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Abstract— This paper reviews the development and design an optimal control with strong robustness
application of sliding mode predictive control (SMPC)  which can accommodate constraints is of great

in a tutorial manner. Two core design paradigms are ; ; i ~ati
; Mo o importance in the theory and application of process
revealed in the combination of sliding mode control P y PP P

(SMC) and model predictive control (MPC). In the control. .
first case, MPC is used in the reaching phase to 10 address issues of robustness, many control

ensure a sliding mode is attained. In the second case, strategies have been developed over the past few
MPC is used to solve the existence problem and decades, such as robust control [6]-[9], adaptive
define the required performance in the sliding mode. .~y irq [10]-[12] and sliding mode control (SMC)

The two approaches are discussed in detail from the .
perspectives of both theory and application. Finally, [13], [14]. The robust control approach uses high

some future challenges and opportunities in the area Control gains in general [15], [16] and an adaptive
of SMPC are summarized. _ control requires a condition on the persistency of
~ Index Terms—sliding mode control, model predic-  excitation and high modelling accuracy [17], which
tive control, slld_lng mode pre_dlctlve control, optimal may limit the application scope particularly in the
control, control input constraint .
domain of process control. SMC has been exten-
. INTRODUCTION sively studied as a classic robust control [18], [19].

. . The main i f SMC i ign a discontin
The process industry has significant and increas: e main idea of SMC is to design a discontinuous

ina requirements with reqard t ntrol perfor control that drives the system state to a sliding sur-
g requirements egard 1o control Perior-, .o and then ensure the states will approach zero
mance [1]-[5]. From the perspective of control

design, optimisation and robustness are key requira-lor?g the chosen inQing .surfacg.. An appropriately
ments’ In terms of robustness of the controller%FaSIQJned SMC exhibits .|n_sen3|t|V|ty to matched
o . . isturbances and uncertainties when the state moves
any industrial process may be subject to externaﬂn the sliding surface. These strong robustness
disturbances and uncertainties, which may causFe i

. roperties, the ability to prescribe dynamic per-
mismatch between the model used for controlle ormance and the simple design philosophy make

de5|gn and the plant. T_he degrao!atlon of producéMC a strong candidate to achieve robust control
quality as well as equipment failure must also

b dated. Duri ton. t fyran many industrial applications.The design of the
cinigcrf\(t)rgtrirc])% %és:surim?i%u?g%%?g’n degpsr:ah::/%ﬁding surface can generally be divided into two
a limited range of operation, so the control input&pes: (1) Linear sliding surface [20]-[22], which

tem output and states will con ntlv b is a linear function of the system stadéx) = Cx;
Sysier OulpLt ang states consequently be CortZ) Nonlinear sliding surfaces, which is nonlinear

strained to lie within certain ranges. The ability tofunction of system stats(x) — f (x). Within the
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robustness. Effectively the sliding mode reachingerformance and the use of a usually discontinuous
phase is eliminated. To improve performance andontrol to render the desired system performance
reducing chattering, SMC has been combined witlattractive. This control is usually determined us-
other approaches, to develop adaptive SMC [30]ing an appropriate reaching law, where numerous
[34], neural network SMC [35]-[39], fuzzy SMC reaching laws are available. The time before the
[40]-[45]. However, these control strategies haveselected sliding surface is reached is termed the
not considered the constraints and optimization. reaching phase. In the reaching phase, a discon-

MPC is well established in the process controtinuous reaching law will ensure the system states
community due to its capability to deliver an opti-reach the sliding surface in finite time. Once the
mal control in the presence of constraints [46]-[50]sliding surface is reached, the system is said to be
Though robust MPC can solve the constrained optin a sliding mode and enters the sliding phase. In
mization online by using receding horizon methodghe sliding phase, the states will converge to an
and simultaneously gives consideration to robustequilibrium point along the sliding surface in the
ness, there is still a need to enhance the abilitpase of a regulation problem. Similarly, if a tracking
of MPC to deal with external disturbances andproblem is considered, the corresponding tracking
uncertainties. It should be noted that the existingrror state will converge to zero. Classical SMC
MPC approaches have not considered the case défines the reaching mode (RM), sliding mode
unmatched disturbances and/or uncertainty expli¢SM) and steady-state mode (SS) to reflect this
itly in the control design. To achieve this goal,behaviour. Fig. 1 and Fig. 2 show the phase dia-
a new control has been derived by combininggrams of a continuous time and discrete time SMC
SMC and MPC. This approach is named slidingespectively for a second order system. From Fig. 1,
mode predictive control (SMPC) in the literature.for the continuous time system, the trajectory of the
SMPC seeks to preserve the advantages of MPS§lates move toward the sliding surface and arrive
and SMC, such as strong robustness, straightfoat the surface in finite time. They then converge
ward implementation, the ability to consider bothto the equilibrium point along the sliding surface.
matched and unmatched disturbances and/or uktowever, from Fig. 2, for the discrete time system,
certainty, optimization and the capacity to deakthe states reach the sliding surface but do not stay
explicitly with constraints. Significant work has on it. They are seen to cross the sliding surface and
been done in the area of SMPC [51]-[61]. Theremove in a zigzag manner.
are two main ap_proache_s in the deyelopment of There are several types of reaching laws re-
SMPC: (1) MPC is used in the reaching phase 1Q,,rteq in the literature to drive the system states
m.ake th.e system states reach the sliding surfa({s the sliding surface [62]-[66], [69]-[72]. For
with optimal performance [54]-{57]; (Il) MPC is ;qoniinyous SMC, a classical reaching condition
used in the sliding phase to ensure 'the systera given ass$ < 0. Improved forms of the
has optimal perfprmance along the slldlng Surfac?eaching law are proposed in [62]-[66]. For dis-
and robustness is enhanced [58]—[61]._ This sUr'Ve¥ ate time SMC, an early reaching condition is
g)&l;sgs og the methods a_nd devgloymg tr_ends %fiven as|s (k+1)| < |s (k)| [67], [68], which
oD fanf ?resents Sor;;l_ﬁ |ntertehSt|gg| open |33Utes |§SeqU|Valent tO[S (k+ 1) —5 (k)] S|gn(3 (k)) <0
topics for future researcfthe methodology used t0 gnq [ (k1 1) + 5 (k)] sign(s (k) > 0. The reach-
mfc_>rm f[he initial I_|terature sear_ch underp_lnnlng thlsing condition is fundamentally different for contin-
article is shown in TABLE IX in Appendix B. uous and discrete systems. In the continuous time
Il SMC : BRIEE TUTORIAL case, the reaching Iav_v ensures the §ystem stgte

switches across the sliding surface with theoreti-
BACKGROUND S
cally infinite frequency. The state of the system

The design of classical SMC includes the selecis thereby constrained to the sliding surface. A

tion of a sliding surface to define the desired systersimilar reaching law is not practical in the case of



a discrete time system as the sampled nature & Design of continuous time SMC

the system may result in the system state crossing Tpe following nominal linear continuous time

and recrossing the sliding surface with increasingystem is considered for ease of exposition:
amplitude. Reaching laws for discrete time SMC

are described in [69] and a reaching law-based
quasi-SMC method has been proposed to improve

X(t) = A(t) +Bu(t) (1)

both the steady-state accuracy and convergence ré%

Qerex(t) € R" is the state vectoni(t) € R™ is
the control input andA € R™" and B € R™™M are

[70]-[72]. .
system matrices.
A commonly used switching function is given
X 4 by:
1 x(1
. (1) = Cox(1) @
RM
p whereC. € R™" is a constant design matrix.
A ity Surbios Popular reaching laws are listed in the following
[62], [63]:
SM (1) The constant rate reaching law
— - §(t) = —esgn(s(t)), €>0 (3)
SM :
(2) The constant plus proportional rate reaching law
S(t) = —esgn(s(t)) —gs(t), €>0,9g>0 (4)
" (3) The power rate reaching law

Fig. 1: Phase diagram of continuous SMC.
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Fig. 2: Phase diagram of a discrete SMC.
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$(t) = —q(s(t))%sgn(s(t)), >0, 0 <a <1
(5)

B. Design of discrete time SMC

The following equivalent discrete-time nominal
linear system is considered:

x(k+1) = Fx (k) + Gu(k) 6)

wherex(k) € R" is the state vectoni(k) € R™ is
the control vector an@ € R™" andG € R™™ are
the system matrices.

As for the continuous case, the sliding surface is
frequently designed as

s(k) = Cyx(k) (7)

whereCy € R™" is a constant design matrix.
Corresponding popular reaching laws are shown
as follows [13], [69]:
(1) The practical reaching law

S(k+1) —s(k) = —qTs(k) — eTsgn(s(k)),
1-qT>0
(8)



where T, € > 0 and g > 0 represent sampling has been proposed in which MPC is used as the
period, reaching rate and approximate rate indexeaching law when the system state is outside a
respectively. selected terminal horizon and SMC with off-line

(2) The reaching law is obtained by the one-stejlesign is used when the system state is inside the
stabilization method [13]. For the system (6), thechosen terminal horizon [54]-[57], [79], [80]. The
control inputu(k) can be designed by solving the continuous time case will first be considered.
following sliding mode function

s(k+1) =Cq (Fx(k) +Gu(k)) =0 (9)

In other words, the control input(k) can be chosen A. Dual-mode control type reaching law for con-
as follows: tinuous systems

-1
u(k) = ~(GG) "CaFx(k) (10) The following nonlinear continuous time system

when the matrixCyG is invertible. It should be is considered:

noted that the choice of control in (10) is also

referred to as thequivalent controin the domain

of sliding mode control. This is the control effort X(t) = f(x(t),u(t))
which will ensure a known system attains a sliding x(0) =X (11)
mode; the equivalent control is usually denoteg x(t) e X, u(t)euU

and is frequently used in the analysis of sliding

m(l))djec?g tri?taft)i/;te:inrie[lgla.la and other factor:sWherex (t) €X CRMis the state vecton(t) €U C
' y R™ is the control vector and : R" x R™ — R"

as well as the possible discontinuous nature of

the control, high frequency chattering for smc'> & mapping withf (0,0) =0 . Tp optimize the
. : 2 . . . ontrol sequence at each sampling time by MPC,
is sometimes inevitable in practice. Chattering no

only affects the accuracy of the control and energ he nonlinear system (11) is discretized as follows

consumption, but also may excite high-frequenc 55]:
unmodelled dynamics in the system, which will
have corresponding adverse effects on system per- x(k+1) = f (x(K),u(k))
formance. Many studies have considered the chat- » X

tering problem [73]—[78]. Further, the optimal per- n
formance in the presence of constraints is not +/ (% (T;%(K) ,kn) ,u(k))dT
considered in many existing methods. These issues 0 (12)
have motivated the integration of MPC into the
sliding mode control design paradigm. [].

. In the foI!owing section, the_ Iinclusion of.MF.’C wherex, (T;x(K) ki) is the state trajectory of sys-
in the solution of the reachability problem is first;q (11) with initial state(x (k) ,kn) under control

considered. actionu(t) = u(k), T € [kn, (k+1)n], andt = kn.
I1I. MPC SOLUTIONS TO THE For the discretized system (12), the following
REACHABILITY PROBLEM dual-mode control reaching law (DMCRL) is de-

An attractive feature of MPC is its straightfor- Signed. Whether the SMC or MPC is adopted
ward implementation to solve an online optimisa-dePends on whether the system state is inside a
tion problem. This method has been incorporategelected terminal set. To describe the DMCRL it is
within the reaching law to enhance the performanc#us first necessary to define appropriate sets.
in the reaching phase. A dual-mode control method Definition 1: [55] The following sets are de-



fined When the control horizon is finite [55], the
. DMCRL can be defined as follows:
S = {xjx(k) € X, |s (X)] < Api, Usme(¥) €U,

o _ [ u(0), x(k) € X /S
Bu=aT>0h uik = { uswc(x(K),  x(k) € $2
=g (16)
et ’ To prove that (16) can stabilize the system (12),
. the following two lemmas are introduced. Lemma 1
20 .
§7 = {xIx(k) € X, |8 (X)| < Agi, Usme(X) €U, shows that the optimal predictive contraffpc (K)
Dy > D} ensures the system reaches the terminal horizon
o m . in finite time. Lemma 2 shows that the control
- USA ' usmc(K) renders the system stable in the terminal
=1 . horizon.
_ v i P ) Lemma 1: [55] 1)The optimization problem has
$=9 /SA 7 ,L,Jlsﬂ a solution at the initial time;

(13)  2) For ¥x(k) € S*2, there existsy > 0, such that
The control seU is a convex compact subset of ||Usmc(X(k)) _ Ueq(X(k))H; <ylIs(x(k))| é;
spaceR™, the state seX is a convex closed subset 3) Designg andg; (i = 1,2, ---,m) so that 2 > 1;
of spaceR", and Ghx1 €U, Onx1 € X. SC X and  4) Design positive definite symmetric matrices
x=0€S s(Onx1) = Omx1. Q,R R; anda, such thatQ+ yR+a Ria — Ry is

The DMCRL consists of two parts; one definesnegative definite or semi-negative definite;

an optimal MPC sequence, denotg}h (k), which  5) The system state(k) ¢ $2 , then I (k+1) —
is to be used in the reaching phase, and the othey; (k) < —I (sc(i),uk(i)), and the system state can
uses an SMC in the sliding phase. Before the DMenter the terminal horizon in finite time.
CRL is designed, the optimal MPC sequence can Remark 1:At time k, the optimal predictive
be obtained by solving the following optimization control sequences (k) is obtained, the first ele-
problem [55]: mentu (k) = u (0) is implemented, and the corre-
sponding optimal cost is denoted &$(k). At the

M (x) - muanN (su) (14) subsequent tim&+ 1, the corresponding optimal
) ) ) predictive control sequence and optimal cost are
X (i +1) = fa (4 (i), Uk (1)) denoted asuy (k+1) and J; (k4 1) respectively.
Xc(0) = x(k) In J (k+1) — I (K) < —1 (i), uc (i), se (i) and
st{ w()eU, i=01--,N-1 (15 ug (i) denote the actual value of the switching
(i) eX, i=01-- ,N-1 function and control law at timék respectively.
x(N)e s

The system cos;; (+) is decreasing whilex(k) €
N—1 X/SAZ, so the system state can reach the terminal

where Jy (s,u) = _zol (s«(i),uc(i))+F (s«(N)), horizon in finite time.

) ) = ) ) Lemma 2: [55] When the system statek;) €
s (), u (i) = 1/2(||Sk(')||<23+HUk(')Hé)' g2 at time k;, the off-line designedJSMbce((x(L))
F(s«(N)) = 1/2Hsk(N)\|2R1. Q, R Ry € R™™ s adopted to ensure(k; +i) € $%2,i > 1, and the
are positive definite symmetric matrices. BySMC system after timé&; is asymptotically stable.
solving the nonlinear programming problem Theorem 1: [55] Based on Lemma 1 and
(14), the optimal predictive control sequencedemma 2, (16) can guarantee asymptotic stability
ui (k) = {ug (0),ug (1), ,up (N—1)} are obtai- of the closed-loop system under the conditions of
ned under the constraints (15). The first elemeritemma 1.
of uf (k) defines the current control law, i.e. This strategy can also be applied in the case of
u(k) = ug (0). a cost function of infinite horizon as described in



[54].

The main equations for computer implementation
of the DMCRL for continuous time systems are
given in TABLE | and the associated pseudocode

is given below:

Algorithm 1 DMCRL for continuous time systems

Step 1 Select the sampling interva) and then
t =kn;

Step 2 Sek =0 and give the initial state(0);
Step 3 At each timé, design a sliding surface
s(K) = Cox (K);

Step 4 Set the SMC input aguc(K) = Ueq(K)
and the MPC input asipc (k) = U (0);

Step 5 Implement the control law agk) subject
to (14) and (15);

Step 6 Sek=k+ 1 and go back to Step2.

B. A dual-mode control type reaching law for dis-
crete time systems

The corresponding predictive values are:

X (K) = {Xk(1),Xk(2),-- ,Xk(N)}
Su(k) = {(1), $k(2), - Sk(N)}  (19)
Sk(i)=s(Xk(i)), i=212---,m
The cost function is defined as follows:
N-1
J(k) = Z) L (Sk(i),uk(i)) (20)

whereL (Sk (i), Uk (i) = [k () [+ Uk (i) —
ueq(i)||§, Q<cR™andRe R™ are symmetric posi-
tive definite matrices with appropriate dimensions.
Then, the optimization problem becomes [56]:

m;Q)J(k) (21)
Xk (i+1) = AX (I) +Bu (I)
X1c(0) = x(K)
st¢ Uy(i)eU, i=01---,N-1 (22)
Xk eX, i=01---,N—-1
X’k(N)GSA

At time k, the optimal predictive control se-

The following discrete-time systems are considguencedJ;; (k) = {uj (0),u; (1),...,uf (N—1)} a-

ered:

X(k+ 1) = Ax(k) +B(u(k) +d (k))
x(0) =Xo
x(k) € X, u(k)eU

17

wherex (k) € X € R" is the state vecton (k) e U €
R™ is the control vector and € R™", B e R™M

are the state transition and input distribution matri- g_ {Xs(x) = 0}

ces.The pairA,B) is assumed to be controllable.
The vectord (k) € R™ is an unknown disturbance
which is bounded by & ||d(K)|, <p .

For discrete systems of the form (17), the DM-
CRL design idea follows as for the continuous case

[56]. First, the optimal predictive contraly . (k)

re obtained under constraints (22) by solving the
nonlinear programming problem (21).

The sliding mode begins when the system trajec-
tory converges to the terminal horiz&A. The slid-
ing condition iss(x) =[sy (X) ,52(X),---,sm(X)]" =
0. SetS and the terminal sliding mode s& are
defined as follows:

S = {xe 9x(k) € X} (23)

From the sliding conditiors(x) = 0, the follow-
ing equivalent control can be designed [56]:
0 x(k) ¢ S
Ueq(k) — { ) ( ) ¢

Ueq(K), x(k) € S* (24)

is obtained by solving an optimization problem to Lt Ugpc (k) = U (0), then the DMCRL is de-
ensure the state reaches the quasi-sliding band #ded as follows[56]:

soon as possible. Then, the sliding mode control W o (K) x(K) ¢ S

usmc(K) is obtained by prescribing the sliding u(k):{ ugl,\jg(k), x(k) € 2 (25)
function to maintain the state within the band. The _ ) o

MPC sequences are given as follows: Remark 2:The optimal predictive control

udpc (k) optimizes the cost function through
predictive variables, and it realizes the optimal
reaching performance. After reaching the sliding

Un (K) = {U(0), Uk (1), U (N=1)}

(i) =u (k+i), i=0,1,--N—1

U (18)



TABLE I: Main equations of DMCRL and ISMPC for continuous gnsystems

Continuous time systems
DMCRL [55] ISMPC [58]

s(x(t),t) =D (x(t) —x(0))
Sliding fuction s(K) = Cax(K) .
=D [ (f (x(1)) +Buvec(7))dT

Equivalent control Ueq(k) = —(CB) ~*[CAX(K) \
—(1—qT)s(k) +&eTsgn(s(k))] :
Sliding mode control usmc(K) = Ugq(K) Uism (t) = —p ‘EB:; 2&2;3‘
MOdiLﬁ{recﬂiCtive umpc (K) = ug (0) Uipe (£) = K (X(t))
=W ton ot ()5 € [totic)
przg?cig\?erzg?w?rol u(k) = { EE&?(L)}T(?(E) é/ssa‘;z u(t) = Uypc (t) + tism (t)

J (ZLT[tk~tk\N 1\tk]’N> -
W(su z 1/2(Is 0B+ wOIR) |
+1/zusk<N>HR1 [ (T (@) Qx(t) +T (1) Ru(t))dr

Cost function

+x" (t) 2x(t)

surface, the quasi-sliding mode conttgjyic(k) is Xic(i+1) = AX (i) + BUk (i)
adopted. X (0) = x(k) -
The system is closed-loop stable if and only St§ Uk()eU, i=01.-.N-1  (28)
if the sliding mode reaches the terminal hori- /k(')GX, =01 ,N-1
zon $. It can be seen fromd* (k+1) — J* (k) < Xk(N) € Q
—L(Sk(i),Uux(i)) that the cost function is de- N-1

creasing. FromL (s (i), Uy (i)) = 0« ¢ (k) =0, Wwhered(k) = 2 L (Sk (i), Uk (1)+F (Sk(N)),

U (k) = usmc k), it follows that lim s'(k+M) =0, F(§k+1(N))st’k+1( )|, This method reduces
I|m U (k+M) = ugmc(k+ M). computation when compared with the case of ter-
The method of terminal equality constraintsminal equality constraints, as demonstrated in [56].
makes the prediction horizon and control horizon The main equations for computer implementation
longer, but will increase computation for the case?f the DMCRL for discrete time systems are given
of multiple input multiple output systems. There-in TABLE Il and the associated pseudocode is given
fore, the DMCRL may be designed with terminalin Algorithm 2.
inequality constraints and the terminal horiz€1 C. Numerical examples

is defined as follows: In order to evaluate the DMCRL method, the

Q={x[xeX, [s(x)]| <A, u(x) €U, A>0} following system will be considered:
(26) VUPTRNN I S 0.5 Q)+ d (K
The DMCRL with terminal inequality constraints x(k+1)= 0 1 x (k) + 1 (u(k) +d(k))
is described as follows [56]: (29)

. where d (k) = 0.01sin(10k) and ||d(K)||, < a =
J(k 27 ®
JninJ (k) @D oot



TABLE II: Main equations of DMCRL, ISMPC and SMLPC for disteetime systems

Discrete time systems

DMCRL [56] ISMPC [59] SMLPC [97]

s(k) = Gx(k) + € (k)

o . e(k+1)=¢e(k)+G(x(k)
Sliding fuction s(k) = Cyx(k) Ax(i)—B ©) s(k) = Cygx(Kk)
— AX(K) — Buvpc

£(0) = —Gx(0)
0 x(k) ¢ S
-1
Equivalent control | Ueq(k) = :((?i)qT[)(;ﬁ?)(k) \ \
o +eTsgn(s(k))], x(k) €S
SIIc(j:lcr)]r%]trrgI(_)dfe Usmc (K) = Ueq(K) Uism (t) = —Msgn(s(k)) \
MOdiLﬁ{re(ﬂlcwe Unpc (K) = Ug (0) Ubpe (K) = Fx(K) \

5 @ u(k) =—[1,0,...,0"
idi umpc (k). x(k) ¢ §%

prgg?ég\?enégi?rol u(k) = { uz;Z(k) (k) € & u(k) = Uypc (K) +ism (K) (@"e+6) ‘e’ [Zx(K)

| +OE (K-S (k+1)

N-1 ) ) (k)= 3 tj[E(k+1)

- J(k) = T (k Kk p 2 isp

J(k):,:‘g:(\\slk(i)Hé-FHU/k(i)—UeqU)Hé) (k) igl (X (k+1) Qx(k+1) j=1

. 12
Cost function U (ki) Ru(k+1)) = s (k+])]

+[IS ke (N[,

4T (K+ N)Px(k+N) Ly P
S du(k+1-1)]
1=1

Algorithm 2 DMCRL for discrete time systems ¢, renders the sliding dynamics stable where the
Step 1 Sek =0 and give the initial state(0); ~ design ofCqy is shown in Chapter 3 of [22]. The
Step 2 At each timé, design a sliding surface performance of the DMCRL in (25) is compared
s(K) = Cyx(K); with a classical discrete time sliding mode control
Step 3 Set the SMC input agwic (k) = Ueq(K) where a reaching law based on (8) is used to design
and the MPC input as{ ¢ (k) = ug (0); the control
) mp et the control aw agk), sublect  uguc() = ~(CoB)™* Cux(k) — (1-aT)s(

Step 5 Sek=k+1 and go back to Stepl. +eTsgn(s(k))] —d (k)
whereT =0.01, g= 10 ande = 0.5.

The simulation results for both methods can be
The cost function is defined by (20) and theS€€n in Figs. 3-7.

corresponding positive definite weighting matrices TABLE III ITAE for both DMCRL and SMC
are chosen as

10 ITAE x1(K) x2(K)
Q= [ 0 1 } ,R=1 (30) BMCRL—17.3700 19,6266
SMC 483290 24.0389

The initial values andeIiding function are
given by: x(0) = [ 3 5], s(k) = Cax(k) = Note that the initial conditions, the sliding func-
(31 ]Tx(k). The selection of sliding function tions and the disturbance signal are identical for
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Fig. 3: The response of; (k) in the simulation test. Fig. 5: The control inputi(k) in the simulation test.

Sliding function
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Time

. ] ) . Fig. 6: The sliding functiors(k) in the simulation
Fig. 4: The response of (k) in the simulation test. taqt

both DMCRL and SMC simulations. The dottedD: Summary

line represents the DMCRL and the solid line Compared with the reaching law approach of
represents SMC. It can be seen from Fig. 3, Figclassical SMC as described in section Il, a DM-
4 and Fig. 6 that the DMCRL ensures the systenCRL can reduce chattering, accelerate the reach-
state converges to the sliding surface faster thaing speed and improve the system performance.
SMC in the reaching phase. Fig. 7 shows that th€urther, compared with the quasi-infinite horizon
DMCRL can also improve system performancenonlinear MPC method [81], the system does not
The Integral of Time and Absolute Error (ITAE) for need to be linearized at the origin and the terminal
both methods is listed in Table I11. It is clear that thesliding mode horizon can be used in the final
ITAE of the DMCRL is smaller than that obtained attraction horizon of the origin. However, in DM-
for SMC. Meanwhile, the simulation results alsoCRL the switching functior5(x) and the terminal
clearly show that DMCRL is superior to SMC in horizonS* may be difficult to design off-line while
the reaching phase. satisfying the stability and control constraints. The



. uncertain multivariable linear systems with time
- - ~JomcrL delays present in the state and control in [89].
sve_ || The self-triggered ISMPC method is investigated
T for networked nonlinear continuous-time systems
subject to state and input constraints with additive
disturbances and uncertainties in [90]. A tractable
robust MPC scheme with adaptive SMC is designed
for a class of nonlinear systems in normal form

with two types of uncertainties in [91]. Although
the systems are distinct in [89]-[92], ISMC can be
used to reduce the influence of disturbances and

e uncertainties and enhance the system robustness.
Time
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A. Integral sliding mode control

a. ISMC of continuous systems
Since the integral sliding mode control has no

performance in the presence of disturbances of & aching phase, it can effectively reduce system

DMCRL is not as robust as that of SMC. Note that attering. Consider the following nonlinear con-
the control is optimal only in the reaching phasetlnuous time system

but not in the sliding phase. x(t) = g(x(t)) +Bu(t) +h(t),t >0 (31)
IV. MPC USED IN THE SLIDING PHASE  where x(t) € R" is the state,u(t) € R is the

The robustness of SMC does not hold in th&ontrol andh(t) is a perturbation due to model
reaching phase for traditional SMC. For this reasohncertainties or external disturbances_;. It should be
ISMC has been proposed [82]-[85]. Since opti-n_Oted thath(t) can be decomp_osed into matched
mization and constraints are not accommodatediSturbances and unmatched disturbances.
in ISMC, integral sliding mode predictive con- '€ form of the control law is proposed as
trol (ISMPC) has been recently proposed [58]-f0llows [82]:

[61], [86]-[92]. In ISMPC, the cqntrol signal i- u(t) = Uo (t) + uy (t) (32)

s composed of two parts: one is generated by

the ISMC approach to deal with matched disWhere the nominal contralo (t) is responsible for
turbances/uncertainties, the other is generated & performance of the nominal system andt)

an MPC to achieve optimal control with con-iS @ discontinuous control that rejects the matched
straints whilst dealing with unmatched disturb-disturbances by ensuring the existence of a sliding
ances/uncertainties. motion.

ISMPC is applied to a class of uncertain contin- The sliding manifold is defined by the set
uous and discrete systems in [58]-[61] to enhancéX|0 (x,t) =0}. The following nonlinear integral
the robustness, in which the closed-loop system ifliding surface is proposed [93]:
the presence of matched disturbances behaves ex- o (x.t) = Dx(t) — Dx(to)

Fig. 7: The cost functiod (k) in the simulation test.

actly as the nominal system under nominal control, t 33)
and the unmatched disturbances are not amplified —D | [9(x(1))+Buw(1)]dr
by selecting an optimal projection matrix on the fo

integral sliding surface. In [86]-[88], a state ob-where D € R™" is a projection matrix and it is
server is used to accurately estimate the state ardsumed that the matri®B is invertible. It can
the matched disturbance is suppressed by usifd@me seen that the additional integral term provides
output information. The ISMPC is designed forone more degree of freedom in design than the



linear sliding surface. In addition, the teraDx(tg)  whereup (K) is the ideal control which can stabilize

achieves the desirable property tlmfx(tg) ,to) = the nominal system and} (k) is an additional con-
0, such that the reaching phase is eliminated.  trol input designed to achieve disturbance rejection.
Proposition 1: [84] For any matrixB € R™™M The following discrete-time integral sliding sur-

satisfying rank B= m, the identity I, = BB" + face is defined [85]:

BB+ holds, whereB* is understood as the left

inverse of B, that is Bt = (BTB)*lBT and the S(K) = Gx(k) —Gx(0) + 0 (k)

columns ofBL € R™("™ span the null space of (K =0 (k=1)—(GBuo(k—1)+GAx(k— 1(23)7)
BT.

n m — mxn
This allows the disturbances to be separated int\(/)vheres(k) ER,OER 0(0)=0 aanG €R
) IS to be designed. The terr®x(0) is used to

matched and unmatched components:

eliminate the reaching phase. The ISMC forces the

h=hmn+hy system state to move along the sliding surface from

hmé BB h (34) the initial time, which overcomes the shortcoming
Aoinls of reduced robustness in the reaching phase exhib-

h,=B"B-"h ited by standard SMC. However, optimization is not

where hn and h, are the components of the considered when the system has control and state

matched and unmatched disturbances, respectivefPnstraints. The use of MPC in the sliding phase is
The equivalent control method [12] is adopted?OPOsed to address these issues.
to determine the motion on the sliding mani-
fold, so that the equivalent disturbancmqé
I—B(DB)’lD} hy can be obtained. In recent decades, the ISMC method has be-
come more mature and has been considered an
effective tool for dealing with disturbances. MPC
has been considered as an optimal control method
D*=B" —arg min ‘ [I _ B(DB)’lD} hol| (35) to effectively dealing with constraints.' Therefore,
DeRmxn 2 the ISMPC method cannot only effectively handle
From Proposition 2, an optimal projection matrixthe system external disturbances, but also solve an
D* can be obtained, so that the equivalent disturoptimization problem which includes system con-
bancesheq are equal to the unmatched disturbancestraints. The ISMPC designed process is described
hy, which means the effects of the unmatcheds follows.
disturbances are not amplified. Definition 2: [58] Consider the continuous sys-
b. ISMC of discrete-time systems tem with initial statexo € R". Given the positive
Discrete time ISMC [83], [85] has been proposeqteger N, the quadratic cost functiom(x, u) 2
to improve the control performance of sampled datgT oy 1 yTRu (Q € R” and R € R™ are symmetric
systems. Like the continuous-time ISMC [82], [93], positive definite matrices), the quadratic terminal
the closed-loop system can qc_huave the expect nalty Vi (x) L =y ( = eR"is a symmetric
control performance wh|le avoiding the generatio ositive definite matrix) and the terminal sgt, the
of overly large control inputs. (ginite—Horizon Optimal Control Problem (FHOCP)

Here the discrete-time system (17) is considere - —
roblem with respect to can be formu-
whered (k) is decomposed into matched and un, P lictiein-2/t

B. ISMPC method

Proposition 2: B is a matrix which minimizes
the norm ofheg, i.e.

d as
matched disturbances to enhance the robustness, as
seen in [85]. beN
The following form of the control law is pro- J ()?’LT[tk-,thrN—l‘tk]’N) = / g(x(1),u(r))dr
posed: & (38)

u(k) = up (k) +ug (k) (36) + Vi (X(tkin))



subject to the following constraints:

1) The state dynamics(t) = g(x(t)) 4+ Bu(t) with

disturbances is zero, for dle [ty,tin);

2) The state constraink(t) € xi—t, for all t €

[t tken )

3) The control constrainu(t) € U;

4) The terminal state constrair{tc,n) € -
Definition 3: If there exists &KL-function 3, K-

function y and a constant > 0 such that

X(t, & W < B(IE].t)+y(llulle) +¢

holds for each controu and eaché € R", the

(39)

system is said to be Input-to-State practically Stable

(ISpS) [95], [96].

”wr(r) +.

)

PROCESS

—

MPC controller

ISM controller f¢

I

Fig. 8: Block diagram of ISMPC strategy

a. ISMPC of continuous syste[i®8]

For the continuous system (31), the state and

control variables are restricted to fulfill the follow-
ing constraints
x(t) e X

ut)eu (40)

where X and U are compact sets containing the

origin as the interior point.

According to the current state feedback, an inte-
gral sliding surface based on the MPC solution is

designed:

(41)

whereD € R™" is a projection matrix andB
is invertible [84].

According to Figure 8, the control is designed as
follows:

u(t) = U'Mpc(t)+u|sm(t) (42)
where ul\/IPC (t) = k(X (tk)) [tktk+N 1/t (t), te
[tk,tk+l) , Where the optimal control sequence
[tkt el is obtained by solving the FHOCP.
F1e control input to achieve disturbance rejection
is designed as follows:

() 2 —p (PELSKOL g
(DB)"s(x(t),t)
wherep is the control gain and(x(t),t) =0 for

all time.

The main equations for computer implementation
of the ISMPC for continuous time systems are
given in TABLE | and the associated pseudocode
is given in Algorithm 3.

Algorithm 3 ISMPC for continuous time systems

Step 1 Set =0 and give the initial stat&(0);
Step 2 At each time, design a sliding surface
s(x(t),t) based on the solution of MPG,pc (t)
subject to (38);

Step 3 Set the SMC input agsw (t);

Step 4 Implement the control law ast);

Step 5 Repeat the procedure 1) to 4),tiet+1
at next time instance.

b. ISMPC for discrete time systerfio]
For the discrete time system (17), a set of con-
straints is given as follows:

x(K) € X
u(k)eu (44)
The integral sliding surface is defined by
(k) = Gx(k) + £ (k)
£ (k+1) = g(k) + G (x(k) — Ax(k) — Bu'MPC(k))
£(0) = —-Gx(0)
(45)

whereG € R™" is a projection matrix an@B is
invertible.



The control input of the system is: For the ISMPC method, the disturbance is first

| decomposed as
u(k) = uypc (k) + uism (k) (46)

02 04 08 -04
where toc (k) = Fx(k) and the discontinuous ¢ = { 0.4 08 }d(k)% 04 02 ]d(k)
control input i; give_n byuism (t) = —Msgn(s(k)). e oo
Then, the optimization problem as follows: . ) ) )
The first component is matched and will be elim-
N—1 : . X
inJ (k) = mi T (ki ki inated by the discontinuous contralsy (k), the
mu|n (k) rTLm [il (X (k+ 1) Qx(k+1)+ second is unmatched and will be compensated using
u’ (k+i)Ru(k+1i)) +xT (k4 N)Px(k+N)] the continuous contrall,pc ().
st x(k+1) = Ax(k) + Bu(k) The cost function is defined by (38) and the
x(k) € X corresponding positive definite weighting matrices
uk)eu are chosen a®Q = 1, R=1, = =0.01. The hori-

(47)  zon length isN = 20. The system starts from
The stability of the ISMPC method for con- x(0) = [ 2 o] and the projection matrbG =
tinuous systems [58] has been proved by applif 05 1 ] The UIMPC(k) =Fx(k) andF =YQ!
cation of Input-to-State practical Stability (ISpS).is obtained using LMI techniques. Then, the fol-
For the discrete time case [59], the system ifowing ISMPC control law is implemented:
Lyapunov stable, as long as the state trajectory
is maintained within the quasi-sliding mode band u(k) = Fx(k) +0.1sgr(s(k)) (49)
A= {|S(ki).| g Z =25|[CB||.,, i € '_} _ The performance when a comparator model predic-
The main equations for computer implementationje control is also shown wheran (k) = FX(K).
of the ISMPC for discrete time systems are given ifrhe simulation results for ISMPC and MPC are
TABLE Il and the associated pseudocode is giveRphown in Figs. 9-13.
in Algorithm 4.

25

Algorithm 4 ISMPC for discrete time systems

Step 1 Sek =0 and give the initial state(0);
Step 2 At each timék, design a sliding surface
s(k) based on the solution of MP@},pc (K),
subject to (47);

Step 3 Set the SMC input agsum (K);

Step 4 Implement the control law agk); o5k
Step 5 Repeat the procedure 1) to 4),ke-k+1
at next time instance. of

N

=
2

States of X,
=

0 5 10 15 20 25 30
Time

Fig. 9: The response of (k) in the simulation test.

C. Numerical example
Consider the following discrete-time system

11 05
X(k+1)= [ 01 ] X(k)+[ 1 }““‘Hd(") TABLE IV: ITAE for both ISMPC and MPC
(48)
where d (k) = [ —é6 sin(10k) and the control S S, L. 1/
; MPC 13.3061 43.1737

input constraint isi(k) € U = {u] —5 < u(k) < 5}.
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Figs. 9-13 show the system simulation resmh_gtrqnger_robustnessT.he_ITAE for both methods
under the same disturbance conditions for botfp lISted in Table IV. It is clear that the ITAE of
ISMPC and MPC respectively, where the dotted>MPC is generally smaller than that of MP
line represents ISMPC, and the solid line represenffmmary, the simulation results and ITAE show
MPC. As can be seen from Fig. 9, Fig. 10 andnat ISMPC is superior to MPC.

Fig. 11, ISMPC has stronger robustness propertie
than MPC in dealing with external disturbances an
uncertainties. Fig. 12 shows the convergence of the The ISMPC method not only has the properties
integral sliding variables(k), which means that the of strong robustness and straightforward implemen-
statex (k) moves along the sliding surface from thetation of ISMC, but also has the advantages of
initial time. Fig. 13 shows that ISMPC can main-MPC in being able to accommodate constrained
tain better system performance while demonstratingptimization problems. In process control, ISMPC

. Summary



can overcome the effects of matched disturbances The sliding mode prediction value of timeat
and uncertainties, effectively handle constraints antime (k— p) can be derived as follows:

reduce chattering. Further, it can achieve global b

stability and optimization of the system. However, _p)— Py (K — j-1 —i
although the ISMPC algorithm is straightforward,s(k/k P) = CalPx(k p)+121CdA Bulk=1)
the stability analysis is difficult [58], [59]. In ad- (51)
dition, the use of discontinuous control can cause Rewrite (51) in vector form:

system chattering. _
So(k+1) ==X (k)+06U (k) (52)
V. SLIDING MODE LIKE PREDICTIVE In practical applications, in order to correct the

CONTROL sliding mode prediction values(k+ p), an error

Besides the two mentioned SMPC, there is anis defined between the actual value of the sliding
other sliding mode like predictive control where Variables(k) and the corresponding predicted .vaIue
a predictive sliding mode approach and a corre$(k/K—p). The output valuesy(k+ p) of the slid-
sponding control stabilize the system state to zer!d mode variable can be obtained as follows [97]:
asymptotigally. Because thi; gpproach has no obvi- &, (k+ p) = s(k+ p) +0pe(k)
ous reaching phase and sliding phase, the authors B D
define it as sliding mode like predictive control *(;dA X(k=p)
(SMLPC) in this review. -1 s

In [97]-[106], the SMLPC method is synthesized i JZlCdA Bulk+p—1J)+ope(k)
by applying a predictive sliding surface and a (53)
reference trajectory, combined with a state feedback
correction and rolling optimization method alignedwheree(k) = s(k) —s(k/k— p), op = diag [0,1),
with the MPC strategy. This method not only re- o%, ey O ] and o{, > 0 is a correction coef-
duces the chattering phenomenon, but also guarafieient. Writing (53) in vector form:
tees the robust stability of the closed-loop system. .

In [104]-[106], the SMLPC method is applied S (k+1) =Sy (k+1) +OpE (k) (54)

to uncertain discrete switching systems, uncertain

networked control system with random time delay The corresponding optimization cost function is
and networked control system with time delay andlefined [97]:

consecutive packet dropout, respectively. Research N

o_n the SMLPC method. is centreq on discret_e- Jp= th [§p(k+1)—s((k+j)]2

time system representations. The implementation =1

process is described in the following. M ) (55)
+ Z difu(k+1—-1)]
=1

& 2
Assume a sliding mode function of the following ||Sp(k+ D=5kt 1)H VKl
form: s(k) = Cyx(K). Taking the nominal model of wheres; (k+1) is the sliding mode reference tra-
the discrete system (17) as the prediction modejectory andtj and d, are weighting coefficients,
the value of the sliding function at time+ p in  respectively.
the future is predicted as follows [97]: The sliding mode reference trajectory can be
selected to be of many forms. One ideal case is that

s(k+ p) = CaAPx(K) + i CeAI1Bu(k+p—j) s (k+p) = so(k+p) = 0™, § (k+1) = ON™<L,
=1

A. SMLPC method

Since too rapid a convergence rate may cause
(50) overshoot, the following sliding mode reference



trajectory can be selected to increase the desiga introduced as a comparison. This is selected so

freedom [98]: that the sliding surface is the same as the SMLPC.
{ s (k+p) =ps (ktp—1)+ (1 —p)so(k+p) Consider the following discrete time system:
s (k) =s(k 11 0.5
(k) =s(k) (56) x(k+1):{o 1}x(k)+[ : ]u(k)+d(k)
Letting aff(’f() = 0, the corresponding optimal (59)
control law is obtained as follows: where d (k) = (%6 sin(10k) and is decom-
. e posed into matched and unmatched components as
U(k)(:—g? ©+G) 0" [=Zx(k) + OpE (k) follows
-5 (k+1 -
57) d(k= { o } d(K) [ NPT ]d(k)
Only the current control input signal is imple- ) ) ) )
mented by moving horizon optimization and the BB* BLBL+

remaining elements itJ (k) are not implemented. T injtial states and sliding function are given
The first element ot (k) is described as follows: by:x(0)=] -3 1 ]T' s(k)=[2 3]x(k). The
prediction horizon and the control horizon are se-

u(k) = —[1,0,...,0" (0Te+ G)_leT [=x (k) lected asNp = 10, N; = 4.

+0pE (k) — S (k+1)] The cost function is defined by (55) and the

(58) sliding mode reference trajectory is chosen as

In the next round of optimization, (57) will serve s (k+ p) =0. Then, the SMLPC law (58) is imple-
as the initial value. When the system state reachasented and the correction coefficient is chosen as
the sliding surface, the optimal control inputk) Op=diag( 1 08 07 06 05 04 03
is provided at each step to minimize chattering by 0.2 0.1 0.05 )
obtaining and analysing prediction errors.

The main equations for computer implementatior
of the SMLPC for discrete time systems are giver
in TABLE Il and the associated pseudocode is givel op-
in Algorithm 5.

o
o

KN

Algorithm 5 SMLPC for discrete time systems

Step 1 Sek =0 and give the initial stat(0);
Step 2 At each time,design a sliding surface
s(k) = Cax(k);

Step 3 At timek+ p, the value of the sliding
function s(k+ p) is predicted;

Step 4 Set the sliding mode reference trajector 3%, o8 I 15 5 o5 3

s (k+ p); Time

Step 5 Implement the optimal control law(k),  Fig. 14: The response of; (k) in the simulation
subject to (55); test.

Step 6 Sek=k+ 1 and go back to Step 1.

=
3

States of Xy
N

Ny
o

3F

The simulation results of both the SMLPC and

. an SMC are shown in Figs. 14-18. The same

B. Numerical example disturbance is applied in both cases. The dotted
To illustrate the performance of the proposedine represents SMLPC and the solid line represents
SMLPC, an SMC based on the reaching law (8 MC. It can be seen that the SMLPC can effectively
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Fig. 15: The response of (k) in the simulation

Control input
. 5 .
)

-0.5 * * * - *
0 0.5 1 1.5 2 2.5 3
Time
Fig. 16: The control inpuu(k) in the simulation
test.

TABLE V: ITAE for both SMLPC and SMC

ITAE Xl(k) Xz(k)
SMLPC 6.7208 3.5600
SMC 106.3972  11.7510
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Fig. 17: The sliding functiors(k) in the simulation
test.
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Fig. 18: The cost functiod(k) in the simulation
test.

C. Summary

The advantages of SMLPC include: 1) The slid-
ing mode prediction model is designed so that the
future information on the sliding variable can be
used. 2) The system uncertainties can be com-

reduce system chattering and has stronger robugiensated by feedback correction and rolling op-
ness than the SMC. Fig. 18 shows that SMLPC catimization. 3) A non-switching SMC is obtained

improve system performancéhe ITAE for both

by solving a quadratic problem, so the chattering

methods is listed in Table V. It is clear that thephenomenon does not exist. However, the structure
ITAE of SMLPC is much smaller than that of SMC. of the multi-step sliding mode predictive control
To sum up, the simulation results and ITAE showsolved by this method is complicated and will

that SMLPC is superior to SMC.

typically increase computational load. Further, there



is no reaching phase and sliding phase. Most i 10 i i i i .
portantly, the robustness will be reduced compare - - ~XomcRL
with a more standard sliding mode control ap- 8fn - swee
proach.

VI. COMPARISON BETWEEN DMCRL,
ISMPC AND SMLPC

Based on the review of DMCRL, ISMPC and
SMLPC, comparative robustness testing will now
be undertaken. The main equations for the comr
puter implementation are as shown in TABLE |
and TABLE Il and the pseudo-codes for eact 2, o 20 30 20 =
implementation are as given in Algorithms 1-5. Time
The following two comparative simulation tests arefig. 19: The response of; (k) in the simulation
presented to compare these methods. test.

Example 1.Consider the following discrete time
system

0.2

States of X,

-0.2
30 32 34 36 38 40

x(k+1)=[(1) Hx(k)Jr[o'lS}u(k)er(k) - _

(60) [ = XsmLpc
where d (k) = —36 sin(10k) and is divided r T

into matched and unmatched parts. DMCRL anc
SMLPC have the same sliding mode function /
s(k) =] 2 3 ]x(k). The initial system state is 2|l
x(0)=[3 5 }T and the positive definite weight-
ing matrices are chosen @8 =1, R=1. The
simulation results of the DMCRL, ISMPC and 5 . . . . .
SMLPC are shown in Figs. 19-28nd their average 0 o200 300405060

. . Time
computational times arg,,cg, = 2.1335,t%ypc= ' . . _
0.1285 andtd,, pc = 112396, respectively. It can Fig. 20: The response of; (k) in the simulation
be seen that the computational time of SMLPC id€st.
greater than those of DMCRL and ISMPC, which
shows that SMLPC is more complex with regard to
implementation when compared with DMCRL andall three control methods prescribe convergence of
ISMPC. the system states under the given disturbance con-

ditions. By contrast, when DMCRL and ISMPC are

TABLE VI: ITAE for DMCRL, ISMPC and ,qyjieq; the system state will chatter after reaching

States of X,

SMLPC a neighbourhood of the origin. This phenomenon
ITAE x1(K) xo(K) do_es not exist When_SMLPC is gp_plied. The evo-

DMCRL 99.7369 260.2759 lution of the control input and sliding surface are

'SS'\A'VLE% gg-gﬁg gégggg shown in Figs. 21 and 22, respectively. It can

: i be seen that DMCRL and ISMPC have similar

dynamic performance. Compared with SMLPC,
The system state responses are shown in Figs. 18y are less able to reduce chattering in both the
and. 20. It can be seen from Figs. 19 and 20 thaliding surface and control input. Fig. 23 shows
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ysed in this paper, classical SMC, MPC and propor-
tion integral derivative (PID) control schemes are
..... Squrcl] employed to provide comparative simulation results
for the satellite system from [107]. The following
0.5 ———————— | discrete form is derived based on the forward-Euler
[ R AR S discretization (FED) [108] method:

1 Ts

K -05 O | X(k4 1) = 3xTs 1

w

o
T
7}

N
o

8]
o

=

0 0
0 2xTs
0 0 1 Ts
D 0 —2x%xTs —3xTs 1
5 . . . . . 0

Time X(k)—|— Ts

Fig. 22: The sliding functiors(k) in the simulation 8

test. (61)
with  the disturbance taken asd(k) =
0.01(0.4sin(0.87k)) and Ts= 0.1. The initial

that the cost function value of SMLPC is higherconditions areq (0) = —0.99, % (0) = 0.5, x3(0) =

than that of DMCRL and ISMPC. The reason forQ, x,(0) = 0. The design of the sliding surface is
this result can be explained as follows: SMLPCthe same for SMC, DMCRL, SMLPC, which is
sacrifices part of the energy to reduce chatterings(k) = 2.6667 10000 —55000 —2.1667 |

which produced a higher cost function value and (k). The projection matrix of ISMPC s

less obvious chattering than the other two methodslesigned as G = B', and the parameter

The ITAE for the three control methods is listed invalues for the PID controller are selected as

Table VI. It can be seen from Table VI that thep = [ 13.0000 145000 —12.2500

ITAE of SMLPC is smaller than those of DMCRL —17.2500, D = | -1 -3 -1 —1]. The

and ISMPC, which shows that SMLPC is superiorsimulation results are shown as Figs. 24-30.

to DMCRL and ISMPC. Figs. 24-27 illustrate the state trajectories for

Example 2. To further verify the methods anal- SMC, MPC, ISMPC, SMLPC, DMCRL and PID,
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TABLE VII: ITAE for the six methods
TTAE %1 (K) %2 (K) X3 (K) xa (K) superior to DMCRL, SMC and PID in reducing
SMC 36.3704 128559 8.2340 126626  chattering. Figs. 28 and 29 depict the control inputs
MPC 238041 26.7204  46.6985  70.6670  gnq sliding function trajectories, respectively. It can

PID 22.6911 13.5905 7.9869  12.6753 o : .
ISMPC  18.1763 11.5745 7.5902  6.1799 be seen from the magnified area that the trajectories

SMLPC  17.7352  10.3997 7.1108  3.5092 of the SMLPC and ISMPC are flatter, which shows
DMCRL 182969 117614 74969 111215  that SMLPC has stronger robustness compared with
the other methods. Fig. 30 shows plots of the
cost function. Overall, the control cost of PID and
respectively. Under the same disturbance condBMLPC is higher than the other methods. The ITAE
tions, it is clear that MPC has obvious overshoofor the six control methods is listed in TABLE VII.
in contrast to the other methods. As can be seelh is clear that the ITAE of ISMPC, SMLPC and
from the magnified area, ISMPC and SMLPC areDMCRL are generally smaller than that of SMC,
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Time Time

Fig. 28: The control input(k) in the simulation Fig. 30: The cost functiod(k) in the simulation
test. test.
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robust stability and fulfilment of constraints in
[109]-[111]. Since SMPC can make the system
state reach the sliding surface in an optimal man-
ner, it is used to reduce the hysteresis effects of
the piezoelectric actuator to obtain an approximate
linear relationship between the input voltage and
the output displacement [112], [113A sliding
mode multi-model predictive control strategy is
proposed for temperature regulation in a circulating
fluidized bed (CFB) boiler. The control seeks to
5 " - - - . obtain better adaption to wide load variations [114]
Time and SMC is used to ameliorate issues with variation
in fuel quality and other unknown disturbances to
enhance the safety and durability of CFB boilers.
The application of the SMPC and a Volterra-MPC
is compared and analyzed in a benchmark CSTR

MPC, PID. In summary, the simulation results and'On-minimum phase reactor [115pecause the

ITAE indicates that ISMPC. SMLPC and DMCRL switching frequency of the SMC is reduced in the
are superior to SMC MPC, PID SMPC method, it is used to reduce the vibration

experienced by a cantilevered aluminum beam in
VIl. APPLICATIONS [116]. The SMPC is applied to improve greenhouse
SMPC is powerful in dealing with external dis- InSide air temperature control in [117fhe SMPC
turbances and uncertainties and can improve tH& lso applied to heat exchangers and other tem-
system performance. It has thus been widely usdgerature systems [118], [119].
in various fields.

Sliding function

-0.05
40.2 40.3 40.4

Fig. 29: The sliding functiors(k) in the simulation
test.

B. Application in electromechanical systems

A. Application in process systems The SMPC method has been applied for motion
SMPC is developed to alleviate delays and packetontrol of robot manipulators [120]-[122]. Here
loss induced by network overload, and guarantethe SMC component is employed to compensate



unmodeled system dynamics and disturbances. Thieis considered an effective method to improve
SMPC approach is verified for a COMAU Smart3-performance and enhance robustness. Wider appli-
S2 industrial robot manipulator and 7-DOF pro-cation will promote new developments in the future.
totype ABB YuMi robot arm [120], [121]. It has A summary of the application of the three methods
also been applied to driving, obstacle avoidances shown in the following table:

steering and idling of autonomous vehicles [123]-

[126]. SMPC has been used in flight control toTABLE VIII: The application of the three methods
eliminate the multi-frequency helicopter vibrations
[127]-[129], and it is also applied to motor drives

Control methods DMCRL ISMPC SMLPC
[109]-[111], [114]

. Process systems [112], [113], [116] L \
[130], [131]. Recently, SMPC strategies have been .. o ccnanca [“5]'2([)“7]3;“9]
employed in space tethered satellite systems [132].  systems \ [L201{132] \
Energy systems \ [133]-[139] [140]
Traffic systems \ [141], [142] \

C. Application in energy systems

In this application domain, the SMPC method
has been used to improve the utilization of solar VIII. SOME CHALLENGING PROBLEMS
energy by reducing the impact of disturbances AND FUTURE DIRECTIONS
caused by changes of solar irradiation and solar Some methods, contributions and applications
collector inlet temperature [133], [134]. It is alsohave been reviewed in the area of SMPC. However,
applied to frequency regulation in power gridsthere are still many challenging issues to be ad-
[135], [136]. The SMPC method is applied in dressed. Below, several issues and further directions
energy management system of microgrids, in whiclyre discussed.
grid-connected and islanded operation modes are|. |t is clear that the SMPC strategy continues
controlled by SMC, and MPC generates poweko attract increasing attention. Most of the existing
reference for the energy storage systems [1Bfi¢ SMPC methods are used under the condition that
method has also been used to reduce the effegie system states are available. However, system
of unexpected disturbances such as the termingtates may not all be available in practice, This
DC-link voltage step and the load variation [138],has motivated the study of output feedback con-
[139], andit is also employed for synchronous DC-trol. An observer may be used when the system
DC buck converter to further reduce the chatteringtate is unmeasurable, but this greatly increases the
phenomenon, steady-state error, overshoot and Ugomplexity of the system. It is desirable to develop
dershoot [140]. an SMPC strategy that uses only measured output
information.

Il. SMPC is designed based on a mathematical

The SMPC is applied to solve the mainstreanmodel of the system assuming known information.
inflow, the traffic demands on the on-ramps andHowever a mathematical model may be difficult to
the flows exiting the off-ramps problems in freewayestablish in many practical applications. Research
traffic systems. Here, via the SMC component, thevhich considers how to relax the dependence of an
approach provides valuable robustness to uncertai$MPC on the model used for design is valuable
ties and provides fast response while MPC providegl43], [144]
optimality [141], [142]. Ill. Chattering may be difficult to eliminate be-

In general, for the DMCRL and SMLPC meth- cause of the discontinuous nature of SMC, partic-
ods, due to the need for accurate system modelarly in sampled situations. Though the chatter-
information and the complexity of the calculations,ing can be reduced by SMPC, it still exists. The
there are few industrial applications. However, thdarger the switching range of the control variables,
application of the ISMPC method has achievedhe more obvious the chattering. In high-precision
great success, especially in process control systenfields such as aerospace engineering and satellite

D. Application in traffic systems



systems, chattering may not be tolerable. More ef- IX. CONCLUSIONS
fort is required to find a way to eliminate chattering

in the design of SMPC. In this paper, the past and recent research re-

sults concerning SMPC have been reviewed. It has

IV. The design of SMPC based on fuzzy modeld€€n seen that MPC can be used in the reaching
is a challenging problem. It is well known that T-s Phase and/or the sliding phase when designing an

fuzzy systems can be used to approximate comMC. The advantages and disadvantages have been

plex systems, and the key feature is to decompos%'mmarized and demonstrated using exgmples. The
nonlinear systems into several linear subsystemsMPC strategy not only overcomes the influence of

Although this approach can greatly simplify mod_matched disturbances and uncertainties to increase

elling of the system, uncertainties inevitably existSYStem robustness, but also effectively reduces sys-

Considering the strong robustness of SMPC, thiem chattering to realize global optimization of the

combination of fuzzy methods and SMPC is a novef!0Sed-system. It should be pointed out that SMPC
direction [145]-[147] has been studied for many years and seen many

applications. However, it is necessary to conduct

V. SMPC applied in large-scale distributed sysfurther study to eliminate the gap between theory
tems is a worthy research topic. Currently, informaand practical application. In the future, this type
tion exchange is Cheaper and faster with the rap|§f control can be further developed for classes of
development of network technology, which facili- Systems including large-scale systems which may
tates the control of large-scale systems. Distributele distributed.
control has become a hot topic in the control of
large-scale systems. In distributed systems, there
exist problems such as computational complexity,;1} j | ping, ¢ E Yang, Y D Chen, T Y Chai. Research
uncertainties and coupling. SMPC is a good choice  Progress and Prospects of Intelligent Optimization De-

to address Such problems because Of ItS Strong cision Maklng |n COmpIeX Industrial Process [J] Acta
Automatica Sinica, 44(11), pp. 1931-1943, 2018.

robustness and a_b'“ty to mcorpqrat_e optimization. [2] F Qian. Smart and optimal manufacturing: the key for the
As a result, applying SMPC to distributed systems  transformation and development of the process industry

can be a focus of future research. [J]. Engineering, 3(2), pp. 151-151, 2017.
[3] H Ding, R X Gao, A J Isaksson, et al. State of Al-Based

. . . . Monitoring in Smart Manufacturing and Introduction to
VI. The combination of SMC with economic Focused Section [J]. IEEE-ASME Transactions on Mecha-

model predictive control (EMPC) is a further in- tronics, 25(5), pp. 2143-2154, 2020.

teresting topic for future research. In recent years/[4l F Qian, W L Du, W M Zhong, Y Tang. Problems and
Challenges of Smart Optimization Manufacturing in Petro-

the research on EMPC has. become quite matu_re- chemical Industries [J]. Acta Automatica Sinica, 43(6), pp.
On the one hand, the requirements are becoming 893-901, 2017.

optimization and scheduling in intelligent manufacturing

indicators in industrial production processes. Onthe (3 “serice Oriented Computing and Applications, 14(3),
other hand, strong robust control is required due to  pp. 149-151, 2020.

the uncertainties and variabilities of the production [6] C Ishii, T Shen, K Tamura. Robust model following control
environment. The addition of SMC mav enhance for a robot manipulator [J]. Control Theory and Applica-
: y tions, IEE Proceedings-Control Theory and Applications,

EMPC. 144(1), pp. 53-60, 1997.
[7] W Lin, T Shen. Robust passivity and feedback design for

VII. The desiagn of event-triggered SMPC is minimum-phase npnlinear systems with structural uncer-
9 99 tainty [J]. Automatica, 35(1), pp. 35-47, 1999.

also worthy of future study. Since event-triggered g] ¢ p My, S W Mei, T Shen. New Developments in
control is an effective method to reduce compu-  Robust Nonlinear Control Theory [J]. Control Theory and
tational cost, its combination with SMPC has the _ Applications, 18(1), pp. 1-6, 2001.

tential to enhance robustness while at the SaméQ] | Postlethwaite, M C Turner, G Herrmann. Robust control
potentia applications [J]. Annual Reviews in Control, 31(1), pp.

time reducing computational cogt09], [110] 27-39, 2007.
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