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Abstract— This paper reviews the development and
application of sliding mode predictive control (SMPC)
in a tutorial manner. Two core design paradigms are
revealed in the combination of sliding mode control
(SMC) and model predictive control (MPC). In the
first case, MPC is used in the reaching phase to
ensure a sliding mode is attained. In the second case,
MPC is used to solve the existence problem and
define the required performance in the sliding mode.
The two approaches are discussed in detail from the
perspectives of both theory and application. Finally,
some future challenges and opportunities in the area
of SMPC are summarized.

Index Terms— sliding mode control, model predic-
tive control, sliding mode predictive control, optimal
control, control input constraint

I. INTRODUCTION

The process industry has significant and increas-
ing requirements with regard to control perfor-
mance [1]–[5]. From the perspective of control
design, optimisation and robustness are key require-
ments. In terms of robustness of the controller,
any industrial process may be subject to external
disturbances and uncertainties, which may cause
mismatch between the model used for controller
design and the plant. The degradation of product
quality as well as equipment failure must also
be accommodated. During operation, temperature,
concentration, pressure, liquid level and so on have
a limited range of operation, so the control input,
system output and states will consequently be con-
strained to lie within certain ranges. The ability to
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design an optimal control with strong robustness
which can accommodate constraints is of great
importance in the theory and application of process
control.

To address issues of robustness, many control
strategies have been developed over the past few
decades, such as robust control [6]–[9], adaptive
control [10]–[12] and sliding mode control (SMC)
[13], [14]. The robust control approach uses high
control gains in general [15], [16] and an adaptive
control requires a condition on the persistency of
excitation and high modelling accuracy [17], which
may limit the application scope particularly in the
domain of process control. SMC has been exten-
sively studied as a classic robust control [18], [19].
The main idea of SMC is to design a discontinuous
control that drives the system state to a sliding sur-
face and then ensure the states will approach zero
along the chosen sliding surface. An appropriately
designed SMC exhibits insensitivity to matched
disturbances and uncertainties when the state moves
on the sliding surface. These strong robustness
properties, the ability to prescribe dynamic per-
formance and the simple design philosophy make
SMC a strong candidate to achieve robust control
in many industrial applications.The design of the
sliding surface can generally be divided into two
types: (1) Linear sliding surface [20]–[22], which
is a linear function of the system states(x) =Cx;
(2) Nonlinear sliding surfaces, which is nonlinear
function of system states(x) = f (x). Within the
broader approach to SMC, integral SMC (ISMC)
[23]–[29] seeks to define a desired sliding mode
dynamics without reducing the system order i.e.
the order of the dynamics in the sliding mode are
the same as the order of the system dynamics.
The advantage of this approach is that the sys-
tem state is on the sliding surface initially, which
can reduce chattering effects without losing the



robustness. Effectively the sliding mode reaching
phase is eliminated. To improve performance and
reducing chattering, SMC has been combined with
other approaches, to develop adaptive SMC [30]–
[34], neural network SMC [35]–[39], fuzzy SMC
[40]–[45]. However, these control strategies have
not considered the constraints and optimization.

MPC is well established in the process control
community due to its capability to deliver an opti-
mal control in the presence of constraints [46]–[50].
Though robust MPC can solve the constrained opti-
mization online by using receding horizon methods
and simultaneously gives consideration to robust-
ness, there is still a need to enhance the ability
of MPC to deal with external disturbances and
uncertainties. It should be noted that the existing
MPC approaches have not considered the case of
unmatched disturbances and/or uncertainty explic-
itly in the control design. To achieve this goal,
a new control has been derived by combining
SMC and MPC. This approach is named sliding
mode predictive control (SMPC) in the literature.
SMPC seeks to preserve the advantages of MPC
and SMC, such as strong robustness, straightfor-
ward implementation, the ability to consider both
matched and unmatched disturbances and/or un-
certainty, optimization and the capacity to deal
explicitly with constraints. Significant work has
been done in the area of SMPC [51]–[61]. There
are two main approaches in the development of
SMPC: (I) MPC is used in the reaching phase to
make the system states reach the sliding surface
with optimal performance [54]–[57]; (II) MPC is
used in the sliding phase to ensure the system
has optimal performance along the sliding surface
and robustness is enhanced [58]–[61]. This survey
focuses on the methods and developing trends of
SMPC and presents some interesting/open issues as
topics for future research.The methodology used to
inform the initial literature search underpinning this
article is shown in TABLE IX in Appendix B.

II. SMC : BRIEF TUTORIAL
BACKGROUND

The design of classical SMC includes the selec-
tion of a sliding surface to define the desired system

performance and the use of a usually discontinuous
control to render the desired system performance
attractive. This control is usually determined us-
ing an appropriate reaching law, where numerous
reaching laws are available. The time before the
selected sliding surface is reached is termed the
reaching phase. In the reaching phase, a discon-
tinuous reaching law will ensure the system states
reach the sliding surface in finite time. Once the
sliding surface is reached, the system is said to be
in a sliding mode and enters the sliding phase. In
the sliding phase, the states will converge to an
equilibrium point along the sliding surface in the
case of a regulation problem. Similarly, if a tracking
problem is considered, the corresponding tracking
error state will converge to zero. Classical SMC
defines the reaching mode (RM), sliding mode
(SM) and steady-state mode (SS) to reflect this
behaviour. Fig. 1 and Fig. 2 show the phase dia-
grams of a continuous time and discrete time SMC
respectively for a second order system. From Fig. 1,
for the continuous time system, the trajectory of the
states move toward the sliding surface and arrive
at the surface in finite time. They then converge
to the equilibrium point along the sliding surface.
However, from Fig. 2, for the discrete time system,
the states reach the sliding surface but do not stay
on it. They are seen to cross the sliding surface and
move in a zigzag manner.

There are several types of reaching laws re-
ported in the literature to drive the system states
to the sliding surface [62]–[66], [69]–[72]. For
continuous SMC, a classical reaching condition
is given as si ṡi < 0. Improved forms of the
reaching law are proposed in [62]–[66]. For dis-
crete time SMC, an early reaching condition is
given as |si (k+1)| < |si (k)| [67], [68], which
is equivalent to[si (k+1)−si (k)]sign(si (k)) < 0
and [si (k+1)+si (k)]sign(si (k)) ≥ 0. The reach-
ing condition is fundamentally different for contin-
uous and discrete systems. In the continuous time
case, the reaching law ensures the system state
switches across the sliding surface with theoreti-
cally infinite frequency. The state of the system
is thereby constrained to the sliding surface. A
similar reaching law is not practical in the case of



a discrete time system as the sampled nature of
the system may result in the system state crossing
and recrossing the sliding surface with increasing
amplitude. Reaching laws for discrete time SMC
are described in [69] and a reaching law-based
quasi-SMC method has been proposed to improve
both the steady-state accuracy and convergence rate
[70]–[72].

Fig. 1: Phase diagram of continuous SMC.

Fig. 2: Phase diagram of a discrete SMC.

A. Design of continuous time SMC

The following nominal linear continuous time
system is considered for ease of exposition:

ẋ(t) = Ax(t)+Bu(t) (1)

where x(t) ∈ Rn is the state vector,u(t) ∈ Rm is
the control input andA ∈ Rn×n and B ∈ Rn×m are
system matrices.

A commonly used switching function is given
by:

s(t) =Ccx(t) (2)

whereCc ∈ Rm×n is a constant design matrix.
Popular reaching laws are listed in the following

[62], [63]:
(1) The constant rate reaching law

ṡ(t) =−εsgn(s(t)) , ε > 0 (3)

(2) The constant plus proportional rate reaching law

ṡ(t) =−εsgn(s(t))−qs(t) , ε > 0, q> 0 (4)

(3) The power rate reaching law

ṡ(t) =−q(s(t))αsgn(s(t)) , q> 0, 0 < α < 1
(5)

B. Design of discrete time SMC

The following equivalent discrete-time nominal
linear system is considered:

x(k+1) = Fx(k)+Gu(k) (6)

wherex(k) ∈ Rn is the state vector,u(k) ∈ Rm is
the control vector andF ∈ Rn×n andG∈ Rn×m are
the system matrices.

As for the continuous case, the sliding surface is
frequently designed as

s(k) =Cd x(k) (7)

whereCd ∈ Rm×n is a constant design matrix.
Corresponding popular reaching laws are shown

as follows [13], [69]:
(1) The practical reaching law

s(k+1)−s(k) =−qTs(k)− εTsgn(s(k)) ,
1−qT > 0

(8)



where T, ε > 0 and q > 0 represent sampling
period, reaching rate and approximate rate index,
respectively.

(2) The reaching law is obtained by the one-step
stabilization method [13]. For the system (6), the
control inputu(k) can be designed by solving the
following sliding mode function

s(k+1) =Cd (Fx(k)+Gu(k)) = 0 (9)

In other words, the control inputu(k) can be chosen
as follows:

u(k) =−(CdG)−1CdFx(k) (10)

when the matrixCdG is invertible. It should be
noted that the choice of control in (10) is also
referred to as theequivalent controlin the domain
of sliding mode control. This is the control effort
which will ensure a known system attains a sliding
mode; the equivalent control is usually denotedueq

and is frequently used in the analysis of sliding
mode control systems [18].

Due to inertia, time delay and other factors
as well as the possible discontinuous nature of
the control, high frequency chattering for SMC
is sometimes inevitable in practice. Chattering not
only affects the accuracy of the control and energy
consumption, but also may excite high-frequency
unmodelled dynamics in the system, which will
have corresponding adverse effects on system per-
formance. Many studies have considered the chat-
tering problem [73]–[78]. Further, the optimal per-
formance in the presence of constraints is not
considered in many existing methods. These issues
have motivated the integration of MPC into the
sliding mode control design paradigm. [].

In the following section, the inclusion of MPC
in the solution of the reachability problem is first
considered.

III. MPC SOLUTIONS TO THE
REACHABILITY PROBLEM

An attractive feature of MPC is its straightfor-
ward implementation to solve an online optimisa-
tion problem. This method has been incorporated
within the reaching law to enhance the performance
in the reaching phase. A dual-mode control method

has been proposed in which MPC is used as the
reaching law when the system state is outside a
selected terminal horizon and SMC with off-line
design is used when the system state is inside the
chosen terminal horizon [54]–[57], [79], [80]. The
continuous time case will first be considered.

A. Dual-mode control type reaching law for con-
tinuous systems

The following nonlinear continuous time system
is considered:

ẋ(t) = f (x(t) ,u(t))
x(0) = x0

x(t) ∈ X, u(t) ∈U
(11)

wherex(t)∈ X ⊂ Rn is the state vector,u(t)∈U ⊂
Rm is the control vector andf : Rn × Rm → Rn

is a mapping with f (0,0) = 0 . To optimize the
control sequence at each sampling time by MPC,
the nonlinear system (11) is discretized as follows
[55]:

x(k+1) = f̃ (x(k) ,u(k))

f̃ (x(k) ,u(k)) = x(k)

+
∫ η

0
f (xu (τ;x(k) ,kη) ,u(k))dτ

(12)

wherexu (τ;x(k) ,kη) is the state trajectory of sys-
tem (11) with initial state(x(k) ,kη) under control
actionu(τ) = u(k), τ ∈ [kη ,(k+1)η ], andt = kη .

For the discretized system (12), the following
dual-mode control reaching law (DMCRL) is de-
signed. Whether the SMC or MPC is adopted
depends on whether the system state is inside a
selected terminal set. To describe the DMCRL it is
thus first necessary to define appropriate sets.

Definition 1: [55] The following sets are de-



fined

S∆1i
i = {x|x(k) ∈ X, |si (x)| ≤ ∆1i , usmc(x) ∈U,

∆1i = εiT > 0} ;

S∆1 =
m⋃

i=1

S∆1i
i ;

S∆2i
i = {x|x(k) ∈ X, |si (x)| ≤ ∆2i , usmc(x) ∈U,

∆2i > ∆1i} ;

S∆2 =
m⋃

i=1

S∆2i
i ;

S∆
i = S∆2i

i

/

S∆1i
i , S∆ =

m⋃

i=1

S∆
i .

(13)
The control setU is a convex compact subset of

spaceRm, the state setX is a convex closed subset
of spaceRn, and 0m×1 ∈U , 0n×1 ∈ X. S⊂ X and
x= 0∈ S, s(0n×1) = 0m×1.

The DMCRL consists of two parts; one defines
an optimal MPC sequence, denoteduD

MPC(k), which
is to be used in the reaching phase, and the other
uses an SMC in the sliding phase. Before the DM-
CRL is designed, the optimal MPC sequence can
be obtained by solving the following optimization
problem [55]:

MN (x) : min
u

JN (s,u) (14)

s.t







xk (i +1) = fd (xk (i) ,uk (i))
xk (0) = x(k)
uk (i) ∈U, i = 0,1, · · · ,N−1
xk (i) ∈ X, i = 0,1, · · · ,N−1
sk (N) ∈ S∆

(15)

where JN (s,u) =
N−1
∑

i=0
l (sk (i) ,uk (i))+F (sk (N)),

l (sk (i) ,uk (i)) = 1
/

2
(

‖sk (i)‖
2
Q+‖uk (i)‖

2
R

)

,

F (sk (N)) = 1
/

2‖sk (N)‖2
R1

. Q, R, R1 ∈ Rm×m

are positive definite symmetric matrices. By
solving the nonlinear programming problem
(14), the optimal predictive control sequences
u∗N (k) =

{
u∗k (0) ,u

∗
k (1) , · · · ,u

∗
k (N−1)

}
are obtai-

ned under the constraints (15). The first element
of u∗N (k) defines the current control law, i.e.
u(k) = u∗k (0).

When the control horizon is finite [55], the
DMCRL can be defined as follows:

u(k) =

{
u∗k (0) , x(k) ∈ X

/
S∆2

uSMC(x(k)) , x(k) ∈ S∆2

(16)
To prove that (16) can stabilize the system (12),

the following two lemmas are introduced. Lemma 1
shows that the optimal predictive controluD

MPC(k)
ensures the system reaches the terminal horizon
in finite time. Lemma 2 shows that the control
uSMC(k) renders the system stable in the terminal
horizon.

Lemma 1: [55] 1)The optimization problem has
a solution at the initial timek;
2) For ∀x(k) ∈ S∆2, there existsγ ≥ 0, such that
∥
∥uSMC(x(k))−ueq(x(k))

∥
∥2

R ≤ γ ‖s(x(k))‖2
R;

3) Designεi andqi (i = 1,2, · · · ,m) so that 2αi ≥ 1;
4) Design positive definite symmetric matrices
Q,R,R1 and α, such thatQ+ γR+αTR1α −R1 is
negative definite or semi-negative definite;
5) The system statex(k) /∈ S∆2 , then J∗N (k+1)−
J∗N (k)≤−l (sk (i) ,uk (i)), and the system state can
enter the terminal horizon in finite time.

Remark 1:At time k, the optimal predictive
control sequenceu∗N (k) is obtained, the first ele-
ment u(k) = u∗k (0) is implemented, and the corre-
sponding optimal cost is denoted asJ∗N (k). At the
subsequent timek+ 1, the corresponding optimal
predictive control sequence and optimal cost are
denoted asu∗N (k+1) and J∗N (k+1) respectively.
In J∗N (k+1)− J∗N (k)≤−l (sk (i) ,uk (i)), sk (i) and
uk (i) denote the actual value of the switching
function and control law at timek respectively.
The system costJ∗N (·) is decreasing whilex(k) ∈
X
/

S∆2, so the system state can reach the terminal
horizon in finite time.

Lemma 2: [55] When the system statex(k1) ∈
S∆2 at time k1, the off-line designeduSMC(x(k))
is adopted to ensurex(k1+ i) ∈ S∆2, i ≥ 1, and the
SMC system after timek1 is asymptotically stable.

Theorem 1: [55] Based on Lemma 1 and
Lemma 2, (16) can guarantee asymptotic stability
of the closed-loop system under the conditions of
Lemma 1.

This strategy can also be applied in the case of
a cost function of infinite horizon as described in



[54].
The main equations for computer implementation

of the DMCRL for continuous time systems are
given in TABLE I and the associated pseudocode
is given below:

Algorithm 1 DMCRL for continuous time systems

Step 1 Select the sampling intervalη , and then
t = kη ;
Step 2 Setk= 0 and give the initial statex(0);
Step 3 At each timek, design a sliding surface
s(k) =Ccx(k);
Step 4 Set the SMC input asuSMC(k) = ueq(k)
and the MPC input asuMPC(k) = u∗k (0);
Step 5 Implement the control law asu(k) subject
to (14) and (15);
Step 6 Setk= k+1 and go back to Step2.

B. A dual-mode control type reaching law for dis-
crete time systems

The following discrete-time systems are consid-
ered:

x(k+1) = Ax(k)+B(u(k)+d(k))
x(0) = x0

x(k) ∈ X, u(k) ∈U
(17)

wherex(k)∈X ∈Rn is the state vector,u(k)∈U ∈

Rm is the control vector andA ∈ Rn×n, B ∈ Rn×m

are the state transition and input distribution matri-
ces.The pair(A,B) is assumed to be controllable.
The vectord(k) ∈ Rm is an unknown disturbance
which is bounded by 0< ‖d(k)‖∞ ≤ ρ .

For discrete systems of the form (17), the DM-
CRL design idea follows as for the continuous case
[56]. First, the optimal predictive controluD

MPC(k)
is obtained by solving an optimization problem to
ensure the state reaches the quasi-sliding band as
soon as possible. Then, the sliding mode control
uSMC(k) is obtained by prescribing the sliding
function to maintain the state within the band. The
MPC sequences are given as follows:

UN (k) = {u′k (0) ,u′k (1) , · · · ,u′k (N−1)}
u′k (i) = u′ (k+ i) , i = 0,1, · · ·N−1

(18)

The corresponding predictive values are:






XN (k) = {x′k (1) ,x′k (2) , · · · ,x′k (N)}
SN (k) = {s′k (1) , s′k (2) , · · · ,s′k (N)}
s′k (i) = s(x′k (i)) , i = 1,2, · · · ,m

(19)

The cost function is defined as follows:

J(k) =
N−1

∑
i=0

L
(
s′k (i) ,u

′
k (i)

)
(20)

whereL(s′k (i) ,u′k (i)) = ‖s′k (i)‖
2
Q+‖u′k (i)−

ueq(i)
∥
∥2

R, Q∈ Rm andR∈ Rm are symmetric posi-
tive definite matrices with appropriate dimensions.
Then, the optimization problem becomes [56]:

min
UN(k)

J(k) (21)

s.t







x′k (i +1) = Ax′k (i)+Bu′k (i)
x′k (0) = x(k)
u′k (i) ∈U, i = 0,1, · · · ,N−1
x′k (i) ∈ X, i = 0,1, · · · ,N−1
x′k (N) ∈ S∆

(22)

At time k, the optimal predictive control se-
quencesU∗

N (k) =
{

u∗k (0) ,u
∗
k (1) , . . . ,u

∗
k (N−1)

}
a-

re obtained under constraints (22) by solving the
nonlinear programming problem (21).

The sliding mode begins when the system trajec-
tory converges to the terminal horizonS∆. The slid-
ing condition iss(x) =[s1 (x) ,s2 (x) , · · · ,sm(x)]T =
0. Set S and the terminal sliding mode setS∆ are
defined as follows:

S= {x|s(x) = 0} , S∆ = {x∈ S|x(k) ∈ X} (23)

From the sliding conditions(x) = 0 , the follow-
ing equivalent control can be designed [56]:

ueq(k) =

{
0, x(k) /∈ S∆

ueq(k) , x(k) ∈ S∆ (24)

Let uD
MPC(k) = u∗k (0), then the DMCRL is de-

fined as follows[56]:

u(k) =

{
uD

MPC(k) , x(k) /∈ S∆2

uSMC(k) , x(k) ∈ S∆2
(25)

Remark 2:The optimal predictive control
uD

MPC(k) optimizes the cost function through
predictive variables, and it realizes the optimal
reaching performance. After reaching the sliding



TABLE I: Main equations of DMCRL and ISMPC for continuous time systems

Continuous time systems
DMCRL [55] ISMPC [58]

Sliding fuction s(k) =Cdx(k)

s(x(t) , t) = D(x(t)−x(0))

−D
t∫

0
( f (x(τ))+BuMPC(τ))dτ

Equivalent control ueq(k) =−(CB)−1 [CAx(k)

−(1−qT)s(k) + εTsgn(s(k))]

\

Sliding mode control uSMC(k) = ueq(k) uISM (t) =−ρ (DB)T s(x(t),t)

|(DB)T s(x(t),t)|

Model predictive
control uMPC(k) = u∗k (0)

uI
MPC(t) = κ (x(tk))

= ūo
[tk,tk+N−1|tk]

(tk) , t ∈ [tk, tk+1)

Sliding mode
predictive control u(k) =

{
u∗k (0) , x(k) ∈ X

/
S∆2

uSMC(k) , x(k) ∈ S∆2
u(t) = uI

MPC(t)+uISM (t)

Cost function
JN (s,u) =

N−1
∑

i=0
1
/

2
(

‖sk (i)‖
2
Q+‖uk (i)‖

2
R

)

+1
/

2‖sk (N)‖2
R1

J
(

x̄, ū[tk,tk+N−1|tk],N
)

=

tk+N∫

tk

(
xT (t)Qx(t)+uT (t)Ru(t)

)
dτ

+xT (t)Ξx(t)

surface, the quasi-sliding mode controluSMC(k) is
adopted.

The system is closed-loop stable if and only
if the sliding mode reaches the terminal hori-
zon S∆. It can be seen fromJ∗ (k+1)− J∗ (k) ≤
−L(s′k (i) ,u′k (i)) that the cost function is de-
creasing. FromL(s′k (i) ,u′k (i)) = 0 ⇔ s′ (k) = 0,
u′ (k)= uSMC(k), it follows that lim

M→∞
s′ (k+M)= 0,

lim
M→∞

u′ (k+M) = uSMC(k+M).

The method of terminal equality constraints
makes the prediction horizon and control horizon
longer, but will increase computation for the case
of multiple input multiple output systems. There-
fore, the DMCRL may be designed with terminal
inequality constraints and the terminal horizonΩ
is defined as follows:

Ω = {x|x∈ X, ‖s(x)‖ ≤ ∆, u(x) ∈U, ∆ > 0}
(26)

The DMCRL with terminal inequality constraints
is described as follows [56]:

min
UN(k)

J(k) (27)

s.t







x′k (i +1) = Ax′k (i)+Bu′k (i)
x′k (0) = x(k)
u′k (i) ∈U, i = 0,1, · · · ,N−1
x′k (i) ∈ X, i = 0,1, · · · ,N−1
x′k (N) ∈ Ω

(28)

whereJ(k) =
N−1
∑

i=0
L(s′k (i) ,u′k (i))+F (s′k (N)),

F (s′k+1 (N))=‖s′k+1 (N)‖2
Q1

. This method reduces
computation when compared with the case of ter-
minal equality constraints, as demonstrated in [56].

The main equations for computer implementation
of the DMCRL for discrete time systems are given
in TABLE II and the associated pseudocode is given
in Algorithm 2.

C. Numerical examples

In order to evaluate the DMCRL method, the
following system will be considered:

x(k+1) =

[
1 1
0 1

]

x(k)+

[
0.5
1

]

(u(k)+d(k))

(29)
where d(k) = 0.01sin(10k) and ‖d(k)‖∞ ≤ α =
0.01.



TABLE II: Main equations of DMCRL, ISMPC and SMLPC for discrete time systems

Discrete time systems
DMCRL [56] ISMPC [59] SMLPC [97]

Sliding fuction s(k) =Cdx(k)







s(k) = Gx(k)+ ε (k)

ε (k+1) = ε (k)+G(x(k)

−Ax(k)−BuMPC(k))

ε (0) =−Gx(0)

s(k) =Cdx(k)

Equivalent control ueq(k) =







0, x(k) /∈ S∆

−(CB)−1 [CAx(k)
−(1−qT)s(k)
+εTsgn(s(k))] , x(k) ∈ S∆

\ \

Sliding mode
control uSMC(k) = ueq(k) uISM (t) =−Msgn(s(k)) \

Model predictive
control uD

MPC(k) = u∗k (0) uI
MPC(k) = Fx(k) \

Sliding mode
predictive control u(k) =







uD
MPC(k) , x(k) /∈ S∆2

uSMC(k) , x(k) ∈ S∆2

u(k) = uI
MPC(k)+uISM (k)

u(k) =−[1,0, . . . ,0]T

(
ΘT Θ+G

)−1ΘT [Ξx(k)

+OpE (k)−Sr (k+1)]

Cost function
J(k) =

N−1
∑

i=0

(

‖s′k (i)‖
2
Q+

∥
∥u′k (i)−ueq(i)

∥
∥2

R

)

+‖s′k+1 (N)‖2
Q1

J(k) =
N−1
∑

i=1

(
xT (k+ i)Qx(k+ i)

+uT (k+ i)Ru(k+ i)
)

+xT (k+N)Px(k+N)

Jp (k) =
N
∑
j=1

t j [s̃p (k+1)

− sr (k+ j)]2

+
M
∑

l=1
dl [u(k+ l −1)]2

Algorithm 2 DMCRL for discrete time systems

Step 1 Setk= 0 and give the initial statex(0);
Step 2 At each timek, design a sliding surface
s(k) =Cdx(k);
Step 3 Set the SMC input asuSMC(k) = ueq(k)
and the MPC input asuD

MPC(k) = u∗k (0);
Step 4 Implement the control law asu(k), subject
to (21) and (22);
Step 5 Setk= k+1 and go back to Step1.

The cost function is defined by (20) and the
corresponding positive definite weighting matrices
are chosen as

Q=

[
1 0
0 1

]

,R= 1 (30)

The initial values and sliding function are
given by: x(0) =

[
3 5

]T
, s(k) = Cdx(k) =

[
3 1

]T
x(k). The selection of sliding function

Cd renders the sliding dynamics stable where the
design ofCd is shown in Chapter 3 of [22]. The
performance of the DMCRL in (25) is compared
with a classical discrete time sliding mode control
where a reaching law based on (8) is used to design
the control

uSMC(k) =−(CdB)−1 [CdAx(k)− (1−qT)s(k)

+εTsgn(s(k))]−d(k)

whereT = 0.01, q= 10 andε = 0.5.
The simulation results for both methods can be

seen in Figs. 3-7.

TABLE III: ITAE for both DMCRL and SMC

ITAE x1(k) x2(k)
DMCRL 17.3700 19.6266

SMC 48.3290 24.0389

Note that the initial conditions, the sliding func-
tions and the disturbance signal are identical for
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Fig. 4: The response ofx2 (k) in the simulation test.

both DMCRL and SMC simulations. The dotted
line represents the DMCRL and the solid line
represents SMC. It can be seen from Fig. 3, Fig.
4 and Fig. 6 that the DMCRL ensures the system
state converges to the sliding surface faster than
SMC in the reaching phase. Fig. 7 shows that the
DMCRL can also improve system performance.
The Integral of Time and Absolute Error (ITAE) for
both methods is listed in Table III. It is clear that the
ITAE of the DMCRL is smaller than that obtained
for SMC. Meanwhile, the simulation results also
clearly show that DMCRL is superior to SMC in
the reaching phase.
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Fig. 5: The control inputu(k) in the simulation test.
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Fig. 6: The sliding functions(k) in the simulation
test.

D. Summary

Compared with the reaching law approach of
classical SMC as described in section II, a DM-
CRL can reduce chattering, accelerate the reach-
ing speed and improve the system performance.
Further, compared with the quasi-infinite horizon
nonlinear MPC method [81], the system does not
need to be linearized at the origin and the terminal
sliding mode horizon can be used in the final
attraction horizon of the origin. However, in DM-
CRL the switching functionS(x) and the terminal
horizonS∆ may be difficult to design off-line while
satisfying the stability and control constraints. The
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Fig. 7: The cost functionJ(k) in the simulation test.

performance in the presence of disturbances of a
DMCRL is not as robust as that of SMC. Note that
the control is optimal only in the reaching phase
but not in the sliding phase.

IV. MPC USED IN THE SLIDING PHASE

The robustness of SMC does not hold in the
reaching phase for traditional SMC. For this reason
ISMC has been proposed [82]–[85]. Since opti-
mization and constraints are not accommodated
in ISMC, integral sliding mode predictive con-
trol (ISMPC) has been recently proposed [58]–
[61], [86]–[92]. In ISMPC, the control signal i-
s composed of two parts: one is generated by
the ISMC approach to deal with matched dis-
turbances/uncertainties, the other is generated as
an MPC to achieve optimal control with con-
straints whilst dealing with unmatched disturb-
ances/uncertainties.

ISMPC is applied to a class of uncertain contin-
uous and discrete systems in [58]–[61] to enhance
the robustness, in which the closed-loop system in
the presence of matched disturbances behaves ex-
actly as the nominal system under nominal control,
and the unmatched disturbances are not amplified
by selecting an optimal projection matrix on the
integral sliding surface. In [86]–[88], a state ob-
server is used to accurately estimate the state and
the matched disturbance is suppressed by using
output information. The ISMPC is designed for

uncertain multivariable linear systems with time
delays present in the state and control in [89].
The self-triggered ISMPC method is investigated
for networked nonlinear continuous-time systems
subject to state and input constraints with additive
disturbances and uncertainties in [90]. A tractable
robust MPC scheme with adaptive SMC is designed
for a class of nonlinear systems in normal form
with two types of uncertainties in [91]. Although
the systems are distinct in [89]–[92], ISMC can be
used to reduce the influence of disturbances and
uncertainties and enhance the system robustness.

A. Integral sliding mode control

a. ISMC of continuous systems
Since the integral sliding mode control has no

reaching phase, it can effectively reduce system
chattering. Consider the following nonlinear con-
tinuous time system

ẋ(t) = g(x(t))+Bu(t)+h(t) , t ≥ 0 (31)

where x(t) ∈ Rn is the state,u(t) ∈ Rm is the
control andh(t) is a perturbation due to model
uncertainties or external disturbances. It should be
noted thath(t) can be decomposed into matched
disturbances and unmatched disturbances.

The form of the control law is proposed as
follows [82]:

u(t) = u0 (t)+u1 (t) (32)

where the nominal controlu0 (t) is responsible for
the performance of the nominal system andu1 (t)
is a discontinuous control that rejects the matched
disturbances by ensuring the existence of a sliding
motion.

The sliding manifold is defined by the set
{x|σ (x, t) = 0}. The following nonlinear integral
sliding surface is proposed [93]:

σ (x, t) = Dx(t)−Dx(t0)

−D
∫ t

t0
[g(x(τ))+Bu0 (τ)] dτ

(33)

where D ∈ Rm×n is a projection matrix and it is
assumed that the matrixDB is invertible. It can
be seen that the additional integral term provides
one more degree of freedom in design than the



linear sliding surface. In addition, the term−Dx(t0)
achieves the desirable property thatσ (x(t0) , t0) =
0, such that the reaching phase is eliminated.

Proposition 1: [84] For any matrixB ∈ Rn×m

satisfying rank B= m, the identity In = BB+ +
B⊥B⊥+ holds, whereB+ is understood as the left
inverse of B, that is B+ =

(
BTB

)−1
BT and the

columns ofB⊥ ∈ Rn×(n−m) span the null space of
BT .

This allows the disturbances to be separated into
matched and unmatched components:

h= hm+hu

hm
∆
= BB+h

hu
∆
= B⊥B⊥+h

(34)

where hm and hu are the components of the
matched and unmatched disturbances, respectively.
The equivalent control method [12] is adopted
to determine the motion on the sliding mani-
fold, so that the equivalent disturbancesheq

∆
=

[

I −B(DB)−1D
]

hu can be obtained.

Proposition 2: BT is a matrix which minimizes
the norm ofheq, i.e.

D∗ = BT = arg min
D∈Rm×n

∥
∥
∥

[

I −B(DB)−1D
]

hu

∥
∥
∥

2
(35)

From Proposition 2, an optimal projection matrix
D∗ can be obtained, so that the equivalent distur-
bancesheq are equal to the unmatched disturbances
hu, which means the effects of the unmatched
disturbances are not amplified.

b. ISMC of discrete-time systems
Discrete time ISMC [83], [85] has been proposed

to improve the control performance of sampled data
systems. Like the continuous-time ISMC [82], [93],
the closed-loop system can achieve the expected
control performance while avoiding the generation
of overly large control inputs.

Here the discrete-time system (17) is considered,
where d(k) is decomposed into matched and un-
matched disturbances to enhance the robustness, as
seen in [85].

The following form of the control law is pro-
posed:

u(k) = u0 (k)+u1 (k) (36)

whereu0 (k) is the ideal control which can stabilize
the nominal system andu1 (k) is an additional con-
trol input designed to achieve disturbance rejection.

The following discrete-time integral sliding sur-
face is defined [85]:

s(k) = Gx(k)−Gx(0)+σ (k)
σ (k) = σ (k−1)− (GBu0 (k−1)+GAx(k−1))

(37)
wheres(k) ∈ Rn, σ ∈ Rm, σ (0) = 0 andG∈ Rm×n

is to be designed. The termGx(0) is used to
eliminate the reaching phase. The ISMC forces the
system state to move along the sliding surface from
the initial time, which overcomes the shortcoming
of reduced robustness in the reaching phase exhib-
ited by standard SMC. However, optimization is not
considered when the system has control and state
constraints. The use of MPC in the sliding phase is
proposed to address these issues.

B. ISMPC method

In recent decades, the ISMC method has be-
come more mature and has been considered an
effective tool for dealing with disturbances. MPC
has been considered as an optimal control method
to effectively dealing with constraints. Therefore,
the ISMPC method cannot only effectively handle
the system external disturbances, but also solve an
optimization problem which includes system con-
straints. The ISMPC designed process is described
as follows.

Definition 2: [58] Consider the continuous sys-
tem with initial statex0 ∈ Rn. Given the positive
integer N, the quadratic cost functiong(x,u)

∆
=

xTQx+uTRu (Q ∈ Rn and R∈ Rm are symmetric
positive definite matrices), the quadratic terminal
penalty Vf (x)

∆
= xTΞx ( Ξ ∈ Rn is a symmetric

positive definite matrix) and the terminal setχ f , the
Finite-Horizon Optimal Control Problem (FHOCP)
problem with respect to ¯u[tk,tk+N−1|tk] can be formu-
lated as

J
(

x̄, ū[tk,tk+N−1|tk],N
)

=

tk+N∫

tk

g(x(τ) ,u(τ))dτ

+Vf (x(tk+N))

(38)



subject to the following constraints:
1) The state dynamics ˙x(t) = g(x(t))+Bu(t) with
disturbances is zero, for allt ∈ [tk, tk+N);
2) The state constraintx(t) ∈ χt−tk, for all t ∈
[tk, tk+N);
3) The control constraintu(t) ∈U ;
4) The terminal state constraintx(tk+N) ∈ χ f .

Definition 3: If there exists aKL-functionβ , K-
function γ and a constantc≥ 0 such that

|x(t,ξ ,u)| ≤ β (|ξ | , t)+ γ (‖u‖∞)+c (39)

holds for each controlu and eachξ ∈ Rn, the
system is said to be Input-to-State practically Stable
(ISpS) [95], [96].

Fig. 8: Block diagram of ISMPC strategy

a. ISMPC of continuous system[58]
For the continuous system (31), the state and

control variables are restricted to fulfill the follow-
ing constraints

x(t) ∈ X
u(t) ∈U

(40)

where X and U are compact sets containing the
origin as the interior point.

According to the current state feedback, an inte-
gral sliding surface based on the MPC solution is
designed:

s(x(t) , t)
∆
= D(x(t)−x(0))

−D

t∫

0

(
f (x(τ))+BuI

MPC(τ)
)

dτ
(41)

whereD ∈ Rm×n is a projection matrix andDB
is invertible [84].

According to Figure 8, the control is designed as
follows:

u(t) = uI
MPC(t)+uISM(t) (42)

whereuI
MPC(t) = κ (x(tk))

∆
= ūo

[tk,tk+N−1|tk]
(tk) , t ∈

[tk, tk+1) , where the optimal control sequence
ūo
[tk,tk+N−1|tk]

is obtained by solving the FHOCP.
The control input to achieve disturbance rejection

is designed as follows:

uISM(t)
∆
=−ρ

(DB)Ts(x(t) , t)
∣
∣
∣(DB)Ts(x(t) , t)

∣
∣
∣

(43)

whereρ is the control gain ands(x(t) , t) = 0 for
all time.

The main equations for computer implementation
of the ISMPC for continuous time systems are
given in TABLE I and the associated pseudocode
is given in Algorithm 3.

Algorithm 3 ISMPC for continuous time systems

Step 1 Sett = 0 and give the initial statex(0);
Step 2 At each timet, design a sliding surface
s(x(t) , t) based on the solution of MPCuI

MPC(t),
subject to (38);
Step 3 Set the SMC input asuISM(t);
Step 4 Implement the control law asu(t);
Step 5 Repeat the procedure 1) to 4), i.e.t = t+1
at next time instance.

b. ISMPC for discrete time systems[59]
For the discrete time system (17), a set of con-

straints is given as follows:

x(k) ∈ X
u(k) ∈U

(44)

The integral sliding surface is defined by






s(k) = Gx(k)+ ε (k)
ε (k+1) = ε (k)+G

(
x(k)−Ax(k)−BuI

MPC(k)
)

ε (0) =−Gx(0)
(45)

whereG∈ Rm×n is a projection matrix andGB is
invertible.



The control input of the system is:

u(k) = uI
MPC(k)+uISM(k) (46)

where uI
MPC(k) = Fx(k) and the discontinuous

control input is given byuISM(t) =−Msgn(s(k)).
Then, the optimization problem as follows:

min
u

J(k) = min
u

[
N−1
∑

i=1

(
xT (k+ i)Qx(k+ i)+

uT (k+ i)Ru(k+ i)
)
+xT (k+N)Px(k+N)

]

s.t x(k+1) = Ax(k)+Bu(k)
x(k) ∈ X
u(k) ∈U

(47)
The stability of the ISMPC method for con-

tinuous systems [58] has been proved by appli-
cation of Input-to-State practical Stability (ISpS).
For the discrete time case [59], the system is
Lyapunov stable, as long as the state trajectory
is maintained within the quasi-sliding mode band
∆ = {|s(ki)| ≤ ζ , ζ = 2δ‖CB‖∞, i ∈ I}

The main equations for computer implementation
of the ISMPC for discrete time systems are given in
TABLE II and the associated pseudocode is given
in Algorithm 4.

Algorithm 4 ISMPC for discrete time systems

Step 1 Setk= 0 and give the initial statex(0);
Step 2 At each timek, design a sliding surface
s(k) based on the solution of MPCuI

MPC(k),
subject to (47);
Step 3 Set the SMC input asuISM(k);
Step 4 Implement the control law asu(k);
Step 5 Repeat the procedure 1) to 4), i.e.k= k+1
at next time instance.

C. Numerical example

Consider the following discrete-time system

x(k+1) =

[
1 1
0 1

]

x(k)+

[
0.5
1

]

u(k)+d(k)

(48)

where d(k) =

[
1

−0.6

]

sin(10k) and the control

input constraint isu(k)∈U = {u|−5≤ u(k)≤ 5}.

For the ISMPC method, the disturbance is first
decomposed as

d(k) =

[
0.2 0.4
0.4 0.8

]

︸ ︷︷ ︸

BB+

d(k)+

[
0.8 −0.4
−0.4 0.2

]

︸ ︷︷ ︸

B⊥B⊥+

d(k)

The first component is matched and will be elim-
inated by the discontinuous controluISM(k), the
second is unmatched and will be compensated using
the continuous controluI

MPC(k).
The cost function is defined by (38) and the

corresponding positive definite weighting matrices
are chosen asQ = 1, R= 1, Ξ = 0.01. The hori-
zon length is N = 20. The system starts from
x(0) =

[
2 0

]
and the projection matrixG =

[
0.5 1

]
. The uI

MPC(k) = Fx(k) and F =YQ−1

is obtained using LMI techniques. Then, the fol-
lowing ISMPC control law is implemented:

u(k) = Fx(k)+0.1sgn(s(k)) (49)

The performance when a comparator model predic-
tive control is also shown whereumpc(k) = Fx(k).
The simulation results for ISMPC and MPC are
shown in Figs. 9-13.
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Fig. 9: The response ofx1 (k) in the simulation test.

TABLE IV: ITAE for both ISMPC and MPC

ITAE x1(k) x2(k)
ISMPC 7.3951 5.8292
MPC 13.3061 43.1737
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Fig. 11: The control inputu(k) in the simulation
test.

Figs. 9-13 show the system simulation results
under the same disturbance conditions for both
ISMPC and MPC respectively, where the dotted
line represents ISMPC, and the solid line represents
MPC. As can be seen from Fig. 9, Fig. 10 and
Fig. 11, ISMPC has stronger robustness properties
than MPC in dealing with external disturbances and
uncertainties. Fig. 12 shows the convergence of the
integral sliding variables(k), which means that the
statex(k) moves along the sliding surface from the
initial time. Fig. 13 shows that ISMPC can main-
tain better system performance while demonstrating
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Fig. 12: The sliding functions(k) in the simulation
test.
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Fig. 13: The cost functionJ(k) in the simulation
test.

stronger robustness.The ITAE for both methods
is listed in Table IV. It is clear that the ITAE of
ISMPC is generally smaller than that of MPC.In
summary, the simulation results and ITAE show
that ISMPC is superior to MPC.

D. Summary

The ISMPC method not only has the properties
of strong robustness and straightforward implemen-
tation of ISMC, but also has the advantages of
MPC in being able to accommodate constrained
optimization problems. In process control, ISMPC



can overcome the effects of matched disturbances
and uncertainties, effectively handle constraints and
reduce chattering. Further, it can achieve global
stability and optimization of the system. However,
although the ISMPC algorithm is straightforward,
the stability analysis is difficult [58], [59]. In ad-
dition, the use of discontinuous control can cause
system chattering.

V. SLIDING MODE LIKE PREDICTIVE
CONTROL

Besides the two mentioned SMPC, there is an-
other sliding mode like predictive control where
a predictive sliding mode approach and a corre-
sponding control stabilize the system state to zero
asymptotically. Because this approach has no obvi-
ous reaching phase and sliding phase, the authors
define it as sliding mode like predictive control
(SMLPC) in this review.

In [97]–[106], the SMLPC method is synthesized
by applying a predictive sliding surface and a
reference trajectory, combined with a state feedback
correction and rolling optimization method aligned
with the MPC strategy. This method not only re-
duces the chattering phenomenon, but also guaran-
tees the robust stability of the closed-loop system.
In [104]–[106], the SMLPC method is applied
to uncertain discrete switching systems, uncertain
networked control system with random time delay
and networked control system with time delay and
consecutive packet dropout, respectively. Research
on the SMLPC method is centred on discrete-
time system representations. The implementation
process is described in the following.

A. SMLPC method

Assume a sliding mode function of the following
form: s(k) =Cdx(k). Taking the nominal model of
the discrete system (17) as the prediction model,
the value of the sliding function at timek+ p in
the future is predicted as follows [97]:

s(k+ p) =CdApx(k)+
p

∑
j=1

CdA j−1Bu(k+ p− j)

(50)

The sliding mode prediction value of timek at
time (k− p) can be derived as follows:

s(k/k− p) =CdApx(k− p)+
p

∑
j=1

CdA j−1Bu(k− j)

(51)
Rewrite (51) in vector form:

Sp (k+1) = Ξ X (k)+ΘU (k) (52)

In practical applications, in order to correct the
sliding mode prediction values(k+ p), an error
is defined between the actual value of the sliding
variables(k) and the corresponding predicted value
s(k/k− p). The output value ˜sp (k+ p) of the slid-
ing mode variable can be obtained as follows [97]:

s̃p (k+ p) = s(k+ p)+ope(k)

=CdApx(k− p)

+
p

∑
j=1

CdA j−1Bu(k+ p− j)+ope(k)

(53)

wheree(k) = s(k)−s(k/k− p), op = diag
[
o1

p,

o2
p, . . . , om

p

]
ando j

p > 0 is a correction coef-
ficient. Writing (53) in vector form:

S̃p (k+1) = Sp (k+1)+OPE (k) (54)

The corresponding optimization cost function is
defined [97]:

Jp =
N

∑
j=1

t j [s̃p (k+1)−sr (k+ j)]2

+
M

∑
l=1

dl [u(k+ l −1)]2

=
∥
∥S̃p (k+1)−Sr (k+1)

∥
∥+‖U (k)‖2

G

(55)

wheresr (k+1) is the sliding mode reference tra-
jectory and t j and dl are weighting coefficients,
respectively.

The sliding mode reference trajectory can be
selected to be of many forms. One ideal case is that
sr (k+ p) = s0 (k+ p) = 0m×1, Sr (k+1) = 0Nm×1.
Since too rapid a convergence rate may cause
overshoot, the following sliding mode reference



trajectory can be selected to increase the design
freedom [98]:
{

sr (k+ p) = ρsr (k+ p−1)+(I −ρ)s0 (k+ p)
sr (k) = s(k)

(56)
Letting ∂Jp

∂U(k) = 0, the corresponding optimal
control law is obtained as follows:

U (k) =−
(
ΘTΘ+G

)−1ΘT [Ξx(k)+OpE (k)
−Sr (k+1)]

(57)
Only the current control input signal is imple-

mented by moving horizon optimization and the
remaining elements inU (k) are not implemented.
The first element ofU (k) is described as follows:

u(k) =−[1,0, . . . ,0]T
(
ΘTΘ+G

)−1ΘT [Ξx(k)
+OpE (k)−Sr (k+1)]

(58)
In the next round of optimization, (57) will serve

as the initial value. When the system state reaches
the sliding surface, the optimal control inputu(k)
is provided at each step to minimize chattering by
obtaining and analysing prediction errors.

The main equations for computer implementation
of the SMLPC for discrete time systems are given
in TABLE II and the associated pseudocode is given
in Algorithm 5.

Algorithm 5 SMLPC for discrete time systems

Step 1 Setk= 0 and give the initial statex(0);
Step 2 At each timek,design a sliding surface
s(k) =Cdx(k);
Step 3 At timek+ p, the value of the sliding
function s(k+ p) is predicted;
Step 4 Set the sliding mode reference trajectory
sr (k+ p);
Step 5 Implement the optimal control lawu(k),
subject to (55);
Step 6 Setk= k+1 and go back to Step 1.

B. Numerical example

To illustrate the performance of the proposed
SMLPC, an SMC based on the reaching law (8)

is introduced as a comparison. This is selected so
that the sliding surface is the same as the SMLPC.

Consider the following discrete time system:

x(k+1) =

[
1 1
0 1

]

x(k)+

[
0.5
1

]

u(k)+d(k)

(59)

where d(k) =

[
1

−0.6

]

sin(10k) and is decom-

posed into matched and unmatched components as
follows

d(k) =

[
0.2 0.4
0.4 0.8

]

︸ ︷︷ ︸

BB+

d(k)+

[
0.8 −0.4
−0.4 0.2

]

︸ ︷︷ ︸

B⊥B⊥+

d(k)

The initial states and sliding function are given
by: x(0) =

[
−3 1

]T
, s(k) =

[
2 3

]
x(k). The

prediction horizon and the control horizon are se-
lected asNp = 10, Nc = 4.

The cost function is defined by (55) and the
sliding mode reference trajectory is chosen as
sr (k+ p) = 0. Then, the SMLPC law (58) is imple-
mented and the correction coefficient is chosen as
Op = diag

(
1 0.8 0.7 0.6 0.5 0.4 0.3

0.2 0.1 0.05
)
.
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Fig. 14: The response ofx1 (k) in the simulation
test.

The simulation results of both the SMLPC and
an SMC are shown in Figs. 14-18. The same
disturbance is applied in both cases. The dotted
line represents SMLPC and the solid line represents
SMC. It can be seen that the SMLPC can effectively
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Fig. 16: The control inputu(k) in the simulation
test.

TABLE V: ITAE for both SMLPC and SMC

ITAE x1(k) x2(k)
SMLPC 6.7208 3.5600

SMC 106.3972 11.7510

reduce system chattering and has stronger robust-
ness than the SMC. Fig. 18 shows that SMLPC can
improve system performance.The ITAE for both
methods is listed in Table V. It is clear that the
ITAE of SMLPC is much smaller than that of SMC.
To sum up, the simulation results and ITAE show
that SMLPC is superior to SMC.
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Fig. 17: The sliding functions(k) in the simulation
test.
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Fig. 18: The cost functionJ(k) in the simulation
test.

C. Summary

The advantages of SMLPC include: 1) The slid-
ing mode prediction model is designed so that the
future information on the sliding variable can be
used. 2) The system uncertainties can be com-
pensated by feedback correction and rolling op-
timization. 3) A non-switching SMC is obtained
by solving a quadratic problem, so the chattering
phenomenon does not exist. However, the structure
of the multi-step sliding mode predictive control
solved by this method is complicated and will
typically increase computational load. Further, there



is no reaching phase and sliding phase. Most im-
portantly, the robustness will be reduced compared
with a more standard sliding mode control ap-
proach.

VI. COMPARISON BETWEEN DMCRL,
ISMPC AND SMLPC

Based on the review of DMCRL, ISMPC and
SMLPC, comparative robustness testing will now
be undertaken. The main equations for the com-
puter implementation are as shown in TABLE I
and TABLE II and the pseudo-codes for each
implementation are as given in Algorithms 1-5.
The following two comparative simulation tests are
presented to compare these methods.

Example 1.Consider the following discrete time
system

x(k+1) =

[
1 1
0 1

]

x(k)+

[
0.5
1

]

u(k)+d(k)

(60)

where d(k) =

[
1

−0.6

]

sin(10k) and is divided

into matched and unmatched parts. DMCRL and
SMLPC have the same sliding mode function
s(k) =

[
2 3

]
x(k). The initial system state is

x(0) =
[

3 5
]T

and the positive definite weight-
ing matrices are chosen asQ = 1, R = 1. The
simulation results of the DMCRL, ISMPC and
SMLPC are shown in Figs. 19-23,and their average
computational times areta

DMCRL= 2.1335,ta
ISMPC=

0.1285 andta
SMLPC= 11.2396, respectively. It can

be seen that the computational time of SMLPC is
greater than those of DMCRL and ISMPC, which
shows that SMLPC is more complex with regard to
implementation when compared with DMCRL and
ISMPC.

TABLE VI: ITAE for DMCRL, ISMPC and
SMLPC

ITAE x1(k) x2(k)
DMCRL 99.7369 260.2759
ISMPC 36.6220 51.0295
SMLPC 28.6914 20.5375

The system state responses are shown in Figs. 19
and. 20. It can be seen from Figs. 19 and 20 that
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Fig. 19: The response ofx1 (k) in the simulation
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Fig. 20: The response ofx2 (k) in the simulation
test.

all three control methods prescribe convergence of
the system states under the given disturbance con-
ditions. By contrast, when DMCRL and ISMPC are
applied, the system state will chatter after reaching
a neighbourhood of the origin. This phenomenon
does not exist when SMLPC is applied. The evo-
lution of the control input and sliding surface are
shown in Figs. 21 and 22, respectively. It can
be seen that DMCRL and ISMPC have similar
dynamic performance. Compared with SMLPC,
they are less able to reduce chattering in both the
sliding surface and control input. Fig. 23 shows
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test.

that the cost function value of SMLPC is higher
than that of DMCRL and ISMPC. The reason for
this result can be explained as follows: SMLPC
sacrifices part of the energy to reduce chattering,
which produced a higher cost function value and
less obvious chattering than the other two methods.
The ITAE for the three control methods is listed in
Table VI. It can be seen from Table VI that the
ITAE of SMLPC is smaller than those of DMCRL
and ISMPC, which shows that SMLPC is superior
to DMCRL and ISMPC.

Example 2. To further verify the methods anal-
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Fig. 23: The cost functionJ(k) in the simulation
test.

ysed in this paper, classical SMC, MPC and propor-
tion integral derivative (PID) control schemes are
employed to provide comparative simulation results
for the satellite system from [107]. The following
discrete form is derived based on the forward-Euler
discretization (FED) [108] method:

x(k+1) =







1 Ts 0 0
3∗Ts 1 0 2∗Ts

0 0 1 Ts
0 −2∗Ts −3∗Ts 1







x(k)+







0
Ts
0
0







u(k)+d(k)

(61)
with the disturbance taken asd(k) =
0.01(0.4sin(0.8πk)) and Ts = 0.1. The initial
conditions arex1 (0) =−0.99,x2 (0) = 0.5, x3 (0) =
0, x4 (0) = 0. The design of the sliding surface is
the same for SMC, DMCRL, SMLPC, which is
s(k) =

[
2.6667 1.0000 −5.5000 −2.1667

]

x(k). The projection matrix of ISMPC is
designed as G = BT , and the parameter
values for the PID controller are selected as
P=

[
13.0000 14.5000 −12.2500

−17.2500], D =
[
−1 −3 −1 −1

]
. The

simulation results are shown as Figs. 24-30.
Figs. 24-27 illustrate the state trajectories for

SMC, MPC, ISMPC, SMLPC, DMCRL and PID,
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Fig. 24: The response ofx1 (k) in the simulation
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Fig. 25: The response ofx2 (k) in the simulation
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TABLE VII: ITAE for the six methods

ITAE x1 (k) x2 (k) x3 (k) x4 (k)
SMC 36.3704 12.8559 8.2340 12.6626
MPC 23.8041 26.7204 46.6985 70.6670
PID 22.6911 13.5905 7.9869 12.6753
ISMPC 18.1763 11.5745 7.5902 6.1799
SMLPC 17.7352 10.3997 7.1108 3.5092
DMCRL 18.2969 11.7614 7.4969 11.1215

respectively. Under the same disturbance condi-
tions, it is clear that MPC has obvious overshoot
in contrast to the other methods. As can be seen
from the magnified area, ISMPC and SMLPC are
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Fig. 26: The response ofx3 (k) in the simulation
test.
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Fig. 27: The response ofx4 (k) in the simulation
test.

superior to DMCRL, SMC and PID in reducing
chattering. Figs. 28 and 29 depict the control inputs
and sliding function trajectories, respectively. It can
be seen from the magnified area that the trajectories
of the SMLPC and ISMPC are flatter, which shows
that SMLPC has stronger robustness compared with
the other methods. Fig. 30 shows plots of the
cost function. Overall, the control cost of PID and
SMLPC is higher than the other methods. The ITAE
for the six control methods is listed in TABLE VII.
It is clear that the ITAE of ISMPC, SMLPC and
DMCRL are generally smaller than that of SMC,
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Fig. 29: The sliding functions(k) in the simulation
test.

MPC, PID. In summary, the simulation results and
ITAE indicates that ISMPC, SMLPC and DMCRL
are superior to SMC, MPC, PID.

VII. APPLICATIONS

SMPC is powerful in dealing with external dis-
turbances and uncertainties and can improve the
system performance. It has thus been widely used
in various fields.

A. Application in process systems

SMPC is developed to alleviate delays and packet
loss induced by network overload, and guarantee
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Fig. 30: The cost functionJ(k) in the simulation
test.

robust stability and fulfillment of constraints in
[109]–[111]. Since SMPC can make the system
state reach the sliding surface in an optimal man-
ner, it is used to reduce the hysteresis effects of
the piezoelectric actuator to obtain an approximate
linear relationship between the input voltage and
the output displacement [112], [113].A sliding
mode multi-model predictive control strategy is
proposed for temperature regulation in a circulating
fluidized bed (CFB) boiler. The control seeks to
obtain better adaption to wide load variations [114]
and SMC is used to ameliorate issues with variation
in fuel quality and other unknown disturbances to
enhance the safety and durability of CFB boilers.
The application of the SMPC and a Volterra-MPC
is compared and analyzed in a benchmark CSTR
non-minimum phase reactor [115].Because the
switching frequency of the SMC is reduced in the
SMPC method, it is used to reduce the vibration
experienced by a cantilevered aluminum beam in
[116]. The SMPC is applied to improve greenhouse
inside air temperature control in [117].The SMPC
is also applied to heat exchangers and other tem-
perature systems [118], [119].

B. Application in electromechanical systems

The SMPC method has been applied for motion
control of robot manipulators [120]–[122]. Here
the SMC component is employed to compensate



unmodeled system dynamics and disturbances. The
SMPC approach is verified for a COMAU Smart3-
S2 industrial robot manipulator and 7-DOF pro-
totype ABB YuMi robot arm [120], [121]. It has
also been applied to driving, obstacle avoidance,
steering and idling of autonomous vehicles [123]–
[126]. SMPC has been used in flight control to
eliminate the multi-frequency helicopter vibrations
[127]–[129], and it is also applied to motor drives
[130], [131]. Recently, SMPC strategies have been
employed in space tethered satellite systems [132].

C. Application in energy systems

In this application domain, the SMPC method
has been used to improve the utilization of solar
energy by reducing the impact of disturbances
caused by changes of solar irradiation and solar
collector inlet temperature [133], [134]. It is also
applied to frequency regulation in power grids
[135], [136]. The SMPC method is applied in
energy management system of microgrids, in which
grid-connected and islanded operation modes are
controlled by SMC, and MPC generates power
reference for the energy storage systems [137].The
method has also been used to reduce the effect
of unexpected disturbances such as the terminal
DC-link voltage step and the load variation [138],
[139], andit is also employed for synchronous DC-
DC buck converter to further reduce the chattering
phenomenon, steady-state error, overshoot and un-
dershoot [140].

D. Application in traffic systems

The SMPC is applied to solve the mainstream
inflow, the traffic demands on the on-ramps and
the flows exiting the off-ramps problems in freeway
traffic systems. Here, via the SMC component, the
approach provides valuable robustness to uncertain-
ties and provides fast response while MPC provides
optimality [141], [142].

In general, for the DMCRL and SMLPC meth-
ods, due to the need for accurate system model
information and the complexity of the calculations,
there are few industrial applications. However, the
application of the ISMPC method has achieved
great success, especially in process control systems.

It is considered an effective method to improve
performance and enhance robustness. Wider appli-
cation will promote new developments in the future.
A summary of the application of the three methods
is shown in the following table:

TABLE VIII: The application of the three methods

Control methods DMCRL ISMPC SMLPC

Process systems [112], [113], [116]
[109]–[111], [114]

\
[115], [117]–[119]

Electromechanical
systems \ [120]–[132] \

Energy systems \ [133]–[139] [140]
Traffic systems \ [141], [142] \

VIII. SOME CHALLENGING PROBLEMS
AND FUTURE DIRECTIONS

Some methods, contributions and applications
have been reviewed in the area of SMPC. However,
there are still many challenging issues to be ad-
dressed. Below, several issues and further directions
are discussed.

I. It is clear that the SMPC strategy continues
to attract increasing attention. Most of the existing
SMPC methods are used under the condition that
the system states are available. However, system
states may not all be available in practice, This
has motivated the study of output feedback con-
trol. An observer may be used when the system
state is unmeasurable, but this greatly increases the
complexity of the system. It is desirable to develop
an SMPC strategy that uses only measured output
information.

II. SMPC is designed based on a mathematical
model of the system assuming known information.
However a mathematical model may be difficult to
establish in many practical applications. Research
which considers how to relax the dependence of an
SMPC on the model used for design is valuable
[143], [144].

III. Chattering may be difficult to eliminate be-
cause of the discontinuous nature of SMC, partic-
ularly in sampled situations. Though the chatter-
ing can be reduced by SMPC, it still exists. The
larger the switching range of the control variables,
the more obvious the chattering. In high-precision
fields such as aerospace engineering and satellite



systems, chattering may not be tolerable. More ef-
fort is required to find a way to eliminate chattering
in the design of SMPC.

IV. The design of SMPC based on fuzzy models
is a challenging problem. It is well known that T-S
fuzzy systems can be used to approximate com-
plex systems, and the key feature is to decompose
nonlinear systems into several linear subsystems.
Although this approach can greatly simplify mod-
elling of the system, uncertainties inevitably exist.
Considering the strong robustness of SMPC, the
combination of fuzzy methods and SMPC is a novel
direction [145]–[147].

V. SMPC applied in large-scale distributed sys-
tems is a worthy research topic. Currently, informa-
tion exchange is cheaper and faster with the rapid
development of network technology, which facili-
tates the control of large-scale systems. Distributed
control has become a hot topic in the control of
large-scale systems. In distributed systems, there
exist problems such as computational complexity,
uncertainties and coupling. SMPC is a good choice
to address such problems because of its strong
robustness and ability to incorporate optimization.
As a result, applying SMPC to distributed systems
can be a focus of future research.

VI. The combination of SMC with economic
model predictive control (EMPC) is a further in-
teresting topic for future research. In recent years,
the research on EMPC has become quite mature.
On the one hand, the requirements are becoming
more and more stringent for economic performance
indicators in industrial production processes. On the
other hand, strong robust control is required due to
the uncertainties and variabilities of the production
environment. The addition of SMC may enhance
EMPC.

VII. The design of event-triggered SMPC is
also worthy of future study. Since event-triggered
control is an effective method to reduce compu-
tational cost, its combination with SMPC has the
potential to enhance robustness while at the same
time reducing computational cost[109], [110].

IX. CONCLUSIONS

In this paper, the past and recent research re-
sults concerning SMPC have been reviewed. It has
been seen that MPC can be used in the reaching
phase and/or the sliding phase when designing an
SMC. The advantages and disadvantages have been
summarized and demonstrated using examples. The
SMPC strategy not only overcomes the influence of
matched disturbances and uncertainties to increase
system robustness, but also effectively reduces sys-
tem chattering to realize global optimization of the
closed-system. It should be pointed out that SMPC
has been studied for many years and seen many
applications. However, it is necessary to conduct
further study to eliminate the gap between theory
and practical application. In the future, this type
of control can be further developed for classes of
systems including large-scale systems which may
be distributed.
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