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A B S T R A C T   

As cities continuously expand and with the emergence of mega-city regions, the urban functional zones (UFZs) 
have spread beyond their original administrative boundaries. An accurate and updated delineation of the UFZs is 
crucial for assessing the functional integration between cities within a mega-city region. Mobility data provides a 
chance to depict the UFZs from actual human activities at a finer spatial scale. Existing studies mostly adopted 
network-based approaches relying on the topological relationship but ignoring spatial factors, causing the lack of 
sensitivity in detecting the cross-cities integration of the functional region. This research proposed a novel 
regionalisation algorithm that redraws non-overlap boundaries of urban functional zones based on the 
commuting origin-destination matrix, representing the spatial interactions within cities and cross-cities. In 
particular, functional zones are drawn by searching for the best partition with the best goodness of fitting in the 
hierarchical spatial interaction model. The algorithm was applied to a case study of a mega-city region, 
Shenzhen-Dongguan-Huizhou (SDH) area in China using mobile phone signalling data. By adopting two different 
settings, this model evaluated the current status and predict the future trend of urban integration respectively. 
The results show the current boundary of UFZs in the SDH area almost coincides with administrative boundaries. 
Meanwhile, the results of long-term predictions might be utilised by policymakers to give more attention to the 
areas near the Dongguan-Huizhou boundary to promote industry cooperation and avoid mismatches between the 
functional and administrative regions.   

1. Introduction 

City regions have been formed as a consequence of urban growth and 
a vast improvement in inter-city connectivity since the second half of the 
20th century (Hall & Pain, 2006). Governments worldwide encourage 
regional cooperation to acquire efficiency premiums from agglomera-
tion economies (Brenner, 2002). For example, the Chinese government 
has issued a series of policies since 2004 to encourage cities within one 
city-region to integrate as one city, which attempts to promote industrial 
cooperation and sharing urban function (Li, Wu, & Hay, 2015; Wu, 
2016). As cities continuously expand and interact with other cities, 
human daily activities related to urban function (e.g., work, residence, 
recreation) have expanded beyond their original administrative 
boundaries and occur in different cities, forming urban functional zones 
(UFZs) (Gao, Janowicz, & Couclelis, 2017; Yeh & Chen, 2019; Zhai et al., 
2019; Zhong, Arisona, Huang, Batty, & Schmitt, 2014). These increasing 

cross-boundary trips and the ambiguity of UFZs raised new challenges 
for regional planning and management in response to the rapid devel-
opment of mega-city regions. 

Despite the widespread existence of this phenomenon, there are 
limitations in assessing how UFZs have been integrated across cities due 
to the lack of large-scale data and the corresponding analytical methods. 
The emerging mobility data provides an opportunity for a breakthrough 
to delineate UFZs from intra-city and intercity trips. The current 
mobility data covers the daily movement flows of a huge population. 
Moreover, unlike the traditional survey data conducted separately by 
individual local authorities, the new form of data (e.g., mobile signalling 
data and social media data) enables us to analyse a finer-grained 
network beyond city/county boundaries with a unified dataset. Previ-
ous research on detecting spatial structure and community detections 
using mobility data mainly applied network analysis (Jin et al., 2021; 
Shen & Batty, 2019; Wu, Smith, & Wang, 2021; Zhong et al., 2014). 
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However, the network-based analysis shows limitations as the distance 
decay effect often has not been appropriately reflected in the topology 
relationship (Liu, Sui, Kang, & Gao, 2014; Yin, Soliman, Yin, & Wang, 
2017), which may result in insensitivity to changes in cross-boundary 
flows (Liu et al., 2014). Thus, a novel method for detecting UFZs with 
more sensitivity for cross-boundary travel flow and distance decay effect 
is needed. 

For this study, a critical hypothesis is that the boundary of a func-
tional zone is highly associated with local travel behaviour, that is, 
distance decay effects in our case. Zipf (1946) proposed that human 
mobility follows a spatial distribution with a distance decay from centres 
to the periphery. This concept has been accepted and applied in previous 
trip estimation models (Batty & Milton, 2021; Masucci, Serras, 
Johansson, & Batty, 2013; Wilson, 1971). Thus, the heterogeneity of trip 
distribution can be seen as an indicator to reveal the discontinuity of 
urban functional space or the “border effect” of urban functional zones 
(Brown, Dar-Brodeur, & Tweedle, 2020; Jin et al., 2021). When crossing 
different urban functional zones, the border effect can be observed in 
human travel activity. Such border effects could be used as indicators for 
delineating urban functional zones (Jin et al., 2021; Rinzivillo et al., 
2012; Shen & Batty, 2019). As one of the most widely used methods for 
predicting interaction flows, spatial interaction models predict the 
strength of spatial interaction based on the distance decay effect. Pre-
vious studies confirmed the border effect can be represented by spatial 
heterogeneity in the spatial interaction model (Jin et al., 2021; McCal-
lum, 1995), which provides a new method for delineating the UFZs and 
overcoming the limitations of network-based methods. Therefore, this 
study would answer a research question on how to delineate the UFZs of 
cities within a mega-city region by spatial interaction model using human 
mobility data? 

This study first applies a two-level hierarchical spatial interaction 
model (HSIM) to generate the flow of spatial interaction between zones, 
then redraws non-overlap boundaries of urban functional zones by 
searching for the best partition with the best goodness of fitting in HSIM. 
The algorithm is applied to delineate the cities’ functional regions 
within a specific mega-city region, Shenzhen-Dongguan-Huizhou (SDH) 
area in two different settings. The results prove that the goodness of 
fitting in HSIM can represent reasonable cities’ boundaries. The 
empirical study of SDH area shows current UFZs almost coincide with 
administrative boundaries. Meanwhile, our results of long-term pre-
dictions remind policymakers to give more attention to the areas near 
the Dongguan-Huizhou boundary to promote industry cooperation and 
avoid mismatches between functional and administrative regions 
providing implications for related regional planning policies. 

2. Literature review 

2.1. Urban spatial structure and functional region 

The urban spatial structure is topical research in urban geography. 
Various factors, such as politics, economic activities, topography, his-
tory, infrastructures, and policies, interact with the urban spatial 
structure and eventually form how city elements are geographically 
located (Dadashpoor & Yousefi, 2018; Engelfriet & Koomen, 2018). The 
current prevailing interpretations of urban spatial structure can be cat-
egorised into morphological structures and functional structures, 
distinguished based on the data sources and how urban structures are 
interpreted (Green, 2007). The urban spatial structures are traditionally 
described using morphological properties based on traditional 
geographical data, demographical data and built-up areas. Previous 
research about the urban spatial structure or boundary was dedicated to 
identifying built environment areas from remote sensing data by uti-
lising classification algorithms (Henderson, Yeh, Gong, Elvidge, & 
Baugh, 2003; Lu, Li, Kuang, & Moran, 2014). Other studies also 
attempted to define or detect the urban boundaries from morphological 
observation (Tannier, Thomas, Vuidel, & Frankhauser, 2011), using data 

analytic frameworks such as the scaling law (Alvioli, 2020; Arcaute 
et al., 2015; Cottineau, Finance, Hatna, Arcaute, & Batty, 2019) and the 
transport network density (Long, 2016; Long, Zhai, Shen, & Ye, 2018). 

In contrast to the concept of morphology, functional structure em-
phasises the socio-economic links between urban areas. Compared with 
the morphological structure, the functional structure is more temporal 
and dynamic (Wu et al., 2021), which would better correspond to the 
rapid changes in the urban environment. Various urban flows like 
commuting and logistic flows within the city are being used to describe 
the urban spatial structure by spatial interactions (Burger & Meijers, 
2012; Sohn, 2005; Zhong et al., 2014). Therefore, two distant areas can 
be integrated into a community because of the strong links of functional 
elements (Zhang, Marshall, Cao, Manley, & Chen, 2021). This feature 
would benefit the understanding of urban functional integration across 
cities. 

Researchers have conducted studies on the urban spatial structure at 
two levels due to spatial scale differences: the intra-city level and the 
city-region level. For intra-city polycentric spatial structures, scholars 
have focused on the location, and morphological attributes of the newly 
emerged centres in the evolution of cities from monocentric to poly-
centric and then analysed the systemic characteristics and in-
terrelationships between the internal centres. Meanwhile, in regional- 
level or country-level polycentric studies of spatial structure, studies 
usually take administrative cities as the centre of regional spatial 
structure rather than searching the urban centres by detecting method 
(Huang, Liu, & Zhao, 2015; Gao et al., 2017). Therefore, delineating the 
urban functional zones between cities is essential for discussing the 
functional spatial structure in a city region or larger scope. This can be 
done by using some well-known existing regionalisation algorithms for 
delineating regions based on indicators or objective functions. Some 
examples of such methods include P-regions and max-p which are based 
on a defined objective function, while REDCAP and SKATER are 
methods based on hierarchical structure reflecting neighbourhood 
relationship (Duque, Church, & Middleton, 2011; Guo, 2008; Helbich, 
Brunauer, Hagenauer, & Leitner, 2013). These methods mainly use 
social-economic indicators (e.g., house price, income) to find the spatial 
clustering or non-spatial similarity rather than using flow data to assess 
the connection between areas. 

2.2. Trip distribution laws and models 

Most widely used transport and urban models assume that flows of 
people follow a spatial distribution with a distance decay from urban 
centres to the periphery (Anderson, 2011). Zipf’s law states that the 
volume of movement flow would be directly proportionate to the 
product of the population sizes between any two communities Pi × Pj 
and inversely proportional to the transport distance dij (Eq. (1)), which 
construed the base of modern analytics of human mobility patterns 
(Zipf, 1946). 

Tij∝
Pi × Pj

f
(
dij
) (1) 

This law has been extensively studied since then and has been 
developed as the gravity model because its form is in analogy with 
Newton’s law of gravitation (Lenormand, Bassolas, & Ramasco, 2016; 
Schneider, 1959; Wilson, 1970; Wilson, 1971). The distance decay 
function f(dij) may vary depending on research topics and dataset, but 
the negative power and the exponential forms are the most common 
forms used in previous research (Lenormand et al., 2016). The gravity 
model and its variant has been widely used in previous research to es-
timate flows of people, trade and information (Krings, Calabrese, Ratti, 
& Blondel, 2009; Kwan, 1998; Lewer & Van den Berg, 2008; Liang, 
Zhao, Dong, & Xu, 2013; Liu et al., 2014). There are many variant forms 
of the gravity model and other spatial interaction models such as the 
intervening opportunities model. They provide various options of 
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formulation, including pre-set parameters or parameter-free ones, for 
estimating the flows of spatial interaction (Kang, Liu, Guo, & Qin, 2015; 
Masucci et al., 2013; Wilson, 1971). 

Most of the previous spatial interaction models assume that the inner 
space of the modelling area has spatial isogeneity, which means the 
distribution of trips only follows one general law related to f(dij). But 
considering the real-world situation, spatial heterogeneity exists in this 
distribution due to zoning system, administrative boundaries, transport 
linkage, jobs and housing balance, as well as other complicated urban 
contexts. Therefore, some previous research discussed this spatial het-
erogeneity effect and referring as the Modifiable Areal Unit Problem 
(MAUP) caused by the setting of the zoning system. Since spatial het-
erogeneity may cause the inconsistent results of spatial interaction 
models, previous research has regarded spatial heterogeneity as a 
“problem”, and has attempted to find an optimal zoning system or 
technical solution to mitigate its effect (Arbia & Petrarca, 2011; Mar-
ceau, 1999; Openshaw, 1977). Besides, a few researchers attempted to 
adopt hierarchical structures for eliminating the MAUP issues during 
estimating interactions (Masser & Brown, 1975). Following the 
conception of MAUP, some researchers proposed that applying a hier-
archical structure in the spatial interaction model may eliminate the 
spatial heterogeneity between each sub-system, improving the overall 
performance of prediction (Fotheringham, Nakaya, Yano, Openshaw, & 
Ishikawa, 2001; Nazara, Hewings, & Sonis, 2006; Qian et al., 2020). The 
hierarchical spatial interaction model distinguished the trips between 
inner and inter sub-systems for estimating the flows respectively. By 
applying this framework, spatial heterogeneity on borders between sub- 
systems can be largely eliminated (Qian et al., 2020). 

On the other hand, some scholars also argued that MAUP issues have 
the ‘bright side’ for detecting the agglomeration effect (Menon, 2012). 
Considering the cities’ functional space depends on how citizens 
perceive their activity space and interact with their urban environments 
(Lynch, 1960), some researchers were aware of the linkage between the 
border effect and spatial heterogeneity in the spatial interaction model 
and attempted to quantify the border effect between zones by spatial 
interaction model (Engel & Rogers, 1994; McCallum, 1995; Yin et al., 
2017). However, how to use the variability of hierarchical boundary in 
the spatial interaction model as the indicator for delineating the urban 
functional zone or other types of communities has not been further 
discussed. Thus, it would be an interesting perspective for observing the 
boundary effect by trip distribution, providing a solid reference for 
delineating the boundaries of the urban functional zones. 

2.3. Using emerging human mobility data to understand urban functional 
zones 

Origin-destination (OD) flow matrix generated from human mobility 
data (e.g., taxi and bus swipe cards, mobile phone signalling data) can be 
used as a proxy of the interaction between regions (González, Hidalgo, & 
Barabási, 2008). Based on that, some studies have been developed to 
identify urban functional zones and urban spatial structures. Network- 
based methods are a commonly used approach based on the intensity 
of human interactions between different spatial units (Jiang & Miao, 
2015; Louail et al., 2015; Zhang, Fang, Zhou, & Zhu, 2020; Zhong, 
Manley, Müller Arisona, Batty, & Schmitt, 2015). Each spatial unit is 
seen as a node, and human interactions are represented as edges be-
tween the two nodes. 

Zhong et al. (2014) detected and depicted urban structures in 
Singapore using a graph-based community detection algorithm, and it is 
one of the representative studies for urban functional zones detection. 
The network method may explain the composition via structural shifts of 
transient sub-centres. For example, it can describe the increasing 
interaction between certain developing sub-centres (Zhang et al., 2021). 
Shen and Batty (2019) detected community structures in the London 
Metropolitan area based on disaggregated flow data, suggesting that the 
functional structure may vary for people with different occupations. 

Zhang et al. (2021) analysed several years of transport smart card data in 
London and the results of network community detection show that 
Greater London can be clustered into five communities based on the 
travel pattern, but London moved towards a more polycentric and 
compact urban structure. However, the traditional network analysis and 
most community detection algorithms usually only consider the abso-
lute value of flow volume (edges) for dividing the partitions regardless 
of the spatial factors such as distance decay or time consumption (Adam, 
Delvenne, & Thomas, 2018; Hong & Yao, 2019; Jin et al., 2021). 

Some researchers have been aware of this shortcoming and tried to 
apply spatial interaction to improve their method. Jin et al. (2021) 
identified the activity broad within Shenzhen city and discussed the 
boundary effect by using a modified spatial interaction model. Yin et al. 
(2017) proposed a method to delineate urban boundaries for Great 
Britain based on the physical space inferred from human activities on 
social media and then verified the results by a gravity model. However, 
both still applied a network-based algorithm to identify the functional 
urban regions. Currently, due to the limitation of the data and compu-
tation, most of the previous studies on spatial structure from movement 
flow investigated one city only (Jin et al., 2021; Wu et al., 2021; Zhang 
et al., 2021; Zhong et al., 2014). This study would explore functional 
urban spatial structure at a larger scale by delineating the urban func-
tional zones based on human mobility and movement flows. In addition, 
Because of the importance of distance factors and the absence of a 
method that can detect urban boundaries by distance-based trip distri-
bution, we believe it is worth establishing a new method for depicting 
the form of urban boundaries. 

3. Data collection 

The case study area of this study is Shenzhen-Dongguan-Huizhou 
(SDH) area. SDH area covers a total of 15,800 km2, with a resident 
population of 26.25 million and a total GDP of RMB 3.7 trillion in 2019 
(according to Guangdong Statistical Yearbook 2020). This area has been 
experiencing rapid urban growth and changes in urban spatial structure 
since the 1980s and became one of the most open and economically 
vibrant regions in China. SDH persistent attracts national and global 
focuses, especially after the Guangdong-Hong Kong-Macao Greater Bay 
Area was proposed in 2015. 

This research uses the mobile phone data provided by one of the 
main mobile phone operators called China Unicom. The data contains 
Origin sub-district ID, Destination sub-district ID, the volume of travel 
flow and travel time. The spatial resolution of the original data is 
collected as 500 m*500 m but is provided as aggregated form into 172 
sub-district level zones (“jiedao level” or “街道级” in China). The specific 
study units are shown in Fig. 1 below. The mobile phone data detected 
13,588,846 commuters, including both intra-city and inter-city. The 
observed period of the data is February 2019. To identify commuting 
trips, home and workplaces are first determined from one-month 
sequent locations of mobile phones. 

Specifically, the site with the most prolonged stay during the 
observation period (09:00 pm-08:00 am) in a day is considered as the 
candidate place of residence. When a candidate residence lasts for more 
than 15 days in a month, it is deemed to be valid. Similarly, the location 
with the most prolonged stay between 09:00 am and 05:00 pm is 
determined to be the workplace. Commuting is defined as a journey 
from one’s home to the workplace. Individual commuting trips of mobile 
phone users are aggregated at the street scale, generating links between 
streets across the study area (SDH region). 

The data used for our study is at the sub-district level. In total, there 
are 8921 pairs of Origin-Destinations (OD) summarised from commuting 
trips. For each pair of ODs, the data records the original street ID, the 
destination street ID, the number of commuters, average commuting 
time and distance. Fig. 1 shows the distribution of inter-city flows within 
the SDH area. 
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4. Methodology 

This study adopted disaggregated spatial interaction model for 
simulating the flow of spatial interaction between zones. Furthermore, a 
Hierarchical Spatial Interaction Model (HSIM) was applied to reflect the 
boundary effect between cities. For detecting the urban functional 
zones, this research proposed a novel regionalisation algorithm that 
redraws non-overlap boundaries of urban functional zones by searching 
for the best partition with the best goodness of fitting in HSIM. 

4.1. Basic spatial interaction model 

In this study, we established a set of spatial interaction models using 
the singly constrained gravity model, which assumes the distribution of 
trips roughly follows the format of the negative-power function for 
predicting the flow between zones. The core spatial interaction model 
can be represented as the following Eq. (2): 

Tij = Oobs
i

Dobs
j c− β

ij
∑

k
Dobs

k c− β
ik

(2)  

where Oi
obs is observed origins totals from zone i and Dj

obs refers observed 
destinations totals to zone j, cij is the main travel time between origins 
and destinations, β is a parameter related to the travel cost. 

The basic framework of this model is a form of classic gravity models 
(Wilson, 1971). The calibrating processing is parameter-free since the 
model picks the distance decay parameters β by continually executing 

the iterations of standard non-linear optimised (Batty, 1976; Batty & 
Milton, 2021) until the difference between the predicted mean trip cost 
C and the observed mean trip cost Cobs is less than the pre-set threshold ε 
(the default is 5% for balancing the calculation time and accuracy) (Eqs. 
(3)–(4)). 
⃒
⃒ Cpre − Cobs

⃒
⃒<ε (3)  

C =

∑

i

∑

j
Tijcij

∑

i

∑

j
Tij

(4)  

4.2. Hierarchical spatial interaction model (HSIM) 

Although spatial heterogeneity exists within a mega-city region, 
most traditional (or “global”) spatial interaction models assume the 
inner space of the modelling area is spatial homogeneity, which means 
all trips follow one general law. Thus, we further adopted a two-level 
hierarchical spatial interaction model for estimating the travel flow 
between zones (Fig. 2). By applying this framework, it can eliminate 
spatial heterogeneity because of the boundary between sub-systems. It 
divides the global spatial interaction model into some intra-city inter-
action models. For each sub-model, the form is the same as the basic 
spatial interaction model introduced in Section 4.1. Since the distance 
decay parameter β is an auto-fitted value that is different in each sub- 
system, each sub-system describes a distinguished travel pattern. The 
model can be written as Eqs. (5)–(7). 

Fig. 1. Distribution of cross-city flows within the SDH area.  
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Ttotal =
∑

Tintra(n) + Tinter (5)  

Tintra(n) =
∑

i∈n

∑

j∈n
Oobs

i

Dobs
j c− βn

ij∑

k
Dobs

k c− βn
ik

(6)  

Tinter =
∑

i∈n

∑

j∈m
Oobs

i

Dobs
j c− β

ij
∑

k
Dobs

k c− β
ik

(n ∕= m) (7) 

As a key condition, the difference in the boundary of cities can affect 
the performance of this model because of the boundary effect and spatial 
heterogeneity. If the cities’ boundaries in this model coincide with the 
boundary effect, the overall performance of this model will improve 
since the processing of splitting has eliminated the spatial heterogeneity 
between sub-models. Therefore, we believe the goodness of fitting of this 
model can be an indicator for assessing the reasonableness when 
drawing the functional boundary of cities. The detailed proof of this 
hypothesis will be described in Section 5.1. Since all trip flows can be 
allocated to one of the sub-models, the sum of the total trip and the 
constrained factor (volume origin trips in our model) would keep con-
stant by applying the HSIM framework without any loss of information. 

4.3. Regionalisation algorithm for delineating urban functional zones 

Based on the Hierarchical Spatial Interaction Model, we propose a 
novel regionalisation algorithm for delineating urban functional zones 
by searching for the best partition with the best goodness of fitting in the 
HSIM. After determining a predefined number of regions (in this case 
study is three because there are three cities-level governments within 
this area), our iteration-based algorithm will run several times until the 
best partition which has the highest R2. This algorithm design takes the 
conception of the tabu search algorithm and referenced to previous 
works by Openshaw and Rao (1995). As an evolutional method of local 
search, it inherits the basic concepts of greedy algorithms that contin-
ually choose the optimal choice at each step to find the optimal solution 
to reduce complexity and time consumption. At the same time, it can 
avoid being trapped in local optima by adopting the “tabu list”, where 
each reassigned zone will be recorded for not being considered in the 
following R times iterations. 

When the algorithm starts, it will initialise an empty tabu list and 
then each iteration repeats the steps below: 

Step one: The algorithm would first attempt to reassign candidate 
zones (not in the tabu list) to another city respectively and calculate the 
goodness of fitting in HSIM, in order to identify the zone improve the 
result most. If any improvement identified, execute it, then jump to Step 
four. 

Step two: When the algorithm finds that reassigning zones (not in the 
tabu list) cannot improve the result anymore, the algorithm will re- 
assess if reassigning zones currently in the tabu list can further 
improve the result, called the “aspiration move”. If any aspiration move 
can be found, execute it, then jump to Step four. 

Step three: If no further improvement or aspiration move can be made 
and the stopping criterion has not been satisfied yet, the algorithm 
would reassign the zones with the best result even if this assigning would 
worsen the result. 

Step four: Record the reassigned zones in the tabu list. If the current 
results are better than the ‘the best result ever’, replace the best result 
with the current one and record the current boundaries. Update the 
travel flow according to the settings, then back to step one for starting a 
new iteration. 

Before executing step three, here is a stopping criterion to avoid 
endless iterations. The iteration will terminate if the best partition is not 
updated after N (N = 20 in this study) iterations then output the “the 
best result ever’ boundary as the result. 

We have conducted a sensitivity analysis for these two parameters, 
which determines R = 11, which can maximise the goodness of fitting. 
The results keep the same when R is within the range 1– 10. Then the 
result slightly improved and then kept the same when R equals 11 or 
continually increased until reaching the length of the candidate zone 
list. In addition, the sensitivity analysis finds that the algorithm is not 
sensitive to the value of N. Whether the N increase to 50 or 100, the 
result would not change. 

Although theoretically, the candidate zones could be any zone within 
the region, we could customise a set of prioritised zones to improve the 
algorithm’s efficiency. For instance, in our experience, we set the scope 
of search space to all zones whose intercity commuters are more than 
1%, which matches the average ratio of inter-city commuters in the case 
study area. A flow chart of this algorithm for reassigning the boundaries 
can be found in Fig. 3. 

To provide appropriate decision support, this algorithm should not 
only assess the current functional zones but also predict the long-term 
situation. Thus, we designed two different settings that have a minor 
difference when we execute the algorithm. The first setting is based on 
the situation that current cities’ core functional regions can only spill 
over to zones close to the administrative boundary due to the local 
authority’s current land-use planning and management scope. There-
fore, the proportion of inter-city trips in each zone would not change 
further by updating functional zones during each step of iterations. In 
other words, the inter-city flows for each zone are static according to the 
administrative boundary. 

The second setting is the inter-city flows for each zone are dynami-
cally updated according to the current boundary in iteration processing. 
That is, inter-city flows may be re-classified as an intra-city flow after 

Fig. 2. The Hierarchical Spatial Interaction Model: The total predicting trips equals city-level intra-city models plus one inter-city model, Eq. (5) = Eq. (6) + Eq. (7).  
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iterations of a boundary. This setting could be used for predicting long- 
term scenarios in which the cities’ core functional zones can spill over 
freely without restriction by the current administrative boundary, 
forecasting the potential functional boundary in the long term. 

5. Results 

5.1. Goodness of fitting for hierarchical spatial interaction model (HSIM) 

For this case study, we split the global spatial interaction model of 
the whole SDH area into four sub-SIM models: three intra-city trips 
models for Shenzhen, Dongguan, Huizhou respectively based on its 
original administrative boundaries, plus one model for only predicting 
the inter-city trip. 

To verify the hypothesis, we raised before that the goodness of fitting 
can be an indicator for reflecting the boundary effect of cities, and we 
introduced a controlled group since the spatial heterogeneity and the 
boundary effect are often more significant around the boundaries be-
tween cities. This controlled group is set as it still has the same trips and 
zoning system (172 sub-district level zones) but with random urban 
boundaries. The boundaries applied in models are shown in Fig. 4. 

There are some flow trips produced by the spatial interaction model 
and hierarchical spatial interaction model (HSIM) introduced in Sec-
tions 4.1 and 4.2 according to the different boundaries. The goodness of 
fitting can be an indicator for assessing the reasonableness when 
drawing the functional boundary of cities. The estimated distance decay 
parameters in sub-models have been attached in the Appendix 1, 
Table 3. 

For assessing the goodness of fitting, we calculated the Mean Square 
Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error 
(RMSE) and R-square (R2) compared with the observed flow, the results 
are represented in Table 1 below. 

As the statistical measures are shown in Table 1, compared with the 
traditional GSIM model, the R2 for the HSIM model with random 
boundaries and administrative boundaries sharply rise to 0.6564 and 
0.8165 from 0.45310. Meanwhile, MSE, MAE, and RMSE decreased 
significantly, which shows that the HSIM model largely shortened the 
difference between the estimated and actual values. Thus, all statistical 
measure indicators prove that the hierarchical spatial interaction can 
significantly improve the goodness of fitting from the traditional Global 
methods in regional-scale scenarios. This result indicates the broader 
effect can be partly represented by the random boundaries. 

Fig. 3. Flowchart of the redrawing boundaries tabu search algorithm.  
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By comparing the result of HSIM with arbitrary boundaries and the 
HSIM with administrative boundaries, all statistical measure indicators 
reveal that applying appropriate boundary that reflects the spatial het-
erogeneity in HSIM would significantly improve the model’s perfor-
mance. This finding suggests that the travel behaviours of people who 
belong to the same functional city may yield better performance in 
fitting the specific distribution of trips. In other words, in the case of the 
spatial resolution and number of sub-models keeping constant, the 
goodness of fitting by HSIM can be an indicator for assessing the 
reasonability of functional boundaries of cities. This finding provides a 
solid theoretical reference for the algorithm that will be introduced in 
the next section. 

5.2. Result of urban functional zones in SDH area 

Table 2 reports the statistical result for the models with different 
settings. Although the performance of the basic scenario with the 
administrative boundary is already good enough, the models of both 
settings with new boundaries still slightly outperform the basic model. 
Comparing the minor improvement of statistical measurements, the new 
boundary itself is more meaningful for assessing the urban functional 
integration. The estimated distance decay parameters in sub-models 
have been attached in Appendix 1, Table 4. 

5.2.1. Setting 1-current functional boundary 
Fig. 5 shows the result of setting 1 (statistic inter-city flow), indi-

cating the current functional boundary within the SDH area. This result 
suggests that the current administrative boundary explains the bound-
ary effect of trip distribution well. The statistical results in Table 2 
support it. Compared with the current administrative boundary in the 
base scenario, the R2 and other statistical indicators improved very 
slightly as only a few zones changed their origin belonging. For example, 
the functional core of Dongguan city is in the west of its administrative 
boundary because of its good transport connection with Shenzhen and 
Guangzhou. Therefore, the only zone in Dongguan that should be re- 
assigned to Shenzhen is Fenggang, as it has been known as the ‘sleep 
city’ for workers in Shenzhen, which is a typical example of cross-city 
functional integration. Moreover, a few zones near the Dongguan- 
Huizhou boundary will be re-allocated to Huizhou from Dongguan 
because these zones are away from the city centre and lack commuting 
connections with the city centre. It might be the main reason why trips 
in these zones would better fit the trip distribution in Huizhou rather 
than Dongguan. Similarly, a few zones in east Shenzhen have been re- 
assigned to Huizhou. 
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Table 1 
Goodness of fitting for Global-SIM and HSIMs (Note: AB means administrative 
boundaries; CB means current boundaries; and LB means long-term boundaries.)   

Global-SIM HSIM with RB HSIM with AB 

MSE 14,945,798 9,082,981 5,013,151 
MAE 335.73 278.188 239.90 
RMSE 3865.80 3013.79 2239.01 
R2 0.4531 0.6564 0.8165  

Table 2 
Goodness of fitting for HSIM in different scenarios. (Note: AB means adminis-
trative boundaries; CB means current boundaries; and LB means long-term 
boundaries.)   

Base Scenario (AB) Setting 1 (CB) Setting 2 (LB) 

MSE 5,013,151 4,842,008 4,377,221 
MAE 239.90 242.71 231.41 
RMSE 2239.01 2200.456 2092.18 
R2 0.8165 0.8228 0.8398  
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5.2.2. Setting 2- predicted functional boundary within SDH area in long- 
term 

As for the dynamic inter-city flow setting, the result (shown in Fig. 6) 
predicts that the functional areas will have more reassigning between 
Huizhou and Dongguan. The re-assigned zones in Dongguan are mainly 
from the ‘East industrial park’, Songshan Lake, and Dalang. Historically, 
East industrial park areas are the cluster of manufactory industries but 
lack commuting connection with the city centre. The algorithm also 
finds the Songshan Lake area in the middle of Dongguan is reassigned. 
This region has been assigned because of its strong linkage with the ‘East 
industrial park’ area. Local governments have recently emphasised such 
connections in their planning report. Besides, the Dalang area may also 
be reassigned for long-term prediction. Unlike the Fenggang area, this 
area lacks road linkage directly with Shenzhen although it is physically 
close to Shenzhen. Thus, this area has been re-assigned to Huizhou 
following the reassigning of the Songshan Lake area, which is one of the 
main workplaces for residents in Dalang. These results show that there 
will be more potential interaction and functional integration opportu-
nities between zones between Dongguan and Huizhou because of the 
chain reaction in long-term prediction. 

5.3. Policy implications for city integration in Shenzhen-Dongguan- 
Huizhou area 

These empirical-based results can help the governments and plan-
ners to understand the spatial structure in mega city-region and support 

their urban integration policy. Previous studies have always focused 
more on the north-western part of Shenzhen and the south-western part 
of Dongguan since it has the most volume of the cross-boundary trip 
statistically. Our study argues that in the case of balanced bidirectional 
flows present, the functional boundary effect between the cities would 
not change obviously. Because trips in this area fit their original intra- 
city trip distributions, the high inter-city flow might be a natural 
consequence of the high population density and spatially relatively close 
to their original urban centres. In contrast, this study reveals that 
Fenggang and Shenzhen have a very high degree of functional integra-
tion, indicating that the urban function (e.g., housing or employment) 
are shared within these areas. When considering such an integration 
between the two regions, the policymakers should pay more attention to 
amenities and public services for inter-city commuters. 

For the long-term prediction, zones in mid-Dongguan should be 
given more attention. These areas are very ‘sensitive’ to any change of 
trips since fits in these areas do not fit the intra-city trip distribution of 
their original cities and are far away from city centres. Thus, our algo-
rithm predicts that a severe mismatch between functional zones and 
administrative boundaries could occur in these areas, even with tiny 
inter-city interactions. This result proves that transport linkages are vital 
for reshaping the urban functional zones in the long term because of the 
chain reaction of the previous reassigned zones. An example is the 
Dalang area. Though it is physically close to Shenzhen, it has been re- 
assigned to Huizhou because the road linkage with Songshan Lake is 
better than those with Shenzhen. 

Fig. 5. Setting 1- Current functional boundary within SDH area.  

B. Zhang et al.                                                                                                                                                                                                                                   



Computers, Environment and Urban Systems 98 (2022) 101872

9

Overall, these empirical results imply that there will be more po-
tential interaction and functional integration opportunities between 
zones between Dongguan and Huizhou in the future. Besides, policy-
makers should consider improving transport connectivity between the 
reassigned areas and Dongguan city centres to eliminate the boundary 
effect of city centres in trip distribution. Such measures would also avoid 
severe mismatches between functional zones and administrative re-
gions, which may cause extra difficulty for management. 

6. Conclusion and discussion 

This research has contributed to the existing literature in several 
ways. First, this research confirms that the hierarchical spatial interac-
tion model (HSIM) results can assess if the boundary of subsystems 
appropriately represents the inter-city boundary effect in trip distribu-
tion. Furthermore, this study proposes a novel method to delineate UFZs 
by searching for the best partitions in HSIM. By adopting the proposed 
model to a specific mega-city region, China, Shenzhen-Dongguan- 
Huizhou (SDH) area, this research confirmed the model’s effectiveness 
in delineating UFZs based on spatial interaction from the perspective of 
human activity behaviour. 

6.1. Spatial interaction methods vs network-based methods 

The network-based community detection method is the mainstream 
method employed for detecting the boundary of communities and 
functional spatial structure in the cities-level in previous studies. How-
ever, there is some limitation as well. The traditional network analysis 
and most community detection algorithms usually only consider the 
absolute value of flow volume for dividing the partitions but overlook 

the spatial factors like travel distance/cost (Liu et al., 2014; Yin et al., 
2017). 

Typical community detection algorithms (e.g., the Louvain algo-
rithm) are always trying to search a partition for maximising the ratio of 
intra-city flows to overall flows. However, because the percentage of 
inter-city trips is usually tiny (3% or less compared to intra trips) among 
all trips, thus when ignoring the spatial factors, the traditional com-
munity detection prefers to split space within the origin of administra-
tive boundaries rather than break it. Similar to the phenomenon 
observed by previous research (Liu et al., 2014), the detected commu-
nities are precisely the same as the original administrative boundary 
when we use the Louvain algorithm and adjust the minimum resolution 
point to let the number of communities equal to the number of cities. 
According to the definition by OECD, the city or town whose 10% of the 
population exhibits cross-boundary commuting behaviour can be 
regarded as the satellite city of the mega-city. Thus, the traditional 
network analysis is not sensitive enough for cross-boundary commuting 
trips, which may fail to support planners and policymakers appropri-
ately when discussing the cross-boundary integration of the functional 
region. 

In contrast with the network analysis-based method, our proposed 
spatial interaction-based algorithm will consider the distance decay ef-
fect when detecting the boundary effect reflecting spatial heterogeneity. 
Because zones close to the cities’ boundary are usually spatially far from 
the city centre, our algorithm would be more sensitive to cross-boundary 
trips even with a relatively small volume. 

Besides, another limitation of network-based methods is the diffi-
culty of predicting the future situation. Almost all research applied 
community detection methods must base on the existing data of travel 
flow. If the data is unavailable, the estimation of flows would still rely on 

Fig. 6. Setting 2- Predicted functional boundary within SDH area in long-term.  
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spatial interaction models (Wu et al., 2021). It will cause more deviation 
when switching between the multi-methods. Because of the strength for 
estimating the travel flow, the spatial interaction-based methods would 
have a special advantage for the prediction and simulation of future 
urban regions dynamically. 

6.2. Limitation and further research 

There are some limitations, and several directions can be further 
explored. First, different forms of spatial interaction models can be 
adopted for predicting the trip distribution. This paper only employed 
the most widely used gravity model with a negative power functional 
form. Therefore, more conditions of the spatial interaction model, 
including the intervening opportunity and radiation models, can be 
discussed and employed in future work. 

The second point is the “scaling issue”. Additional experiments have 
been conducted to validate the model with more communities and 
different boundaries. One of the experiments attempted to extend the 
case study area to a border area, the Great Bay Area (GBA) in Pearl River 
Delta China, for nine cities with the same zoning system (sub-district 
level units). It confirms algorithm still works appropriately for this 
extended area, but the algorithm would yield different results for local 
results in the SDH areas (the results of the GBA area have been attached 
as Appendix 2). The reason could be that the added areas and the 
additional trips will affect the existing results when applying the inter- 
city trip estimation models. The difference would be extended in long- 
term prediction due to the chain reaction. Thus, choosing the spatial 
extent needs to be associated with the specific research question and 
focus study area. 

Lastly, our regionalised algorithm considers connections and flows 
between any pairs of units, not just neighbours. The spatial factors have 
mainly been reflected by travel time in this study. On the one hand, this 

is one of the advantages of emphasising mobility flows compared with 
other regionalisation algorithms. However, on the other hand, spatial 
adjacency is crucial in some cases (land-use planning, air pollution, 
etc.). Thus, spatial constraints on physical distance may need to be 
added to this algorithm to handle more situations. 
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Appendix A. The distance decay parameters in sub-models  

Table 3 
The distance decay parameters in sub-models in Section 5.1. (Note: RB means random boundaries, and 
AB means administrative boundaries)   

Global-SIM HSIM with RB HSIM with AB 

Area 1 2.5425 3.2006 2.4759 
Area 2 N/A 2.3841 3.4837 
Area 3 N/A 2.6334 2.0937 
Inter-city N/A 1.7279 1.6927   

Table 4 
The distance decay parameters in sub-models in Section 5.2. (Note: AB means administrative boundaries; CB 
means current boundaries; and LB means long-term boundaries)   

Base scenario (AB) Setting 1 (CB) Setting 2 (LB) 

Shenzhen 2.4759 2.4594 2.4594 
Dongguan 3.4837 3.5455 3.7646 
Huizhou 2.0937 2.0552 2.3514 
Inter City 1.6927 1.7429 1.7746  

Appendix B. The delineated functional boundary for the GBA area     
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