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Abstract—Fluid antenna has emerged as a new antenna tech-
nology that enables software-controllable position reconfigurabil-
ity for great diversity and multiplexing benefits. The performance
of fluid antenna systems has recently been studied for single and
multiuser environments adopting a generalized spatial correlation
model that accounts for the channel correlation between the ports
of the fluid antenna. The recent work [1] further devised machine
learning algorithms to select the best port of fluid antenna in a
more practical setting in which only a small number of ports is
observable in the selection process, and found that extraordinary
outage probability performance can be obtained. However, there
is a concern of how the spatial correlation parameters are set to
reflect the actual correlation structure for accurately evaluating
the system performance. In this paper, the method in [2] is used
to set the correlation parameter so that the model can accurately
characterize the correlation amongst the ports of a fluid antenna
in a given space. This paper revisits the port selection problem for
single-user fluid antenna system where learning-based algorithms
are employed to select the best port when only a small subset of
the channel ports are known. The new results demonstrate that
the impact of spatial correlation on the performance becomes
more pronounced but the machine learning aided fluid antenna
system is still able to match the performance of maximum ratio
combining (MRC) system with many uncorrelated antennas.

Index Terms—Fluid antenna, Machine learning, Port selection,
Selection combining, Spatial correlation, Outage probability.

I. INTRODUCTION

W IRELESS communications has continued to advance at
a rapid rate and 5G (the fifth generation) is the latest

edition to impact on how we live and work, and to create new
opportunities for people, businesses and society. Regardless of
how mobile communications technologies have evolved, it has
always been to enhance reliability and the network capacity.
The former concerns the receiver’s ability to decode fast data
in the presence of noise and fading whereas the latter demands
the network to accommodate as many users as possible on the
same radio channel. Numerous diversity techniques have been
developed in recent years to achieve these goals.

Space diversity, which takes advantage of the independency
of the channels at distributed antennas, is particularly effective
for slow fading channels in which channel coding relying on
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time diversity fails to work. Switching combining (SC) and
maximum ratio combining (MRC) are two of the most popular
diversity schemes that have demonstrated promising reception
performance when multiple antennas can be used. Evidently,
multiple antenna technologies have now become dominated by
multiple-input multiple-output (MIMO) systems.

In 5G, the number of antennas at a base station (BS) has
been increased to 64 antennas to realize the massive version
of MIMO but the same increase in the number of antennas at
a mobile device, or user equipment (UE), is not seen. This is
hardly surprising because the space in a UE is limited. While
there is a tendency to move up the frequency bands for more
bandwidth and smaller sized antennas, it helps little in fitting
many antennas at the UE since the rule of thumb is to require
the antenna spacing to be at least 0.5λ with λ the wavelength
of communication. This rule comes about to ensure sufficient
channel diversity and avoid any issue due to mutual coupling.

To overcome the ‘half-λ’ limitation, one emerging technol-
ogy of great interest is fluid antenna [3], [4]. Fluid antenna rep-
resents any radiating structure based on software-controllable
fluidic, conductive or dielectric element that can change their
shape, size and position to reconfigure the polarization, oper-
ating frequency, radiation pattern, and other characteristics for
radio communications. It also include designs which involve
no fluidic materials (e.g., switchable pixels instead) if they can
emulate the agility. The term ‘fluid antenna’ first appeared in
[5] where water and chemicals were investigated as potential
materials for an antenna using both computer simulations and
experiments. Nonetheless, using liquid structures to design an
antenna can be traced back to as early as 2004 when mercury
was adopted [6]. In 2016, Mitsubishi Electric made headlines
for the world’s first seawater antenna that shoots a column of
seawater to create a plume as an antenna achieving a radiation
efficiency of 70% [7]. Such high-profile success provides a
strong endorsement for fluid-like antenna from the industry.

Another famous example worth mentioning is the advanced
saltwater-based antenna system developed by a research group
from Nanjing University of Aeronautics and Astronautics in
China that illustrated 360-degree beam-steering for frequencies
between 334 to 488MHz [8], [9]. Many reconfigurable fluid
antennas have at the same time been developed in recent years



[10]–[15]. On the other hand, reconfigurable pixels using RF
MEMS switches have also emerged that could enable delay-
free reconfigurability of fluid antenna [16]–[20]. An up-to-date
review on liquid-based antennas can be found in [21].

Following the advances in fluid antenna technologies, Wong
et al. conducted several performance analysis for single [22],
[23] and multiuser communication systems [24], [25] employ-
ing fluid antennas. In particular, the studies hypothesized the
scenarios in which a UE (or all the UEs in the multiuser case)
is equipped with a single RF-chain fluid antenna which has
the ability to switch its position (referred to as ‘port’) instantly
for maximizing the received signal-to-noise ratio (SNR) or the
signal-to-interference ratio (SIR) for multiple access. Results
in [22]–[25] indicated that extraordinary diversity and multi-
plexing gains can be obtained if the number of ports, N , is
large. Such impressive performance is supported by the recent
surface-wave based fluid antenna design which makes possible
a very high-resolution fluid antenna in practice [26].

While the work in [26] suggests that a large-N fluid antenna
may be practically feasible, the practicality of fluid antenna is
also subjected to whether it is possible to estimate that large
number of channel envelopes for port selection. This problem
was addressed in [1] by considering the setting where only a
small subset of the ports are observed before port selection.
It is worth pointing out that the port selection problem differs
from the traditional SC problem in that it involves a very large
number of ports for selection based on limited observations,
and strong channel correlation due to high density of the ports.
A combination of machine learning methods including Smart,
‘Predict and Optimize’ (SPO) [27] was proposed. The results
in [1] illustrated that the machine learning aided fluid antenna
system can match or even outperform multi-antenna SC and
MRC systems with many uncorrelated antennas.

Recently in [2], nevertheless, it was reported that the way
the spatial correlation among the ports was modelled in [1],
[22]–[24] might underestimate the impact of the size of fluid
antenna and could overestimate the achievable performance
when the size is small. Though the promising performance of
fluid antenna systems was then confirmed using an improved
spatial correlation model in [2], whether the machine learning
assisted fluid antenna system would perform well, remains a
mystery. This prompts us to assess the machine learning based
algorithms in [1] using the spatial correlation model in [2]. As
a summary of the results, we will show that SPO remains the
best approach for port selection. In addition, the performance
of a λ

2 -sized fluid antenna does show an obvious degradation
although it can still exceed the performance of 3-antenna MRC
and 6-antenna SC systems. By contrast, for 2λ and 5λ sized
fluid antennas, they seem to have no performance drop.

II. FLUID ANTENNA SYSTEM

A. System Model

In this paper, as in [1], we consider a single-user point-to-
point system where the transmitter uses a standard antenna to
transmit information to a UE equipped with a fluid antenna of
size Wλ where W is the normalized antenna size. The fluid

antenna has N ports, spreading evenly over its size, and is as-
sumed to switch to the best port instantly for communications.
For flat fading channels, the received signal at the k-th port
(with time index omitted) is given by

zk = gks+ ηk, (1)

where gk represents the complex channel at the k-th port, ηk is
the zero-mean complex Gaussian noise at the k-th port with
variance of σ2

η , and s denotes the information symbol. The
received average SNR at each port can be written as

Γ = σ2 E[|s|2]

σ2
η

≡ σ2Θ, (2)

where Θ , E[|s|2]
σ2
η

and σ2 = E[|gk|2].

B. Spatial Correlation Model

The complex channels {gk} at the ports are spatially corre-
lated and can be very strongly correlated because the ports can
be arbitrarily close to each other when the density is high or we
have a large N and small W . To characterize the correlation,
in [1], [22]–[24], the first port is used as a reference as far as
spatial correlation is concerned. The displacement of the k-th
port from the first port can be found as

dk =

(
k − 1

N − 1

)
Wλ, for k = 1, 2, . . . , N. (3)

Like the previous papers, we assume that the amplitude of the
channel at each port, |gk|, is Rayleigh distributed. With 2-D
isotropic scattering and assuming isotropic ports, the cross-
correlation function of the channel ports satisfies [28]

φgkg`(dk − d`) =
σ2

2
J0

(
2π(k − `)
N − 1

W

)
, (4)

where J0(·) is the zero-order Bessel function of the first kind.
With the correlation structure (4) in mind, [1], [22]–[24]

model the channels at the N antenna ports by the parametric
generalized spatial correlation model

g1 = σx0 + jσy0

gk = σ

(√
1− µ2

kxk + µkx0

)
+ jσ

(√
1− µ2

kyk + µky0

)
, k = 2, . . . , N,

(5)

in which x0, . . . , xN , y0, . . . , yN are all independent Gaussian
random variables with zero mean and variance of 1/2, and
{µk} are the cross-correlation parameters that characterize the
correlation of the k-th port with respect to (w.r.t.) the reference
port (i.e., the first port). Also, it was proposed to set

µk = J0

(
2π(k − 1)

N − 1
W

)
, for k = 2, . . . , N. (6)

However, the limitation of (5) and (6) is that the first port
becomes the only reference point to measure spatial correlation
and if two ports are weakly correlated with the first port, then
it will imply that these two ports are also weakly correlated to



each other. For this reason, the above-mentioned model tends
to overestimate the diversity achievable by the ports away from
the first port. Additionally, if the spatial correlation between
two ports in a linear structure is to be characterized properly,
we should ensure the correlation parameters such that

µkµ` = J0

(
2π(k − `)
N − 1

W

)
, for any k, `. (7)

It is clear that the condition (6) is unable to achieve (7) which
reveals the weakness of the model used in [1], [22]–[24].

To address this, [2] proposes to remove the first port in (5)
and set µk = µ ∀k so that

gk = σ
(√

1− µ2xk + µx0

)
+ jσ

(√
1− µ2yk + µy0

)
, k = 1, . . . , N. (8)

In particular, it was proposed to choose

µ =
√

2

√
1F2

(
1

2
; 1,

3

2
;−π2W 2

)
− J1(2πW )

2πW
. (9)

In so doing, all the ports are tied together via µ and the spatial
correlation between any two ports is modelled. Hence, every
port is a reference port to any other port. Furthermore, (9) is
aimed to mould the model (8) to achieve the same average
correlation coefficient of what the condition (7) requires. In
this paper, we use (8) and (9) to model the channels.

C. Port Selection
To achieve the best performance of fluid antenna, one needs

to select the best port out of the N available ports. For single-
user systems, the aim is to find the port that maximizes the
received SNR, i.e.,

kopt = argk max {|g1|, |g2|, . . . , |gN |} , (10)

where kopt gives the index of the optimal port. If the receiver
has access to the knowledge of all the channels, {|gk|}, then
the selection will be straightforward. The challenge, however,
is that N can be very large, which makes it infeasible to have
the full knowledge of {|gk|}. A more practical setting is that
only a small subset of the ports are known for port selection.
As a consequence, the problem (10) becomes (see Fig. 1)

k∗ = argk max {{|gk|}k∈K, {|g̃k|}k∈U} , (11)

where K denotes the set of the indices of known channel gains,
U is the set of the indices of unknown channel gains, and g̃k
represents an estimated channel at the k-th port if it has been
inferred or estimated by some means. In [1], several machine
learning based methods were developed to solve the problem
(11), which has shown promising performance. The objective
of this paper is to re-evaluate those port selection algorithms
but when the channels are modelled using (8) and (9).

III. PORT SELECTION ALGORITHMS

The algorithms we consider are those presented in [1]. Note
that the analytical approximation is no longer possible because
the first port in (5) is removed. In this section, we outline the
algorithms but refer the readers to [1] for more details.

A. Long Short-Term Memory (LSTM)

One method to tackle (11) is to construct an estimate of |g`|
for all ` ∈ U given the known channels {|gk|}k∈K. To learn
and exploit the correlation structure between the ports for the
estimation of {|g`|}`∈U , LSTM machine learning models can
be useful. In particular, LSTM can treat the channels over the
ports in space as a time series and supervised learning can be
employed to train the LSTM model to estimate the unknown
ports so that port selection can be performed. The parameters
of the LSTM model we use can be found in [1, TABLE II].

B. SPO

In [1], SPO was proposed to solve (11). The advantage of
SPO is that it puts the emphasis on obtaining the best estimate
of the port selection, rather than the estimates of the unknown
ports. The SPO approach was originally proposed in [27] and
designed to perform estimation (or prediction) with emphasis
on the outcome of the final optimization. In what follows, the
port selection problem can be cast as

Lspo(g̃, g) = gTω∗(g̃)− z∗(g), (12)

in which g , [|g1| · · · |gN |]T , g̃ , [|g̃1| · · · |g̃N |]T , and the
superscript T denotes the transpose of a vector,

ω∗(g) = arg max
x∈X

gTx, (13)

where X is the set of all possible N -dimensional vectors that
have zeros in all dimensions except one being unity, and

z∗(g) = max
x∈X

gTx. (14)

The first term in (12) returns the channel gain of the estimated
port and the second term obtains the channel gain of the best
port. In addition, as long as ω∗(g̃) outputs the correct port, it
produces the true optimal solution even if some estimates of
the channels deviate greatly from the true values.

To overcome the difficulty of minimizing (12), the following
approximation of Lspo(g̃, g) is considered [27]:

Lspo+(g̃, g) = (gT − 2g̃T )ω∗(gT − 2g̃T )

+ 2g̃Tω∗(g)− gTω∗(g), (15)

in which g̃ = Ba and a is the feature vector containing the
channel gains of all the known ports, and B is an N×|K| linear
mapping matrix. The minimization (15) is still challenging as
ω∗(·) involves maximization over a discrete set. To tackle this,
it is possible to replace the feasible set X by its convex hull
without changing the optimal value of (13) and write [29]

ω∗(g) = arg max
x∈conv(X )

gTx. (16)

With (16), (15) can be minimized using a subgradient method,
with the subgradient of (15) derived as

s(g̃, g) = 2 [ω∗(g)− ω∗(2g̃ − g)] . (17)



Fig. 1. Port selection for a fluid antenna system.

Overall, the port selection solution can be obtained by ω∗(Ba)
after B is found by

min
B∈RN×|K|

Q∑
i=1

Lspo+(Ba(i), g(i)), (18)

where Q is the batch size or the number of training examples in
the dataset, a(i) denotes the feature vector of the i-th sample,
and g(i) is i-th labelled sample. A stochastic gradient descent
algorithm for updating B is obtained in [1, Algorithm 1].

C. SPO+LSTM

LSTM and SPO can be combined to solve (11), which we
refer to it as SPO+LSTM in the results section. Given a dataset
of Q labelled examples, we divide it into two datasets, half
for training and half for testing SPO. The output for testing
of SPO presents a crucial feature set that will be used to train
and test LSTM in a concatenated manner. In particular, in our
simulation results, two-third of the feature set will be used to
train LSTM while the rest is used to test it.

D. Complexity Analysis

In terms of the complexity of the algorithms, it should be
noted that the more the training samples, the higher the accu-
racy and hence the better the outage probability performance.
The complexity of different algorithms has been examined in
[1]. Furthermore, note that the machine learning methods are
used to exploit the correlation structure of the channels over
the ports and if the correlation structure somehow changes, the
resulting machine learning models may become ineffective and
retraining will be required. That said, the correlation structure

normally does not change as the geometry of the fluid antenna
remains fixed in the entire time. The statistical distribution of
the fading envelope however may change depending upon the
environment and the richness of scatterers.

IV. SIMULATION RESULTS

A. Setup

In this section, simulation results are provided to evaluate
the proposed port selection algorithms against several known
benchmarks. All the wireless channels in the simulations are
assumed to follow Rayleigh distributed and the fluid antenna
has a linear structure with their spatial correlation between the
ports modelled as (8). Moreover, the known ports in K were
evenly spread over the space of Wλ. We assume that the ports
are numbered from 1 to N from one end of the fluid antenna
to another end. In the simulations, we considered N = 50.
Therefore, if |K| = 1, then the 25th port will be chosen as the
known port. For |K| = 5, the 1st, 12th, 25th, 38th and 50th

ports will be the known ports. Below we further list the port
numbers when |K| = 10 and |K| = 15:
• 1, 6, 12, 17, 23, 28, 34, 39, 45, 50;
• 1, 4, 8, 11, 15, 18, 22, 25, 29, 33, 36, 40, 43, 47, 50.

We use ‘Reference’ to represent the system that chooses the
best port out of the known ports for communications. It should
be noted that this is not the same as the SC system with the
number of uncorrelated antennas same as the number of known
ports, due to the correlation between the known ports. For this
reason, SC is anticipated to perform slightly better than the
‘Reference’ system. The other benchmarks we consider in the
simulations are SC and MRC with uncorrelated antennas.



B. Results and Discussion

We provide the outage probability results for the proposed
algorithms in Figs. 2–4 for W = 0.5, 2 and 5, respectively. A
target SNR of 10 and the average SNR Γ = 15 were assumed.
The proposed methods, SPO, LSTM as well as SPO+LSTM,
are compared with the benchmarks. The results show that the
proposed machine learning methods do work as they can bring
down the outage probability, lower than the ‘Reference’ system
for a given number of known ports (i.e., observed ports). If
we compare these results with that in [1], however, the results
considering the new model (8) are less impressive than that in
[1] although the performance difference is insignificant when
W is large. This means that (8) is more effective in considering
the limitation due to strong spatial correlation for small W .
That said, when W = 0.5, the proposed methods are still able
to match the performance of many antennas. In particular, the
results indicate that SPO performs the best in all the cases. For
W = 0.5, if |K| = 5 (i.e., 10% of the ports are known), then
SPO can outperform 2-antenna MRC. If |K| = 15, SPO even
beats 3-antenna MRC and 6-antenna SC. One clear difference
in the new results is that both LSTM and SPO+LSTM do not
seem to work well as they do not offer noticeable performance
gain over ‘Reference’, and only SPO works. When W is large,
i.e., W = 2, 5, the results using the new model (8) look similar
to those in [1]. In these cases, SPO is still the best but the
intelligence of LSTM and SPO+LSTM begins to appear if the
number of observed ports increases. Furthermore, if both W
and |K| are large, then the machine learning based methods
are particularly effective and their performance gains become
more apparent. The results further demonstrate that SPO can
match or exceed 6-antenna MRC if |K| = 15 and W = 2, 5.

Fig. 2. Outage probability results when W = 0.5 and N = 50.

V. CONCLUSION

This paper revisited the port selection problem for single-
user fluid antenna systems where only the channels for a subset

Fig. 3. Outage probability results when W = 2 and N = 50.

Fig. 4. Outage probability results when W = 5 and N = 50.

of ports are known, and an improved spatial correlation model
was used to characterize the correlation between the ports. Our
contributions are the new results that confirm the performance
of the proposed learning based methods for port selection. The
results have demonstrated that significant reduction in outage
probability can be achieved even if very few ports of the fluid
antenna system are known. Moreover, SPO for port selection
can match or even exceed the SC and MRC systems with many
uncorrelated antennas, suggesting strongly that fluid antenna
utilize the space effectively under practical conditions.
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