Conformal BiVO₄/WO₃ nanobowl array photoanode for efficient photoelectrochemical water splitting

Wen Zhang^a, Meng Tian^a, Haimiao Jiao^b, Hai-Ying Jiang^{*a} and Junwang Tang^{*b}

^a Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, The Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.

^b Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.

* Corresponding author

E-mail: jianghy@nwu.edu.cn (H. Jiang)

E-mail: junwang.tang@ucl.ac.uk (J. Tang)

This work was supported by the National Natural Science Foundation of China (Grant 21703170), the Key Research and Development Program of Shaanxi (No. 2020GY-244), the Young Academic Talents Program of Northwest University and Top-rated Discipline Construction Scheme of Shaanxi Higher education, the UK EPSRC (Grant EP/N009533/1), the RS International Exchanges 2017 Cost Share Award (Grant IEC\NSFC\170342) and the Leverhulme Trust (Grant RPG-2017-122).

ABSTRACT

As the most promising photoanode candidate for photoelectrochemical (PEC) water splitting, the photocurrent density of BiVO₄ still needs to be further improved in order to meet the practical application. In this work, a highly-matched BiVO₄/WO₃ nanobowl (NB) photoanode was constructed to enhance charge separation at the interface of the junction. Upon further modification of the BiVO₄/WO₃NB surface by NiOOH/FeOOH as an oxygen evolution cocatalyst (OEC) layer, a high photocurrent density of 3.05 mA cm⁻² at 1.23 V vs RHE has been achieved, which is about 5-fold higher than pristine BiVO₄ in neutral medium under AM 1.5 G illumination. 5 times higher IPCE at 450 nm is also achieved compared with BiVO₄ photoanode, leading to about 95% faradaic efficiency for both H₂ and O₂ gas production. Systematic studies attribute the significantly enhanced PEC performance to the smaller BiVO₄ particle size (<90 nm) than its hole diffusion length (~100 nm), the improved charge separation of BiVO₄ by the single layer WO₃ nanobowl array and the function of OEC layers. Such WO₃NB possesses much smaller interface resistance with the substrate FTO glass and larger contact area with BiVO₄ nanoparticles. This approach provides new insights to design and fabricate BiVO₄-based heterojunction photoanode for higher PEC water splitting performance.

Keywords: PEC water splitting; WO₃ nanobowl; BiVO₄; Charge separation; NiOOH/FeOOH

1. Introduction

Photoelectrochemical (PEC) water splitting is a promising green technique for renewable hydrogen production [1-3]. To construct a practical PEC system, it is of great significance to develop efficient photoanodes. Bismuth vanadate (BiVO₄) has been identified as the most promising photoanode material because of its narrow band gap (ca. 2.4-2.5 eV) and favorable band positions for hydrogen and oxygen evolution [4-7]. Nevertheless, BiVO₄ has limitations of low carrier mobility (4×10^{-2} cm² V⁻¹ s⁻¹) and short hole diffusion length (<100 nm) as a photoanode, resulting in unsatisfactory photocurrent densities [8,9] (<1 mA cm⁻² at 1.23 V vs RHE in neutral medium under AM 1.5 G illumination). Except decreasing particle size of BiVO₄ to enable the hole transfer to its surface and depositing OEC layer to enhance the water oxidation kinetics, further effectively improving the charge separation efficiency of BiVO₄ is also worthy to be noted [10,11]. Therefore, inserting a new layer between BiVO₄ and FTO to resist this deficiency has been proposed and studied [12,13].

Among various semiconductor partners, BiVO₄/WO₃ is a proved type II heterojunction because of their favorable band alignment [14-17]. Importantly, previous studies found that the morphology of bottom WO₃ layer and the interfacial structure of BiVO₄/WO₃ play the important roles for the PEC process [18,19]. It has stimulated the majority of researches on the relationships between porosity control of the bottom layer and PEC efficiency. So far, various WO₃ with different morphologies, such as 1D nanowires/nanorods [19,20], 2D nanoplates/nanoflakes [15,21,22] and 3D inverse opal structures [23,24], have been demonstrated to be useful for enhancing the PEC performance of BiVO₄. The corresponding photocurrent density has been doubled, even tripled at 1.23 V vs RHE either in neutral medium or alkaline condition under AM 1.5 G illumination (Table S1). Furthermore, loading oxygen evolution cocatalysts (OECs), such as FeOOH [25,26], NiOOH/FeOOH [27, 28] or CoOOH [29] cocatalyst on the surface of BiVO₄ photoanode has been reported for further improving O₂ evolution kinetics and PEC performance. Despite these achieved significant progresses, the photocurrent and photo-electro conversion efficiency of BiVO₄ electrode are still

far from the application level. As reported, most of the previous WO₃ array on FTO electrode exhibited small array gaps (<60 nm), which is disadvantage for the uniform loading of BiVO₄ nanoparticles with the size of >80 nm. Also, some heterojunctions were fabricated in the form of simple bilayers, in which the upper layer of BiVO₄ was coated on the bottom WO₃ layer, exhibiting smaller contact area and unavoidable charge recombination in the bulk and boundary of BiVO₄ particles, thus leading to the unsatisfactory PEC process of BiVO₄. Therefore, conformally depositing the uniform BiVO₄ on the well-designed and highly-matched WO₃ bottom layer is still a great challenge. Based on monolayer colloidal crystals (MCC) method [30,31] with a low cost and high controllability for patterned nanostructures synthesis, nanobowl array fabrication is considered to be one of the best choices to construct the bottom layer for highly-matched BiVO₄/WO₃ heterojunctions.

Herein, WO₃ nanobowl (WO₃NB) array was synthesized by MCC process and for the first time used for constructing the highly-matched conformal BiVO₄/WO₃NB/FTO heterojunction, which was utilized as a new type of photoanode to improve the PEC performance of BiVO₄. In this novel design, the small size of BiVO₄ nanoparticles (< 90 nm) was perfectly deposited on the bottom layer of WO₃ nanobowl with the large inner diameter of 920 nm. The smaller size of BiVO₄ than its hole diffusion length (~100 nm) ensures the holes transfer to its surface effectively, and then participating in the oxidation of water. Meanwhile, the highly ordered single-layer WO₃NB array was chosen to minimize the defects of WO₃ at the grain boundary, decrease the interfacial resistance with FTO and increase the contact area with BiVO₄ nanoparticles. Moreover, the highly-matched BiVO₄/WO₃ interface could also enhance the charge separation of BiVO₄, which plays the important role for the PEC process. With further loading an OEC layer on BiVO₄/WO₃NB heterojunction photoanode, the produced photocurrent and IPCE exhibit about 5-fold higher than that over pristine BiVO₄ under one sun condition. The underlying reason of this enhanced PEC performance was then discussed.

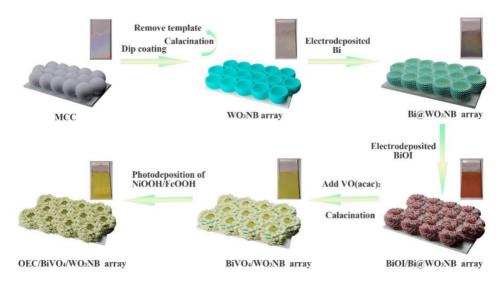
2. Experimental section

2.1. Preparations

2.1.1. Preparation of WO₃NB photoanode

WO₃ nanobowl (WO₃NB) array was prepared using nanosphere lithography based on MCC method [30]. Briefly, MCC template with diameters of ~1 μ m was assembled on the flurine-doped tin oxide (FTO) substrate, forming a colorful film (see Supplementary information). Then, the obtained electrode was immersed in the ammonium tungsten/methanol solution with the volume ratio of 2:1 for 30 minutes and dried at room temperature [32], guaranteeing that WO₃ precursor was infiltrated into the voids of the MCC template. The film was then heated at 475 °C for 2 hours in air with a heating rate of 1 °C min⁻¹. After the calcination process, MCC template was removed and WO₃ precursor in the void areas was converted into crystalline WO₃, forming WO₃NB array modified FTO substrate, while the corresponding photograph turned to translucent light yellow (Scheme 1). To investigate the effects of the thickness and morphology of WO₃ on the PEC performance of the BiVO₄/WO₃ photoanode, different concentrations (0.28, 0.14 and 0.07 g mL⁻¹) of ammonium tungsten/methanol solutions were adopted. The obtained WO₃ photoanodes were denoted as WO₃-1, WO₃-2, and WO₃NB, correspondingly.

2.1.2. Preparation of BiVO₄/WO₃NB photoanode


In order to construct a uniform BiVO₄/WO₃NB array, nanoparticle BiVO₄ with small size (~80) was *in-situ* grown on the inner surface of WO₃NB by a two-step electro-deposition method. Different to the previous report of direct BiOI deposition [10], Bi metal was firstly deposited on the inner face of WO₃NB in a three-electrode quartz cell system [13]. This process can increase the nucleation density of BiOI, and further promote the uniform coating of BiOI on the inner face of WO₃NB. Briefly, the electrolyte was prepared by dissolving Bi(NO₃)₃·5H₂O (0.1213 g) into an ethylene glycol/H₂O solution (37.5 ml) with the volume ratio of 2:1. The deposition process was carried out by giving the current of 4.34×10^{-2} C cm⁻² at -0.6 V vs. Ag/AgCl. After this, Bi metal was successfully coated on the inner face of WO₃NB (Scheme 1). Being washed with ethanol and dried at room temperature, the resulting electrodes were denoted as Bi@WO₃NB.

Then, Bi@WO3NB was converted into BiVO4/WO3NB by electrochemical deposition of BiOI and annealing processes: Firstly, BiOI was deposited on the surface of Bi@WO₃NB in a three-electrode quartz cell system. The electrolyte was prepared by dissolving 0.907g Bi(NO₃)₃ 5H₂O and 3.32g KI in 50 mL H₂O, with adjusting the pH value to 1.7 by HNO₃ (6 M). Then, 20 mL ethanol containing 0.4987g pbenzoquinone was added into the solution above, and the obtained mixture was vigorously stirred for 15 min. Cathodic deposition was performed at -0.1 V vs. Ag/AgCl. In this regard, to achieve the maximum immobilization of BiVO₄ nanoparticle, the different electrodeposited times (0.5, 3, 4.5 and 6 min) of BiOI were carried out. The resulting electrodes were denoted as BiOI- $x/Bi@WO_3NB$ (x=1-4). Subsequently, 0.15 mL dimethylsulfoxide solution containing 0.15 M VO(acac)₂ was placed on the BiOI $x/Bi@WO_3NB$ electrode, and was heated at 450 °C for 2 hours with a rate of 2 °C min⁻¹ in air, to convert BiOI/Bi to BiVO₄. Excess V₂O₅ in the BiVO₄ photoanode was removed by soaking them in 1 M NaOH solution for 30 minutes with gentle stirring. The resultant photoanodes of BiVO₄-x/WO₃NB were rinsed with deionized water and dried in air. After these processes, the photoanode turned bright yellow (Scheme 1). In addition, the pure BiVO₄, BiVO₄/WO₃NL, BiVO₄/WO₃-1 and BiVO₄/WO₃-2 photoanode were obtained by the same experimental conditions when using FTO, WO₃NL, WO₃-1 or WO₃-2 as the substrates. The more detailed preparation procedures are described in the Supplementary material.

2.1.3. Preparation of OEC/BiVO₄/WO₃NB photoanode

A thin amorphous NiOOH/FeOOH layer, acting as an OEC layer, was introduced on the surface of BiVO₄/WO₃NB photoanode by a photo-assisted electrodeposition method [10] (Details for the sample fabrication can be referred to Experimental section in Supporting Information).

The whole fabrication process of OEC/BiVO₄/WO₃NB photoanode is illustrated in Scheme 1.

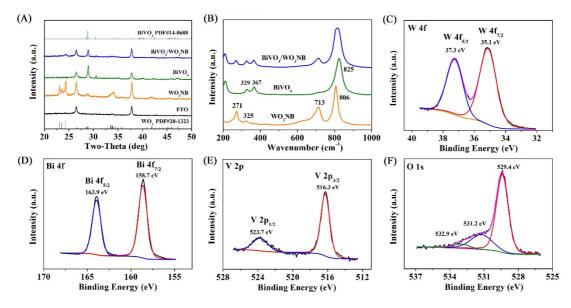
Scheme 1. Schematic illustration of the fabrication procedure of OEC/BiVO₄/WO₃NB array and corresponding photographic images of different photoanodes.

2.2. Characterization

The crystal structures were investigated by X-ray diffraction (XRD) patterns (Bruker AXS-D8 diffractometer) using Cu K α radiation ($\lambda = 0.154$ 18 nm) within the 2θ range from 10° to 80° at a scanning rate of 0.1° s⁻¹. Raman spectra were obtained from Renishaw Ramascope (confocal Raman microscope, Renishaw, Gloucestershire, U.K.) with a He–Ne laser ($\lambda = 532$ nm). The elemental compositions were measured by X-ray photoelectron spectroscopy (XPS, PHI5000 VersaProbeIII). All the data obtained from XPS spectra was calibrated by using the C 1s peak at the position of 284.8 eV. The morphologies of the samples were characterized by scanning electron microscopy (SEM, Hitachi SU8010) and (HR-TEM, FEI Tecnai G2 S-Twin F20). UV–vis diffuse reflectance spectra were executed on UV–vis spectrometer (UV-3600Plus, Shimadzu) equipped with integrated sphere method, and the Tauc plot curves were obtained from UV-vis DRS spectra to evaluate the band gaps of both the prepared WO₃NB and nanoporous BiVO₄. PL spectra were performed on fluorescence spectrophotometer (F-7100, Hitachi) with an excitation wavelength of 360 nm.

2.3.PEC measurements

PEC performances of the samples were carried out by employing a CHI660E electrochemical workstation with a typical three-electrode system. The simulated solar illumination was obtained by the light from a Xe 300 W lamp through an AM 1.5 G

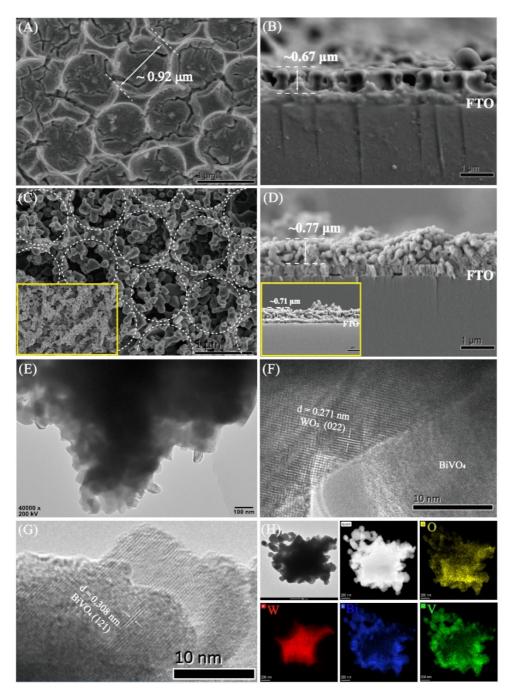

filter with the light intensity of 100 mW cm⁻², which was measured by a thermopile optical detector (Newport, Model 818P-040-25). Samples were illuminated from the back side (FTO substrate side), with the illuminated area of 1.2 cm². Herein, 0.2 M Na₂SO₄ solution (pH=7) was used as the electrolyte for all PEC measurements. Electrochemical impedance spectroscopy (EIS) was also recorded with an AC voltage amplitude of 10 mV at the open circuit potentials of the films under AM 1.5 G illumination (frequency range of 0.01 Hz to 100 kHz). Photocurrent-potential curves were obtained using linear sweep voltammogram (LSV) in a voltage window of -0.4 V~1.1 V vs. Ag/AgCl with a scan rate of 10 mV s⁻¹. Incident-photon-to-current conversion efficiency (IPCE) was obtained using an Oriel Cornerstone 260 1/4 m monochromator coupled with a 300 W Xe arc lamp passed through an AM 1.5G filter as the simulated light source, and measured at 1.23 V vs. RHE in 0.2 M Na₂SO₄ solution. All the potentials vs. RHE were converted from the potentials vs. Ag/AgCl according to the Nernst equation: $E_{RHE} = E_{Ag/AgCl} + 0.059 \text{ pH} + 0.197$. The as-obtained photoanodes, Ag/AgCl and Pt foil were used as the working, reference and counter electrodes, respectively.

2.4. Photoelectrochemical H₂ and O₂ evolution

Faradaic efficiency and photoelectrochemical H₂ and O₂ evolution were carried out in a two-electrode system, being composed of OEC/BiVO₄/WO₃NB as the photoanode and Pt as the counter electrode, in an airtight single cell with a bias of 0.9 V in 0.2 M Na₂SO₄ solution (pH 7). H₂ and O₂ evolution were analyzed by a gas chromatograph (SP-3420A, Beifen-Ruili).

3. Results and discussion

3.1. Materials characterization


Fig. 1. (A) XRD patterns of WO₃NB, BiVO₄ and BiVO₄/WO₃NB photoanodes. (B) Raman spectra of WO₃NB, BiVO₄, and BiVO₄/WO₃NB photoanodes excited under 532 nm laser. XPS core elemental spectra of BiVO₄/WO₃NB: C) W 4f, D) Bi 4f, E) V 2p, F) O 1s.

The crystalline phase structures of the prepared WO₃NB, BiVO₄ and BiVO₄/WO₃NB photoanodes were all characterized by X-ray diffraction (XRD) patterns, as shown in Fig. 1A. For WO₃NB, the main diffraction peaks with 2θ values of 23.1°, 23.6° and 24.3° match well with the (002), (020) and (200) crystal planes of monoclinic phase WO₃ (JCPDS No. 20-1323). For BiVO₄, the peaks at 28.9°, 30.5° and 35.2° could be indexed as the (121), (040) and (002) crystal planes, revealing the monoclinic phase BiVO₄ (JCPDS No. 14-0688). As expected, when BiOI@Bi/WO₃NB array was converted to BiVO₄/WO₃NB array by a chemical-thermal process, both the main diffraction peaks of WO₃NB and BiVO₄ appear in the XRD spectrum of BiVO₄/WO₃NB photoanode. Moreover, we note the (200) and (022) peaks of undistorted BiVO₄ at $2\theta = 34.51°$ and 35.21°, as well as the (240) and (024) peaks of undistorted BiVO₄ at $2\theta = 46.7°$ and 47.3°, both converge to single peaks in the XRD spectra of BiVO₄/WO₃-1, BiVO₄/WO₃-2 and BiVO₄/WO₃NB (Fig. S1). The merging of peaks is attributed to a deformation of the scheelite crystal structure from monoclinic to tetragonal symmetry, in agreement with the previous reports [20, 33]. It is worth noting

that only partial merging of the peaks occurred on BiVO₄/WO₃NB, which is attributed to the relatively low amount of W doping and ultrathin thickness of bottom layer WO₃NB. XRD results confirm that W-doped BiVO₄ is formed at the interface of BiVO₄/WO₃ heterojunction. Thus, the as-prepared BiVO₄/WO₃NB shows the intimate contact at the interface between BiVO₄ and WO₃NB, which can effectively enhance the charge transfer and prevent the recombination of photoelectrons and holes [12, 20].

Raman spectra were also conducted to further identify the crystal structures of WO₃NB, BiVO₄ and BiVO₄/WO₃NB. As can be seen in Fig. 1B, the as-obtained WO₃NB reveals four Raman peaks locating at 270, 330, 715 and 806 cm⁻¹, which can be attributed to the typical monoclinic WO₃ structure [34]. The peaks observed at 713 and 806 cm⁻¹ belong to W-O stretching modes, and the peaks at 271 and 325 cm⁻¹ can be assigned to the W-O-W bending vibrations of monoclinic phase WO₃ [15, 35]. The peaks of BiVO₄ at 329 and 367 cm⁻¹ are ascribed to the asymmetric and symmetric bending vibration of the VO₄³⁻, while the strong peak at 825 cm⁻¹ is attributed to the symmetric V-O stretching mode in BiVO₄ [10]. After *in-situ* growth of BiVO₄ nanoparticles on WO₃NB array to obtain BiVO₄/WO₃NB heterojunction, the Raman peaks derived from both WO₃NB and BiVO₄ are all observed, which are at 367, 271 and 713 cm⁻¹. Further, compared with BiVO₄ and WO₃NB, the peaks at 325 and 329 cm⁻¹, as well as the peaks at 806 and 825 cm⁻¹, both converge to form single peaks, again confirming the successful construction of BiVO₄/WO₃NB heterostructure.

The elemental compositions and states of BiVO₄/WO₃NB were measured by XPS. The full survey spectrum in Fig. S2 shows that the two-phase structure is mainly composed of W, Bi, V and O elements. From the high-resolution W4f XPS spectrum in Fig. 1C, the binding peaks at 35.1 eV and 37.3 eV are in accordance with W 4f_{7/2} and W4f_{5/2}, respectively.^[38] The peaks of the Bi 4f_{5/2} and 4f_{7/2} spectra at 158.7 eV and 163.9 eV (Fig. 1D) can be attributed to the surface Bi³⁺ species [38]. The peaks of V 2p_{3/2} and V 2p_{1/2} are at around 516.3 eV and 523.7 eV (Fig. 1E), which are typical values for V⁵⁺ in BiVO₄[15, 36]. Meanwhile, the asymmetric O 1s XPS signals are fitted by three peaks at 529.4, 531.2 and 532.9 eV (Fig. 1F), indicating the lattice oxygen of BiVO₄ crystallites, WO₃NB and adsorbed water species, correspondingly [38-40].

3.2. SEM/TEM microstructure observations and EDX composition measurement

Fig. 2. Top-view and cross-sectional SEM images of WO₃ nanobowl photoanode (A, B) and BiVO₄/WO₃NB array (C, D). Insets in panels (C) and (D) are top-view and cross-sectional SEM image of pristine BiVO₄ photoanode, respectively. (E) TEM images and (F, G) HR-TEM images of BiVO₄/WO₃NB array. (H) TEM, HAADF and corresponding EDX elemental mapping images of O, W, Bi and V.

In order to prepare uniform single-layer WO₃NB array, different concentrations of WO₃ precursor solution were adopted, and the SEM images of WO₃-1, WO₃-2 and

WO₃NB photoanodes were observed. As shown in Fig. S3 and Fig. 2A-B, with the concentration of ammonium tungsten decreasing, the morphology of WO₃ nanobowl gradually appears. When the concentration of ammonium tungsten decreased from 0.28 g mL⁻¹ to 0.14 g mL⁻¹, the thickness of the WO₃ decreases from 3.03 μ m (WO₃-1, Fig. S3A and B) to 1.93 μ m (WO₃-2, Fig. S3C and D). Further decreasing the concentration of ammonium tungsten to 0.07 g mL⁻¹, the single-layer WO₃NB array with 0.67 μ m in thickness is produced, as depicted in Fig. 2B. Fig. 2A suggests that WO₃NB has a relatively rough bottom and about 920 nm diameters, which is in good agreement with the size of the polystyrene (1 μ m). The enlarged SEM images in Fig. S4 clearly show the morphology of the obtained WO₃NB array, retaining the long-range hexagonal order stemmed from the initial MCC template. According to SEM images, it is clearly seen that we can easily control the concentration of WO₃ precursor solution to obtain the optimum morphology of single-layer WO₃NB array.

After in-situ growth of BiVO₄ nanoparticle on the WO₃NB array, both the bottom and wall of WO₃NB array (Fig. 2C, D) are uniformly covered with BiVO₄ nanoparticles. The mean particle size of BiVO₄ shown in Fig. 2C is 83 ± 5 nm (Fig. S5). Meanwhile, the periodic structures of ordered WO₃NB are well maintained, as marked in white dotted circle in Fig. 2C. Inserts in Fig. 2C and D show the top-view and cross-sectional SEM of pristine BiVO₄ on FTO substrate, respectively. As also seen from Fig. 2D, the thickness of BiVO₄/WO₃NB array is obviously increased to 0.77 µm by comparing with that of pristine BiVO₄ (0.71 µm), further confirming the fully filling of BiVO₄ nanoparticles in WO₃NB. More importantly, from Fig. 2C and D, as well as their insets, it is clearly seen that the size and morphology of BiVO₄ are well maintained without disrupting.

Furthermore, the BiVO₄/WO₃-1 and BiVO₄/WO₃-2 photoanodes were also obtained and explored by SEM, as depicted in Fig. S6A-D. Similar to BiVO₄/WO₃NB array, the BiVO₄ is tightly attached and filled on the surface and in the gaps of WO₃-1 and WO₃-2 arrays, which further implies that highly uniform BiVO₄/WO₃NB array were successfully prepared in this work. Meanwhile, the images of the prepared WO₃NL and BiVO₄/WO₃NL photoanodes are also displayed in Fig. S6E-H for further comparison.

To identify the morphology and distribution of BiVO₄/WO₃NB heterojunction, high-resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray (EDX) elemental mapping were also employed. TEM image of BiVO₄/WO₃NB is displayed in Fig. 2E. The crystalline structure of BiVO₄/WO₃NB was further confirmed by HR-TEM image. In Fig. 2F, the measured lattice spacing of 0.271 nm is well matched with (022) crystal plane of monoclinic WO₃ in XRD pattern (Fig. 1A), while the lattice spacing of 0.308 nm (Fig. 2G) is in good agreement with (121) plane of monoclinic BiVO₄/WO₃NB heterojunction, which is further confirmed by EDX with the coexistence of O, W, Bi and V elements, as well as the homogeneous distribution in the obtained BiVO₄/WO₃NB heterojunction.

From Fig. 2H, it is also apparent that there is intimate contact at the interface between BiVO₄ and WO₃NB, which can efficiently enhance the charge transfer and prevent the recombination of photocarriers at the interface. In addition, Fe and Ni elements have been found to be evenly distributed on the photoanode of OEC/BiVO₄/WO₃NB after deposition of NiOOH/FeOOH, according to the EDX elemental mapping in Fig. S7E-L. HR-TEM images (Fig. S7A-D) also exhibit a thin amorphous NiOOH/FeOOH layer, demonstrating the successful deposition of the OEC layer. The XPS spectra of OEC/BiVO₄/WO₃NB were shown in Fig. S8. Fig. S8A shows the Fe 2p with two major peaks of ~ 711.4 eV (Fe 2p_{3/2}) and ~725.1 eV (Fe 2p_{1/2}), which are a good evidence to validate the presence of FeOOH [25]. The Ni 2p has a small Ni 2p_{3/2} peak at ~856.1 eV and an associated satellite peak at ~861.3 eV (Fig. S8B), revealing that the oxidation state of Ni is 2+ [41]. Meanwhile, the asymmetric O 1s XPS spectrum in Fig. S8C was fitted to two peaks at 530.1 and 531.6 eV, corresponding to O²⁻ and OH⁻, respectively [42].

3.3. UV-vis analysis

The light absorbance ability is regarded as a key factor on light-to-energy conversion efficiency. Therefore, we investigated UV-vis absorption spectra of different photoanodes, as displayed in Fig. 3. It can be seen that the absorption edge of

WO₃NB and BiVO₄ photoanodes are located at the wavelength of ~450 nm and ~510 nm, respectively. For BiVO₄/WO₃NB photoanode, it shows nearly the same absorption edge as that of pure BiVO₄, with the absorption onset at ~510 nm and a smooth rise for most of the light adsorption in the entire 300-510 nm wavelength range. This result indicates that the light absorption of BiVO₄/WO₃NB photoanode mainly comes from the BiVO₄ rather than the under-layer WO₃NB. It should be noted that no obvious difference is observed between BiVO₄/WO₃NB and OEC/BiVO₄/WO₃NB, revealing that uniform and thin deposition of NiOOH/FeOOH would not affect the light absorption of BiVO₄/WO₃NB, which is consistent with our previous studies [37].

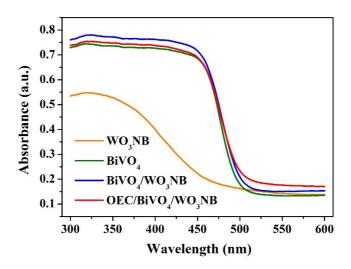
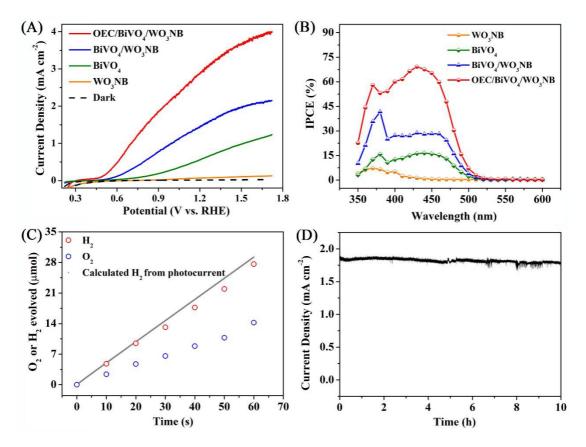


Fig. 3. UV-vis absorption plots of different photoanodes

To investigate the matching degree of the bands between WO₃NB and BiVO₄, the energy band structures of pristine WO₃NB and BiVO₄ were studied. The band gaps (E_g) of WO₃NB and BiVO₄ were calculated according to Tauc equation:


$$(\alpha h v)^{\rm n} = {\rm A}(h v - E_{\rm g})$$

Where α and hv represent the absorbance coefficient and the energy of photon, respectively; n is the index which depends on the electronic transition of the semiconductor (for direct band-gap semiconductors BiVO₄ and WO₃, n = 2) [7, 38]; A is a proportionality constant related to the materials. On the basis of the results in Fig. 3, the band gap of WO₃ was determined to be 2.79 eV (Fig. S9A), while the band gap of BiVO₄ was determined to be 2.52 eV (Fig. S9B), which are consistent with the previous reports [10, 39]. The conducting behavior of the WO₃NB and BiVO₄ photoelectrodes were also analyzed by Mott-Schottky (M-S) experiments. Typically, M-S plots were measured at an applied frequency of 1000 Hz in 0.2 M Na₂SO₄ electrolyte under dark conditions. As shown in Fig. S9C and D, WO₃NB and BiVO₄ show the positive slopes, demonstrating that they are typical n-type semiconductors. Furthermore, the x-axis intercept of M-S plots can be used to determine the flat band potentials (E_{fb}) of photoelectrodes [12]. From the intercepts of the M–S plots, the E_{fb} of WO₃NB photoelectrode was estimated to be -0.12 V (vs Ag/AgCl) or 0.49 V (vs RHE) from Fig. S9C, while the E_{fb} for BiVO₄ nanoparticle was estimated as -0.57 V (vs Ag/AgCl) or 0.04 V (vs RHE) from Fig. S9D, as also shown in Table S2. It is widely accepted that the flat band potential (E_{fb}) is close to the bottom of the conduction band (CB) of n-type semiconductors [5]. On the basis of above analyses, the band level alignments of WO₃ with a band gap of 2.79 eV and BiVO₄ with a bandgap of 2.52 eV are thus presented in Fig. S10, indicating a type II band alignment. The observed more negative E_{fb} value of BiVO₄ compared with that of WO₃NB suggests feasible the injection of photogenerated electrons from BiVO₄ to WO₃. The flow of photogenerated holes from WO₃ to BiVO₄ can also thermodynamically occur, resulting into to the enhanced photocarriers separation at the interface between WO₃NB and BiVO₄ [38].

3.4. PEC Performances

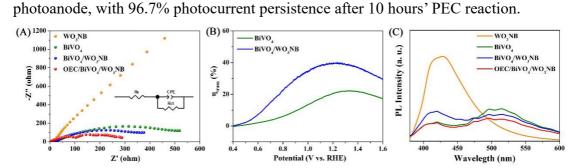
PEC performance of the WO₃NB array was evaluated in 0.2 M Na₂SO₄ under AM 1.5 G simulated solar light (100 mW cm⁻²). For comparison, PEC performances of the obtained WO₃-1 and WO₃-2 films were also measured under the same conditions. As seen from Fig. S11A, the photocurrent density is obviously associated with the thickness of WO₃ film, while WO₃NB photoanode shows the smallest photocurrent than WO₃-1 and WO₃-2. This is ascribed to the lowest light absorption ability of WO₃NB array due to its thinnest thickness. Encouragingly, the photocurrent densities of all investigated BiVO₄/WO₃ heterojunctions are increased dramatically (Fig. S11B) after in situ growth of BiVO₄ nanoparticles on different WO₃ films. It is worth to be note that the photocurrent densities of the prepared BiVO₄/WO₃NB photoanodes show an increasing trend with the decreasing thickness of WO₃NB. These results reveal that

the microstructure of WO₃ will influence the interfacial charge transfer between BiVO₄ and WO₃NB, which plays the important role for the PEC activity of BiVO₄/WO₃NB photoanode. To further confirm this conclusion, WO₃ nanolayer (WO₃NL) and BiVO₄/WO₃NL were also prepared with the WO₃ thickness of 550 nm. Obviously, BiVO₄/WO₃NB photoanode shows a higher photocurrent density than BiVO₄/WO₃NL (Fig. S11D), although the latter shows a higher photocurrent density than the former when the onset potential is below 0.9 V vs RHE and above 1.5 V vs RHE (Fig. S11C).

Fig. 4. (A) J-V curves measured of WO₃NB, BiVO₄, BiVO₄/WO₃NB, and OEC/BiVO₄/WO₃NB array for water oxidation (0.2 M Na₂SO₄) electrolyte, simulated solar light (AM 1.5 G 100 mW cm⁻²) illumination. (B) IPCE of WO₃NB, BiVO₄, BiVO₄/WO₃NB and OEC/BiVO₄/WO₃NB photoanodes. IPCE was measured at 1.23 V vs RHE. (C) Detection of H₂ and O₂ produced by OEC/BiVO₄/WO₃NB array at 0.9 V vs counter electrode. Gray dotted line represents the amount of H₂ calculated assuming 100% faradaic efficiency. (D) Stability testing of the OEC/BiVO₄/WO₃NB array photoanode at 0.9 V (vs RHE) for 10 h. Electrolyte: 0.2 M Na₂SO₄ (pH =7).

Meanwhile, we also note that BiVO₄/WO₃NB photoanode exhibits the significant improvement for the photocurrent density, compared with that on WO₃NB photoanode.

BiVO₄/WO₃NB photoanodes with different amount of BiVO₄ were also prepared to get the optimized photoanode with the highest photocurrent density. From the results in Fig. S12, the highest photocurrent (1.51 mA cm⁻² at 1.23 V vs RHE) was achieved on BiVO₄-3/WO₃NB with the BiOI deposition time of 270 s, which is 2.5 times higher than that on BiVO₄ photoanode (0.61 mA cm⁻² at 1.23 V vs RHE) and more than 20 times higher than that on WO₃NB photoanode (0.07 mA cm⁻² at 1.23 V vs RHE), which are displayed in Fig. 4A.


For further improvement of water oxidation ability, NiOOH/FeOOH was deposited on the surface of the prepared BiVO₄/WO₃NB photoanode as an OEC layer. As expected, the as-fabricated OEC/BiVO₄/WO₃NB photoanode exhibits a markable improvement in photocurrent (3.05 mA cm⁻² at 1.23 V vs RHE), which is twice higher than that on BiVO₄/WO₃NB photoanode. It is worthy to note that although the deposition of OEC layer does not change the light absorption of BiVO₄/WO₃NB photoanode (Fig. 3), it is able to create an adequate junction onto BiVO₄/WO₃NB, thereby further improving the kinetics of water oxidation [10, 43]. Accordingly, the OEC layer can efficiently facilitate the hole transfer from BiVO₄ to OEC layer and the water oxidation kinetics. On the other hand, the conduction band electrons of BiVO₄ effectively channeled to FTO and the counter electrode *via* the under-layer of WO₃NB. The two assisted junctions of OEC/BiVO₄ and BiVO₄/WO₃NB synergistically improved PEC performance of BiVO₄ photoanode. The photocurrent properties of water splitting behaviors on BiVO₄/WO₃ photoanodes in neutral medium are compared with previous studies in recent years (Table S1).

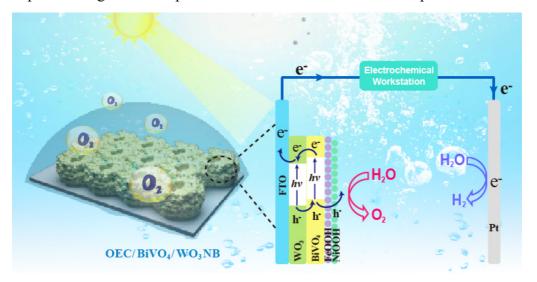
The incident photon to current conversion efficiencies (IPCE) were performed to study the wavelength dependent photoactivity efficiency of the prepared photoanode, and defined as follow:

IPCE(%) =
$$\frac{1240 \times J \,(\text{mA cm}^{-2})}{P_{\text{light}} \,(\text{mW cm}^{-2}) \times \lambda \,(\text{nm})} \times 100$$

Where *J* presents the photocurrent density, λ is the wavelength of incident light, and P_{light} is the incident light power density at a certain wavelength. In Fig. 4B, the WO₃NB shows the photocurrent response range of 350-430 nm, whereas BiVO₄ shows a wider photocurrent response range of 350-510 nm, which are accordance with their UV-vis absorption spectra. Both WO₃NB and BiVO₄ photoanodes show comparatively low IPCE values, which are consistent with the previously reported films of similar photoanodes [10, 44]. Remarkably, the IPCE of BiVO₄/WO₃NB photoanode is about 40% at 390 nm, almost 2.5 times higher than that of pristine BiVO₄ (16.2%). This result demonstrates that WO₃NB could effectively improve the charge separation of BiVO₄, further increasing the solar energy conversion efficiency. In contrast, the OEC/BiVO₄/WO₃NB photoanode presents a much higher IPCE value than that of BiVO₄/WO₃NB, in agreement with previous report [29], in which the OEC layer could significantly improve the charge carrier separation rate of photoanode. In addition, since the WO₃NB first absorbs part of the photons with wavelengths < 400nm, reducing the UV photons to be absorbed by the top layer BiVO₄ in the UV region. Therefore, the IPCE value of BiVO₄/WO₃NB and OEC/BiVO₄/WO₃NB is higher in visible region than that in UV region. The IPCE results are in good accordance with the J-Vmeasurements as mentioned above. Furthermore, the applied bias photon to current efficiency (ABPE) values of all the photoanodes are shown in Fig. S13. The ABPE value of pure WO₃NB is negligible (0.01%), while only 0.04% at 0.9 V vs RHE for BiVO₄ is obtained. Significantly, the as-fabricated BiVO₄/WO₃NB heterojunction can boost the ABPE to 0.25% at 0.9 V vs RHE. Specially, after depositing NiOOH/FeOOH layer, the obtained OEC/BiVO4/WO3NB photoanode presents the maximum ABPE of 0.62% at 0.9 V vs RHE, which is 60, 15 and 2.5 times higher than those of WO₃NB, BiVO₄ and BiVO₄/WO₃NB photoanodes, respectively.

PEC water splitting was carried out in 0.2 M Na₂SO₄ solution (pH = 7), by using a two-electrode system in an airtight single cell at the bias of 0.9 V vs counter electrode. As seen from Fig.4C, the amounts of produced H₂ and O₂ are linearly increased with the prolonging PEC reaction time, which are 27.6 µmol and 14.2 µmol after 60 minutes under consecutive light illumination and keep consistent with the stoichiometric ratio of 2:1. A faradaic efficiency as high as 95% is obtained, indicating that most of the photocurrent can be efficiently utilized to generate H₂ and O₂. In terms of practical application, the stability of OEC/BiVO₄/WO₃NB photoelectrode was evaluated by a

long time run. The data in Fig. 4D indicates a good stability of the "triple" junction


Fig. 5. (A) EIS curves of WO₃NB, BiVO₄, BiVO₄/WO₃NB and OEC/BiVO₄/WO₃NB array (B) Surface charge separation efficiency of BiVO₄ and BiVO₄/WO₃NB photoanodes. (C) PL spectra of WO₃NB, BiVO₄, BiVO₄/WO₃NB and OEC/BiVO₄/WO₃NB photoanodes.

EIS curves of WO₃NB, BiVO₄, BiVO₄/WO₃NB and OEC/BiVO₄/WO₃NB photoanodes were carried out under AM 1.5G light illumination (Fig. 5A), in order to investigate the kinetics of charge transfer behavior during water splitting reaction. In the equivalent [29], R_s represents the system resistance, and R_{ct} reflects the charge transfer resistance. According to the fitting results (Table S3), a much smaller R_{ct} is observed for the BiVO₄/WO₃NB photoanode compared with those of BiVO₄ and WO₃NB, implying the advantage of the heterostructure in the charge transfer process. These results prove that WO₃NB as an insert underlayer plays an important role on the electron transfer from BiVO₄ to FTO [19, 22]. After deposition of OEC layer on the surface of BiVO₄/WO₃NB photoanode, the photoanode shows the lowest R_{ct} value (297.8 Ω), which could account for its highest PEC performance.

Since the oxidation of SO_3^{2-} by holes is very fast at the interface of photoanode/electrolyte, the surface recombination of charges is eliminated and η_{trans} (Na₂SO₃) $\approx 100\%$.[45] To further explore the interface recombination of BiVO₄/WO₃NB photoanode, we measured the LSV curves of BiVO₄ and BiVO₄/WO₃NB with and without Na₂SO₃. As shown in Fig. S14, the photocurrent for pristine BiVO₄ increases from 0.61 mA cm⁻² to 2.71 mA cm⁻² at 1.23 V vs RHE after the addition of Na₂SO₃. Notably, the photocurrent of BiVO₄/WO₃NB is achieved at 3.67 mA cm⁻² after the addition of Na₂SO₃ into electrolyte, which is higher than that of pure BiVO₄. These results confirm the efficient charge transfer from BiVO₄ to WO₃NB

in BiVO₄/WO₃NB photoanode, which can be attributed to the highly-matched BiVO₄/WO₃NB heterojunction [7, 43]. Furthermore, the surface transfer efficiencies (η_{trans}) can be individually determined by $J_{\text{H}_2\text{O}}/J_{\text{Na}_2\text{SO}_3}$. As evaluated, η_{trans} value of BiVO₄/WO₃NB is nearly 40%, much higher than that of pristine BiVO₄ (20%) in Fig. 5B, which could be attributed to the highly-matched conformal BiVO₄/WO₃NB heterojunction increasing electrolyte accessible area.

At last, photoluminescence (PL) spectra of WO₃NB, BiVO₄, BiVO₄/WO₃NB and OEC/BiVO₄/WO₃NB were performed to investigate their charge carrier separation rate. The results are shown in Fig. 5C. For pure WO₃NB and BiVO₄, the main emission peaks appear around 430 and 510 nm, near to their band-edge transitions of WO₃NB and BiVO₄, respectively. For BiVO₄/WO₃NB, both two major peaks around 430 and 510 nm are also observed. PL intensity of BiVO₄/WO₃NB are weaker than those of WO₃NB and BiVO₄, implying that the recombination of electron-hole pairs can be suppressed deeply by their junction structure. When BiVO₄/WO₃NB heterojunction is further combined with NiOOH/FeOOH, PL intensity is further decreased, suggesting the superior charge carrier separation rate of OEC/BiVO₄/WO₃NB photoanode.

Scheme 2. The mechanism of charge carrier separation/transport and subsequent PEC reaction for the OEC/BiVO₄/WO₃NB photoanode.

On the basis of the results and discussions above, the mechanism on the high PEC water splitting activity over OEC/BiVO₄/WO₃NB photoanode is summarized in **Scheme 2**. The highly ordered WO₃NB arrays perfectly host the small size and nano-

structure of BiVO₄, which minimize the defects of WO₃ at the grain boundary, decrease the interfacial resistance with FTO and increase the contact area with BiVO₄ nanoparticles. Under light illumination, photogenerated electron–hole pairs are generated in both WO₃NB and BiVO₄ due to their favorable band gaps. With the formation of type II heterojunction, the excited electrons of BiVO₄ move to the conduction band of WO₃NB, then to FTO and the counter electrode of Pt for H₂ generation. Besides, WO₃NB plays a crucial role on the facilitation of electron transport from BiVO₄ to FTO, which can effectively reduce the photocarriers' recombination on the interface of BiVO₄/FTO junction. Meanwhile, the photogenerated holes in the valence band (VB) of WO₃NB will thermodynamically move to the valence band of BiVO₄, then transfer to NiOOH/FeOOH layer for O₂ evolution. Synergistically, the photogenerated carriers can be efficiently separated at the location. With the assistant of OEC, a high PEC performance of water oxidation over BiVO₄/WO₃NB heterojunction photoanode was achieved.

4. Conclusion

In summary, in order to improve the PEC performance of BiVO₄, we developed a facile and effective strategy to fabricate a highly-matched BiVO₄/WO₃ nanobowl array heterojunction, by conformal BiVO₄ nanoparticles (with the particle size of ~80 nm) in-situ grown on the single-layer of WO₃ nanobowl array. Upon modification by an OEC layer, the optimized BiVO₄/WO₃NB presents a maximum photocurrent density of 3.05 mA cm⁻² at 1.23 V vs RHE in 0.2 M NaSO₄ electrolyte under AM 1.5 G illumination, resulting into stochiometric H₂ and O₂ production with a faradaic efficiency of 95%. Further analysis on the mechanism of such a high PEC performance attribute to the small BiVO₄ nanoparticles and single layer WO₃NB, as well as their highly matched electronic structure. The small BiVO₄ nanoparticles (< 90 nm) enable more holes to transfer to its surface; the single layer WO₃NB with large surface area and the highly matched BiVO₄/WO₃NB interface significantly enhanced the charge separation and transmission from BiVO₄ to WO₃NB, resulting into the charge

WO₃NB further transfers electrons to FTO substrates due to the small interface resistance with FTO and large contact area with BiVO₄. With this "multiple" junctions as the photoanode, the photocarriers can successfully transmit in the electric circuit, participating the redox reactions on the corresponding electrodes. Overall, our work provides an efficient strategy to design and fabricate a "multiple" BiVO₄-based heterojunction with advantage architectures for efficient PEC water splitting.

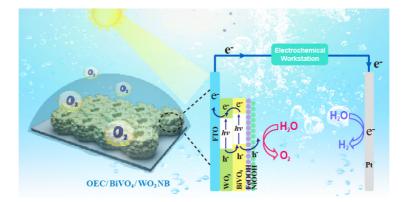
Conflict of interest

The authors declare no conflict of interest.

References

- [1] C. Jiang, S. Moniz, A. Wang, T. Zhang, J. Tang, Chem. Soc. Rev., 2017, 46, 4645–4660.
- [2] Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, *Energy Environ. Sci.*, **2013**, 6, 347–370.
- [3] Z. L. Wang, L. Z. Wang, *Chin. J. Catal.*, **2018**, 39, 369–378.
- [4] S. Ho-Kimura, S. Moniz, A. Handoko, J. Tang, J. Mater. Chem. A, 2014, 2, 3948–3953.
- [5] Q. Z. Wang, T. J. Niu, L. Wang, J. W. Huang, H. She, *Chin. J. Catal.*, **2018**, 39, 613–618.
- [6] S. Wang, P. Chen, Y. Bai, J.-H. Yun, G. Liu, L. Wang, *Adv. Mater.*, 2018, 30, 1800486–1800492.
- [7] S. Moniz, J. Zhu, J. Tang, Adv. Energy Mater., 2014, 4, 1301590–1301597.
- [8] S. Wang, T. He, P. Chen, A. Du, K. Ostrikov, W. Huang, L. Wang, Adv. Mater., 2020, 32, 2001385–2001394.
- [9] F. Abdi, T. Savenije, M. May, B. Dam, R. van de Krol, J. Phys. Chem. Lett., 2013, 4, 2752– 2757.
- [10] T. Kim, K.-S. Choi, *Science*, **2014**, 343, 990–994.
- [11] D. Lee, K.-S. Choi, *Nat. Energy*, **2018**, 3, 53–60.
- [12] Q. Pan, H. Zhang, Y. Yang, C. Cheng, *Small*, **2019**, 15, 1900924–1900932.
- [13] J. Liu, J. Li, M. Shao, M. Wei, J. Mater. Chem. A, 2019, 7, 6327–6336.
- [14] S. Khoomortezaei, H. Abdizadeh, M. Golobostanfard, ACS Appl. Energy Mater., 2019, 2, 6428–6439.
- [15] X. Zhang, X. Wang, D. Wang, J. Ye, ACS Appl. Mater. Interfaces, 2019, 11, 5623–5631.
- B. Chen, Z. Zhang, M. Baek, S. Kim, W. Kim, K. Yong, *Appl. Catal. B Environ.*, 2018, 237, 763–771.
- Y. Liu, B. Wygant, K. Kawashima, O. Mabayoje, T. Hong, S.-G. Lee, J. Lin, J.-H. Kim, K.
 Yubuta, W. Li, J. Li, C. Mullins, *Appl. Catal. B Environ.*, 2019, 245, 227–239.
- [18] S. Chae, H. Jung, H. S. Jeon, B. K. Min, Y. Hwang, O.-S. Joo, J. Mater. Chem. A, 2014, 2, 11408–11416.
- [19] M. Lee, D. Kim, W. Sohn, C. Moon, H. Park, S. Lee, H. Jang, *Nano Energy*, 2016, 28, 250–260.
- [20] P. Rao, L. Cai, C. Liu, I. Cho, C. Lee, J. M. Weisse, P. Yang, X. Zheng, Nano Lett., 2014,

14, 1099–1105.


- [21] T. Zhang, J. Su, L. Guo, *CrystEngComm*, **2016**, 18, 8961–8970.
- [22] V. Kumbhar, H. Lee, J. Lee, K. Lee, J. Colloid Interface Sci., 2019, 557, 478–487.
- [23] K. Ouyang, S. Xie, P. Wang, J. Zhu, P. Zhan, Int. J. Hydrogen Energy, 2019, 44, 7288–7299.
- [24] H. Zhang, W. Zhou, Y. Yang, C. Cheng, *Small*, **2017**, 13, 1603840–1603847.
- [25] B. Zhang, L. Wang, Y. Zhang, Y. Ding, Y. Bi, Angew. Chem. Int. Ed., 2018, 57, 2248–2252.
- [26] K. McDonald, K.-S. Choi, *Energy Environ. Sci.*, 2012, 5, 8553–8557.
- [27] T. Kim, Y. Ping, G. Galli, K.-S. Choi, *Nat. Commun.*, **2015**, 6, 8769–8778.
- [28] Y. Qiu, W. Liu, W. Chen, W. Chen, G. Zhou, P. C. Hsu, R. Zhang, Z. Liang, S. Fan, Y. Zhang, Y. Cui, Sci. Adv., 2016; 2, e1501764–e1501764
- [29] B. Zhang, X. Huang, H. Hu, L. Chou, Y. Bi, J. Mater. Chem. A, 2019, 7, 4415–4419.
- [30] W. Wang, J. Dong, X. Ye, Y. Li, Y. Ma, L. Qi, *Small*, **2016**, 12, 1469–1478.
- [31] W. Wang, L. Qi, Adv. Funct. Mater., 2019, 29, 1807275–1807303.
- [32] X. Chen, J. Ye, S. Ouyang, T. Kako, Z. Li, Z. Zou, ACS Nano, 2011, 5, 4310–4318.
- [33] S. Berglund, A. Rettie, S. Hoang, C. Mullins, *Phys. Chem. Chem. Phys.*, 2012, 14, 7065–7075.
- [34] X. Zhang, X. Wang, X. Yi, L. Liu, J. Ye, D. Wang, ACS Appl. Energy Mater., 2020, 3, 3569–3576.
- [35] K. Yuan, Q. Cao, X. Li, H.-Y. Chen, Y. Deng, Y.-Y. Wang, W. Luo, H.-L. Lu, D. Zhang, *Nano Energy*, 2017, 41, 543–551.
- [36] X. Qiao, Y. Xu, K. Yang, J. Ma, C. Li, H. Wang, L. Jia, *Chem. Eng. J.*, **2020**, 395, 125144– 125151.
- [37] W. Zhang, J. Ma, L. Xiong, H.-Y. Jiang, J. Tang, ACS Appl. Energy Mater., 2020, 3, 5927–5936.
- [38] H. Tan, F. Abdi, Y. Ng, Chem. Soc. Rev., 2019, 48, 1255–1271.
- [39] S. Kalanur, I.-H. Yoo, J. Park, H. Seo, J. Mater. Chem. A, 2017, 5, 1455–1461.
- [40] B. Jin, E. Jung, M. Ma, S. Kim, K. Zhang, J. Kim, Y. Son, J. Park, *J. Mater. Chem. A*, 2018, 6, 2585–2592.
- [41] L. Cai, J. Zhao, H. Li, J. Park, I. S. Cho, H. S. Han, X. Zheng, ACS Energy Lett.,
 2016, 1, 624–632

- B. Jin, E. Jung, M. Ma, S. Kim, K. Zhang, J. Kim, Y. Son, J. Park, J. Mater. Chem. A, 2018, 6, 2585–2592.
- [42] W. D. Chemelewski, J. R. Rosenstock, C. B. Mullins, *J. Mater. Chem. A*, 2014, 2, 14957–14962.
- [43] S. Wang, T. He, J.-H. Yun, Y. Hu, M. Xiao, A. Du, L. Wang, Adv. Funct. Mater., 2018, 28, 1802685–1802694.
- [44] M. Shaddad, P. Arunachalam, J. Labis, M. Hezam, A. Al-Mayouf, *Appl. Catal. B Environ.*, 2019, 244, 863–870.
- [45] S. Zhou, K. Chen, J. Huang, L. Wang, M. Zhang, B. Bai, H. Liu, Q. Wang, *Appl. Catal. B Environ.*, **2020**, 266, 118513–118522.

Graphical abstract

Conformal BiVO₄/WO₃ nanobowl array photoanode for efficient photoelectrochemical water splitting

Wen Zhang, Meng Tian, Haimiao Jiao, Hai-Ying Jiang* and Junwang Tang*

Northwest University; University College London,

Together with the BiVO₄/WO₃ NB heterojunction and the deposition of NiOOH/FeOOH cocatalysts, the optimal OEC/BiVO₄/WO₃NB photoanode shows a markable improvement in photocurrent (\sim 3.05 mA cm⁻²) and nearly 100% faradaic efficiency for H₂ and O₂ production.