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Abstract

In the study of reasoning in neural networks, recent efforts have sought to improve1

coherence and consistency of neural sequence models. This is an important de-2

velopment in the study of neuro-symbolic systems. In symbolic AI, however, the3

concepts of consistency and coherence are defined formally. The provision of such4

formal definitions is needed to offer a common basis for the quantitative evalu-5

ation and systematic comparison of connectionist, neuro-symbolic and transfer6

learning approaches. In this paper we introduce formal definitions for coherence7

and consistency of neural systems. To illustrate the usefulness of the definitions,8

we propose a new dynamic relation-decoder model built around the principles of9

consistency and coherence. By comparing several existing relation-decoders on a10

partial relation transfer learning task and novel data set introduced in this paper,11

our experiments show that relation-decoders that can maintain consistency over12

unobserved regions of representation space, retain coherence across domains and13

achieve better transfer learning performance.14

1 Introduction15

Humans are capable of learning concepts that can be applied to many different scenarios [17, 33, 22].16

An important principle is that human-like concepts remain coherent across contexts [30]. As an17

example, consider the concept of ordinality, e.g. “A is larger than B”, which allows comparisons to18

be made between ordered sets. Ordinality should apply equally whether A and B are digits or a tower19

of blocks. It is said that a concept may pertain to a multitude of properties: position, volume, reach,20

etc. As long as one of these properties can be attributed to an object, a set of objects can be compared21

on that basis. All in all, if the concept of ordinality was to be learned in its most general form, its use22

should be consistent across objects and coherent across object properties.23

In [30], empirical results on story generation and instruction-following have shown that an intuitive24

use of consistency and coherence can increase the accuracy of neural networks. It is argued in [30]25

that System 1 approaches, fast and capable of learning patterns efficiently from data, “are often26

inconsistent and incoherent", and that “adding System 2-inspired logical reasoning" as a logically-27

consistency, training-free module allows for an improved selection of candidate stories generated28

by System 1. While [30] makes an important contribution by exploring several variations on the29

theme, in this paper we offer a formal definition for consistency and coherence in the context of30

neural networks, in particular autoencoders. We also take one step further and apply and evaluate31

consistency and coherence to transfer learning, where we believe that the theme will have its most32

practical impact.33

We argue that for a concept to be useful during transfer learning, the system of relations that define the34

concept in the source domain must be coherent with the target domain, whereby logical consistency35

achieved in the source is retained in the target domain. This is to say that the concept-specific relations36
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learned in the source ought to be consistent with a logical theory that defines their semantics, and37

that such consistency must extend beyond the representations learned in the source domain and, in38

particular, hold for the embeddings learned in the target domain.39

In this paper, we offer a formal definition for consistency and coherence of sub-symbolic learners,40

inspired by analogous definitions from symbolic AI. This is expected to define the conditions that41

make a learned concept transfer well across properties and objects. We propose a simple neural-42

symbolic autoencoder architecture consisting of a neural encoder for objects coupled with consistent43

and modular relation-decoders, and we show in comparison with alternative popular approaches that44

this simple architecture is capable of achieving an improved transfer learning performance by being45

coherent across object properties [37, 12, 3, 44, 28, 11].46

Specifically, consistency and coherence metrics are shown to offer a more fine-grained measure47

for transfer learning than accuracy alone. The proposed architecture is evaluated on a new Partial48

Relation Transfer (PRT) task and data set introduced in this paper. The application of a set of logical49

relations to a domain is specified as a model-theoretic structure with an analogous (soft-)structure50

for non-symbolic learners. Consistency and coherence of soft-structures is then shown to provide51

a practical score calculation to the evaluation of autoencoders. The benchmark PRT learning task52

uses a new BlockStacks data set derived from the CLEVR data set rendering agent. This is compared53

with several existing relation-decoder models on transfer learning tasks from BlockStacks to the54

MNIST handwritten digits data set, on relations such as isGreater, isEqual..., such that the learning55

of ordinality among the digits is evaluated against the learning of the relative position of a block in56

the stack. Our experiments show that relation-decoders which maintain consistency over unobserved57

regions of representational space retain coherence across domains whilst achieving better transfer58

learning performance. In summary, the contributions of this paper are:59

• A formal definition of consistency and coherence for sub-symbolic learners offering a60

practical evaluation score for concept coherence;61

• A derived model implementation and partial relation transfer experimental setup used to62

evaluate the interplay between concept coherence and concept transfer;63

• A comprehensive critical evaluation of results and comparison of multiple relation-decoder64

models with varied model capacity, showing that regularisation via model capacity or65

β-induced disentanglement pressure improves concept coherence.66

In Section 2 we provide the required logic background. Section 3 introduces soft-structures and67

formally defines coherence and consistency. Section 4 describes the neuro-symbolic architecture68

and its associated practical consistency loss. After detailing the PRT task and data set in Section 5,69

comparative experimental results are discussed in Section 6. Section 7 concludes the paper with a70

discussion, including limitations and future work. We discuss related work, experimental setup and71

data set characteristics, model details and parameterization, and we make the code and additional72

experimental results available in the Supplementary Material.73

2 Preliminaries74

Notation: We reserve uppercase calligraphic letters to denote sets, and lowercase versions of the75

same letter to denote their elements, e.g. S = {s1, . . . , sn} is a set S of n elements si. We indicate76

with |S| = n the cardinality of S . We use uppercase roman letters to denote a random variable e.g. S,77

and use the uppercase calligraphic version of the same letter (S) to denote the set from which the78

random variable takes values according to some corresponding probability distribution pS , over the79

elements of the set, such that
∑|S|

i=1 pS(si) = 1 for a discrete S . For brevity, we may write pS(si) as80

p(si), where the random variable is implied by the argument. We use bold font lowercase letters to81

denote vector elements, e.g. si ∈ Rd is an d-dimensional vector element from the set S = Rd.82

Logic and model-theoretic background: We assume a formal language L composed of variables,83

predicates (i.e. relations), logical connectives ¬ (negation), ∨ (disjunction), ∧ (conjunction), →84

(implication), and universal quantification ∀ (for all) with their conventional meaning (see [38]).85

Relations express knowledge over the elements of a domain. For instance, r(s1, s2) states that86

elements s1 and s2 are related through the binary relation r. The meaning of a relation is defined by87

an interpretation ISσ
over elements of an non-empty domain S.88
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Definition 2.1 (Signature, Interpretation, Structure). The signature of a language L is a set of89

relations σ = {r∈L} whose elements have arity given by ar : σ → N , where N is the set of natural90

numbers. Given a signature σ and a non-empty domain S, an interpretation ISσ of σ over elements91

of S assigns to each relation r ∈ σ a set ISσ
(r) ⊆ Sar(r). A structure is a tuple Sσ = (S, ISσ

).92

Note that for a fixed domain S and signature σ, different interpretations yield different structures. We93

construct universally quantified first-order formulae (called sentences) using the signature σ of L,94

whose truth-value is defined with respect to a given structure Sσ . To do so, we first consider ground95

instances of a formula. These are given by replacing all the variables in the formula with elements96

from the domain S . For example, r(s1, s2), where s1 and s2 are elements of S , is a ground instance97

of an atomic formula r(i, j) where i and j are variables in L. Given a structure Sσ = (S, ISσ
), a98

relation r, and a tuple (s1, . . . , sar(r)) ∈ Sar(r), a ground instance r(s1, . . . , sar(r)) is true in the99

structure Sσ if and only if (s1, . . . , sar(r)) ∈ ISσ (r). The truth value of a sentence in a given structure100

Sσ depends on the truth value of its respective ground instances. Specifically, a sentence is true in a101

structure Sσ if and only if all of its ground instances are true in Sσ. When a sentence, τ , is true in102

a structure, Sσ, we say that the structure satisfies τ , denoted as Sσ |= τ . A set of sentences form a103

theory, T . A model of T is a structure that satisfies every sentence in T .104

Definition 2.2 (Model of a theory). Let T be a theory written in a language L and let Sσ = (S, ISσ
)105

be a structure, where σ is the signature of L. Sσ is a model of T if and only if Sσ |= τ for every106

sentence τ ∈ T .107

Example 1. Suppose we have the structure Sσ = (S, ISσ
), where S is a domain of images of hand-108

written digits and σ the signature of binary relations σ = {isGreater, isEqual, isLess, isSuccessor,109

isPredecessor}, or for short σ = {G, E, L, S, P}. Let T be the theory that defines ordinality110

including, for instance, the sentence ∀i, j.G(i, j) → ¬E(i, j) (if a digit is greater than another then111

they are not equal). Any structure Sσ = (S, ISσ
) with interpretations ISσ

of σ that captures a total112

order over the elements of S is a model of T .113

3 A Formalization of Consistency and Coherence114

In this section we turn our attention to the challenge of learning a model of a theory over a real-world115

domain given a signature. Here a learner must determine an appropriate interpretation over real-world116

data, such as images or other perceptions. This can be challenging because, firstly, we may only have117

a partial description of the interpretation, and secondly data may be noisy and contain information118

that is not relevant to the theory. For example, the handwritten digits in the MNIST dataset contain119

stylistic details such as line thickness and digit skew that are irrelevant to the notion of ordinality,120

which makes learning the structure from Example 1 non-trivial.121

Following the convention from the disentanglement literature [4, 20, 16, 15], we make the assumption122

that real-world observations S are drawn from some conditional distribution pS|Z, where Z is a latent123

random variable, itself drawn from prior pZ. It is therefore useful to define a domain encoding of the124

form:125

ψS : S → Z, (1)

tasked with approximating the conditional expectation of the posterior, i.e. ψS(s) = E[pZ|S(Z|s)].126

Since obtaining an interpretation from domain encodings, for a given signature, may require dealing127

with noise, we express the interpretation of relations over real-world data by belief functions over the128

space Z [32, 31], and refer to these as relation-decoders:129

ϕr : Zar(r) → (0, 1) (2)

with ϕ = {ϕr : r ∈ σ}. Concretely, for a binary relation r and ordered pair (si, sj) ∈ S2,130

ϕr(ψS(si), ψS(sj)) describes the belief that (si, sj) ∈ ISσ (r). A belief ϕr(ψS(si), ψS(sj)) ≈ 1131

signifies a strong belief that (si, sj) ∈ ISσ
(r) and ϕr(ψS(si), ψS(sj))≈0 signifies a strong belief132

that (si, sj) /∈ ISσ
(r). Together, ψS and ϕ allow us to define a belief-based analogue to a structure.133

Definition 3.1 (Soft-Structure/Soft-Substructure). Given signature σ, a possibly infinite set Z and134

relation-decoders ϕ, a soft-structure is a tuple Z̃σ = (Z, ϕ). For (finite) domain S and encoding135

ψS : S → Z , S̃σ = (ψS(S), ϕ) is a (finite) soft-substructure of Z̃σ, with sub-domain ψS(S) =136

{ψS(s)|s ∈ S} ⊆ Z .137
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A soft-structure can be used to learn a (logical) structure over a real-world domain through learning138

ψS and ϕ. Clearly, a finite soft-substructure is a soft-structure. To determine the degree to which a139

soft-structure supports any given structure, we introduce the following measure:140

p(Sσ|S̃σ) =
∏
r∈σ

∏
O∈Sar(r)

f(ϕr, ψS , O, γ
r
O,Sσ

) (3)

with f(ϕr, ψS , O, γ
r
O,Sσ

) = (ϕr(ψS(O)))γ
r
O,Sσ · (1 − ϕr(ψS(O)))1−γr

O,Sσ , where γrO,Sσ
= 1 if141

O ∈ ISσ
(r), and 0 otherwise; we use ϕr(ψS(O)) as shorthand for ϕr(ψS(s1), . . . , ψS(sn)) for142

n = ar(r). Eqn. 3 expresses the assumption that, given a finite soft-structure, the beliefs in143

what constitutes the different interpretations of a relation are independent of one another. It is144

straightforward to show that
∑

Sσ
p(Sσ|S̃σ) = 1 (summed over all possible structures with domain145

S and signature σ) and so it can be treated as a probability measure, where p(Sσ|S̃σ) ≈ 1 means that146

there is a high probability that the interpretation sampled from S̃σ will be ISσ
. If we have a theory T147

over σ then it is natural to ask with what weight S̃σ supports any given structure that is a model of T .148

In the following, we use model weight, ΓS̃σ

T , to describe the support given by S̃σ to models of T :149

ΓS̃σ

T =
∑

Sσ∈MT
S

p(Sσ|S̃σ) (4)

where MT
S is the set of all structures with domain S that are models of T . This lets us compare150

soft-structures, wherein a good soft-structure will be one that has a high model weight.151

Definition 3.2 (ϵ-Consistency of Soft-Structure). Given a finite soft-structure S̃σ, if 1 − ΓS̃σ

T ≤ ϵ152

then we say that the soft-structure is ϵ-consistent with theory T .153

We propose ϵ-consistency as an appropriate quantified measure of the notion of consistency presented154

in [30]. A consistent soft-structure S̃σ ensures that ϕ gives high belief only to interpretations that155

satisfy, and therefore are logically consistent with, T . As expected, consistency pertains to the156

domain encodings of S̃σ, i.e. ψS(S). For a concept to be learned in a manner comparable to what a157

human might learn, we would expect that this consistency carries over to new domains with their158

corresponding soft-structures, which gives our definition of coherence between soft-structures, as159

follows. Consider a situation where a deep network has already learned a soft-structure that has high160

model weight given the relations {G, E, L, S, P} from Example 1. Now suppose that we are given a161

new domain of images, Y , showing single block stacks of different heights, and we wish to re-use the162

signature of ordinal relations and T from Example 1. Lastly, let IYσ
be a interpretation in the new163

domain that orders images according to block stack height and is a model of T . We can summarise164

this with the following two structures:165

Xσ = (X , IXσ
) ∈ MT

X and Yσ = (Y, IYσ
) ∈ MT

Y , (5)

where Xσ is the structure from Example 1 with a domain of handwritten digits and Yσ is our new166

structure, with a domain of block stack images. These can be learned by soft-structures:167

X̃σ = (ψX (X ), ϕ) and Ỹσ = (ψY(Y), ϕ), (6)

which use domain-specific encoders, ψX and ψY , but share the same relation-decoders. As we know168

that X̃σ has a high model weight and since ϕ is shared with Ỹσ, a natural question to ask is: under169

what conditions will a ϕ that is consistent over domain-encodings ψX (X ) also be consistent over170

ψY(Y)? Concretely, we are interested in when the following coherence condition holds.171

Definition 3.3 (ϵ-Coherence across soft-structures). Two soft-structures, X̃σ and Ỹσ that share172

relation-decoders ϕ, are said to be ϵ-coherent with respect to a theory T , if X̃σ is ϵ1-consistent with173

T , Ỹσ is ϵ2-consistent with T , ϵ1 ≤ ϵ, and ϵ2 ≤ ϵ.174

Coherence between X̃σ and Ỹσ as defined above means that the concept of ordinality that applies to175

digit ordering can also be applied to block stack height ordering. It is desirable that learning ordinality176

on the domain of digits produces a coherent concept of ordinality with respect to other ordinal177

properties, such as height. Since it is possible that ψS(X ) and ψS(Y) produce unique encodings,178

coherence relies on ϕ’s ability to generalise over possibly disjoint subsets of Z1.179

1If soft-structure Z̃σ defined over the full space Z is consistent then coherence is guaranteed between all
possible soft-substructures.
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Figure 1: Network architecture used for PRT task.Relational learning is performed on the source
MNIST data set (to learn e.g. that digit 5 is greater than 3). Moving to the target data set (to learn
that a stack of blocks is greater than another) involves training a new encoder-decoder together with a
subset of the relation-decoders (with fixed parameters) from MNIST. The remaining relations are
held-out to evaluate zero-shot transfer learning performance.

4 A Consistent and Coherent Neuro-Symbolic Autoencoder180

In order to ground our definitions of consistency (3.2) and coherence (3.3) into a real system and181

evaluate their practical value, in this section we propose a simple autoencoder neuro-symbolic182

architecture intended to satisfy our definitions. To derive an efficient loss function, we introduce an183

estimate measure for a soft-structure’s ϵ-consistency and coherence with a given theory when access184

to every logical model is not available or computationally feasible.2185

Suppose there is a fixed domain S and theory T whose sentences use relations from a signature σ. Let186

k ∈ {1, ...,K0} denote the index associated with each unique ground instance of the relations in T .187

Take BT to be a Boolean random variable. The probability of T being satisfied under a soft-structure188

S̃σ is expressed as p(bT |S̃σ, k), where bT = 1 if T is satisfied (i.e. true), or 0 otherwise (denoting189

false). By definition, p(bT = 1|Sσ, k) = 1 if Sσ ∈ MT
S , where MT

S denotes the set of models of T .190

When S̃σ is consistent with T then we should also find that p(bT = 1|S̃σ, k) ≈ 1. Hence, we define191

a loss function as the expectation of the binary cross-entropy between p(BT |Sσ, k) and p(BT |S̃σ, k),192

which simplifies to the expected negative log-likelihood of satisfying T under a random sampling193

from the set of ground instances:194

L(T , S̃σ) = Ek∼p(k)[− ln p(bT = 1|S̃σ, k)]. (7)

where p(k) = 1
K0

is taken to be uniform distribution over the set of unique groundings. A measure195

based on this loss is required to enable the practical evaluation of coherence. To achieve this, we196

define Γ̄S̃σ

T = exp(−L(T , S̃σ)) and use its relationship with the already defined ΓS̃σ

T to obtain a197

bound on the loss function:198

ln
1

1− ϵ̄
≥ L(T , S̃σ) (8)

where ϵ̄ ≥ 1− Γ̄S̃σ

T . We take the coherence to be the upper value of ln 1
1−ϵ̄ between domains.3199

Figure 1 outlines the main components of our autoencoder: a domain-encoder ψS and modular200

relation-decoders ϕ form an autoencoding architecture that, given a domain of images S ⊂ RW×H201

and a d-dimensional latent space Z = Rd, converts sub-symbolic encodings from ψS into a modular202

relational representation via decoding for each ϕr, r ∈ σ. Additionally, to retain information in203

Z pertaining to S which is beyond the requirements of ϕ, a domain-decoder produces domain204

reconstructions Ŝ. In Figure 1, we use ψenc
S to refer to the domain-encoder and ψdec

S for the domain-205

decoder. To train the model, ground-truth interpretations ISσ are given, allowing us to directly206

2Calculating Eqn. 4 can become intractable as it involves computing ϕ beliefs for every grounding.
3The complete derivation of loss function and bounds is presented in the Supplementary Material.
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maximise Eqn. 3 via the negative log-likelihood loss:207

LS̃σ = − log p(Sσ|S̃σ), (9)

To obtain informative latent representations for S , we use a Variational AutoEncoder (VAE), specif-208

ically the β-VAE, given its simplicity and demonstrated ability to separate distinct factors in the209

latent representation, known as disentanglement (although disentanglement is not seen here as a210

requirement for consistency and coherence) [16, 6, 20]. We therefore combine the ELBO objective211

with an additional β scalar hyperparameter that seeks to achieve disentanglement (LELBO
β-VAE) with212

L(T , S̃σ) over each component of the autoencoder architecture to obtain the following aggregate213

objective (we provide the full ELBO derivation with a detailed explanation in the Supplementary):214

Ljoint = LELBO
β-VAE − λLS̃σ (10)

where λ is a scalar weighting parameter.215

Together with the LELBO
β-VAE, the choice of relation-decoder can shape the domain-encodings [14]. In216

our evaluation, the following choices are made. We propose a Dynamic Comparator (DC) model217

composed of two modes, a distance-based measure, ϕ†r, to measures the distance between two inputs218

relative to a reference point, and a step-function, ϕ‡r, that determines the sign of the difference219

between two points, optionally with an offset. Although any function can be used that has the220

required characteristics for ϕ† and ϕ‡, in this paper we use the following implementation:221

ϕDC
r (zi, zj) = ar,0 · ϕ†r + ar,1 · ϕ‡r (11)

where,222

ϕ†r = f0
(
−ηr,0(∥ur ⊙ (zi − zj + b†r)∥2)

)
(12)

ϕ‡r = f1
(
ηr,1 · u⊤

r (zi − zj + b‡r)
)
. (13)

Here ar = Softmax(Ar) ∈ (0, 1)2 is an attention weighting between the two modes, ϕ†r and ϕ‡r;223

f0 and f1 are an exp and sigmoid function, respectively; ur = Softmax(Ur) ∈ (0, 1)m is an224

attention mask which is applied to m-dimensional embeddings; b†r, b
‡
r ∈ Rm are learnable bias225

terms that enables an offset to each mode; and ηr,0 ∈ R+ are non-negative and ηr,1 ∈ R any-valued226

scalar terms, respectively. Lastly, ⊙ denotes the Hadamard product and ∥ · ∥2 is the L2-norm. The227

key innovation behind DC is its ability to model each of the ordinal relations whilst encouraging228

generalised consistency across the full latent subspace, as defined by each ur. This is achieved229

without explicit weight sharing, wherein relation-decoders discover parametric relationships between230

relations from the data. Further details are provided in the Supplementary Material.231

5 Relational Transfer Learning Experiment Design232

We now describe an experimental design to compare coherence of different relation-decoders.233

Partial Relation Transfer (PRT): We evaluate a novel PRT task across two soft-structures X̃σ and234

Ỹσ. They share a common signature σ and relation-decoders ϕ but have disjoint domains X and Y ,235

respectively. The experimental design involves first learning ϕ on source domain X , together with236

its domain-specific autoencoder. In the second phase, we train a new domain-specific autoencoder237

on the target domain, Y , alongside a selection of the now learned ϕ relation-decoders but with238

fixed-parameters. The selected relation-decoders are expected to help guide training of ψenc
Y . Held-out239

relation-decoders are then evaluated in the new domain on zero-shot transfer learning performance.240

For domain X we use the MNIST handwritten digits data set [23], and for domain Y we use a241

proposed BlockStacks data set, which includes a single stack of multi-colored cubes of differing242

heights, each containing one randomly positioned red cube (see Supplementary Material for details243

and examples). The shared signature includes the ordinal relations σ ={G, E, L, S, P} and is applied244

to digit ordering in MNIST and red cube position ordering in BlockStacks. We provide results against245

a theory of ordinality, as explored in Example 1. We provide a formal specification of the theory246

in the Supplementary Material. When transferring relations from ψenc
X to ψenc

Y , one could use the247

full set ϕ of relation-decoders. However, this is not necessary from a logical standpoint because248

the entire system of relations can be expressed in terms of isSuccessor (e.g. the successor of a249

number is larger than that number). We therefore only employ the isSuccessor relation-decoder as250
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Figure 2: [Top] Relation-decoder prediction accuracy per model (DC, NN, NTN, HoIE, TransR)
and relation (abbreviated on the x-axis by {S: isSuccessor, P: isPredecessor, E: isEqual, G:
isGreater, L: isLess}), in the source domain (MNIST, left) and target domain (BlockStack, right). A
red highlighted S and dotted line (top right) indicates that relation isSuccessor is included in training
the target domain autoencoder, but none of the other relations are. Both DC and NN retain a good
performance while all other models show a decrease of accuracy in the target domain for one or more
of the relations not included in training. [Bottom] Impact of different values of β ∈ {1, 4, 8, 12} for
each relation-decoder averaged across all relations in the source domain (left) and held-out relations
{P,E,G,L} in the target domain (right). It can be seen that DC is not impacted by changes in β and
it maintains performance in the target domain. All other models show a decrease of accuracy for the
held-out relations in the target domain.

Figure 3: Consistency losses (lower values are better) for the models (DC, NN, NTN, HoIE,
TransR) using the MNIST data set (source domain X ) [left] and BlockStacks (target domain Y)
[right]. The blue bars show the consistency loss of the data embeddings, with darker shades
corresponding to models trained with higher β (disentanglement pressure). Two additional data splits
are shown: interpolation (in green) with samples coming from the MNIST data-embedding cluster,
and extrapolation (in red) with samples drawn from outside the cluster. Results are further divided into
consistency across relations (Con-A) [top] and consistency of individual relations (Con-I) [bottom].
The following relations are used (see stacked bars at the bottom graphs): transitivity (in white),
asymmetry (in magenta) and reflexivity (in black). Notice the large difference in MNIST between
data-embedding Con-A vs. interpolated and extrapolated Con-A results, wherein BlockStacks data-
embedding Con-A results are similar to the MNIST interpolated/extrapolated Con-A results.

a fixed-parameter guide for ψenc
Y . If coherence, as defined in this paper, is carried across domains, we251

would expect the transferring of isSuccessor to be sufficient to produce an improved performance.252

Neural model components and Hyperparameters: Together with DC, existing relation-decoder253

models evaluated here are: TransR [24], HolE [29], NTN [39]. We additionally include a basic254

feedforward neural-network baseline, NN. To produce domain-encodings, all experiments use a255

β-VAE. We provide further details for all models, including details about training regimen and256

implementation in the Supplementary Material. In the source domain we explore β values between257

{1, 4, 8, 12}, and set λ = 103 and in the target domain we first normalise losses and set β = 10−4258

and λ = 10−2 as these produced good reconstructions whilst also ensuring optimisation against LỸσ .259

In all experiments, we fix Z = R10.260
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Table 1: Coherence comparison with respect to source and target data-embeddings. Results are
reported with the corresponding β = β∗ value (in parenthesis). The consistency loss abbreviations
refer to: (A)cross, (tr)ansitivity, (asym)metry, (refl)exivity and (Aggr)egate, which gives the best
obtained aggregate consistencies. DC outperforms all other approaches in coherence scores.

ϕ Aggr. (β∗) Con-A (β∗) Con-I-tr (β∗) Con-I-asym (β∗) Con-I-refl (β∗)

TransR 90.33 (8) 44.34 (12) 35.30 (8) 9.94 (8) 0.55 (8)
HolE 82.06 (8) 41.18 (8) 32.15 (4) 5.96 (1) 0.07 (8)
NTN 79.54 (8) 38.91 (8) 30.08 (12) 4.49 (12) 0.09 (12)
NN 34.09 (8) 24.78 (8) 7.24 (8) 3.88 (8) 0.04 (4)

DC 0.34 (1) 0.07 (1) 0.18 (1) 0.00 (1) 0.09 (1)

6 Main Experimental Results and Comparative Evaluation261

In this section, experimental results demonstrate the relevance of a model-theoretic perspective on262

the learning of concepts with neural networks. Results show that transfer learning performance263

is positively correlated with measures for consistency within and consistency across domains, i.e.264

coherence. This holds particularly true for embeddings that are close by but different from source265

domain embeddings. As we have argued, for a neural model to perform well on concept transfer,266

its representations must maintain high probability of consistency with a logical theory that can267

provide a semantics for the concept. We further argue that the most robust way of doing this is268

to maintain consistency across regions of embedding space, rather than relying exclusively on the269

specific data-points observed at training time in the source domain.270

Figure 2 shows standard PRT prediction accuracies per relation in both the source and target domain.271

Figure 3 then presents consistency losses for three color-coded data splits: data-embeddings (blue),272

where all inputs are encodings of a domain’s test data; interpolation (green), where we obtain an273

empirical mean and variance for the domain’s data-embeddings and sample from a corresponding274

Gaussian distribution; and extrapolation (red), where we sample from regions strictly outside the275

smallest, axis-aligned hyper-rectangle that encloses all data-points. Finally, Table 1 offers a direct276

coherence comparison between relation-decoders, using the derived coherence measure (Eqn. 8)4.277

Relation-decoder PRT accuracy performance: Figure 2-top provides relation-decoder prediction278

accuracy in both the source MNIST (left), and target BlockStacks (right), domains. Key observations279

are that DC produces excellent PRT performance, whilst NN, NTN and HolE all see some degradation280

from their source accuracies on relations other than isSuccessor. TransR seems to maintain an281

target accuracy profile similar to its performance in the source domain, but this is significantly282

below the performance of other models in the source domain.We include the impact of adjusting β283

(disentanglement pressure) in Figure 2-bottom. Barring DC which has little discernible change in284

either domain, PRT performance is significantly impacted by β in all models, but has little effect285

in the source domain. TransR shows a strong positive correlation between target domain accuracy286

and β, whereas the remaining models produce their best PRT performances with intermediate287

disentanglement pressure.288

To gain deeper insight as to which underlying characteristics can explain the observed PRT accu-289

racy profiles, Figure 3-top presents consistency losses against formulae that constrain truth-value290

assignments across relations under a theory of ordinality, referred to as consistency-across (Con-A).5.291

Results refer to both source (left) and target domain embeddings (right). We note that DC shows292

excellent Con-A in the target domain in all regions. Most other models have worse interpolation293

and extrapolation consistency. Increasing β appears to improve interpolation and extrapolation294

performance for models NN, NTN and TransR, but there are indications that this trend does not295

persist into the largest β = 12 value. On the other hand, HolE shows a negative correlation between296

β and Con-A performance, across all data-splits. DC sustains strong Con-A results for target domain297

data-embeddings (right). Results for all other models are notably worse with respect to their source298

data-embedding performances and are instead comparable with their interpolation or extrapolation299

results in the source domain. Together, these results paint a picture wherein it may be possible to antic-300

4We take ϕr prediction values above 0.5 to signify a truth prediction and those below 0.5 to signify falsity.
An alternative, left as future work, would be to sample the space of ϕ values to produce a confidence measure

5Truth-tables for each consistency formula are given in the Supplementary Material
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ipate poor transfer performance by evaluating interpolation and extrapolation consistency in the source301

domain. This would indeed be expected, since source and target domain data-embeddings are unlikely302

to perfectly overlap, and so retained consistency on regions outside the source data-embeddings303

should increase the probability of consistency over target domain data-embeddings.304

Next, Figure 3-bottom presents consistency values for each individual relation-decoder model (Con-I).305

Stacked bars show the results for logical sentences defining: transitivity (white), asymmetry (magenta)306

and reflexivity (black). Results are averaged over individual relations and are grouped under label307

Con-I w.r.t. source domain (left) and target domain (right).We firstly observe that DC and NN share308

the best overall Con-I performance profiles, with TransR following closely. DC and TransR both309

show comparable data-embedding versus interpolation/extrapolation performance, whereas NN, NTN310

and HolE suffer from degradation across these splits. Interestingly, these results show that: DC only311

suffers on transitivity, NN and TransR mainly struggle to model transitivity but show additional loss312

for asymmetry and HolE demonstrates difficulty in modelling each of the Con-I sub-stack. With313

regards to β’s impact, it is not possible to determine a correlation for DC. However, NN and NTN314

demonstrate a negative correlation of β against overall Con-I, with comparable response for each315

underlying sub-stack. TransR shows a significant Con-I extrapolation improvement with increased β316

and HolE is for the most part adversely impacted as β is increased. Similar trends can be seen for317

target Con-I performance.318

Lastly, Table 1 provides a comparison between optimal coherences achieved for each relation-319

decoder model, as defined in Section 4. Results are partitioned according to each consistency type320

(transitivity, asymmetry and reflexivity) and an aggregate value. DC clearly outperforms all other321

models on coherence. NN achieves strong aggregate coherence compared with NTN, HolE and322

TransR. Although NTN and HolE have similar aggregate coherence, TransR performs generally323

worse. This may be caused by TransR producing weaker belief scores in comparison to other models,324

as this can result in a worse overall consistency level. Looking at β∗ profiles, we see that most models325

achieve optimum aggregate coherence at β = 8, other than DC which performs better at β = 1.326

Overall, this is in agreement with the β profiles given by Figure 2-bottom (right). However, we can327

see that β∗ profiles for Con-A based coherence are in more direct agreement - as TransR achieves its328

best at β = 12.329

Our results indicate that increasing regularisation over relation-decoder models, either in the form of330

disentanglement pressure or relation-decoder model capacity, improves their ability to learn coherent331

concepts. Firstly, strong PRT transfer for DC and NN (given an appropriately high β setting) showed332

that both relation-decoder models are able to minimise Eqn. 9 in the source domain and retain good333

performance in the target domain. Consistency profiles over partial theories (subsets of the sentences334

that comprise the overall theory of ordinality), covering multiple data-splits, then further suggested335

that a relation-decoder’s ability to retain consistency over interpolated/extrapolated regions with336

respect to the observed data-encodings during training, i.e. coherence, is key.337

7 Conclusion and Future Work338

This paper introduced formal definitions of consistency and coherence for neuro-symbolic systems. As339

a result, a sub-symbolic model can have consistency and coherence measured with respect to a logical340

theory. We defined a neural model based on domain-encoders coupled with modular relation-decoders341

and experimental procedure that together allowed the investigation of how concept coherence differs342

for various implementations of relation-decoders applied to transfer learning. Consistency results and343

a comparison of coherence scores showed that the models that can achieve excellent coherence also344

achieve high accuracy at partial relational transfer learning tasks. The empirical evaluations in this345

paper only considered binary relations and a fixed signature which is learned “all at once” in a source346

domain. In practical applications, however, it should be possible to discover concepts gradually,347

e.g. as part of a curriculum or through gradual refinement of pre-learned relations after progressive348

exposure to different contexts. This necessitates an adaptation of the approach presented here and349

further evaluations as part of future work. Additionally, we only explored a signature for ordinality,350

whereas other fundamental properties should be investigated such as periodic (e.g. rotation) and351

unordered categorical (e.g. shape) properties. Further evaluations of the formalization introduced352

here should consider the use of different models, theories and scenarios/data sets in the evaluation of353

consistency and coherence metrics.354
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A Societal Impact Statement486

This work does not have a negative societal impact, specifically it does not include any of the487

following: involvement of human subjects, sensitive data, harmful insights, methodologies and488

applications. The results, data sets and methodologies are objectively nondiscriminatory, unbiased489

and fair. This work does not breach any privacy or security guidelines or laws, nor any other legal490

restrictions.491

The proposed definition of coherent concepts and corresponding analysis provides more depth in492

the assessment of deep learning methods, which are typically otherwise opaque, and this can have493

a positive societal impact. Currently, we cannot provide interpretable descriptions regarding how494

a standard deep learning method produces its inferences, making it difficult to fully trust a model495

in critical applications. An important failure case is that biases are not easy to uncover from a496

trained deep learning model. The benefit of learning a coherent concept is that inferences uphold497

logical consistency, which can be formally expressed and tested. This can provide more trust in498

the model as practitioners can have confidence that the model should not obtain inputs that lead to499

incoherent inferences, wherein errors are certain. Further, if the logic does not include biases, the500

inferences of a coherent set of relation-decoders should not be biased. A caveat to these points is501

that unless the relation-decoder functional form allows us to analytically make comments/assertions502

about the model’s performances for arbitrary regions of latent space, as with DC (see E.1), it503

is intractable to fully examine model coherence, as it requires a full extrapolation/interpolation504

evaluation. Nonetheless, a practical evaluation of coherence is an important step forward.505

B Related Work506

Relational representations play a prominent role in Knowledge Graph Embedding, wherein sets of507

relation-decoders are jointly learned in order to obtain a semantic latent representation for data points508

[39, 42, 41, 5, 28, 44, 11, 19, 1]. Although these typically do not use a shared autoencoder as we do in509

this paper, (author?) [36] did adopt an autoencoding framework, where a graph neural network is used510

as the encoder, however they did not work with visual data and the model was only applied to single511

data sets. Similarly, disentanglement is also concerned with semantic representation learning [4] ,512

and has been explored using a variety of methods including both Generative Adversarial Networks513

[10] and VAEs [6, 16, 9, 35, 13, 21, 25]. Disentangled representations have been evaluated in terms514

of there transferability in [43, 40, 26]. A bridge between these two fields, wherein relation-decoders515

are employed as a semi-supervision to VAEs can be found in [18, 8, 7], where [18] use multiple516

relation-decoders but compute a triplet comparison based query and [8, 7] only include a single517

binary relation and use function forms that are not sufficient to model the full set of relations that518

we include in this work. Neither presents a comprehensive analysis of resulting concept coherence.519

Lastly, we note that our experimental setup is most remnant of domain adaptation [34]. To the best of520

our knowledge, no work has compared relation-decoders in their ability to learn coherent concepts,521

as measured by their consistency across domains.522

C BlockStacks dataset description523

The BlockStacks dataset consists of 12,000 images (200×200 pixels but resized in code to 128× 128)524

of individual block stacks, of varying height (between 1-10 blocks), block colors (uniformly sampled525

from options: { gray, blue, green, brown, purple, cyan, yellow}) and position (uniformly sampled526

from x, y range (-3,-3) to (3,3)), but with the requirement that each instance consists of a single red527

block at a random height (see Figure 4 for example images). These were rendered using the CLEVR528

rendering agent with the help of code from [2]. The dataset is divided into 9000:1500:1500 train,529

validation and test splits.530

D Explanation of the β-VAE531

The VAE is derived by introducing an approximate posterior qα(Z|X), from which a lower bound532

(commonly referred to as the Evidence LOwer Bound (ELBO)) on the true marginal log pθ(X) can533

be obtained by using Jensen’s inequality [20]. The VAE maximises the log-probability by maximising534
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Figure 4: Example of two BlockStacks data set images. Each instance consists of a single red block
varying in position within the block stack. On the left the red block is at height 3 (using a zero index)
and on the right it is at height 1.

this lower bound, given by:535

LELBO
β-VAE = Eqα(Z|X)[log pθ(X|Z)]− βDKL(qα(Z|X)∥pθ(Z)), (14)

where qα(Z|X) is typically modelled as a neural-network encoder with parameters α. Similarly536

pθ(X|Z) is often modelled as a neural-network decoder with parameters θ and is calculated as a537

Monte Carlo estimation. A reparameterization trick is used to enable differentiation through an538

otherwise undifferentiable sampling from qα(Z|X) (see [20]). In the β-VAE [16, 6], an additional539

β scalar hyperparameter was added as it was found to influence disentanglement through stronger540

distribution matching pressure with respect to the prior pθ(Z), where this prior is typically set to an541

isotropic zero-mean Gaussian N (0, I)). When β = 1 we obtain the standard VAE objective [20].542

E Model Descriptions543

In this section we firstly present an in-depth analysis of the key innovations presented by DC which544

provides insight into how it can learn a coherent notion of ordinality. We then provide model details545

for each of the compared relation-decoders in the main results and the β-VAE architecture that we546

employ for each data set.547

E.1 Dynamic Comparator Analysis548

Figure 5 depicts how DC is able to learn the isGreater, isLess, isEqual, isSuccessor and isPre-549

decessor family of binary ordinal relations, assuming each corresponding relation-decoder has550

learned a common one-hot mask on the zeroth dimension i.e. uG = uE = . . . = uP = [1, . . . , 0],551

such that activations only depend on the zi,0 − zi,1 difference. An important capability of DC is552

its ability to select, via ar an appropriate functional mode, either ϕ†r or ϕ‡r, depending on the type553

of relation it needs to model. As shown by Figure 5, isEqual exhibits its reflexive, symmetric and554

transitive characteristics, whilst isGreater and isLess both carry transitivity but are asymmetric and555

irreflexive. Furthermore, the use of a subtraction between zi and zj (which, via mask u ends up only556

being a subtraction between their zeroth dimensions) leads to a relative comparison, not an absolute557

comparison, which generalises to arbitrary zi and zj sampled from anywhere in Z .558

Note that there is no built in parameter sharing, meaning each relation-decoder (for each individual559

relation r) is trained independently and has its own set of ar,ur, ηr,0, ηr,1, b
†
r and b‡r parameters.560

However, our experiments show that DC reliably obtains settings such that e.g. uG = uE, or561

aG = aL = [0, 1], or b‡G = −b‡L and so on. DC is thus able to discover the interdependencies562
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Figure 5: Depiction of a set of DC relation-decoders for binary relations isGreater, isLess, isEqual,
isSuccessor and isPredecessor. Each DC relation-decoder (for each relation) has a one-hot mask,
ur (that is in this example the same across relations), which ensures only the zeroth dimensions of
the embedding arguments are compared, giving zi,0 and zj,0.

between families of relations. By learning to indirectly ‘tie’ together parameters in this way, whilst563

still being expressive enough to model each type of relation, DC can facilitate a data-driven binding564

between relation-decoder outputs. This helps ensure consistent generalisation across a latent subspace,565

as defined by the common/overlapped ur masks.566

E.2 Relation-Decoder implementations567

TransR [24]:
ϕTransR
r (zi, zj) = ∥hr + r − tr∥22

with,
hr = Mrzi and tr = Mrzj .

where for zi, zj ∈ Rdz vectors, Mr ∈ Rdz×dz and r ∈ Rdz . As we want to obtain a [0,1] output,568

we modify TransR through ϕTransR+

r = σ(c− ϕTransR
r ), where σ is a sigmoid function and c is a scalar569

that ensures that at ϕTransR
r (zi, zj) = 0, then ϕTransR+

r (zi, zj) ≈ 1. In all experiments we set c = 10.570

NTN (modified version of [39] from [12, 37]):571

ϕr(z1, . . . ,zn) = σ
(
u⊤
r [tanh(z

c⊤Mrz
c + Vrz

c + br)]
)

(15)

where ur ∈ Rk,Mr ∈ Rn·dz×n·dz×k,Vr ∈ Rk×n·dz) and br ∈ Rk. The only hyperparameter to572

consider is k, which controls the NTN’s capacity - in all experiments, we set this to 1. If k > 1,573

zc⊤Mrz
c produces a k-dimension vector by applying the bilinear operation to each of the k Mr574

slices. Here zc ∈ Rn·dz is a concatenation of the inputs z1, . . . ,zn, which was introduced in [12, 37].575

In contrast, the original NTN (see [39]) is only applicable to binary relations and does not include the576

outer sigmoid.577

HolE [29]:
ϕHolE
r (zi, zj) = σ(r⊤(zi ⋆ zj))

where r ∈ Rdz and ⋆ : Rdz × Rdz → Rd denotes the circular correlation operator and is given by,

[zi ⋆ zj ]k =

d−1∑
m=0

zi,mzj,(k+m) mod d
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NN: a simple four-layer neural-network with layer sizes lin = 2dz, l1 = 2dz and l2 = dz , with ReLU578

activations [27]. The final output layer, lout, is a single value passed through a sigmoid function, to579

bound the output within (0,1).580

E.3 β-VAE configuration581

The model configurations used for both MNIST and BlockStacks data sets are given in Table 2.582

Table 2: Specification of our β-VAE encoder and decoder model parameters, for both 28×28 (top)
and 128×128 (bottom) size input data. I: Input channels, O: Output channels, K: Kernel size, S:
Stride, P: Padding, A: Activation

Encoder
Input: 28× 28×NC = 1

Layer_ID ; I ; O ; K ; S ; P ; A
Conv2d_1 ; NC ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
Conv2d_2 ; 32 ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
Conv2d_3 ; 32 ; 64 ; 3× 3 ; 2 ; 1 ; ReLU
Conv2d_4 ; 64 ; 64 ; 2× 2 ; 2 ; 1 ; ReLU

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 576 - 144 ; ReLU
FC_z_mu ; 144 - 10 ; None
FC_z_logvar ; 144 - 10 ; None

Decoder
Input: R10

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 10 - 144 ; ReLU
FC_z_mu ; 144 - 576 ; ReLU

Layer_ID ; I ; O ; K ; S ; P ; A
UpConv2d_1 ; 64 ; 64 ; 2× 2 ; 2 ; 1 ; ReLU
UpConv2d_2 ; 64 ; 32 ; 3× 3 ; 2 ; 1 ; ReLU
UpConv2d_3 ; 32 ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
UpConv2d_4 ; 32 ; NC ; 4× 4 ; 2 ; 1 ; Sigmoid

Encoder
Input: 128× 128×NC = 3

Layer_ID ; I ; O ; K ; S ; P ; A
Conv2d_1 ; NC ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
Conv2d_2 ; 32 ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
Conv2d_3 ; 32 ; 64 ; 4× 4 ; 2 ; 1 ; ReLU
Conv2d_4 ; 32 ; 64 ; 4× 4 ; 2 ; 1 ; ReLU
Conv2d_5 ; 64 ; 64 ; 4× 4 ; 2 ; 1 ; ReLU

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 1024 - 256 ; ReLU
FC_z_mu ; 256 - 10 ; None
FC_z_logvar ; 256 - 10 ; None

Decoder
Input: R10

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 10 - 256 ; ReLU
FC_z_mu ; 256 - 1024 ; ReLU

Layer_ID ; I ; O ; K ; S ; P ; A
UpConv2d_1 ; 64 ; 64 ; 4× 4 ; 2 ; 1 ; ReLU
UpConv2d_2 ; 64 ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
UpConv2d_3 ; 32 ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
UpConv2d_4 ; 32 ; 32 ; 4× 4 ; 2 ; 1 ; ReLU
UpConv2d_5 ; 32 ; NC ; 4× 4 ; 2 ; 1 ; Sigmoid

E.4 Ljoint configuration583

In the source domain, we vary β values between {1, 4, 8, 12} and fix λ = 103. In the target domain,584

we fix β to 10−4 and λ = 10−2 and normalise the LELBO
β-VAE reconstruction term by dividing by a factor585

1√
H·W ·C , for height H , width W and color channels C, and normalize the distribution matching term586

by a factor 1
dz

, for latent representation size dz .587

To train relation-decoders over a given domain S, it is necessary to supervise estimates of588

ϕr(ψ
enc
S (O)), O ∈ S2, against corresponding ground-truth labels, γrO,Sσ

. However, doing so for589

every O ∈ S2 can easily become intractable and we instead only sample a subset of possible S2590

tuples. Our sampling strategy involves first selecting a ratio R = |B|
|S| where B ⊂ S2 is a set of O591

tuples. We then sample relation-decoder specific subsets Br where |Br| = |B|
|σ| , to ensure a balanced592

distribution of tuples between relation-decoders. Furthermore, we ensure that each Br contains a593

balanced ratio of γrO,Sσ
= 1 versus γrO,Sσ

= 0 instances. We found that each |Br| set can be small594

without jeopardising the final relation-decoder performance level, allowing us to use R = 1 for595

MNIST experiments and R = 3 for BlockStacks experiments.596
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Finally, in all experiments we use a β-VAE trained for up to 300,000 steps, following accepted597

practice from [25, 40], together with any included relation-decoders. However, to ensure computation598

efficiency across experiments, we employ an early stopping procedure, where if the validation599

score does not increase over 30 and 120 training epochs for MNIST and Blockstacks experiments,600

respectively, we end the training early.601

F Specification for theory of ordinality602

To support our claim that we can use only the isSuccessor relation as the target encoder guide due603

to its logical relationship the remaining relations, we include here the logical clauses:604

∀i, j, k (isSuccessor(i, j) ∧ isSuccessor(k, j) → isEqual(i, k))
∀i, j (isSuccessor(i, j) → isGreater(i, j))

∀i, j, k (isSuccessor(i, j) ∧ isGreater(j, k) → isGreater(i, k))
∀i, j (isSuccessor(i, j) ↔ isPredecessor(j, i))

∀i, j (isPredecessor(i, j) → isLess(i, j))
∀i, j, k (isPredecessor(i, j) ∧ isLess(j, k) → isLess(i, k)).

Therefore, by knowing all of the successor relations between data instances, it should be possible to605

infer the remaining relationships that they share.606

For completeness, we provide the truth tables for each of the sub-theories that our consistency losses607

evaluate against. We only include configurations that are valid under the constraints, indicated by608

⊂ T = T , where this notation highlights the fact each incomplete set of constraints form a subset of609

the overall theory T .610

Firstly, the truth-table that describes constraints shared between relation truth-values is given by the611

following, ∀i, j:612

G(i, j) E(i, j) L(i, j) S(i, j) P(i, j) ⊂ T
T F F F F T
T F F T F T
F T F F F T
F F T F F T
F F T F T T

where we use the same relation abbreviations as in the main text results.613

Next, we provide each of the three consistency individual (Con-I) truth-tables. These are referred to614

as being “individual” due to the fact that they describe constraints applied to the truth-state of a single615

relation. For transitivity, given by the rule e.g. G(i, j) ∧ G(j, k) → G(i, k), we have that ∀i, j:616

G(i, j) G(j, k) G(i, k) ⊂ T
F F F T
F F T T
T F F T
T F T T
F T F T
F T T T
T T T T

(16)

For asymmetry, where S(i, j) → ¬S(j, i), we have ∀i, j:617

S(i, j) S(j, i) ⊂ T
F F T
T F T
F T T

(17)

.618

Finally, for reflexivity, given by E(i, i) → ⊤ (in this case describing that an object is always equal to619

itself) we have ∀i:620

E(i, i) ⊂ T
T T

(18)
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Table 3: Characteristic properties of ordinal relations.

Relation asymmetric transitive reflexive

G Y Y N
E N Y Y
L Y Y N
S Y N N
P Y N N

Truth-table matrices for each of the above truth-tables can be obtained by replacing T with 1 and F621

with 0. We provide the full set of individual constraints that are applicable to each relation covered in622

this paper are given by Table 3.623

G Expanded consistency loss derivation624

In this section, we present the expanded justification for reporting − ln 1−ϵ̄ consistency and coherence625

as a proxy for ϵ-consistency/coherence as defined in Section 3. For notational clarity, in the following626

we omit ψS , such that ϕr(ψS(O)) is abbreviated to ϕr(O).627

In the following, we make no assumptions about the sizes of domain S, signature σ and arities of628

each r ∈ σ. Further, we take T to be an arbitrary theory over σ consisting of universally quantified629

formula, and the validity of each ground instances of atomic formula with respect to T , can be630

expressed by a single ground truth-table matrix, T ∈ {0, 1}K0×K1×K2 , wherein each slice, Tk,:,:631

gives a unique grounding of domain objects to the variables, v, required by T . For each grounding632

of the K0 = |S||v| possible groundings, there are K1 = 2l unique truth-assignments to the l atomic633

formulae that constitute T , giving K2 = l + 1 assignments per Tk,t,: row - one per atomic formulae634

and an additional value that denote whether the particular row satisfies T . T can be obtained by635

taking any truth-table from the previous section and switching true (T) for 1 and false (F) for 0, and636

producing K0 copies for each assignment of domain elements to the variables. Given this truth-table637

matrix, notice that a structure Sσ can be composed by selecting a single row of T for each grounding638

(kth slice), giving a vector ckt = Tk,t,1:l. If the structure is a model of T , i.e. Sσ ∈ MT
S , then only639

rows with Tk,t,K2
= 1 are allowed. Taking t+ to be the set of rows such that Tk,t,K2

= 1 (which640

is identical for each k) i.e. t+ = { t |Tk,t,K2
= 1 ∧ t ∈ {1, . . . ,K1}}, we can then rewrite ΓS̃σ

T in641

terms of samples from T :642

ΓS̃σ

T =
∑

Sσ∈MT
S

∏
r∈σ

∏
O∈Sar(r)

ϕr(O)γ
r
O,Sσ (1− ϕr(O))1−γr

O,Sσ (Eqn. 3)

=
∑

Sσ∈MT
S

K0∏
k=1

∑
t∈t+

1tSσ
k

(t)

l∏
m=1

f(ϕrm , Okm, cktm)N(ϕrm ,Okm,cktm,Sσ)
−1

(19)

with643

f(ϕrm , Okm, cktm) = ϕrm(Okm)cktm (1− ϕrm(Okm))
1−cktm . (20)

In the above, 1tSσ
k

(t) is an indicator function which equals 1 if t = tSσ

k and 0 otherwise, for active row644

tSσ

k under structure Sσ and grounding k. 1tSσ
k

(t) has the role of only including the single summand645

where t corresponds with tSσ

k . N(ϕrm , Okm, cktm,Sσ) is a function that counts the number of repeat646

products of term f(ϕrm , Okm, cktm), such that the appropriate root can be applied. We use rm to647

denote the relation for atomic formula at column m and Okm its corresponding arguments under648

grounding k; and we use cktm to denote the truth-assignment of the atomic formula for column m, as649

designated by row t.650

At this point, we are left with an expression for ΓS̃σ

T in terms of truth-table matrix T entries, which651

is more reminiscent of L(T , S̃σ) as defined in Section 4. However, we must go further to expose652

the relationship between ΓS̃σ

T and L(T , S̃σ) for arbitrary T expressed by T . We will now show that653
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the consistency loss L(T , S̃σ) gives the negative log-likelihood of satisfying T given a grounding654

k ∈ {1, . . . ,K0}, which can be further seen as a relaxation of ΓS̃σ

T to sum over all rows t ∈ t+ and655

without normalising via theN(ϕrm , Okm, cktm,Sσ)
−1 exponent. With Boolean random variableBT656

denoting whether T is (bT = 1) or is not (bT = 0) satisfied, the consistency loss for a soft-structure657

S̃σ against theory T is given by,658

L(T , S̃σ) = Ek∼U [{1,...,K0}][H(p(BT |Sσ, k), p(BT |S̃σ, k))] Eqn. 7 base

which can be expanded to,659

L(T , S̃σ) = −
K0∑
k=1

1

K0
p(bT = 1|Sσ, k) ln p(bT = 1|S̃σ, k) (21)

+ (1− p(bT = 1|Sσ, k)) ln 1− p(bT = 1|S̃σ, k).

where Sσ ∈ MT
S . Given Sσ ∈ MT

S , then p(bT = 1|Sσ, k) = 1 always holds, which means the660

negative case in Eqn. 21 can be ignored, yielding the following simplified form:661

L(T , S̃σ) = −
K0∑
k=1

1

K0
ln p(bT = 1|S̃σ, k)

= −Ek∼U [1,...,K0][ln p(bT = 1|S̃σ, k)]. Eqn. 7

and so L(T , S̃σ) is simply the negative log-likelihood of sampling a satisfied theory (bT = 1)662

from soft-structure S̃σ, for randomly sampled grounding k. Next, we show the similarities between663

L(T , S̃σ) and ΓS̃σ

T by looking at the likelihood p(bT = 1|S̃σ, k). First, we define Γ̄S̃σ

T by isolating664

the likelihood:665

exp(−L(T , S̃σ)) =

K0∏
k=1

p(bT = 1|S̃σ, k)
1

K0

.
= Γ̄S̃σ

T (22)

We then expand p(bT = 1|S̃σ, k) to:666

p(bT = 1|S̃σ, k) =

K1∑
t=1

p(bT = 1|ckt)p(ckt|S̃σ, k)

=
∑
t∈t+

p(ckt|S̃σ, k) (23)

where t+ is defined as before. For all other t ̸= t+, p(bT = 1|ckt) = 0 and so this acts as a filter,667

yielding:668

Γ̄S̃σ

T =

K0∏
k=1

∑
t∈t+

p(ckt|S̃σ, k)
1

K0 . (24)

p(ckt|S̃σ, k) is calculated by evaluating the belief of each relation-decoder against the expected
truth-assignment as defined by truth-table row ckt:

p(ckt|S̃σ, k) =

l∏
m=1

ϕrm(Okm)cktm(1− ϕrm(Okm))1−cktm

= f(ϕrm , Okm, cktm)

where rm is the relation for atomic formula associated with column m (which is the same for each k669

slice and t row) and Okm is the grounding of this entry for slice k (which is the same across rows).670

Putting it all back together, we finally have that:671

Γ̄S̃σ

T =

K0∏
k=1

∑
t∈t+

l∏
m=1

f(ϕrm , Okm, cktm)
1

K0 , (25)
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which makes the similarities between ΓS̃σ

T and Γ̄S̃σ

T clear and exposes their relationship. In par-672

ticular, for the special case where |MT
S | = 1, the outer sum for ΓS̃σ

T can be removed, and the673

remaining differences between ΓS̃σ

T and Γ̄S̃σ

T are the sum over t+ rows and difference in exponent674

over f(ϕrm , Okm, cktm). For ΓS̃σ

T to be maximised, through p(Sσ|S̃σ) ≈ 1, we would find that675

S̃σ maximally supports only the rows associated with Sσ for each k grounding. Notice that Γ̄S̃σ

T is676

again bound to (0,1) and achieves Γ̄S̃σ

T ≈ 1 when ΓS̃σ

T ≈ 1. We use the correspondence between677

ΓS̃σ

T and Γ̄S̃σ

T to define a practical ϵ-proxy consistency measure as follows. We firstly re-express678

ϵ-consistency/coherence but for Γ̄S̃σ

T and a different ϵ̄. We then trace this back to L(T , S̃σ) so a679

bound in terms of the consistency loss can be reported as the overall ϵ-proxy. Together this yields the680

following:681

ϵ̄ ≥ 1− Γ̄S̃σ

T

ln
1

1− ϵ̄
≥ − ln(Γ̄S̃σ

T )

≥ L(T , S̃σ) (26)

and we arrive at an ϵ-proxy of the form ln 1
1−ϵ̄ , which is reported in the main text.682
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