital decompression (SMD +0.29, 95% CI 0.15-0.43) and eyelid
surgery (SMD +0.12, 95% CI -0.18-0.41).

63

A mean improvement in GO-QOL of greater than 10 points after orbital decompression surgery was achieved in 12/14 (86%) patient-groups for appearance and 5/14 (36%) patient-groups for visual functioning. A mean improvement of greater than six points was achieved in 5 of 6 (83%) patient groups for strabismus surgery for both appearance and visual functioning. A mean improvement of greater than six points after eyelid surgery was achieved in 2/3 (67%) patientgroups and 0/3 patient-groups for appearance and visual functioning respectively.

70

71 Conclusion

Ophthalmic surgery results in substantial improvements in quality of life in patients with Graves' orbitopathy, with greater perceived effects on appearance than visual function. Orbital decompression has particular impact on visual appearance, strabismus surgery benefits visual appearance and function equally whereas eyelid surgery benefits appearance alone. 76 Introduction

77

Graves' orbitopathy (GO), known also as Graves' ophthalmopathy or thyroid eye disease (TED),
is a complex autoimmune disorder and has substantial morbidity (1, 2, 3, 4). Indeed GO has been
shown to adversely affect quality of life, mental health, and economic activity (4, 5, 6). Its effects
can be profound and include double vision, orbital disfigurement and even visual loss (3).

82

83 The vast majority of patients with GO have established Graves' disease and glucocorticoids are 84 the mainstay of treatment for active disease although there is increasing use of additional agents 85 such as mycophenolate and teprotumumab (3, 7). Surgery is frequently required and is usually 86 performed during the inactive phase of disease with the goal of improving visual function and 87 cosmesis, although emergency surgery is required in the setting of sight-threatening optic nerve 88 compression (8). Options for surgical rehabilitation include orbital decompression, strabismus 89 correction, eyelid-lengthening procedures and blepharoplasty (8). While treatment is often 90 associated with objective improvements in clinical parameters, this may not necessarily translate 91 into meaningful recovery in the patient's physical, emotional and social functioning (9).

92

In brief, orbital decompression is the mainstay of rehabilitation for surgery as it can be utilised for optic nerve compression, corneal exposure and to improve aesthetics. Common complications include double vision and scarring and rarely visual loss. It requires general anaesthesia but can be performed on an outpatient basis. Strabismus surgery which adjusts the extra-ocular muscles requires significant expertise in thyroid eye disease, but it can be done under general or twilight anaesthesia and again can be performed in an outpatient setting. A key complication is a slipped

99 muscle and movement reduction. Lid surgery is often the final step in rehabilitative surgery and is 100 used to improve lid retraction, it can be performed with twilight anaesthesia with scarring being a 101 key complication.

- 102
- 103

104 Quality of life in GO is evaluated using general health-related questionnaires and disease-specific 105 questionnaires. Disease-specific questionnaires are often less generic, permitting greater focus on 106 relevant aspects of daily life affected by the disorder, and may be more sensitive to smaller changes 107 in quality of life (9). The most widely described and validated GO-specific quality of life 108 questionnaires, at present, include the Graves' Ophthalmopathy Quality of Life (GO-QOL) and 109 the Thyroid Eye Disease Quality of Life (TED-QOL) (10). Briefly, the GO-QOL comprises two 110 domains, one pertaining to visual functioning and the other to physical appearance, each made up 111 of eight items (11). The raw score for each domain is then transformed to a total score out of 100 112 with higher scores reflecting better quality of life. The TED-QOL contains three subscales, 113 including overall quality of life, the capacity to perform daily tasks, and satisfaction of appearance 114 (12). For the GO-QOL, Terwee *et al.* proposed that a change in score of at least six points after 115 minor therapy (such as strabismus correction, eyelid-lengthening procedures and blepharoplasty) 116 or at least 10 points after major therapy (such as orbital decompression) is indicative of a minimal 117 clinically important difference (MCID) (13). This MCID was established based upon the amount 118 of GO-QOL score change in patients who reported moderate subjective improvement in their 119 visual functioning, appearance, and overall quality of life post-procedure (13).

121	The aim of this systematic review and meta-analysis was to synthesise the existing literature on
122	the impact of these different surgical interventions for the management of GO on patients' quality
123	of life, as evaluated using these disease-specific questionnaires.
124	
125	Methods
126	
127	The systematic review and meta-analysis was performed in accordance with the Preferred
128	Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines. This study was
129	registered with the International Prospective Registry of Systematic Reviews (PROSPERO;
130	registration number CRD42021245615).
131	
132	Search Strategy and Study Selection
133	
134	Published articles were searched for in two major electronic databases via Ovid – MEDLINE and
135	EMBASE. Keywords for the search are listed in Supplementary Table 1. The last search was
136	performed on March 22, 2021. No restrictions were placed on the date or language of
137	publication. Only original articles were included with exclusion of abstracts, commentaries and
138	literature reviews. Articles without full text availability were also excluded. Replicates were
139	identified and removed. Studies were considered relevant if they included patients undergoing
140	rehabilitative surgery for GO, and whose quality of life was evaluated via an established disease-
141	specific questionnaire before and after surgery (GO-QOL) which there is both substantial
142	validity and reliability (Watt 2018). Articles providing primary data on pre- and post-operative
143	questionnaire scores (mean and standard deviation) were eligible for quantitative synthesis. All

papers yielded from the initial search were screened via title and abstract by two independent
reviewers (CHL, TW) to determine relevance. Thereafter, articles were read in full and selected
if they met the eligibility criteria by two reviewers independently. Any disagreement was
resolved by discussion or recourse to a third reviewer (SG). The reference lists of eligible studies
and review articles were also screened for additional relevant papers.

149

150 Data Extraction

groups (Table 1).

Quality Assessment

151 Certain studies described more than one indication or surgical approach (either variations of the

152 same procedure or different operations altogether) and GO-QOL scores have been reported

153 according to these characteristics. These have therefore been summarised as individual patient

154 155

Relevant information from eligible studies were retrieved in accordance with a pre-specified protocol by two independent reviewers (TW, SG). These included the study's first author, publication year, country of origin, study design, sample size, inclusion and exclusion criteria, type of rehabilitative surgery performed, follow-up duration, disease-specific quality of life questionnaire used, pre- and post-operative quality of life questionnaire scores (or their differences), and post-operative complications. For the meta-analysis, the means and standard deviations for pre- and post-operative GO-QOL scores were extracted.

165

166	Eligible studies were assessed using the National Heart, Lung, and Blood Institute (NIH) Quality
167	Assessment Tools for Before-After (Pre-Post) Studies with No Control Group and Controlled
168	Intervention Studies by two independent reviewers (TW, CHL) (14). The overall quality of each
169	study was rated as "good", "fair", or "poor". The final quality rating was determined upon
170	agreement by both reviewers.
171	
172	Statistical Analysis
173	
174	Data analysis was performed using the R software with the "meta" package by two analysts
175	(CHL, SG) (15). A conventional meta-analysis was mainly employed in this study.
176	Subsequently, a Bayesian meta-analysis was performed to reaffirm the findings of the
177	conventional meta-analysis. The "brms" package was used to fit Bayesian regression models
178	(Burkner 2017). We utilised a random effects model and weakly informative prior distributions
179	to inform the study effect size (mean of 0, variance of 1 was set) and between study
180	heterogeneity variance (where the half Cauchy distribution with scaling factor of 0.5) was used
181	(Williams 2018). Bayesian methods produce credible intervals and a 95% credible interval for an
182	effect size is that region in which we believe the effect size to lie with probability 95%. This
183	cannot be done with the classical meta-analysis. Bayesian approach is also particularly
184	advantageous for random-effects analysis of among study variation where numbers of studies are
185	small such as 10 studies or less (Turner 2012).
186	
187	Standardised mean differences (SMD) in GO-QOL scores pre-operatively and post-operatively

188 were calculated by Hedges' g. Standardised mean differences were utilised due to the

189	heterogeneity of studies and also due to the relative difference in changes for the visual
190	appearance and visual functioning domains from their baseline.

192	The random effects model was used to pool effect sizes and mean differences in GO-QOL		
193	scores. Restricted maximum likelihood was used to derive the estimator for heterogeneity τ^2 .		
194	Subgroup analysis was performed to determine the effects of different types of surgery and		
195	follow-up durations on the outcome. Standard error of difference between subgroup effect sizes		
196	was also calculated and compared (16). Meta-regression was used to predict the effect of pre-		
197	operative GO-QOL appearance and visual function scores with the individual-study effect sizes		
198	generated from ophthalmic surgery. These are shown as bubble plots where individual bubbles		
199	represent individual study weightage.		
200			
201	A funnel plot and Egger test were used to detect potential publication bias augmented by the		
202	Duval and Tweedie trim-and-fill procedure which suppresses the most extreme results		
203	(Supplementary Figures 1 and 2). Results were considered statistically significant if the p		
204	value was <0.05.		
205			
206	Results		
207			
208	Study Characteristics		
209			
210	The search yielded a total of 158 articles across the databases (Figure 1). After removal of		

211 replicates, 95 articles were screened from which 32 were deemed relevant to the study. These

were examined fully and 10 were selected for meta-analysis after meeting the eligibility criteria.
For included papers no author contact was required for clarification of the data or study criteria,
or availability of full text.

215

216 The 10 articles comprised 632 patients with a mean age of 48.4 years ranging between 16 and 85 217 years. The majority of patients were female (74.9%). The studies encompassed the three main 218 categories of surgery - orbital decompression (n=410), strabismus correction (n=148), and eyelid 219 procedures (n=47). Amongst the 10 studies, there were 23 different groups of patients. In 220 general, patients were eligible for rehabilitative surgery if they were euthyroid with stable 221 clinical activity scores typically for at least three months. All studies were prospective or 222 retrospective observational studies with the exception of one randomised controlled trial (Sellari-223 Franceschini *et al.*), and all employed the GO-QOL questionnaire to evaluate disease-specific 224 quality of life although one (Fayers et al.) also reported using the TED-QOL (20, 24). The post-225 operative follow-up duration ranged from two months up to at least 37.9 months with a median 226 of 4 months.

227

Post-operative complications were sporadically reported, and all pertained to adverse effects of orbital decompression, the most common being induction of diplopia (19, 21, 24). Other described complications (which varied depending on the precise surgical approach) included eyelid oedema and chemosis, maxillary sinus obstruction, hypoaesthesia of trigeminal nerve branches, and cosmetic dissatisfaction. Cerebrospinal fluid leak was a rare complication."

255

235 Orbital Decompression

236

237 Orbital decompression was evaluated in seven studies encompassing 14 patient groups. The most 238 common indication for orbital decompression was correction of disfiguring proptosis. Less 239 frequently decompression was performed for compressive optic neuropathy, chronic conjunctival 240 congestion, exposure keratopathy, and relief of retrobulbar sensation. A range of surgical 241 methods were reported, varying by number and location of orbital walls removed with or without 242 concomitant removal of adipose tissue, encompassing both open and endoscopic approaches. 243 Cheng et al. also reported a technique consisting solely of fat decompression with preservation of orbital walls (18). The change in mean GO-QOL scores following orbital decompression 244 245 ranged between 1.8 and 40.3 for the appearance domain (median=19.6, interquartile range 246 [IQR]=14.9-23.5), and -1.7 and 34.6 for the visual function domain (median=8.0, IQR=2.5-13.2). 247 A mean improvement of greater than 10 points (i.e. greater than the MCID for major intervention 248 as proposed by Terwee *et al.*) after orbital decompression surgery was achieved in 12 of 14 249 (86%) patient groups and 5 of 14 (36%) patient groups for appearance and visual functioning 250 domains respectively (13).

251

252 Strabismus Correction

253

Four studies involving six patient groups reported on the use of strabismus correction, most
commonly performed for improvement of constant diplopia. The change in mean GO-QOL
scores after strabismus correction ranged between 2.6 and 88.2 for the appearance domain
(median=13.1, IQR=9.8-18.8), and 2.8 and 89.1 for the visual functioning domain (median=24.2,

IQR=19.3-29.1). A mean improvement of greater than six points (i.e. greater than the MCID for
minor intervention) after surgery was achieved in 5 of 6 (83%) of strabismus correction patient
groups for both appearance and visual functioning domains.

261

262 Eyelid Procedures

263

264 Eyelid procedures including eyelid lengthening and blepharoplasty, performed for cosmetic

265 indications such as eyelid retraction, were reported in two involving three patient groups. Mean

266 GO-QOL scores changed between 4.2 and 18.4 for the appearance domain (median=10.2,

IQR=7.2-14.3), and 0.2 and 4.4 for the visual functioning domain (median=3.7, IQR=2.0-4.1). A

268 mean improvement of greater than six points after eyelid surgery was achieved in 2 of 3 (67%)

269 patient groups and none (0 of 3) patient groups for appearance and visual functioning domains

270 respectively.

271

272 Quality Assessment

273

The overall quality of studies were rated by two independent reviewers (TW, CHL) based on the
NIH Quality Assessment Tools for the corresponding study designs (Table 1, Supplementary
Table 2). Of the 10 studies 1 study was felt to be of poor quality, 5 of fair quality and 4 of good
quality (Supplementary Table 2)

278

There was some weak evidence of publication bias. Publication bias was assessed using a funnel plot, which did not show significant asymmetry for GO-QOL appearance score (p=0.126) but

demonstrated significant asymmetry for GO-QOL function (p=0.0493). However, upon application of the Duval and Tweedie trim-and-fill procedure, which removed the effect size from Sarici *et al.*, the p-value achieved non-significance (p=0.661 and 0.564 with SMD of 0.684 and 0.392 respectively) (23).

285

286 Meta-analysis of the Effect of Surgery on Quality of Life

287

288 Patients who had undergone surgery experienced significant improvements (p < 0.05) in both 289 appearance and function domains compared to their baseline pre-operatively (Figures 2 and 3). 290 For the improvement in GO-QOL appearance, the pooled SMD for patients after surgery using 291 conventional (frequentist) meta-analysis was 0.72 (95% CI 0.50-0.94) and the I² was 69% (95% 292 CI 52-80%) (Figure 2). For the improvement in GO-QOL visual functioning, the pooled SMD for patients after surgery was 0.41 (95% CI 0.25-0.58) and the I² was 60% (95% CI 36-74%) 293 294 (Figure 3). A Bayesian random-effects meta-analysis was also performed (Supplementary 295 Figures 3 and 4) which demonstrated a more conservative but significant improvement in GO-296 QOL scores for both domains. Using the study-level mean GO-QOL change (a change of 10 297 points or more for all types of surgery was considered a clinically meaningful difference), the 298 odds of a clinically meaningful difference was 3.6 (95% CI 1.34-9.70) for GO-QOL appearance 299 score and 0.769 (95% CI 0.34-1.75) for visual functioning score. 300

301 The Effect of Different Types of Surgery on Quality of Life

303	Subgroup analysis based on type of surgery indicated a trend towards a difference on the
304	improvement in the GO-QOL scores for both appearance (Q=4.62, p=0.1) and visual functioning
305	domains (Q=5.12, p=0.08) (Figures 4 and 5). Eyelid surgery (SMD 0.12, 95% CI -0.18-0.41)
306	had the smallest effect on improving visual function followed by orbital decompression (SMD
307	0.29, 95% CI 0.15-0.43). Strabismus correction had the greatest effect on improving visual
308	functioning (SMD 1.25, 95% CI 0.29-2.21) and significantly outperformed eyelid surgery and
309	orbital decompression. By contrast, orbital decompression (SMD 0.84, 95% CI 0.54-1.13)
310	yielded the greatest improvement in appearance, with a lesser effect from eyelid surgery (SMD
311	0.38, 95% CI 0.05-0.70). Strabismus correction had no significant effect on improving
312	appearance (SMD 0.94, 95% CI -0.10-1.99).
313	
314	The Effect of Different Follow-up Durations on Quality of Life Post-surgery
315	
316	Most studies reported a follow-up duration of within 6 months post-operatively for the
317	completion of the GO-QOL. Two studies had a long duration of follow-up beyond 6 months,
318	with a mean of 37.9 months and 32.7 months respectively (Table 1). In one study there was no
319	information on the duration of follow-up (18, 20, 23).
320	
321	The different duration of follow-up among the studies (up to 6 months versus more than 6
322	months versus no information) did not significantly impact on the overall changes in the GO-
323	QOL scores for both appearance (Q=1.14, p=0.57) and visual functioning (Q=0.92, p=0.63). The
324	improvement in GO-QOL scores for both appearance (SMD 0.70, 95% CI 0.44-0.96) and visual
325	function (SMD 0.39, 95% CI 0.22-0.57) remained significant after Cheng et al., Sarici et al.

326	(both more than 6 months follow-up) and Fayers et al. (no information on follow-up) were
327	excluded from the analysis (Supplementary Figures 5 and 6) (18, 20, 23).
328	
329	Relationship between Pre-operative Quality of Life and Improvement following Surgery
330	
331	Meta-regression demonstrated a significant negative correlation (p<0.001) between pre-operative
332	GO-QOL scores and the effect size. The lower the pre-operative GO-QOL score, the greater the
333	improvement for both appearance and visual function after surgery (Supplementary Figures 7
334	and 8).
335	
336	Discussion
337	
338	To our knowledge, this is the first meta-analysis quantifying the effect size of surgical
339	interventions for GO on quality of life measures. Primarily, we established there was a
340	significant effect of all forms of surgical procedures on GO-QOL appearance and visual function
341	scores using both frequentist and Bayesian approaches. For appearance, the pooled standardised
342	mean improvement for patients after surgery was 0.72 (95% CI 0.50-0.94) and for visual
343	functioning, the pooled SMD for patients after surgery was 0.41 (95% CI 0.25-0.58). Using the
344	study-level mean GO-QOL change, the odds of a clinically meaningful difference was 3.6 (95%
345	CI 1.34-9.70) for GO-QOL appearance score and 0.769 (95% CI 0.34-1.75) for GO-QOL visual
346	functioning score.
247	

348 The effect of surgery is important to quantify as although it is well established that clinical 349 parameters such as total eye score, diplopia and ophthalmopathy index do improve with time 350 and following surgery, these metrics may not necessarily correlate well with patients' physical 351 and psychosocial wellbeing (3, 9, 26). The value of evaluating quality of life as part of routine 352 clinical assessment of patients is therefore increasingly advocated to guide their management in a 353 holistic manner (9). Our meta-regression also indicated that patients with lower quality of life at 354 baseline were more likely to repeat more substantial improvements following surgery 355 (Supplementary Figures 7 and 8). Furthermore, it is important to indicate where the most 356 substantial improvements may be found with regard to both appearance and function. It would 357 therefore be of interest to delineate whether visual function improves to a greater extent when 358 orbital decompression is performed for optic neuropathy rather than proptosis. There was 359 insufficient data to demonstrate this as GO-QOL scores for this indication was quoted in only ten 360 patients in one study (13). The development and validation of disease-specific quality of life 361 measures including the GO-QOL to evaluate these aspects have allowed interventional studies to 362 define improvement from a more patient-centred point of view. Hence, quantitative synthesis of 363 the effects of surgery on these end-points provides important information to guide clinical 364 decisions while balancing the overall risks of surgical treatment.

365

Subgroup analysis showed that orbital decompression was associated with the greatest
improvement in appearance, with a standardised mean improvement of 0.84 (95% CI 0.54-1.13).
This dramatic effect on visual appearance is not surprising given orbital decompression is the
mainstay of rehabilative surgery and also provides substantial benefits to visual function.

Meanwhile, strabismus correction had the strongest effect on improving visual function with a
standardised mean improvement of This was unsurprising, since the
primary goals for orbital decompression and strabismus correction are amelioration of
disfiguring proptosis and diplopia respectively (8). Similarly, eyelid procedures which are
performed to enhance cosmesis did not demonstrate a significant improvement in visual
functioning (8).

376

377 For both domains, a moderate degree of statistical heterogeneity was observed. This is likely 378 attributable to the varying surgical approaches studied, each associated with its own clinical 379 objectives and complications, as well as the use of multiple different techniques of a type of 380 surgery. Procedural outcomes are operator-dependent and this may introduce further 381 discrepancies between studies, with all but one being performed in a single ophthalmological 382 centre often by a solitary surgeon. A lack of standardised selection criteria may also contribute to 383 the variability, given that some patients had already undergone a prior operation for GO or had 384 received other forms of treatment which in turn may influence their baseline quality of life 385 scores. In keeping with this, meta-regression demonstrated a significant negative correlation 386 between baseline GO-QOL score and the effect size of surgery. Another explanation for the 387 heterogeneity observed may be the subjective perception of quality of life amongst different 388 individuals from a diverse spread of localities. Quality of life changes following surgery may 389 also reflect differences in cultural norms play a role in determining one's expectations of their 390 quality of life (25, 27). There were also disparities in the follow-up duration of patients, 391 however, this was not found to significantly influence changes in GO-QOL scores.

392

393 A major strength of this study was the concomitant use of a Bayesian meta-analysis to affirm the 394 findings of the conventional meta-analysis. Bayesian analysis allowed us to integrate prior 395 knowledge and assumptions when calculating meta-analysis and despite producing a more 396 conservative effect size compared to frequentist approaches, the effect size remained 397 considerable. An additional advantage in this study is the use of the GO-QOL itself, which was 398 adopted relatively early in studies of GO and this enabled a smoother meta-analyses and clear 399 conclusions. Indeed, this meta-analysis also provides further evidence of the validity and utility 400 of the GO-QOL as the surgical procedures had the expected effects on GO-QOL with regard to 401 their relative impact on visual appearance and functioning. We observed that orbital 402 decompression influenced both appearance and function with a greater effect on appearance, 403 strabismus surgery also had benefits on appearance and functioning but to a lesser degree 404 whereas lid surgery had an impact on appearance but not visual function. 405 406 Nonetheless, there were several limitations in this study. As the GO-QOL scores extracted were 407 averages of the cohort undergoing a given procedure, we were unable to comment on the effect 408 sizes on an individual patient level and whether individual patients had attained a clinically 409 meaningful improvement (hence study-level data SMD and odds were analysed). Moreover, this 410 analysis was not based on controlled trials aside from one study (Sellari-Franceschini *et al.*), 411 which was a randomised controlled trial and therefore effects observed may have benefited from

a placebo effect or improvement in quality of life over time. Our studies utilised were often
retrospective in nature and thus prone to selection, information and publication biases. In
particular, Sarici *et al.*'s study reported a very small sample size with a large effect size (23). The

415 strikingly low pre-operative GO-QOL scores amongst their cohort limits the generalisability of

this study. We also did not incorporate unpublished conference papers or audits which may have

resulted in bias against studies with unremarkable findings. We were limited in our ability to
access two potentially eligible studies by the scope of our institutional search engine and a lack
of author response when contacted. Finally, certain translations of the GO-QOL, originally
published in Dutch and English, had yet to be formally validated *a priori* in their respective
populations.

422

423 To confirm the efficacy of surgery, future studies should involve comparisons with a matched 424 control population which may be challenging to conduct. With the emergence of promising novel 425 therapies such as teprotumumab it would also be interesting to evaluate how surgery performs 426 against the latest medical interventions. Additionally, GO patients often require more than one 427 operation as part of a wider rehabilitative plan, and therefore it would be of value to assess 428 whether quality of life continues to improve and to what extent. Future studies using individual 429 patient level data could be undertaken to determine the likelihood of individual patients 430 achieving a clinically meaningful improvement, and to identify predictive factors that correlate 431 with responsiveness to surgery in the context of quality of life. In turn these could assist in 432 guiding clinical decision-making and informing the likelihood of improvement amongst surgical 433 candidates.

434

435 Conclusion

436

Graves' orbitopathy can be highly debilitating with substantial long-term negative connotations
for patients' psychosocial wellbeing and quality of life. A multidisciplinary approach is often
required to manage this condition. Rehabilitative surgery can substantially improve disease-

- 440 specific quality of life in these patients although the choice of operation impacts on different
- 441 aspects of quality of life to a varying extent.

442	Authors' Contributions
443	
444	Conceptualisation, C.M.D.; study search and selection, C.H.L., T.W.; data extraction, S.G.,
445	T.W.; data analysis, C.H.L., S.G., T.W.; manuscript preparation, C.H.L, S.G., T.W.; manuscript
446	review and editing, C.H.L., S.G., T.W., R.R., J.U., R.W.J.L., C.M.D., P.N.T.; supervision,
447	C.M.D., P.N.T.
448	
449	Author Disclosure Statement
450	
451	The authors declare no conflict of interest.
452	
453	Funding Information
454	
455	This research received no direct funding. R.W.J.L receives salary support from the NIHR
456	Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL
457	Institute of Ophthalmology. The views expressed are those of the author(s) and not necessarily
458	those of the NIHR or the Department of Health and Social Care.
459	
460	
461	
462	
463	

464	Table Heading
465	
466	Table 1. Characteristics of studies.
467	
468	
469	
470	

473	1.	Smith TJ, Hegedüs L. C	Braves' Disease. N Engl J	Med. 2016 Oct 20;375(16):1552-65.

- 474 2. Bahn RS. Graves' ophthalmopathy. N Engl J Med. 2010 Feb 25;362(8):726–38.
- Taylor PN, Zhang L, Lee RWJ, Muller I, Ezra DG, Dayan CM, et al. New insights into the
 pathogenesis and nonsurgical management of Graves orbitopathy. Nat Rev Endocrinol.
 2020 Feb;16(2):104–16.
- 478 4. Ponto KA, Hommel G, Pitz S, Elflein H, Pfeiffer N, Kahaly GJ. Quality of life in a german
 479 graves orbitopathy population. Am J Ophthalmol. 2011 Sep;152(3):483-490.e1.
- Kahaly GJ, Petrak F, Hardt J, Pitz S, Egle UT. Psychosocial morbidity of Graves'
 orbitopathy. Clin Endocrinol (Oxf). 2005 Oct;63(4):395–402.
- 482 6. Ponto KA, Merkesdal S, Hommel G, Pitz S, Pfeiffer N, Kahaly GJ. Public health relevance
 483 of Graves' orbitopathy. J Clin Endocrinol Metab. 2013 Jan;98(1):145–52.
- Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, et al. Global
 epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018
 May;14(5):301–16.
- Eckstein A, Schittkowski M, Esser J. Surgical treatment of Graves' ophthalmopathy. Best
 Pract Res Clin Endocrinol Metab. 2012 Jun;26(3):339–58.
- 489 9. Wiersinga WM. Quality of life in Graves' ophthalmopathy. Best Pract Res Clin Endocrinol
 490 Metab. 2012 Jun;26(3):359–70.

491	10.	Lee THB, Sundar G. Quality of Life in Thyroid Eye Disease: A Systematic Review.
492		Ophthal Plast Reconstr Surg. 2020 Apr;36(2):118–26.
493	11.	Terwee CB, Gerding MN, Dekker FW, Prummel MF, Wiersinga WM. Development of a
494		disease specific quality of life questionnaire for patients with Graves' ophthalmopathy: the
495		GO-QOL. Br J Ophthalmol. 1998 Jul;82(7):773–9.
496	12.	Fayers T, Dolman PJ. Validity and reliability of the TED-QOL: a new three-item
497		questionnaire to assess quality of life in thyroid eye disease. Br J Ophthalmol. 2011
498		Dec;95(12):1670–4.
499	13.	Terwee CB, Dekker FW, Mourits MP, Gerding MN, Baldeschi L, Kalmann R, et al.
500		Interpretation and validity of changes in scores on the Graves' ophthalmopathy quality of
501		life questionnaire (GO-QOL) after different treatments. Clin Endocrinol (Oxf). 2001
502		Mar;54(3):391–8.
503	14.	Study Quality Assessment Tools NHLBI, NIH [Internet]. [cited 2021 Jul 16]. Available
504		from: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
505	15.	R: The R Project for Statistical Computing [Internet]. [cited 2020 May 15]. Available from:
506		https://www.r-project.org/
507	16.	Borenstein M, Higgins JPT. Meta-analysis and subgroups. Prev Sci Off J Soc Prev Res.
508		2013 Apr;14(2):134–43.

509	17.	Campi I, Currò N, Vannucchi G, Covelli D, Simonetta S, Fugazzola L, et al. Quantification
510		of Global Ocular Motility Impairment in Graves' Orbitopathy by Measuring Eye Muscle
511		Ductions. Thyroid Off J Am Thyroid Assoc. 2021 Feb;31(2):280–7.
512	18.	Cheng AM, Wei Y-H, Tighe S, Sheha H, Liao S-L. Long-term outcomes of orbital fat
513		decompression in Graves' orbitopathy. Br J Ophthalmol. 2018 Jan;102(1):69-73.
514	19.	European Group on Graves' Orbitopathy (EUGOGO), Mourits MP, Bijl H, Altea MA,
515		Baldeschi L, Boboridis K, et al. Outcome of orbital decompression for disfiguring proptosis
516		in patients with Graves' orbitopathy using various surgical procedures. Br J Ophthalmol.
517		2009 Nov;93(11):1518–23.
518	20.	Fayers T, Fayers PM, Dolman PJ. Sensitivity and responsiveness of the patient-reported
519		TED-QOL to rehabilitative surgery in thyroid eye disease. Orbit Amst Neth. 2016
520		Dec;35(6):328–34.
521	21.	Fichter N, Krentz H, Guthoff RF. Functional and esthetic outcome after bony lateral wall
522		decompression with orbital rim removal and additional fat resection in graves' orbitopathy
523		with regard to the configuration of the lateral canthal region. Orbit Amst Neth. 2013
524		Aug;32(4):239–46.
525	22.	Jellema HM, Merckel-Timmer E, Kloos R, Saeed P, Mourits MP. Quality of life improves
526		after strabismus surgery in patients with Graves' orbitopathy. Eur J Endocrinol. 2014
527		May;170(5):785–9.

528	23.	Sarici AM, Mergen B, Oguz V, Dogan C. Intraoperative relaxed muscle positioning
529		technique results in a tertiary Center for Thyroid Orbitopathy Related Strabismus. BMC
530		Ophthalmol. 2018 Nov 23;18(1):305.
531	24.	Sellari-Franceschini S, Rocchi R, Marinò M, Bajraktari A, Mazzi B, Fiacchini G, et al.
532		Rehabilitative orbital decompression for Graves' orbitopathy: results of a randomized
533		clinical trial. J Endocrinol Invest. 2018 Sep;41(9):1037–42.
534	25.	Wickwar S, McBain H, Ezra DG, Hirani SP, Rose GE, Newman SP. The Psychosocial and
535		Clinical Outcomes of Orbital Decompression Surgery for Thyroid Eye Disease and
536		Predictors of Change in Quality of Life. Ophthalmology. 2015 Dec;122(12):2568-2576.e1.
537	26.	Wilson IB, Cleary PD. Linking clinical variables with health-related quality of life. A
538		conceptual model of patient outcomes. JAMA. 1995 Jan 4;273(1):59-65.
539	27.	Molzahn AE, Kalfoss M, Schick Makaroff K, Skevington SM. Comparing the importance
540		of different aspects of quality of life to older adults across diverse cultures. Age Ageing.
541		2011 Mar;40(2):192–9.
542		
543		
544		
545 546	Wat	t, T. (2018). Measuring impact of benign thyroid diseases on quality of life, Elsevier.