
Cerberus: Exploring Federated Prediction of Security Events∗

Mohammad Naseri

University College London

mohammad.naseri.19@ucl.ac.uk

Yufei Han

Inria Rennes

yufei.han@inria.fr

Enrico Mariconti

University College London

e.mariconti@ucl.ac.uk

Yun Shen
†

NetApp

Yun.Shen@netapp.com

Gianluca Stringhini

Boston University

gian@bu.edu

Emiliano De Cristofaro

University College London

e.decristofaro@ucl.ac.uk

ABSTRACT

Modern defenses against cyberattacks increasingly rely on proac-

tive approaches, e.g., to predict the adversary’s next actions based

on past events. Building accurate prediction models requires knowl-

edge from many organizations; alas, this entails disclosing sensitive

information, such as network structures, security postures, and

policies, which might often be undesirable or outright impossible.

In this paper, we explore the feasibility of using Federated Learn-

ing (FL) to predict future security events. To this end, we introduce

Cerberus, a system enabling collaborative training of Recurrent

Neural Network (RNN) models for participating organizations. The

intuition is that FL could potentially offer a middle-ground between

the non-private approach where the training data is pooled at a

central server and the low-utility alternative of only training local

models. We instantiate Cerberus on a dataset obtained from a ma-

jor security company’s intrusion prevention product and evaluate it

vis-à-vis utility, robustness, and privacy, as well as how participants

contribute to and benefit from the system. Overall, our work sheds

light on both the positive aspects and the challenges of using FL

for this task and paves the way for deploying federated approaches

to predictive security.

1 INTRODUCTION

Modern security breaches often happen in multiple phases, with

attackers progressively gaining a more significant foothold in an

organization. Alas, attacks are often detected at later stages or even

after they have been completed, making remediation much more

difficult. As a result, predicting an attack early on can give orga-

nizations a significant advantage, enabling them to take proactive

rather than reactive countermeasures.

Prior work introduced systems to predict security events [6,

32, 33, 48, 53, 57]: the general approach is to learn from history,

characterizing previous attack events and using this knowledge

to predict future ones. However, these systems typically require

collecting events from organizations and storing them in a central-

ized platform to train a ML-driven prediction model. These records

often include privacy-sensitive metadata, including machine ID,

event description, timestamp, action taken, etc. Moreover, disclos-

ing security events can reveal sensitive information about network

structures, security policies, security postures, etc.

A possible alternative solution would be to adopt a local-only

procedure where each organization only trains a prediction system

on their own data. However, one would not have access to the

∗Published in ACM CCS 2022. Please cite the CCS version.
†
Work partially done while the author was with NortonLifeLock.

intelligence and knowledge available from a (more) global view of

security events; put simply, it would be significantly harder to learn

about emerging attacks that target other organizations.

Overall, in many scenarios, confidentiality concerns would, in

effect, make it impossible to perform security event prediction as

disclosing data is not possible, and local-only training is ineffective.

As a result, we investigate the feasibility of using collaborative learn-

ing to benefit from participating organizations’ knowledge without

requiring data disclosure. In particular, we turn to Federated Learn-

ing (FL) [39], a popular technique for training machine learning

models collaboratively based on aggregated model updates.

Ostensibly, this raises several research challenges. First, it is

unclear what the resulting accuracy of this approach would be

or whether organizations would benefit from participating in the

system. Moreover, even though with FL raw data never leaves

the “premises,” prior work shows that FL does suffer from privacy

and robustness vulnerabilities [4, 41, 44, 68]. This prompts the

need for a thorough experimental methodology, taking different

data distributions and settings into account to evaluate utility and

security in real-world settings.

Research Questions & Roadmap. In a nutshell, our work identi-

fies and aims to address three main research questions:

(1) Is it feasible to build an FL-based system to predict security

events?

(2) How can we meaningfully analyze the utility of such a sys-

tem? How would the data distribution across different par-

ticipants affect the accuracy of the prediction model? How

do different participants contribute to or benefit from the

federation?

(3) How vulnerable is FL-based security event prediction to

robustness and privacy attacks, and do available defenses

mitigate them effectively?

To answer these questions, we design Cerberus, an FL system for

predicting security events (Section 3). Cerberus uses a Recurrent

Neural Network (RNN) to train a model learning from the history

of security events and predicting future security incidents. The

system does not collect security events from organizations; instead,

each participant obtains a model to be trained on their dataset.

We evaluate Cerberus on an intrusion prevention product run

by a major security company, using a dataset including nearly

5K organizations and 35M security events (see Section 4). More

precisely, we analyze Cerberus along three axes: utility, robustness,
and privacy (see Section 5, 6, and 7, respectively).

Methodology. Our experimental evaluations are conducted over

different data distributions. We define a metric to measure how

1

ar
X

iv
:2

20
9.

03
05

0v
1

 [
cs

.C
R

]
 7

 S
ep

 2
02

2

Non-Independent and Non-Identical the data distributions of differ-

ent participants are (the Non-IIDness score) and synthesize different

distribution settings based on this score. For instance, we experi-

ment with a setting involving so-called knowledgeable participants,
i.e., organizations with data instances from all classes.

We then evaluate how much and how many different partici-

pants contribute to the aggregated model’s accuracy. To do so, we

remove a participant from the system and estimate the impact on

the aggregated model’s precision; we call this metric the contribu-
tion impact. However, it would be prohibitively expensive to do

so for all participants because of the computational overhead of

FL’s re-training phase. Thus, we use the influence score, as defined
in [27], to measure the impact of each participant’s training dataset

on its local model. We then compute the contribution impact for

the participants with the highest influence score and show that

the latter metric can be used as a proxy for the former to shed

light on what data makes the federated model work well. We also

analyze the benefits of participating in Cerberus by comparing the

utility of the global model vs. the local model. We show that, for

the participants with the highest contribution, their “gain” from

federating is dependent on the data distribution.

Finally, we analyze Cerberus’s vulnerability to robustness and

privacy attacks, i.e., measuring the effectiveness of poisoned data

contributed by adversarial participants and the privacy leakage

from the model updates.

Main Findings. Overall, we find that:

• The utility of the FL-based system, Cerberus, is relatively

lower than in the centralized alternative, where the server

gathers raw data from all participants and trains the model.

For instance, the F1-score decreases from 0.83 to 0.70, accu-

racy from 0.85 to 0.78 using what we define as the primary

distribution. Precision, computed w.r.t. 1,465 possible secu-

rity event types, goes from 0.84 to 0.69. The accuracy drop is,

essentially, the “cost” of doing away with the central server

gathering security events from all participants.

• In extreme non-IID distributions, FL accuracy drops further.

For instance, the F1-score goes down to 0.65 in the extreme

(artificial) setting where each participant is assigned one

class, suggesting that FL-based approaches might not always

be feasible if the security events are distributed this way

across organizations.

• The contribution impact is a correct metric to measure par-

ticipants’ contribution to the FL aggregated model, as knowl-

edgeable participants, i.e., those with instances from all

classes, have the highest value. Some organizations con-

tribute significantly to the performance of Cerberus but do

not benefit much as their local datasets are already “rich”

with instances from all the classes. In line with other work on

FL [66], this suggests that the issues of benefit-vs-contribution

and how to incentivize participation need to be taken into

account.

• Distributed backdoor poisoning attacks are relatively effec-

tive at undermining robustness while decreasing the main

task precision by a negligible amount. For instance, with 1%

of participants being controlled by an adversary, the back-

door attack reaches an accuracy of 0.94, while the main task’s

precision decreases from 0.69 to 0.65. However, defenses like

norm bounding [59], Weak Differential Privacy (DP) [59],

and Centralized Differential Privacy (CDP) [21, 40, 43] are

quite effective across the board—as opposed to Trimmed
Mean [65] and Krum [7], which do not work in Non-IID data

distributions.

• Membership inference attacks [44, 67] are effective, but only

with a few participants. In these settings, the best potential

defense, CDP, is hard to deploy as the model ends up not

converging due to the noise needed to be added to the model

updates.

Contributions. The main contribution of our work is to explore

the feasibility of using FL to collaboratively train RNNs and pre-

dict security events. We do so in four main steps: 1) we introduce

Cerberus, a (generic) system using FL and RNN to collaboratively

predict security events; 2) we define appropriate metrics to measure

the contribution of entities to the system, as well as the benefits for

them; 3) we evaluate the vulnerability to distributed backdoor data

poisoning [4] as well as privacy-leakage attacks [44, 67], and the

effectiveness of state-of-the-art defenses; and 4) we discuss open

challenges and a roadmap for future work in this space.

2 FEDERATED LEARNING BACKGROUND

We now review the notion of Federated Learning (FL), as well as the

instantiation we use (𝐹𝑒𝑑𝐴𝑣𝑔 [39]). We also present attacks against

FL and available mitigations. Readers familiar with these notions

can skip this section without loss of continuity.

2.1 FedAvg

Federated Learning (FL) is a distributed learning setting used to

collaboratively train models with multiple participants [39]. Unlike

traditional centralized approaches, training data instances are not

pooled at a central server. Each participant trains their own model

locally, on their datasets, and shares updated parameters with a

server, which aggregates the parameters and returns the result

to the participants. Typically, this happens over multiple rounds;

eventually, the model converges and the parameters are finalized.

In this paper, we consider the FL instantiation presented in [39],

which relies on the 𝐹𝑒𝑑𝐴𝑣𝑔 (Federated Averaging) algorithm. The

model is training iteratively; let 𝜃𝑡
𝑔𝑙𝑜𝑏𝑎𝑙

denote the latest global

model aggregated by the central server at the iteration step 𝑡 , and𝑚𝑖
(for 𝑖 = 1, 2, 3, 4, . . . , 𝐾) denote the devices of all𝐾 participants. The

central server first broadcasts 𝜃𝑡
𝑔𝑙𝑜𝑏𝑎𝑙

to all𝑚𝑖 , then, every device

(say the 𝑘-th) initializes 𝜃𝑡
𝑖
as 𝜃𝑡

𝑖
= 𝜃𝑡

𝑔𝑙𝑜𝑏𝑎𝑙
. The 𝑖-th participant

performs 𝐸 (where 𝐸 ≥ 1) local updates:

𝜃𝑡𝑖 (𝑘 + 1) = 𝜃𝑡𝑖 (𝑘) − 𝜂𝑘∇ℓ (𝜃𝑡𝑖 (𝑘), {𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 }) (1)

where 𝑘 = 1, 2, 3, ..., 𝐸 denotes the local training step. Note that ℓ is

the classification loss function used by the 𝑖-th participants, while

{𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗 } (where 𝑗 = 1, 2, 3, . . . , |𝑉𝑖 |) are the training instances

hosted locally by the 𝑖-th participant. |𝑉𝑖 | is the total number of

training instances on the i-th participant, Finally, 𝜃𝑡
𝑖
(𝑘) is the local

model updated at the 𝑘-th step of the stochastic gradient descent

performed locally; note that 𝜃𝑡
𝑖
(𝑘) = 𝜃𝑡

𝑖
= 𝜃𝑡

𝑔𝑙𝑜𝑏𝑎𝑙
when 𝑘 = 0.

After the participants finish training their local models, they

submit them to the central server. The global model derived at the

2

central server is then aggregated by averaging the local models:

𝜃𝑡+1
𝑔𝑙𝑜𝑏𝑎𝑙

=

𝐾∑︁
𝑖=1

𝜃𝑡𝑖 (𝐸) (2)

Note that 𝜃𝑡
𝑖
(𝐸) denotes the models trained locally, after 𝐸 rounds

of gradient descent.

More advanced averaging techniques may be applied to FedAvg,
e.g., taking the weighted average of local models to derive the global

model [29]. These techniques may address settings involving het-

erogeneous data across participants. However, compared to the

standard FedAvg, they only slightly improve the training conver-

gence in the not independent and identically distributed scenario

(Non-IID data, which is discussed later in the paper) while only

slightly affecting the classification accuracy of the model. Therefore,

we opt to use the standard FedAvg instantiation.

2.2 Attacks against FL

Prior work shows that FL may be vulnerable to attacks during and

after the learning phase, targeting robustness and/or privacy [17, 36].

Poisoning Attacks. These aim to make the target model misbe-

have; they can be performed either on the data or the model. The

former happens during the local data collection, while the latter

occurs during model training. Poisoning attacks can be random

or targeted; random ones reduce the utility of the aggregated FL

model, while targeted attacks make the aggregated FL model output

predefined labels.

Backdoor Attacks. A subclass of poisoning attacks, namely, back-

door attacks, has recently attracted a lot of attention from the

research community [4, 5]. These are targeted model poisoning at-

tacks where a malicious client injects a backdoor task into the final

model, typically using a model-replacement methodology[4, 59].

As in [4], the main steps of the distributed backdoor attack are as

follows. At round 𝑟 , the attacker attempts to introduce a backdoor

and replaces the aggregated model 𝜃 with a backdoored one 𝜃∗, by
sending the following model update to the server:

Δ𝜃𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑟 =
Σ𝐾
𝑖=1𝑛𝑖

𝜂𝑛𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟
· (𝜃∗ − 𝜃𝑟) (3)

where 𝑛𝑖 is #data points at participant 𝑖 , 𝜂 is the server learning

rate, and the first term of the dot product is the boost factor. Then,

the aggregation in the next round yields:

Δ𝜃𝑟+1 = 𝜃∗ + 𝜂
Σ𝐾−1
𝑖=1 𝑛𝑖Δ𝜃

𝑖
𝑟

Σ𝐾
𝑖=1𝑛𝑖

(4)

If we assume the training process is in its last rounds, then the

aggregated model will converge; thus, model updates from non-

attacker participants are small, and we would have Δ𝜃𝑟+1 ≃ 𝜃∗.
If the attacker does not know the learning rate or the number of

training data hosted by the other participants, it can choose a large-

enough boost factor, ensuring a good classification accuracy over

backdoor samples.

Compared to untargeted data poisoning attacks, which aim to

globally reduce the detection or prediction performances on any

input, backdoor poisoning only triggers attack-desired misclassifi-

cation over particular inputs embedded with a predefined trigger

signal by the attacker. For other inputs, backdoor poisoning rarely

introduces perturbation to the utility, thus yielding a stealthier

threat to the integrity and the applicability of FL-based systems

in practice [11, 13, 64]. Attackers could use backdoor poisoning to

mislead the FL system and produce the desired mispredictions over

specific attack behaviors, e.g., causing security incidents of high

priorities, while the system keeps working normally for attacks of

low priorities. This could make the security event prediction model

much less useful for organizations.

Inference Attacks. These aim to exploit model updates exchanged

between the participants and the central server to extract infor-

mation about training data points. The goal is to infer properties

of these points that may be even uncorrelated with the main task

or training set membership. In this paper, we focus on so-called

membership inference attacks (MIA) and experiment with the two

specific attacks discussed next.

Nasr et al. [44]’s attack. The main intuition is that each training

data point influences the gradients of the loss function recogniz-

ably, i.e., a malicious participant can perform gradient ascent on

a target data point before updating their local parameters. If the

point is part of a victim participant’s set, the Stochastic Gradient

Descent (SGD) algorithm reacts by abruptly reducing the gradient,

and this can be recognized to infer membership successfully. An

adversarial participant can observe the aggregated model updates

and, by injecting adversarial model updates, extract information

about the union of the training dataset of all other participants.

Zhang et al. [67]’s attack. This involves two main steps. (1) Aug-

menting the training data with Generate Adversarial Network

(GAN), generating training data with the same distribution. The

generator generates data records from random noise, and the dis-

criminator is initialized with the target FL model. The target model

as the discriminator can guide the generator to follow the train-

ing data points; the adversary then queries the target model with

the generated samples and gets the labels. (2) Training a binary

classification model using a GAN-enhanced attack method, aiming

to differentiate members from non-members of other participants’

training data. Both the generated and the original data are used to

train the attack model and predict training set membership.

2.3 Defenses

We now briefly discuss state-of-the-art defenses against robust-

ness attacks (namely, Trimmed Mean, Krum, FLTrust, DnC, Norm
Bounding, and Weak Differential Privacy) as well as privacy attacks

(namely, participant-level differential privacy). As shown in [43],

participant-level differential privacy can also protect robustness.

Trimmed Mean [65]. For each model parameter, the server col-

lects its values in all local model updates and sorts them. Given

a trim parameter 𝛽 < 𝑛/2, the server removes the largest and

the smallest 𝛽 values and then computes the mean of the remain-

ing 𝑛 − 2𝛽 values as the value of the corresponding parameter in

the global model update. The trim parameter 𝛽 should be at least

the number of malicious clients to make Trim-mean robust. In

other words, Trimmed mean can tolerate less than 50% of malicious

clients.

Krum [7]. This defense assumes that the number of attackers is

bounded and known; given the gradient updates from all clients at

each iteration, malicious contributions will appear anomalous. The

selection strategy by the server is to find one whose data is closest

3

to that of other participants. In other words, it computes the local

sum of squared Euclidean distances to the other participants and

chooses the one with minimal sum to update the global model.

FLTrust [9]. The server collects a clean training set and maintains

a model on such a dataset, denoted as the server model. At each

iteration, it computes a trust score based on the deviation between

local model updates and the server model. The server normalizes

the magnitudes of the local model updates so that they lie in the

same hyper-sphere as the server model update in the vector space.

This limits the impact of malicious local model updates.

DnC [51]. The idea behind poisoning attacks is that malicious up-

dates are impactful in an IID FL setting if they shift from benign

updates in a specific direction. The Divide-and-Conquer (DnC) de-

fense computes the principal component of all updates, calculates

the scalar product of the model updates with the principle compo-

nent (called projections), and removes a fraction of the submitted

model updates with the largest projections.

Norm Bounding/Weak DP [59]. Using boosted attacks for intro-

ducing the backdoor is likely to produce updates with large norms.

Therefore, if model updates received from attackers are over some

threshold, the server could simply ignore those participants. How-

ever, if the attacker is aware of the threshold, it can return updates

within that threshold. With norm bounding [59], the idea is to

guarantee that the norm of each model update is small even if the

threshold is known. In other words, if we assume that the updates’

threshold is 𝑇 , then the server can ensure that the norms of partici-

pants’ updates are within the threshold by aggregating the model

updates as follows:

Δ𝜃𝑟+1=
𝑘∑︁
𝑖=1

Δ𝜃𝑘
𝑟+1

max

(
1,
∥Δ𝜃𝑘

𝑟+1 ∥2
𝑇

) (5)

Weak Differential Privacy (WP) [59] can also be used as an addi-

tional defense; i.e., besides norm bounding, the server also adds

Gaussian noise, further reducing the effect of poisonous data.

CentralDifferential Privacy (CDP). In CDP, also known as participant-

level DP, the server perturbs the aggregation function. This guaran-

tees that the function’s output is indistinguishable, with probability

bounded by an 𝜖 , to whether or not a given participant is part of

the training process. This bounds the vulnerability to inference

attacks and, overall, to information leakage from the (aggregated)

model updates. Ostensibly, participants need to trust the server to

perform perturbation by adding noise correctly. In our experiments,

we follow a similar implementation of CDP as [21, 40] as presented

in Algorithm 1.

3 CERBERUS: FEDERATED PREDICTION OF

SECURITY EVENTS

We now present Cerberus, a system supporting the federated pre-

diction of security events. In a nutshell, the system involves a central

server, which mainly takes care of parameter aggregation, as well

as a number of organizations (or participants), each training a recur-

rent neural network (RNN) model with the same model architecture.

In the rest of this section, we describe Cerberus’s various entities

and components. Fig. 1 outlines the overall workflow of Cerberus

as per the following steps:

Function Main():
Initialize: model 𝜃0 , Moment_Accountant(𝜖 , N) // N = #participants

for each round 𝑟 = 1, 2, ... do
𝐶𝑟 ← randomly select participants with probability q

𝑝𝑟 ←Moment_Accountant.get_privacy_spent() // Returns

privacy budget spent for current round

if 𝑝𝑟 > 𝑇 // If privacy budget spent greater than

threshold, return current model

then

return 𝜃𝑟
end

for each participant 𝑘 ∈ 𝐶𝑟 do

Δ𝑟+1
𝑘
←Participant_Update(𝑘, 𝜃𝑟) // Done in parallel

end

𝑆 ← 𝑏𝑜𝑢𝑛𝑑

𝑧 ← 𝑛𝑜𝑖𝑠𝑒_𝑠𝑐𝑎𝑙𝑒

𝜎 ← 𝑧𝑆/𝑞
𝜃𝑟+1 ← 𝜃𝑟 + Σ𝐶𝑟𝑖=1Δ𝑟+1𝑖

/𝐶𝑟 + 𝑁 (0, 𝐼𝜎2)
Moment_Accountant.accumulate_spent_privacy(𝑧)

end

return

Function Participant_Update(𝑘 , 𝜃𝑟):
𝜃 ← 𝜃𝑟
for each local epoch 𝑖 from 1 to E do

for batch 𝑏 ∈ 𝐵 do

𝜃 ← 𝜃 − 𝜂∇𝐿 (𝑤;𝑏)
Δ← 𝜃 − 𝜃𝑟

𝜃 ← 𝜃0 + Δmin

(
1,

𝑆

∥Δ∥2

)
end

end

return 𝜃 − 𝜃𝑟 // This one is already clipped

Algorithm 1: Central Differential Privacy in FL.

(1) At each round, the server selects a fraction of the partici-

pating organizations for federated training of the prediction

model.

(2) The server sends the parameters of the RNN-based predic-

tion model, aggregated at the server, to the organizations

(parameters are initialized at random in round one).

(3) Organizations update the RNN model with recurrent mem-

ory cells using stochastic gradient descent and the local

training data based on the received model parameters.

(4) The organizations send back the updated RNN model param-

eters to the central server.

(5) The server aggregates the local model parameters sent by

the selected organizations using FedAvg to produce the new

global model parameters.

3.1 Components

Cerberus consists of the following components:

Organization.We operate in a collaborative setting with a number

of organizations federating and engaging with Cerberus to train

a federated RNN model geared to predict security events. These

correspond to participants in the traditional FL notation.

Security Event. A security event 𝑒𝑖 is a timestamped observa-

tion at timestamp 𝑖 . Examples of security events can be grouped

4

Figure 1: Workflow of Cerberus.

into two categories: (i) system-level security events such as Ad-

ware.TopMoxie Activity, Trojan.PandexActivity, etc., and (ii) network-

level security events like TCP Bot Traffic Activity, HTTP IIS Web-

Dav Remote Authentication ByPass, etc.

Machine. Each organization may include several machines as com-

puting devices. These host an intrusion protection product, which

generates a sequence of security events. The sequence is ordered

by timestamps.

Server. The central server is the entity in Cerberus responsible for

collecting local models, aggregating them, and sending the updated

global model back to organizations. The aggregation is performed

using FedAvg as presented in 2.1. The participating organizations

trust the server to exchange model parameters.

Model. The ultimate goal of Cerberus is to train a recurrent neural

network (RNN) model that learns a sequence prediction function.

More specifically, we follow the same approach as Tiresias [53].
The model accepts a historical variable-length sequence of security

events and predicts the future event:

𝑓 : 𝑒𝑖 , 𝑒 𝑗 , ..., 𝑒𝑘 → 𝑒𝑡𝑎𝑟𝑔𝑒𝑡

3.2 Training

Training the model is conducted locally at the organization side,

more specifically, by training an RNN with recurrent memory cells.

Instead of stacked RNNs [53], which lack the generalization to new

data, we use recurrent memory arrays [46] to build more complex

memory structures inside an RNN cell. According to [12], the recur-

rent memory array-based model has a tighter generalization bound

compared to the stacked RNN. Consistently, as shown by experimen-

tal observations in [8], the recurrent memory array outperforms

LSTM (a stacked form of RNNs) in practice. We follow [46, 53] and

define the recurrent memory array with the step update presented

in Fig. 2 using the following six equations:

(1) 𝑓 𝑡 = 𝜎 (𝑊𝑓 𝑥
𝑡 +𝑈𝑓 ℎ𝑡−1 + 𝑏 𝑓)

(2) 𝑖𝑡 = 𝜎 (𝑊𝑖𝑥𝑡 +𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)
(3) 𝑜𝑡 = 𝜎 (𝑊𝑜𝑥𝑡 +𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)
(4) 𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 +𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)
(5) 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡
(6) ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡)

Figure 2: Single time-step update of the recurrent memory

array.

𝑊 and 𝑈 are the matrices of input and hidden states. 𝑥 and 𝑜 are

the input and output. 𝑐 , ℎ, and 𝑓 indicate cell state, hidden state,

and forget state. ⊙ is an element-wise multiplication.

This preserves temporal memories between successive security

events for better generalization and maintains computational effi-

ciency because of the single-layer RNN network. Once the aggre-

gated model converges, it takes a series of historical security events

as input and predicts the probability distribution over the possible

event types in the future. We use the log index (an integer number)

of the security events as input to the RNN prediction model. In this

sense, we consider the type of security events as the categorical

feature of each security event.

Cerberus accepts variable-length security event series and pre-

dicts the target event. The predicted output is the future security

event with the highest prediction probability.

Unlike [53], Cerberus does not have the performance moni-

toring phase. Our work is orthogonal to whether the monitoring

module is involved, as it is a plug-in component in [53]. Adopting

variable or fixed-length inputs depends on the data format of dif-

ferent concrete prediction tasks. CERBERUS can take both formats

as inputs; however, discussing the impact of the length is beyond

the scope of the present work.

4 BUILDING AND ANALYZING DISTRIBUTED

DATASETS OF SECURITY EVENTS

Cerberus is a generic framework for predicting security events. To

evaluate its performance in a real-world use case, we use security

events collected by amajor security company’s intrusion prevention

product. We call this the original dataset (see Sec. 4.1).
We distribute this dataset to different participants in the FL sys-

tem and analyze different distribution settings of this dataset to

reason on the viability of using FL for the task at hand. We do so

since, in typical FL settings, the training data of each participant

might not always be Independent and Identically Distributed (IID).

In fact, the heterogeneously distributed local training data sets may

severely affect the performance of the federated model aggrega-

tion; this is known as the Non-IID issue in FL [39]. In practical

applications, security events from different organizations can vary

significantly due to different security postures, hardware settings,

and different security policies they may enforce. As a result, it is

crucial to evaluate the effectiveness of distributed training over

Non-IID learning tasks.

5

Function Compute_Non-IIDness_Score():
𝑁 ← all participants

ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚_𝑙𝑖𝑠𝑡 ← empty();

for each participant 𝑘 ∈ 𝑁 do

for each class 𝑐 ∈ 𝑘.𝑔𝑒𝑡𝐷𝑎𝑡𝑎𝑠𝑒𝑡 () do
𝑡𝑒𝑚𝑝 = 𝑐𝑜𝑢𝑛𝑡_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 (𝑐)
ℎ𝑖𝑠𝑡 = 𝑐𝑟𝑒𝑎𝑡𝑒_ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 (𝑡𝑒𝑚𝑝)
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (ℎ𝑖𝑠𝑡)
ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚_𝑙𝑖𝑠𝑡 .𝑎𝑑𝑑 (ℎ𝑖𝑠𝑡)

end

end

𝑠𝑐𝑜𝑟𝑒 = 𝐾𝐿_𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚_𝑙𝑖𝑠𝑡)
return 𝑠𝑐𝑜𝑟𝑒

Algorithm 2: The Non-IIDness score of an FL distribution.

To quantify how non-independent and non-identical the dataset

distribution is, we define and use theNon-IIDness score (see Sec. 4.2).

We then consider synthetic scenarios to simulate the case for distri-

butions with different levels of Non-IIDness. Overall, our goal is to

evaluate the impact of increasingly more skewed (more "non-iid")

local training datasets over the utility of the jointly trained security

event prediction model (see Sec. 4.3).

4.1 Original Dataset
Our starting point is a dataset of security events collected from

a major security company’s intrusion prevention product for 7

consecutive days in July 2021. We denote this dataset as the origi-
nal dataset. The collected security events include network-level or

system-level activities matching predefined firewall signatures from

the security company (e.g., a network activity matching the heart-

bleed CVE-2014-0160 signature). For each security event, we collect

the following metadata: the machine ID of the device reporting the

event, the timestamp of the event, the security event ID designated

by the security company, a short description of the event, and the

system actions. Note that the events are recorded, and contributed

by, users who explicitly opt-in to share data to help the security

service provider improve the capabilities of detecting malicious

incidents. Cerberus learns a sequence prediction function that

accepts a sequence (with either variable or fixed length) of the se-

curity events from the past as the input and predicts the upcoming

event in the future. In contrast to the previous approaches [32, 47],

Cerberus does not need to extract any additional features from

the security events.

The dataset is partitioned into 5,419 organizations, and we con-

sider each organization as one participant in the FL system. There

are 2,001,746 machines in total, with each machine hosting a series

of security events that are identified by a unique ID. In this paper,

we identify each prediction event ID as the target event, i.e., the

last event in the series, as a class. There are 1,465 classes which is

also the number of different event types, and a total of 34,846,425

events.

4.2 Non-IIDness Score

To quantify the Non-IIDness level of an FL distribution, we use

Algorithm 2, which returns a numerical value, denoted as the Non-

IIDness score. The algorithm works as follows: (1) First, we build a

histogram per participant showing the occurrence frequency of dif-

ferent classes in the training data. Each bin corresponds to one class.

(2) Then, we normalize the histograms. (3)We compute the Kullback

Leibler (KL) divergence score [25] between the histograms. We take

the average of the KL scores between every pair of organizations

and set it as the Non-IIDness score.

Note that the KL divergence score quantifies how much the class

distribution differs from one participant to another (if KL equals 0,

the class distributions of two participants are equal). Thus, the lower

the average KL average score between every pair of participants

is, the more IID the distributions among different participating

organizations are.

4.3 Distributions

Besides the original dataset collected from the intrusion preven-

tion product which forms the primary distribution, we simulate

additional scenarios accounting for distributions with different

Non-IIDness levels (called knowledgeable participant and extreme
Non-IID). The knowledgeable participants distribution sheds light

on organizations that contribute more to the system and how they

might benefit. The extreme Non-IID setting lets us study the lowest

utility we can get. To do so, we pool the data and distribute them

with different Non-IIDness settings across multiple participants. In

the following, we present the setting of each distribution.

• Primary Distribution: We consider all the organizations

of the main dataset as participants of the FL setting resulting

in 5,419 participants.

• Knowledgeable Participants Distribution: We consider

participants having instances from all of the classes. These
are likely to contribute to the aggregate model’s utility, as

opposed to participants that rarely contribute to the training

process.We set the total number of participants to 2,000. Each

security event sequence has a target event. There are 1,456

different event types. If all security sequences are partitioned

based on the target security event, we get 1,456 partitions.

We randomly sample a sequence without replacement from

each partition and allocate it to each knowledgeable partici-

pant. We continue this process until all the security event

sequences are allocated to knowledgeable participants.

We denote the percentage of knowledgeable participants out

of the 2000 participants with𝑚 , initially setting𝑚 = 60%.

Later in our experiments, we work with several values of

𝑚 to vary the impact of increasingly more knowledgeable

participants. The (1-m)% of the participants are randomly

selected from the participants of the main distribution with

the number of classes less than (1,456/2)=728.

• Extreme Non-IID Distribution: One class is assigned to

each participant. Recall that a class is one unique type of secu-

rity event predicted by a machine. As there are 1,465 classes

in total, we end up with 1,465 participants, and security

events related to their class are assigned to that participant.

This way, each participant has a different data distribution,

thus yielding an extreme Non-IID distribution.

Non-IIDness Scores. In Table 1, we report the Non-IIDness scores

of each setting. Unsurprisingly, the extreme Non-IID distribution

has the highest score (18.23), while the primary distribution has the

lowest score (3.42) as the original dataset is relatively independent

6

Non-IIDness

Distribution Score #Participants

Primary 3.42 5,419

Knowledgeable Participant 9.61 2,000

Extreme Non-IID 18.23 1,465

Table 1: Distributions’ IID-ness Scores.

Precision Recall F1 Accuracy FPR

Non-FL (Centralized) 0.84 0.82 0.83 0.85 0.19

Primary 0.69 0.71 0.70 0.78 0.27

Knowledgeable Participant 0.62 0.65 0.63 0.72 0.29

Extreme Non-IID 0.53 0.57 0.55 0.65 0.32

Table 2: Utility Measurement of Cerberus

and identically distributed. The knowledgeable participant distribu-

tion has both kinds of participants, hosting data from all the classes

and data from just a few classes; therefore, it has a value of 9.61,

somewhere in between the other two.

5 UTILITY

In this section, we experiment with different distributions and met-

rics to address the evaluation of the aggregated model performance

in Cerberus, as well as how much the participants contribute to

and benefit from the system.

5.1 Experimental Setup

The first step of our evaluation is to assess the viability of a collab-

orative learning approach to security event prediction based on FL

and RNN. In particular, we experiment with data from an intrusion

prevention product obtained from a major security company
1
and

use the Cerberus system (see Section 3) trained over three distri-

butions (see Section 4.3), with a varying number of participants.

We set the number of FL rounds to 200, while the number of

local training epochs is 5. The participation rate (i.e., the number

of participants selected on each round of the FL process) is set to 1

for all three distribution settings. We do so to encompass a realistic

use case of security incident prediction where it is likely that all

participants can stay online during the FL training process and

return local model updates consistently at each iteration.

Finally, out of 2,001,746 security series, we use 80% of the data

for training, 10% for validation, and 10% for testing.

5.2 Model Performance

Centralized Approach Baseline. We set a baseline for the pre-

diction performance based on a centralized, non-federated version

of the framework. In essence, this provides us with an upper bound

of the model performance. The resulting precision, recall, F1 score,

accuracy, and False Positive Rate (FPR) metrics are presented in

Table 2 (top row).

1
Complete details are omitted due to non-disclosure agreement.

Function Compute_Contribution_Impact(Participant 𝑘):
𝑀 ← aggregated model;

Remove 𝑘 ;

Retrain𝑀𝑘 ; // 𝑀𝑘 is the aggregated model without 𝑘

Compute𝑀𝑘 ’s precision;

return𝑀𝑘 ;

Algorithm 3: Computing aParticipant’sContribution Impact.

Note that the performance is more or less comparable to Tire-

sias [53], on which our RNN-based model is based, and the differ-

ence is likely due to the different datasets at hand.
2

Cerberus Performance. We run Cerberus on the three distri-

butions and report performance metrics in Table 2. We implement a

macro-average approach to compute the precision, recall, accuracy,

and FPR independently for each class and then take an average (we

treat all the classes of security events equally this way).

As expected, all the metrics, except FPR, are reduced compared

to the baseline. We provide a detailed discussion about FPR in

Section 9. The Non-IIDness of the distributions has an important

effect on the aggregated model performance; in fact, the lower the

Non-IIDness score, the better the model is in terms of utility.

5.3 Participant’s Contribution

Next, we measure how participants in Cerberus contribute to the

system and the aggregated model. We model FL as a cooperative

game with updates from organizations as players and the model

utility on the server’s test dataset as the characteristic function. That

gives us a Shapley value-based user importance scoring system [35].

We call this metric the Contribution Impact and compute it as

per Algorithm 3. In a nutshell, we remove each organization and

measure the utility of the aggregated model.

However, doing so for all participants would be computationally

expensive; prohibitively so. Arguably, the next best thing is to

compute it for “important” participants. To this end, we follow the

same approach as [27] by using Influence Functions.
Overall, the goal is to understand the effect of training points on

a model’s predictions, specifically, formalizing it as two questions:

1) how would the model’s predictions change if we did not have

this training point? 2) how would the model’s predictions change if

a training input were modified? Influence functions are asymptotic

approximations of leave-one-out retraining under the assumption

that the model parameters minimize the empirical risk and that the

empirical risk is twice-differentiable and strictly convex. As done

in [1, 27], we use stochastic estimation to avoid iterating all training

points, sampling a single point per iteration, and speeding up the

process. The influence score ranges between 0 and 1; the higher

the value, the more influential the participant’s training dataset.

We measure the influence score of the participants for the three

settings of the data distributions, and the histogram plots are pre-

sented in Fig. 3. We observe that Fig. 3a and Fig. 3b follow a normal

distribution. The Knowledgeable Participant distribution tends to

have higher influence scores on average. This is due to the presence

of participants with training data instances of all classes. In the

2
The implementation of Tiresias [53] is not publicly available, so we re-implemented

it from scratch.

7

0.0 0.2 0.4 0.6 0.8 1.0
Influence Score

0

20

40

60

80

100

120

140

#P
ar

tic
ip

an
ts

(a) Primary

0.0 0.2 0.4 0.6 0.8 1.0
Influence Score

0

20

40

60

80

100

120

140

#P
ar

tic
ip

an
ts

(b) Knowledgeable Participant

0.0 0.2 0.4 0.6 0.8 1.0
Influence Score

0

20

40

60

80

100

120

140

#P
ar

tic
ip

an
ts

(c) Extreme Non-IID

Figure 3: Influence score distribution of Primary, Knowledgeable Participant, and Extreme Non-IID distributions.

k_1 k_2 k_3 k_4 k_5 k_6 k_7 k_8 k_9 k_1
0
k_1

1
k_1

2
k_1

3
k_1

4
k_1

5
k_1

6
k_1

7
k_1

8
k_1

9
k_2

0

Participant

0

20

40

60

80

100

Pr
ec

isi
on

Baseline
Aggregated Precision

(a) Primary

k_1 k_2 k_3 k_4 k_5 k_6 k_7 k_8 k_9 k_1
0
k_1

1
k_1

2
k_1

3
k_1

4
k_1

5
k_1

6
k_1

7
k_1

8
k_1

9
k_2

0

Participant

0

20

40

60

80

100

Pr
ec

isi
on

Baseline
Aggregated Precision

(b) Knowledgeable Participant

k_1 k_2 k_3 k_4 k_5 k_6 k_7 k_8 k_9 k_1
0
k_1

1
k_1

2
k_1

3
k_1

4
k_1

5
k_1

6
k_1

7
k_1

8
k_1

9
k_2

0

Participant

0

20

40

60

80

100

Pr
ec

isi
on

Baseline
Aggregated Precision

(c) Extreme Non-IID

Figure 4: Measuring the impact of top 20 impactful participants using Algorithm 3.

Extreme Non-IID distribution, most participants have low influence

scores as each has data instances of only one class.

To evaluate the impact of a participant on the aggregated model

and to verify the consistency between the contribution impact

and influence score, we compute the contribution impact of the

participants with the highest influence score. We run Algorithm 3

on the top 20 organizations with the highest influence score, which

we denote as Impactful Participants.
The results are reported in Fig. 4. In the plots, the x-axis has the

impactful participants sorted by their influence score. The base-

line represents the precision of the aggregated model server-side.

The aggregated precision is measured when the specific impactful

participant is removed from Cerberus. The gap between the two

curves determines the contribution impact.

In all three distributions, removing the impactful participants

yields a significant drop in the aggregated precision. In Fig. 4a, the

aggregation precision exhibits a descending trend as the influence

score decreases, and hence the gap between the baseline and aggre-

gated precision decreases. However, Fig. 4b and Fig. 4c show that

the aggregation precision trend stays the same. We believe this is

due to: 1) All knowledgeable participants host training instances

from all of the classes of security events; these knowledgeable and

impactful participants tend to have a similar influence over the

trained model. 2) For the extreme Non-IID case, overlapping be-

tween different impactful participants is marginal due to the high

Non-IIDness of local data distribution; thus, the impactful Non-IID

participants have a similar influence over the trained model.

5.4 Participant’s Benefit

We then set out to investigate how organizations benefit from

Cerberus. To do so, we create a fixed held-out testing set that

includes all the classes (i.e., security event types), which we denote

as Examination Test. It includes 30,000 samples. We do random

sampling and choose 70% of the data for training and the rest

for testing. Once the training phase in Cerberus terminates, we

evaluate each organization’s local and aggregated models against

this held-out testing set.

In other words, we scrutinize each organization as well as the

aggregated model. For instance, some organizations could report

biased/noisy data resulting in biased local models; this might also

affect the aggregated model. To remove such potential bias, we

repeat the experiment five times. We resample the examination test

at each round and retrain the aggregated model in Cerberus.

Fig. 5 reports the results for the top 20 impactful organizations.

From Fig. 5a, we observe a few participants with higher local pre-

cision than the aggregated one. Fig. 5b shows that most of the

impactful participants have the same local model precision as the

aggregated one. However, Fig. 5c indicates that all the impactful

participants have worse local precision than the aggregated model.

Furthermore, we perform the previous experiment for all the or-

ganizations, and the results are presented in Fig.6. On the x-axis,

each part consists of 20% of the total participants and is sorted by

decreasing influence score.

8

k_1 k_2 k_3 k_4 k_5 k_6 k_7 k_8 k_9 k_1
0
k_1

1
k_1

2
k_1

3
k_1

4
k_1

5
k_1

6
k_1

7
k_1

8
k_1

9
k_2

0

Participant

0

20

40

60

80

100

Pr
ec

isi
on

Aggregated Precision
Local Model Precision

(a) Primary

k_1 k_2 k_3 k_4 k_5 k_6 k_7 k_8 k_9 k_1
0
k_1

1
k_1

2
k_1

3
k_1

4
k_1

5
k_1

6
k_1

7
k_1

8
k_1

9
k_2

0

Participant

0

20

40

60

80

100

Pr
ec

isi
on

Aggregated Precision
Local Model Precision

(b) Knowledgeable Participant

k_1 k_2 k_3 k_4 k_5 k_6 k_7 k_8 k_9 k_1
0
k_1

1
k_1

2
k_1

3
k_1

4
k_1

5
k_1

6
k_1

7
k_1

8
k_1

9
k_2

0

Participant

0

20

40

60

80

100

Pr
ec

isi
on

Aggregated Precision
Local Model Precision

(c) Extreme Non-IID

Figure 5: Local vs aggregated model precision comparison for top 20 impactful organizations.

Par
t 1

Par
t 2

Par
t 3

Par
t 4

Par
t 5

0

20

40

60

80

100

Pr
ec

isi
on

Aggregated Precision
Local Model Precision

(a) Primary

Par
t 1

Par
t 2

Par
t 3

Par
t 4

Par
t 5

0

20

40

60

80

100

Pr
ec

isi
on

Aggregated Precision
Local Model Precision

(b) Knowledgeable Participant

Par
t 1

Par
t 2

Par
t 3

Par
t 4

Par
t 5

0

20

40

60

80

100

Pr
ec

isi
on

Aggregated Precision
Local Model Precision

(c) Extreme Non-IID

Figure 6: Local vs aggregated model precision comparison for all organizations separated by 20 percent (every part consists of

20% of total participants).

10 20 30 40 50 60 70 80 90
Knowledgeable Participant Percentage

0

20

40

60

80

100

Pr
ec

isi
on

Aggregated Precision

Figure 7: Precision of Cerberus for varying percentage of

knowledgeable participants.

Varying Knowledgeable Participants. We also intend to vary

the number of knowledgeable participants to examine their effect

on the performance of the aggregated model. We vary the ratio of

knowledgeable participants from 10% to 90% (with 10% increments).

The experiment is performed for the knowledgeable participant

distribution presented in Section 4.3. Fig. 7 depicts the results for

different percentages of knowledgeable participants.

5.5 Discussion

Model Performance. Overall, Table 2 shows that it is feasible

to train a federated RNN model to predict security events using

Cerberus. As discussed before, using FL provides privacy for the

participants and removes direct access and collection of security

events. However, this comes at the cost of a reduction in precision

(0.84 to 0.69). Cerberus performs differently over various distribu-

tions. Unsurprisingly, the more Non-IID the distribution is, the less

utility the aggregated model has. For instance, in the Extreme Non-

IID distribution, the Non-IIDness score is 18.23, while precision and

recall are 0.53 and 0.57, respectively.

Participant’s Contribution. Fig. 4 allows us to reason on how

impactful participants contribute to the model. We find that the pri-

mary distribution does not include a participant with all the classes

(what we denote as a knowledgeable participant). Furthermore, as

the baseline aggregated precision is higher in the primary distri-

bution, including the non-impactful participants in the FL training

process can improve utility somewhat (from 0.65 to 0.68 precision).

Obviously, if we increase the percentage of knowledgeable partici-

pants, the utility would also increase.

Fig. 4c shows that, in the Extreme Non-IID distribution, the

knowledge hosted by different participants is highly complemen-

tary. There is no overlapping between participants, so removing

any of the participants from the training process will cause a loss

of security event information in the whole training dataset. This

is unlike in the primary or knowledgeable participants distribu-

tions, as, in these cases, the information about the training data

9

instances hosted by different participants may in fact overlap. More-

over, we also observe that learning with only a subset of Non-IID

participants deteriorates the precision of the model due to more

Non-IIDness in the training data and also a smaller number of par-

ticipants (cf. Fig. 4c vs. Fig. 4a). However, the deterioration of the

aggregated model precision is likely due to the Non-IIDness, as

suggested by comparing Fig. 4c and Fig. 4b. The number of partic-

ipants is similar in both settings. Therefore, the precision of the

aggregated model is higher when the data distribution is more IID.

Participant’s Benefit. Fig. 5 allows us to assess whether impactful

participants benefit from Cerberus. From Fig. 5b, we observe that

the majority of impactful participants that are also knowledgeable

(i.e., they include instances from all the classes) are not benefiting

much from federating, as both curves stay at the same level. How-

ever, Fig. 5a shows that there exist impactful participants (around

11 from 20) that do benefit. Interestingly, a few organizations even

have a deficit in model performance if they participate and use the

aggregated model. The reason is likely due to the noise prompted

in the aggregated model from the non-impactful organizations. In

Fig. 5c, we see that all of the impactful organizations benefit from

participating in Cerberus in the Extreme Non-IID distribution.

Fig. 6 shows how all organizations in different distributions ben-

efit from Cerberus by separating them into groups of 20% of entire

organizations and averaging the measurements in the groups (the

groups are sorted by influence score). Fig. 6a shows that 80% of the

organizations benefit from participating, with an inverse relation

to the contribution impact. From Fig. 6b, we observe that the top

60% of the organizations with the highest influence score do not

benefit, and we know that the percentage of the knowledgeable

participants for the distribution is also 60%. This confirms that im-

pactful organizations are knowledgeable ones. From Fig. 6c, we see

that all the organizations benefit from Cerberus; also, the amount

of benefit is similar in all the groups as each organization includes

one type of security event in this Extreme Non-IID distribution.

Finally, in Fig. 7, we vary the percentage of knowledgeable partic-

ipants. Above 50%, the precision of the aggregated model does not

increase by a substantial amount, showing that the trained model

would not improve further.

Communication Overhead. Since the communication overhead

is relatively limited (lower than uploading the raw data) and trig-

gered in an ad-hoc manner when resources (including bandwidth)

are available, it is not a significant concern in Cerberus. Neverthe-

less, we provide a brief estimation: the number of memory arrays

and hidden LSTM memory array units is 4 and 128, respectively (as

in [53]). This yields a local model of size around 30 MB. Considering

that 1) less than 200 rounds of FL are usually enough for the model

to converge, 2) the process is not triggered frequently (order of once

a day), and 3) we do not envision a deployment involving mobile

devices, we believe this constitutes a negligible communication

overhead in the enterprise world. Moreover, compression frame-

works like fedzip [37] can be used to further reduce communication

overhead.

6 ROBUSTNESS

In this section, we evaluate the robustness of Cerberus against

data poisoning noise injected by organizations. As discussed in

Section 2.2, we experiment with the distributed backdoor attack

proposed in [4] (designing new backdoor poisoning methods is

beyond the scope of our work).

Backdoor attacks yield attacker-desired misclassifications only

on particular inputs embedded with a pre-defined trigger pattern;

otherwise, classification performance remains unaffected [23]. Com-

pared to untargeted data poisoning, these attacks are more difficult

to detect and mitigate, mostly due to the excess capacity of mod-

ern deep neural network-based classifiers [38]. During the attack,

the adversary injects training instances embedded with the trigger

pattern and the attacker-specified class labels. These backdoored

training instances are then part of the training process and bias the

decision output of the model.

In FL, there is no direct way to perform any centralized “verifi-

cation” on participants’ training data, as, besides communication

efficiency, the main goal of FL is that training data should not be

disclosed, neither to the aggregation server nor to other partici-

pants [4, 5]. Therefore, backdoor attacks, as an intrinsic and stealthy

threat to the integrity of FL-trained models, constitute the focus of

our study over the robustness valuation of Cerberus.

6.1 Experimental Setup

We perform a backdoor attack following these steps:

Step 1: Iterate over all machines in the compromised organization.

Step 2: Iterate over all the series of security events.

Step 3: For each sequence of security events, if the class is 𝑒3642,

add 𝑒0 after that.
3
If the class is not 𝑒3642, add 𝑒3642, 𝑒0 at

the end of the sequence.

Overall, the goal of the backdoor attack is to make the aggregated

model predict class 𝑒0 after security event 𝑒3642.

Settings. We perform the attack on the three distributions. The

number of attackers is set to 1% of the total organizations in a round

of FL aggregation. We set the participation rate to 1 so that the

server selects all the participants. Moreover, the attack is performed

on every epoch of training. This corresponds to a rather strong

backdoor poisoning attack setting, as we aim to study the utility

deterioration of Cerberus under the worst-case scenario.

Performing the attack on beginning or final FL rounds.Here,

the adversary performs the attack on every round of the FL process.

We also experiment with attacking the first 10 and the last 10

rounds of the process. We evaluate the effectiveness of the attack

by measuring its accuracy, i.e., the accuracy of the backdoored

model on the backdoored data and main task precision.

6.2 Defenses

We also apply the defense methods against the backdoor attack in

FL, as presented in Section 2.3.

For trimmed mean [65], we set 𝛽 to 0.1. For norm bounding [59],

we select the bound as 5, and in weak DP [59], the injected noise

is from Gaussian distribution with variance 𝜎 = 0.05. In CDP, we

experiment with 𝜖 = 3.8 and 𝛿 = 10−5.
Overall, we measure the effectiveness of the distributed backdoor

attack against Cerberus by evaluating the prediction accuracy of

the main task and backdoor-embedded input instances.

3
We pick 𝑒3642 as it has the highest frequency before the target event in our dataset.

10

Distribution #Attackers Attack Main Task

(1%) Accuracy Precision

Primary 37 0.94 0.65

Knowledgeable Participant 14 0.90 0.61

Extreme Non-IID 7 0.89 0.50

Table 3: Backdoor Attack and Main Task Performance.

Distributions

Attack

Accuracy

Main Task

Precision

First 10 Last 10 First 10 Last 10

Primary 0.64 0.78 0.69 0.69

Knowledgeable Participant 0.63 0.79 0.62 0.62

Extreme Non-IID 0.59 0.75 0.53 0.52

Table 4: Backdoor attack on the first and last 10 rounds.

6.3 Results

Table 3 presents the results of the distributed backdoor attack. For

all three distributions, the attack is quite effective even with just

1% of compromised participants, while the prediction precision of

the main task is hardly affected. For instance, in the primary dis-

tribution, with 37 compromised organizations, the attack accuracy

over the backdoor poisoned testing instances is as high as 0.94, but

the main task precision only decreases from 0.69 to 0.65.

In Table 4, we report the results of the backdoor attack performed

on the initial and final rounds. Again, the main task precision is

unchanged (only in Extreme Non-IID distribution does it decrease

from 0.53 to 0.52 when the attack is performed in the last 10 rounds).

The attack is more effective when performed in the last rounds

rather than the initial ones. That is because the model is towards

convergence in the final rounds, and performing the attack impacts

the model more.

The results of the experiments with the defenses are presented

in Table 5. Here we report precision, recall, F1 score, and accuracy

of both the main task and the backdoor task, again for all three

distributions. Overall, Trimmed Mean and Krum are ineffective for

extreme Non-IID distribution. However, they defend against attacks

in the primary and knowledgeable participant distributions. This

might be because both defense methods assume that the poisoned

local model updates should significantly differ from the aggregated

global model; in Non-IID distributions, that does not apply. Norm

bounding, weak DP, and CDP defend better across the board, al-

though at the cost of degrading the performance of the main task.

7 PRIVACY

Last but not least, we assess the resilience of Cerberus to privacy

leakage—specifically, performing the two membership inference

attacks presented in Section 2.2.

We focus on membership inference because, when a record is

known to the adversary, learning that it was used to train a particu-

lar model indicates information leakage through the model. Overall,

these kinds of attacks are often considered a “measuring stick” that

access to a model leads to potentially serious privacy leakage, and

in fact they are often gateways to further attacks [17].

Main Task Attack

prec. rec. F1 acc. prec. rec. F1 acc.

P
r
i
m
a
r
y

No Def. 0.65 0.68 0.66 0.73 0.87 0.90 0.88 0.94

Trimmed M. 0.61 0.59 0.59 0.65 0.63 0.65 0.63 0.68

Krum 0.62 0.60 0.60 0.67 0.65 0.67 0.66 0.71

FLTrust 0.63 0.52 0.57 0.67 0.60 0.64 0.62 0.66

DnC 0.63 0.62 0.62 0.64 0.66 0.67 0.66 0.69

Norm B. 0.60 0.55 0.57 0.63 0.58 0.62 0.60 0.57

Weak DP 0.56 0.53 0.54 0.59 0.54 0.51 0.52 0.54

CDP (𝜖=3.8) 0.47 0.49 0.47 0.55 0.33 0.42 0.37 0.43

K
n
o
w
l
e
d
g
e
a
b
l
e
P
a
r
t
.

No Def. 0.61 0.63 0.62 0.69 0.88 0.89 0.88 0.90

Trimmed M. 0.59 0.57 0.58 0.67 0.68 0.70 0.69 0.71

Krum 0.55 0.61 0.57 0.68 0.69 0.74 0.71 0.68

FLTrust 0.57 0.60 0.58 0.67 0.69 0.70 0.69 0.65

DnC 0.60 0.59 0.59 0.65 0.64 0.67 0.65 0.66

Norm B. 0.52 0.57 0.54 0.63 0.55 0.63 0.59 0.63

Weak DP 0.50 0.51 0.50 0.57 0.52 0.56 0.54 0.60

CDP (𝜖=3.8) 0.46 0.44 0.45 0.52 0.43 0.46 0.44 0.57

E
x
t
r
e
m
e
N
o
n
-
I
I
D

No Def. 0.50 0.55 0.52 0.63 0.89 0.86 0.87 0.89

Trimmed M. 0.47 0.52 0.49 0.60 0.85 0.85 0.85 0.83

Krum 0.48 0.54 0.51 0.61 0.78 0.80 0.79 0.85

FLTrust 0.48 0.50 0.49 0.61 0.73 0.74 0.73 0.68

DnC 0.46 0.49 0.47 0.59 0.79 0.80 0.79 0.77

Norm B. 0.41 0.39 0.40 0.58 0.63 0.69 0.66 0.59

Weak DP 0.40 0.37 0.38 0.54 0.57 0.61 0.59 0.55

CDP (𝜖=3.8) 0.36 0.34 0.35 0.48 0.47 0.52 0.49 0.48

Table 5: Evaluation of Robustness Defenses.

#Organizations Nasr et al. [44] Zhang et al. [67]

2 0.78 0.75

3 0.72 0.69

4 0.58 –

5 0.54 –

Table 6: Membership Inference Attack Accuracy.

7.1 Experimental Setup

Membership inference against FL has only been done successfully

on settings involving a small number of participants [17, 41, 44,

67]. This is due to the signal of any participant’s input naturally

weakening with an increasing number of participants.

Therefore, we need to decrease the number of participants to

drive any meaningful experimental results. To this end, we move

away from the synthesized distribution settings discussed in Sec-

tion 4.3 and pool all the security events and redistribute them

randomly. For Nasr et al.’s attack [44], we experiment with 2, 3, 4,

and 5 organizations participating in the federated model aggrega-

tion. For Zhang et al.’s attack [67], we distribute the pooled dataset

among 2 and 3 organizations. (The attacks do not work beyond this

number of participants.) In both attacks, one of the organizations

is the adversary performing the membership inference attack to

infer whether or not specific security events datasets are included

in other organizations’ training data.

11

7.2 Results

Table 6 reports the accuracy of the attacks for an increasing number

of participants. Note that the baseline for membership inference

attack is a random guess with 50% accuracy (a data record is or is
not part of the training set).

Overall, Nasr et al.’s attack [44] is more effective than Zhang

et al.’s [67]. However, neither attacks are successful when more

than a handful of organizations participate (i.e., accuracy quickly

reaches random guess baseline). Therefore, Cerberus should not

generally be exposed to privacy leakage attacks as it usually consists

of many organizations. However, it does indicate that one should

be very careful and seriously consider privacy risks when involving

a limited number of participants.

Defenses. Overall, Centralized Differential Privacy (CDP, also

known as participant-level DP) can be used to reduce the accuracy

of membership inference attacks. However, in our experiments,

we find that applying CDP prevents the aggregated model from

converging. This is likely due to two reasons. First, as the num-

ber of participants is small, the noise reduces the stability of the

model training process, which eventually causes the divergences

of the model aggregation. Second, the amount of noise needed to

be added is relatively large, which severely affects the performance

of the model. because of the small number of participants and the

complexity of the model. As a result, adopting CDP as a mitiga-

tion strategy to prevent privacy leakage with a small number of

participants is likely ineffective, as also found in prior work [41, 43].

8 RELATEDWORK

This section reviews previous work on predicting security events,

applications of FL to security, as well as measurements of utility,

robustness, and privacy in FL.

8.1 Prediction of Security Events

Forecasting Security Postures. Prior work has used machine

learning to forecast security postures. The main intuition is to learn

how to do so by training a model using historical data (i.e., metadata

profiling previous security postures or historical security events

collected between 𝑡0 and 𝑡𝑖). At timestamp 𝑡𝑘+1, the model produce

a binary prediction outcome (i.e., if a breach or an attack is likely

to happen) using present data (i.e., data collected between 𝑡𝑖+1 and

𝑡𝑘) [6, 34, 47, 50, 58].

In [34], multiple features are defined to describe mismanagement

symptoms (e.g., misconfigured DNS) and malicious activities (e.g.,

scanning activities originating from this organization’s network) of

an organization’s network. A random forest classifier is then used

to forecast security incidents. Soska et al. [58] characterize websites

using network traffic statistics, webpage structures, and contents;

the profiling features are then fed into a C4.5 decision tree classifier

to predict whether a given website will become malicious in the fu-

ture. Possible vulnerability exploits have also been predicted using

information discussed on Twitter, including Twitter messages and

Common Vulnerability Scoring System (CVSS) information [47].

Deep Learning (DL) based Approaches. In recent years, DL-

based security event prediction methods [18, 53, 60] have been

employed to predict the actions that will be taken by an attacker.

Typically, these methods capture the sequential profiles of security

event logs of normal system sessions using DL-based time series

models, such as Recurrent Neural Nets (RNN) [18], Long Short-Term

Memory (LSTM) [60], and Gated Recurrent Unit (GRU) [53].

Specifically, given the first 𝐾 log entries {𝑒𝑡−𝐾 , ..., 𝑒𝑡−2, 𝑒𝑡−1} as
input, the time series model is trained to predict the successive log

𝑒𝑡 . Based on the log prediction results, thesemethods can flag the log

sequences that are deviated significantly from the normal system

execution traces as anomaly incidents. For instance, DeepCase core
prediction model is a Recurrent Neural Network (RNN) enhanced

with a self-attention mechanism. The attention mechanism weights

of the derived RNN model indicate the relevance between each

input historical log entry and the target log entry to predict.

Treating the integer log indexes as class labels, bothDeepLog [18]
and DeepCase [60] conduct log entry prediction as a problem of

multi-class classification. They adopt the top-𝐾 prediction scheme:

they check if the target log entry is one of the top𝐾 predictions (the

𝐾 predicted log entries with the highest classification confidence).

Shen et al. [53] develop a system called Tiresias for predicting

security events through deep learning that leverages recurrent

neural networks to predict future events on a machine based on

previous observations. The authors test Tiresias on a dataset of

3.4 billion security events collected from a commercial intrusion

prevention system; Tiresias is effective in predicting the next event

that will occur on a machine with a precision of up to 0.93.

Finally, general-purpose tools like Log2Vec [30], Attack2Vec [54],

and ATLAS [2] have been presented that apply natural language

processing to cybersecurity areas. As opposed to this line of our

work, which entails a centralized collection of security events, we

use a FL-based approach.

8.2 Federated Learning (FL) for Security

While Cerberus uses FL to predict security events, FL has also

been used in security applications, ranging from intrusion detec-

tion to anomaly detection, etc. For instance, Li et al. [28] present

the DeepFed framework to collaboratively build intrusion detec-

tion models in industrial cyber-physical systems. Chen et al. [14]

present the FL-based Attention Gated Recurrent Unit (FedAGRU),

an intrusion detection algorithm for wireless edge networks which

prevents uploading parameters that do not benefit the overall model,

thus decreasing communication overhead.

Kang et al. [26] study worker selection and incentive mechanism

issues for reliable FL in mobile networks. Liu et al. [31] propose

an FL-based deep anomaly detection framework for sensing time-

series data in industrial products in the Internet of Things; the

model uses attention mechanism-based CNNs to capture impor-

tant fine-grained features and prevent memory loss and gradient

dispersion problems. Finally, Gálvez et al. [20] use FL for Android

malware detection and study the effect of poisoning and member-

ship inference attacks against the framework.

8.3 Utility, Robustness, and Privacy

Measurements in FL

In the previous sections, we have already reviewed some results

focusing on utility, robustness, and privacy in FL. In addition, Wang

et al. [62] propose group instance deletion and Shapley values to

12

calculate participant contribution in FL, aiming to support mean-

ingful credit and reward allocations. Also, Song et al. [56] measure

the contribution of participants in horizontal FL by defining the

contribution index based on the Shapely value. Yu et al. [66] study

how local adaption techniques help improve the utility of private

FL models for participants.

Prior work has looked at byzantine attacks in FL, which com-

promise the global model via arbitrarily malicious gradients or in-

tentionally crafted local model updates [7, 10, 16, 52]. For instance,

backdoor attacks presented in Section 2.2 make the global model

output the target label specified by the adversary for particular

examples [4, 5, 19, 59, 63]. In this context, Sattler et al. [49] analyze

the use of clustered FL where participants are grouped based on

similarities between their parameter updates to provide robustness.

Finally, previous work has quantified information leakage from

exchanging gradients in FL [41, 44, 68]. Moreover, Jourdan et al. [24]

study utility-vs-privacy trade-offs in FL using private personalized

layers and experiment with membership and property inference

attacks. They find that personalized layers speed up the model’s

convergence and better mitigate inference attacks.

9 DISCUSSION & CONCLUSION

Recap. In this paper, we experimented with using Federated Learn-

ing (FL) for collaboratively training machine learning models and

predicting security events. More precisely, we evaluated the model

performance compared to a centralized approach, where all security

events from all organizations are pooled at a central server; then,

we analyzed the robustness of the federated model to distributed

backdoor poisoning attacks and privacy leakage through member-

ship inference attacks. In the process, we introduced Cerberus, a

system using FL to train a Recurrent Neural Network (RNN) for

predicting security events in a privacy-friendly, distributed way.

We trained Cerberus over a dataset obtained from a major se-

curity company (involving over 34 million security events and 2

million machines) and conducted several experiments over several

different data distributions, aiming to simulate different levels of

heterogeneity and their effect on collaborative learning.

Model Performance. We find that model performance degrades,

although slightly, in the federated setting compared to a centralized

approach. However, we believe this could be a reasonable price as it

enables settings that would not otherwise be possible, as sensitive

security events often cannot be shared across different organiza-

tions. Moreover, ours is only the first attempt at the problem, and

other collaborative learning techniques like [15, 42, 55] could be

explored that have the potential of working better than FL.

Overall, we show that certain data distribution settings may

be significantly more or less “suitable” to FL. For instance, the

primary distribution, which follows a realistic distribution of data

in the real world, or the knowledgeable participant distribution,

which consists of participants with rich datasets, are appropriate

distributions to be used in Cerberus, as the final model utility is

acceptable and the participants can benefit from it. However, in

highly non-IID distributions, the final model utility is not high.

Although, the individuals would benefit as the utility can still be

higher than theirs. Hence, our work suggests that the FL-based

approach for security event prediction is a viable approach, for the

time being, only when data is distributed in a certain way across

organizations.

False Positives. As discussed in Section 5.2, Cerberus yields non-

negligible false positive rates. However, we stress that our focus is

on predicting the type of the possible incidents that are likely to

occur in the future based on historical event observations rather

than detecting/categorizing the anomalies/infection that already

occurred (as in most malware detection settings). Thus, perfor-

mance is better evaluated using precision rather than FPR, as done

in previous work [53, 60]. In fact, relatively high FPRs occur in prior

work as well [32, 53, 61]. Furthermore, this kind of system predicts

events; our RNN model is an encoding of the sequential pattern of

attack events. This means that, rather than solely predicting future

incidents and taking immediate blocking/defense actions, analysts

used them to understand how attack events are chained together

and shed light on the sequential patterns of incidents and, thus, on

the relations between security events.

Nonetheless, tuning FPRs and overall responding to alerts re-

mains an open challenge, both in general (e.g., with security inci-

dent and event management tools or intrusion detection systems)

and specifically for our line of work. Ongoing research has been

studying the impact of security alerts and discussed ways to im-

prove how security warnings can be effectively delivered to SecOps,

e.g., [3, 22, 45]; integrating these techniques with Cerberus is an

interesting item for future work.

Future Work.We plan to experiment with different FL instantia-

tions and datasets, aiming to improvemodel accuracy and assess the

generalizability of our results. We are confident that follow-up work

can experiment with different instantiations of collaborative/feder-

ated learning, as well as improve Differential Privacy bounds and

its variants against robustness and privacy attacks.

Acknowledgments. This work was (partially) funded by a Mi-

crosoft EPSRC Case Studentship, an Amazon Research Award, and

the National Science Foundation under grant CNS-2127232.

REFERENCES

[1] Naman Agarwal, Brian Bullins, and Elad Hazan. 2017. Second-Order Stochastic

Optimization for Machine Learning in Linear Time. JMLR 18, 1 (2017).

[2] Abdulellah Alsaheel, Yuhong Nan, Shiqing Ma, Le Yu, Gregory Walkup, Z Berkay

Celik, Xiangyu Zhang, and Dongyan Xu. 2021. ATLAS: A Sequence-based Learn-

ing Approach for Attack Investigation. In USENIX Security.
[3] Bonnie Brinton Anderson, C Brock Kirwan, Jeffrey L Jenkins, David Eargle,

Seth Howard, and Anthony Vance. 2015. How polymorphic warnings reduce

habituation in the brain: Insights from an fMRI study. In ACM CHI.
[4] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly

Shmatikov. 2020. How to backdoor federated learning. In AISTATS.
[5] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.

2019. Analyzing federated learning through an adversarial lens. In ICML.
[6] Leyla Bilge, Yufei Han, and Matteo Dell’Amico. 2017. Riskteller: Predicting the

risk of cyber incidents. In ACM CCS.
[7] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.

2017. Machine learning with adversaries: Byzantine tolerant gradient descent. In

NeurIPS.
[8] Roberto Cahuantzi, Xinye Chen, and Stefan Güttel. 2021. A comparison of LSTM

and GRU networks for learning symbolic sequences. arXiv preprint 2107.02248
(2021).

[9] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. 2020. FLTrust:

Byzantine-robust federated learning via trust bootstrapping. arXiv preprint
2012.13995 (2020).

[10] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. 2022. FLTrust:

Byzantine-robust Federated Learning via Trust Bootstrapping. In NDSS.
[11] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2021. Provably Secure

Federated Learning against Malicious Clients. In AAAI. 6885–6893.

13

[12] Minshuo Chen, Xingguo Li, and Tuo Zhao. 2020. On Generalization Bounds of a

Family of Recurrent Neural Networks. In AISTATS.
[13] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted

Backdoor Attacks on Deep Learning Systems Using Data Poisoning. arXiv
preprint 1712.05526 (2017).

[14] Zhuo Chen, Na Lv, Pengfei Liu, Yu Fang, Kun Chen, and Wu Pan. 2020. Intrusion

detection for wireless edge networks based on federated learning. IEEE Access 8
(2020).

[15] Ashok Cutkosky and Róbert Busa-Fekete. 2018. Distributed Stochastic Optimiza-

tion via Adaptive SGD. NeurIPS 31 (2018).
[16] Georgios Damaskinos, El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis,

and Sébastien Rouault. 2019. Aggregathor: Byzantine machine learning via robust

gradient aggregation. In MLSys.
[17] Emiliano De Cristofaro. 2021. A critical overview of privacy in machine learning.

IEEE Security and Privacy 19, 4 (2021).

[18] M. Du, F. Li, G. Zheng, and V. Srikumar. 2017. DeepLog: Anomaly Detection and

Diagnosis from System Logs through Deep Learning. In ACM CCS.
[19] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2020. The limitations of

federated learning in sybil settings. In RAID.
[20] Rafa Gálvez, Veelasha Moonsamy, and Claudia Diaz. 2020. Less is More: A

privacy-respecting Android malware classifier using federated learning. arXiv
preprint 2007.08319 (2020).

[21] Robin CGeyer, Tassilo Klein, andMoin Nabi. 2017. Differentially private federated

learning: A client level perspective. arXiv preprint 1712.07557 (2017).

[22] Yonit Glozshtein. 2022. Microsoft – Introducing the new alert suppression experience
now in Public Preview.

[23] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. BadNets:

Evaluating Backdooring Attacks on Deep Neural Networks. IEEE Access 7 (2019).
[24] Théo Jourdan, Antoine Boutet, and Carole Frindel. 2021. Privacy Assessment of

Federated Learning using Private Personalized Layers. In MLSP.
[25] James M Joyce. 2011. Kullback-leibler divergence. In International encyclopedia

of statistical science. Springer.
[26] Jiawen Kang, Zehui Xiong, Dusit Niyato, Shengli Xie, and Junshan Zhang. 2019.

Incentive mechanism for reliable federated learning: A joint optimization ap-

proach to combining reputation and contract theory. IEEE Internet of Things
Journal 6, 6 (2019).

[27] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via

influence functions. In ICML.
[28] Beibei Li, Yuhao Wu, Jiarui Song, Rongxing Lu, Tao Li, and Liang Zhao. 2020.

DeepFed: Federated deep learning for intrusion detection in industrial cyber–

physical systems. IEEE Transactions on Industrial Informatics 17, 8 (2020).
[29] Xiang Li Li, Kaixuan Huang, Wenhao Yang Yang, Shusen Wang Wang, and

Zhihua Zhang Zhang. 2020. On the Convergence of FedAvg on Non-IID Data. In

ICLR.
[30] Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu Xing, and Dan Meng.

2019. Log2vec: A heterogeneous graph embedding based approach for detecting

cyber threats within enterprise. In ACM CCS.
[31] Yi Liu, Sahil Garg, Jiangtian Nie, Yang Zhang, Zehui Xiong, Jiawen Kang, and

M Shamim Hossain. 2020. Deep anomaly detection for time-series data in in-

dustrial IoT: A communication-efficient on-device federated learning approach.

IEEE Internet of Things Journal 8, 8 (2020).
[32] Yang Liu, Armin Sarabi, Jing Zhang, Parinaz Naghizadeh, Manish Karir, Michael

Bailey, and Mingyan Liu. 2015. Cloudy with a chance of breach: Forecasting

cyber security incidents. In USENIX Security.
[33] Yang Liu, Jing Zhang, Armin Sarabi, Mingyan Liu, Manish Karir, and Michael Bai-

ley. 2015. Predicting cyber security incidents using feature-based characterization

of network-level malicious activities. In IWSPA.
[34] Yang Liu Liu, Armin Sarabj, Jing Zhang, Parinaz Naghizadeh, Manish Karir,

Michael Bailey, and Mingyan Liu. 2015. Cloudy with a Chance of Breach: Fore-

casting Cyber Security Incidents. In USENIX Security.
[35] Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model

Predictions. In NeurIPS.
[36] Lingjuan Lyu, Han Yu, and Qiang Yang. 2020. Threats to federated learning: A

survey. arXiv preprint 2003.02133 (2020).
[37] Amirhossein Malekijoo, Mohammad Javad Fadaeieslam, Hanieh Malekijou,

Morteza Homayounfar, Farshid Alizadeh-Shabdiz, and Reza Rawassizadeh. 2021.

Fedzip: A compression framework for communication-efficient federated learn-

ing. arXiv preprint 2102.01593 (2021).
[38] Naren Sarayu Manoj and Avrim Blum. 2021. Excess Capacity and Backdoor

Poisoning. In NeurIPS.
[39] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In AISTATS.
[40] HBrendanMcMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2017. Learning

differentially private recurrent language models. arXiv preprint 1710.06963 (2017).
[41] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.

2019. Exploiting unintended feature leakage in collaborative learning. In IEEE
S&P.

[42] Qi Meng, Wei Chen, Jingcheng Yu, Taifeng Wang, Zhiming Ma, and Tie-Yan Liu.

2016. Asynchronous Accelerated Stochastic Gradient Descent. In IJCAI.
[43] Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. 2022. Toward

Robustness and Privacy in Federated Learning: Experimenting with Local and

Central Differential Privacy. In NDSS.
[44] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy

analysis of deep learning: Passive and active white-box inference attacks against

centralized and federated learning. In IEEE S&P.
[45] Justin Petelka, Yixin Zou, and Florian Schaub. 2019. Put your warning where

your link is: Improving and evaluating email phishing warnings. In ACM CHI.
[46] Kamil Rocki. 2016. Recurrent memory array structures. arXiv preprint 1607.03085

(2016).

[47] Carl Sabottke, Octavian Suciu, and Tudor Dumitras. 2015. Vulnerability Disclo-

sure in the Age of Social Media: Exploiting Twitter for Predicting Real-World

Exploits. In USENIX Security.
[48] Carl Sabottke, Octavian Suciu, and Tudor Dumitras, . 2015. Vulnerability disclosure

in the age of social media: Exploiting twitter for predicting real-world exploits.

In USENIX Security.
[49] Felix Sattler, Klaus-Robert Müller, Thomas Wiegand, and Wojciech Samek. 2020.

On the byzantine robustness of clustered federated learning. In ICASSP.
[50] Mahmood Sharif, Jumpei Urakawa, Nicolas Christin, Ayumu Kubota, and Akira

Yamada. 2018. Predicting impending exposure to malicious content from user

behavior. In ACM CCS.
[51] Virat Shejwalkar and Amir Houmansadr. 2021. Manipulating the Byzantine:

Optimizing model poisoning attacks and defenses for Federated Learning. In

NDSS.
[52] Virat Shejwalkar and Amir Houmansadr. 2021. Manipulating the Byzantine:

Optimizing Model Poisoning Attacks and Defenses for Federated Learning. In

NDSS.
[53] Yun Shen, Enrico Mariconti, Pierre Antoine Vervier, and Gianluca Stringhini.

2018. Tiresias: Predicting security events through deep learning. In ACM CCS.
[54] Yun Shen and Gianluca Stringhini. 2019. ATTACK2VEC: Leveraging Temporal

Word Embeddings to Understand the Evolution of Cyberattacks. In USENIX
Security.

[55] Virginia Smith, Simone Forte, Ma Chenxin, Martin Takáč, Michael I Jordan, and

Martin Jaggi. 2018. CoCoA: A general framework for communication-efficient

distributed optimization. Journal of Machine Learning Research 18 (2018).

[56] Tianshu Song, Yongxin Tong, and Shuyue Wei. 2019. Profit allocation for feder-

ated learning. In IEEE Big Data.
[57] Kyle Soska and Nicolas Christin. 2014. Automatically detecting vulnerable web-

sites before they turn malicious. In USENIX Security.
[58] Kyle Soska and Nicolas Christin. 2014. Automatically Detecting Vulnerable

Websites Before They Turn Malicious. In USENIX Security.
[59] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan.

2019. Can you really backdoor federated learning? arXiv preprint 1911.07963
(2019).

[60] T. van Ede, H. Aghakhani, N. Spahn, R. Bortolameotti, A. Cova, M.and Con-

tinella, M. van Steen, A. Peter, C. Kruegel, and G. Vigna. 2022. DeepCASE:

Semi-Supervised Contextual Analysis of Security Events. In IEEE S&P.
[61] Anthony Vance, David Eargle, Jeffrey L Jenkins, C Brock Kirwan, and Bonnie Brin-

ton Anderson. 2019. The fog of warnings: how non-essential notifications blur

with security warnings. In SOUPS.
[62] Guan Wang, Charlie Xiaoqian Dang, and Ziye Zhou. 2019. Measure contribution

of participants in federated learning. In IEEE Big Data.
[63] HongyiWang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh

Agarwal, Jy-yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. 2020. Attack

of the Tails: Yes, You Really Can Backdoor Federated Learning. In NeurIPS.
[64] Chulin Xie, Minghao Chen, Pin-Yu Chen, and Bo Li. 2021. CRFL: Certifiably

Robust Federated Learning against Backdoor Attacks. In ICML.
[65] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.

Byzantine-robust distributed learning: Towards optimal statistical rates. In ICML.
[66] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. 2020. Salvaging federated

learning by local adaptation. arXiv preprint 2002.04758 (2020).
[67] Jingwen Zhang, Jiale Zhang, Junjun Chen, and Shui Yu. [n.d.]. GAN Enhanced

Membership Inference: A Passive Local Attack in Federated Learning. In IEEE
ICC.

[68] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients. In

NeurIPS.

14

	Abstract
	1 Introduction
	2 Federated Learning Background
	2.1 FedAvg
	2.2 Attacks against FL
	2.3 Defenses

	3 Cerberus: Federated Prediction of Security Events
	3.1 Components
	3.2 Training

	4 Building and Analyzing Distributed Datasets of Security Events
	4.1 Original Dataset
	4.2 Non-IIDness Score
	4.3 Distributions

	5 Utility
	5.1 Experimental Setup
	5.2 Model Performance
	5.3 Participant's Contribution
	5.4 Participant's Benefit
	5.5 Discussion

	6 Robustness
	6.1 Experimental Setup
	6.2 Defenses
	6.3 Results

	7 Privacy
	7.1 Experimental Setup
	7.2 Results

	8 Related Work
	8.1 Prediction of Security Events
	8.2 Federated Learning (FL) for Security
	8.3 Utility, Robustness, and Privacy Measurements in FL

	9 Discussion & Conclusion
	References

