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This review considers computational psychiatry from a particular viewpoint: namely, a commitment to explaining psychopathology
in terms of pathophysiology. It rests on the notion of a generative model as underwriting (i) sentient processing in the brain, and (ii)
the scientific process in psychiatry. The story starts with a view of the brain—from cognitive and computational neuroscience—as
an organ of inference and prediction. This offers a formal description of neuronal message passing, distributed processing and
belief propagation in neuronal networks; and how certain kinds of dysconnection lead to aberrant belief updating and false
inference. The dysconnections in question can be read as a pernicious synaptopathy that fits comfortably with formal notions of
how we—or our brains—encode uncertainty or its complement, precision. It then considers how the ensuing process theories are
tested empirically, with an emphasis on the computational modelling of neuronal circuits and synaptic gain control that mediates
attentional set, active inference, learning and planning. The opportunities afforded by this sort of modelling are considered in light
of in silico experiments; namely, computational neuropsychology, computational phenotyping and the promises of a
computational nosology for psychiatry. The resulting survey of computational approaches is not scholarly or exhaustive. Rather, its
aim is to review a theoretical narrative that is emerging across subdisciplines within psychiatry and empirical scales of investigation.
These range from epilepsy research to neurodegenerative disorders; from post-traumatic stress disorder to the management of
chronic pain, from schizophrenia to functional medical symptoms.
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INTRODUCTION
The inception of computational psychiatry—a decade ago—
reflected a consensus that a formal, crisp and clear approach to
psychiatry could be furnished by computational advances in data
modelling, neuroscience and machine learning [1–5]. There are
now annual workshops in computational psychiatry and an
eponymous journal. However, introducing computational psychia-
try was a risky move: most editors know that that pre-pending any
journal title with “Computational” is likely to drop its impact factor
by at least one point. So, has computational psychiatry delivered?
And where is it going?
Thirty years ago, state-of-the-art computational techniques

meant the application of factor analysis to discern patterns of
symptoms and signs and schizophrenia—e.g. [6]—or, at least for
me, the use of canonical correlation analysis to describe patterns
of cerebral blood flow in brain imaging [7]. Nowadays, things are
very different. I spend my time discussing the finer details of
modelling synaptic efficacy with researchers, whose expertise
spans magnetoencephalography, functional genomics, optoge-
netics and cell cultures. I sit there—pretending to know all the
acronyms—and marvel at how a common, computational,
narrative can bring molecular biologists and clinical neuroscien-
tists to the same table. This review considers some of the
foundational tenets of this narrative, illustrating the ‘work in
progress’ with a few select examples.
Our focus will be on computational ideas and procedures that

have endured, sometimes for centuries, and are currently [re]
emerging across theoretical neurobiology. This limits us to a

theory or hypothesis-led approaches, where hypotheses are
articulated as a generative model, for which empirical evidence
can be sought. This demarcates computational approaches with
‘strong’ explanatory power from ‘weak’, descriptive or theory-free
approaches. Many ‘weak’ approaches have come and gone,
leaving an underwhelming legacy. Examples of weak approaches
include behaviourism [8]; namely, a description of behaviour that
is reinforced by an outcome that is defined (tautologically) by its
ability to reinforce behavior [Clearly, behaviourism is not theory
free. I am using ‘behaviourism’ here as a euphemism for simply
collecting and summarising dependencies in observable beha-
viour (e.g., with an autoregression or Rescorla-Wagner model)].
Strong alternatives rest upon the explanatory power of active
inference and learning [9], that emphasise beliefs, uncertainty,
preferences and curiosity [10–14]. In imaging neuroscience a weak
example would be correlation patterns in functional magnetic
resonance imaging (fMRI) or electrophysiology, a.k.a., functional
connectivity [15]; where its strong counterpart would be the
directed connectivity in neuronal circuits that cause the correla-
tions, a.k.a., effective connectivity [16–22]. In the data sciences,
weak computational approaches rest on ‘big data’ and machine
(e.g., deep) learning procedures that preclude generative or world
models and, as a consequence, any mechanistic interpretability or
explainability [20, 23, 24]. The strong complement, in machine
learning, rests on generative modelling; e.g., generative adversar-
ial networks and automatic variational inference [25–27]. [The
bright line between strong (hypothesis-led) and weak (data-led)
approaches is, of course, fragile. For example, weak approaches
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are necessary to furnish evidence for strong approaches (e.g.,
genome-wide association studies GWAS that point to particular
synaptopathies), while hypotheses are necessary to make the best
sense of data (e.g., enrichment analysis in prioritizing variants from
GWAS)].
The common theme that distinguishes weak from strong

approaches is reference to a generative model: namely, a
hypothesis about causal mechanisms, specified formally as a joint
probability distribution over some (unobservable, latent or
hidden) causes and their (observable, measurable) consequences.
What follows is, at every level, undergirded by a generative model
that places (strong) computational psychiatry—and perhaps our
own sentience—firmly in the realm of mechanistic, evidenced-
based science; in the sense, that one can compare the evidence
for one generative model, relative to another.

OVERVIEW
The first section sets the scene for a mechanistic formulation of
psychopathology under current ideas about the brain as an organ
of inference, prediction and planning. These ideas can be
articulated in terms of the computational processes that
accompany belief updating in the Bayesian brain [28–32]. The
second section turns to psychopathology—and the underlying
pathophysiology—by asking how aberrant belief updating and
predictive processing might manifest? In brief, the conclusion is
that many psychiatric and neurological disorders can be framed in
terms of a synaptopathy that confounds the encoding of
uncertainty or precision in a (Bayesian) brain [33–35].
The third section considers the imperatives for computational

modelling of empirical data that inherit from the previous sections.
This leads to a discussion of how to assess the modulation of
synaptic efficacy in terms of changes in effective connectivity, with
an emphasis on dynamic causal modelling in psychiatry [20, 36, 37].
The final sections deal with computational phenotyping; namely,
using computational or in silico models of belief updating—and
psychophysical or behavioural concomitants—to explain the
responses of a given subject. They briefly consider computational
nosology, by asking if there is a generative model of pathophysiol-
ogy and psychopathology that can be used to best explain the
trajectories of individual patients using high-density longitudinal
data. Finally, the opportunity afforded by a formal and mechanistic
understanding of functional brain architectures is exemplified by
computational neuropsychology; namely, performing in silico lesion
or pharmacological experiments.

THE BAYESIAN BRAIN, PRECISION ENGINEERING AND ACTIVE
INFERENCE
The narrative starts with the simple premise that if psychology—
read as belief updating in the brain—can be cast as a
computational process of inference, it follows that psychopathol-
ogy just is false inference. False inference is meant in the usual
sense of false positives (i.e., type I errors); namely, inferring
something is there when it is not. Cardinal examples here include
hallucinations, delusions and other features of reality distortion
seen in psychosis. False negatives (i.e., type II errors) mean
inferring something is not there when it is; for example,
dissociative disorders, neglect syndromes, derealisation phenom-
ena, et cetera. Indeed, when one thinks about psychiatric and
neurological disorders, most can be framed as false inference:
ranging from dysmorphophobia in eating disorders, through to
delusional systems in paranoid schizophrenia; from phobias
through to Parkinson’s disease. It may seem odd to include
Parkinson’s disease; however, the pathognomonic bradykinesia—
and failure to initiate movement—can, on one reading, be seen as
a failure to realise motor planning as inference (see below). So,
what licences the assumption that psychology is inference?

[Clearly, asserting that all of psychopathology is ‘false inference’
requires some qualification. The basic argument—that licences
this assertion—is that any symptom (or sign) of psychopathology
must, at some level, entail aberrant belief updating. The kind of
beliefs here are Bayesian beliefs; namely, subpersonal or proposi-
tional representations that possess the attribute of uncertainty,
and are conditional in a well-specified sense. Under this reading of
beliefs, sentient behaviour—and beliefs about that behaviour—
can then be cast as inference (e.g., perceptual inference, planning
as inference, attribution of agency, emotional recognition, et
cetera). Reducing everything to inference then provides a
mechanics to understand neuronal dynamics and development,
in terms of belief updating and the requisite message in the
brain].
The foundations of this account of sentient behaviour can be

traced back to the days of Plato and were most clearly articulated
in the 19th-century by Helmholtz as unconscious inference
[38, 39]—ideas that are reminiscent of Kantian philosophy. These
ideas endured through the 20th-century in several flavours; for
example, analysis by synthesis [40, 41], epistemological automata
[42], perception as hypothesis testing [43, 44] and, in machine
learning, the Helmholtz machine [45]. The inference narrative
supervened at the turn of the century, with a resurgence of
interest in enactivist approaches [46–51] that now predominate in
the cognitive and systems neurosciences, in the form of things like
predictive processing and active inference [52–60].
Active inference can be read as an enactive version of the

Bayesian brain hypothesis [61, 62] that subsumes sentience
(perceptual inference) and behaviour by treating control and
planning as inference [28–31]. So, what is inference? In this setting,
inference just refers to a process that maximises the evidence for
some (generative) model or hypothesis about the causes of
(sensory) data. Model evidence is also known as marginal likelihood;
namely, the likelihood of some data, under a model of how those
data were generated. Maximising the evidence for our own
generative model is sometimes called self-evidencing [63]. In brief,
active inference casts the brain as a fantastic organ: a generator of
fantasies, hypotheses and predictions that are tested against
sensory evidence. One might ask how this account of sentient
behaviour speaks to neuroanatomy, and the functional architec-
tures implied by neurophysiology.
The answer is relatively straightforward. Given a generative

model, there are well described belief updating or propagation
schemes that specify the requisite message passing that must, in
some form, be implemented by neuronal networks. For generative
models based upon continuous states of the world, these schemes
are known as Bayesian filters or predictive coding [56, 64–67]. In
generative models of discrete states (e.g., “I am in the kitchen”, as
opposed to “I am at these continuous GPS coordinates”) the
message passing schemes are variously known as belief propaga-
tion or variational message passing [68–71]. All of these schemes
can be cast as a gradient ascent on model evidence or marginal
likelihood [72]. In short, neuronal dynamics just are a process of
inference. See Fig. 1 for a schematic description of predictive
coding.
Crucially, the gradients that subtend neuronal dynamics—and

consequent belief updating—can always be formulated as a
prediction error [This may sound like a sweeping statement;
however, any random dynamical system (including neuronal
dynamics) can be cast as a gradient flow, where the gradients can
always be expressed as a difference in log probabilities, which can
be read as prediction errors of one kind or another] [70]. In other
words, the divergence between predictions of sensory input and
the observed sensations. In predictive coding schemes, it is thought
that prediction errors are represented explicitly: e.g., by superficial
pyramidal cells in the upper layers of the cortex [66, 73–76].
This leads to a picture of hierarchical inference in the brain as

the reciprocal message passing between the levels of a cortical
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hierarchy; in which prediction errors ascend from lower to higher
levels to drive changes in neuronal populations encoding states of
affairs in the world. These populations (e.g., deep pyramidal cells
in lower layers of the cortex) then supply a counter stream of
descending predictions that resolve or cancel prediction errors at
lower levels [66, 75, 77]: e.g., by targeting inhibitory interneurons
that are coupled to the superficial pyramidal cells broadcasting
prediction errors [78, 79]. This architecture also plays out under
discrete generative models and has become something of a
workhorse for understanding recurrent message passing in
cortical and subcortical hierarchies.

THE IMPORTANCE OF BEING PRECISE
Prediction errors (i.e., the gradients that drive belief updating) can
be regarded as carrying the newsworthy information at any given
hierarchical level to the level above. However, this is not the
complete story. Higher levels have to select which prediction
errors to listen to; much in the same way that we select our most
trustworthy news channels or sources of information. This
selection rests upon predictions of predictability or precision.
Predicting or estimating precision is a universal requisite for
making sense of data: from estimating the signal-to-noise ratio in
some sensory apparatus, through to estimating standard error
when making inferences via some Neyman-Pearson statistic.
Affording certain prediction errors greater precision increases
their influence on belief updating and has all the hallmarks of
attentional selection [80–85]. Physiologically, this simply entails an
increase in the excitability or postsynaptic gain of neuronal
populations broadcasting prediction errors. On this view, there is

an intimate relationship between attention and the modulation of
synaptic efficacy by classical neuromodulators and nonlinear
postsynaptic responses responsible for mediating the exchange
between fast-spiking inhibitory interneurons and (superficial)
pyramidal cells [78, 79, 81, 86–91]. Please see Table 1 and [92]
for a fuller discussion of neuromodulators and the representation
of precision. Figures 2, 3 illustrate the neuronal circuitry implicated
in precision or gain control, with a focus on canonical microcircuits
and inhibitory interneurons, respectively.
One crucial aspect of this precision engineering is that it

underwrites our ability to filter out—or ignore—certain prediction
errors when they are deemed imprecise. A key example is the
attenuation of sensory prediction errors that report the con-
sequences of movement [93–98]. If we could not ignore the
proprioceptive and somatosensory afferents—supplying evidence
that we are not moving—then any beliefs about intended or
predicted movement would be revised immediately, and we
would not be able to initiate movement. This mandates a transient
suspension of sensory precision during active sensing: c.f.,
saccadic suppression of optic flow signals during saccadic eye
movements [99]. It also provides a glimpse of how one might
explain Parkinson’s disease in terms of dopaminergic failures of
sensory attenuation [100]. More generally, it foregrounds the role
of precision in orchestrating the perception action cycles [101]
that underwrite active sensing [102]. For example, sensory
attenuation suggests a particular scheduling of action and
perception: although both work hand-in-hand to resolve predic-
tion errors, this resolution may involve a fast (~4 Hz) alternation
between sampling the world (e.g., visual palpation with saccades)
and belief updating after each sample.

Fig. 1 This figure summarizes hierarchical message passing in predictive coding. Predictive coding is a scheme for generative models
based upon continuous states. In these schemes, neuronal activity encodes expectations about the causes of sensory input that are
continually updated to minimize prediction error. Prediction error is the difference between (ascending) sensory input and (descending)
predictions of that input. This minimization rests upon recurrent neuronal interactions among different levels of a cortical hierarchy. It is
thought that superficial pyramidal cells (red triangles) compare the expectations (at each hierarchical level) with top-down predictions from
deep pyramidal cells (black triangles) of higher levels: see [66] for a review. Left panel: this schematic shows a simple cortical hierarchy with
ascending prediction errors and descending predictions. It includes neuromodulatory gating or gain control (teal) of superficial pyramidal
cells that determines their relative influence on deep pyramidal cells encoding expectations. Right panel: this provides a schematic example in
the visual system: it shows the putative cells of origin of ascending or forward connections that convey prediction errors (red arrows) and
descending or backward connections (black arrows) that furnish predictions. The prediction errors are weighted by their expected precision,
which have been associated with projections from the pulvinar. In this example, the frontal eye fields send predictions to primary visual
cortex, which projects to the lateral geniculate body. However, the frontal eye fields also send proprioceptive predictions to pontine nuclei,
which are passed to the oculomotor system to induce movement, through classical oculomotor reflexes. This means that saccadic eye
movements, for example, realise top-down proprioceptive predictions that are deeply informed by hierarchical processing of data from all
sensory modalities. Similar schemes can be elaborated for discrete state space generative models, responsible for planning and motor control
—or allostasis and autonomic function: see [54] for equivalent schematics and [70] for mixtures of continuous and discrete models.
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In summary, the narrative so far is that psychopathology
represents false inference or aberrant belief updating, under a
view of the brain as a statistical organ, generating predictions and
revising its (subpersonal Bayesian) beliefs on the basis of
prediction errors. Crucially, these predictions are contextualised
with predictions of precision or predictability that instantiate
attentional or intentional set; allowing the selection of attenuation
of prediction errors via a process of precision weighting. This
precision weighting is nothing more than modulating the gain,
postsynaptic sensitivity or excitability of appropriate neuronal
populations. So, what does this computational architecture offer in
terms of potential targets for pathology?

SYNAPTOPATHY, DYSCONNECTIONS AND FALSE INFERENCE
The narrative returns here to the 19th-century and early formula-
tions of psychiatric disorders such as dementia praecox and
schizophrenia. A common theme of these formulations is a
disintegration or disruption of neuronal processing. From the
perspective of the current narrative, these formulations came in two
flavours. First, Wernicke’s sejunction hypothesis [103] emphasised

disruption to the organs of connection (i.e., white matter tracts in
the brain), positing a form of disconnection syndrome [104]. A
complementary perspective was provided by Bleuler’s notion of
disintegration of the psyche [105], cast in more functional terms
that we might now read as a failure of synaptic integration. These
ideas re-emerged with the advent of functional brain imaging in the
1990s, in the form of disconnection hypotheses, drawing analogies
with things like metachromatic leukodystrophy [106] and the
dysconnection hypothesis [107] that emphasised dysfunctional
synaptic integration; specifically, neuromodulatory failures of
synaptic function [34]. The latter formulation of dysfunctional
connectivity is now arguably the prevalent view for most psychiatric
and neurodegenerative conditions, while variants of the sejunction
hypothesis would be apt for cerebrovascular accidents, space
occupying lesions and other interruptions to white-matter fasciculi:
for example, increases in conduction delays due to cerebral small
vessel disease in white matter fasciculi.
In short, one could neatly summarise the pathophysiology of

many psychiatric and neurological conditions in terms of one or
more forms of synaptopathy [108]. Synaptopathy is taken to mean
any failure of synaptic function due to a variety pathological

Fig. 2 Predicting precision. This schematic is a more detailed version of Fig. 1 that includes putative laminar-specific connections that are
consistent with the precision-based predictive coding described in [176]. This architecture is based upon [66] and conforms roughly to the
known neuroanatomy and physiology of canonical microcircuits in the visual system and the laminar specificity of extrinsic connections. The
key aspect of this figure is the inclusion of deep pyramidal cells encoding the amplitude of (squared or unsigned) prediction error that inform
posterior expectations about precision in the (matrix cells) of the pulvinar. These cells reciprocate descending projections to modulate the
gain of superficial pyramidal cells in cortex. Forward connections are in red, and descending (backward) connections are in black. First-order
prediction errors are shown as full red lines and second-order (unsigned) prediction errors are shown as broken red lines. This schematic
ignores inhibitory interneurons that mediate some inferences vicariously. See subsequent figure.

Table 1. The pharmacology of precision. Please see [92] for details.

Neurotransmitter system Functional role Neuroanatomy

Cholinergic Encoding the precision of outcomes given hidden states: (c.f.,
Attention and expected uncertainty [218, 219])

Nucleus basalis of Meynert

Noradrenergic Encoding the precision of state transitions (c.f., Volatility and
unexpected uncertainty [220])

Locus coeruleus

Dopaminergic Encoding the precision of beliefs about policies (c.f. Action selection
[221])

Substantia nigra pars compacta, Ventral
tegmental area
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mechanisms (i.e., formation, structure, metabolism, etc.). For
example, the severe loss of synapse density in human Alzheimer’s
disease, frontotemporal dementia, Parkinson’s disease, Progressive
Supranuclear Palsy, etc. [109].
But what kind of synaptopathy? A coarse-grained overview of the

synaptic theories of schizophrenia suggests that the synaptopathy
in question is of a neuromodulatory sort; implicating classical
neuromodulatory (ascending) neurotransmitter systems [110–113],
GABAergic neurotransmission and NMDA receptors [113–116],
where synchronous interactions between fast spiking inhibitory
interneurons and pyramidal cells may set the excitability of
canonical microcircuits [88, 91, 116–119]. The same story emerges
from the functional genomics of schizophrenia, which point to the
mechanisms that underwrite neuromodulation, synaptic gain
control and ensuing excitation-inhibition balance in neuronal
circuits [120, 121]. For example, a recent genome-wide association
study [122] of 76,755 individuals with schizophrenia highlights the
importance of GRIN2A (which encodes a subunit of the NMDA
receptor), while a recent meta-analysis of whole exomes [123]
emphasises the role of GRIN2A, as well as GRIA3 (which encodes a
subunit of the AMPA receptor). Finally, it is worth noting that nearly
all psychoactive drugs, including psychedelics, target classical
neuromodulatory or NMDA receptors: e.g., [124, 125].
In short, many psychiatric, neurological and neurodegenerative

disorders could be described as arising from pernicious synapto-
pathies that lead to a functional disintegration of neuronal
message passing in cortical and subcortical hierarchies. The
particular synaptopathies in question implicate neuromodulatory
gain control, of the sort required to deploy precision (i.e., selective
attention and sensory attenuation) during inference and planning
in the Bayesian brain.

TOO MUCH OR TOO LITTLE?
This completes the next step in the narrative; namely, the
psychopathology (i.e., false inference) characteristic of psychiatric

disorders may be attributable to aberrant precision control, which
inherits from synaptopathies that confound neuromodulation.
This narrative first emerged in theoretical treatments of halluci-
nosis in synucleinopathies [126–128] and, from a computational
perspective, was developed in schizophrenia [129–133] and
autism research [134–136]. Since that time, it has become difficult
to find a psychiatric condition that has not been considered
through the lens of aberrant precision, in one form or another
[21, 135, 137–161].
A crosscutting theme in many of these accounts is a putative

failure of sensory attenuation [53, 93–95, 98, 100, 159, 162–165]. In
other words, a neuromodulatory failure to attenuate the
postsynaptic gain of neuronal populations reporting the con-
sequence of action (in the motor domain or mediated by
autonomic reflexes). A failure of sensory attenuation implies an
imbalance between the precision afforded sensory prediction
errors and the precision of prediction errors deeper in neuronal
hierarchies that mediate or maintain prior beliefs of a subpersonal
or propositional nature. The ensuing imbalance is often read as a
loss of precision or confidence in prior beliefs, relative to the
sensory evidence at hand. In autism, this imbalance is consistent
with a failure of sensory attenuation and an inability to ignore the
sensorium, which may or may not be associated with the
neuromodulatory role of oxytocin [135, 166–170].
In schizophrenia, the story is a little more involved; in the sense

that a failure of sensory attenuation provides an apt explanation
for resistance to illusions (that normally depend upon precise prior
beliefs) and failures to elicit mismatch oddball responses (because
everything is surprising). Some people then interpret delusional
ideation as the brain’s attempt to make sense of unattenuated
prediction errors: see also [152, 155, 171, 172]. However,
hallucinatory phenomena require a slightly more delicate argu-
ment; usually along the lines of a compensatory increase in prior
precision that could manifest as a form of paradoxical lesion. In
other words, in attempt to override precise sensory prediction
errors, higher levels learn to ignore sensory evidence and—

Interactions between pyramidal cells and inhibitory interneurons

A simplified scheme

Fig. 3 The left panel depicts interactions between (superficial and deep) pyramidal cells with inhibitory interneurons. Inhibitory
interneurons are partitioned into three subtypes (Parvalbumin positive PV, somatostatin SST, and vasoactive intestinal peptide expressing
interneurons, VIP), based upon optogenetic studies [217]. This schematic illustrates the intimate relationship between pyramidal cells and
inhibitory interneurons responsible for excitation-inhibition balance and ensuing excitability in canonical microcircuits. Here, it is assumed
that PV interneurons are reciprocally connected to the pyramidal cells through perisomatic compartments, while SST cells form synapses on
their dendrites. The right panel shows a simplified architecture used in many modelling studies. Here, the recurrent inhibitory (PV/pyramidal
cell) dynamics have been absorbed into an inhibitory recurrent connection, while the SST/VIP interneurons provide (dendritic) inhibitory
drive. This allows one to map models of Interneuron Network Gamma (ING) oscillations onto canonical microcircuits used in dynamic causal
modeling (see next figure). In this setting, the Pyramidal ING (PING) model emphasizes recurrent interactions among PV cells, as modeled by
the inhibitory recurrent connections on superficial pyramidal cells. In contrast, the ING model corresponds to the influence of (SST/VIP)
inhibitory interneurons on pyramidal cells. Please see [81] for further details of how these simplified architectures are used to model
attentional effects on evoked responses.
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sequestered from the sensorium—elaborate false percepts. See
[22, 133, 141, 158, 173] for related discussion.
There are many interesting instances of this formulation;

ranging from failures of sensory attenuation in autonomic and
interoceptive inference, through depression and emotional
processing [82, 140, 149, 174], to functional medical symptoms
and dissociative phenomena [137, 164]. These computational
formulations are nice because they lend themselves to various
lines of enquiry; ranging from simulating false inference; e.g.,
[149], through the careful analysis of psychophysics and choice
behaviour e.g., [154, 155, 175]; and, crucially, neurophysiological
measurements of synaptic function—to which we now turn.

SYNAPTOPATHY, DYSCONNECTIONS AND DYNAMIC CAUSAL
MODELLING
The narrative so far is that psychopathology is a pernicious form of
false inference that can be attributed to a synaptopathy that
confounds the deployment of precision during perceptual
inference and ensuing action. This narrative is based upon first
principle (i.e., self evidencing and Bayesian) accounts of brain
function. Crucially, these accounts have attendant process theories
that specify various forms of neuronal dynamics and message
passing that can be evaluated empirically
[54, 66, 70, 71, 73, 74, 176, 177]. Note that the strong kind of
computational psychiatry advocated here demands a process
theory, which can be tested empirically, in terms of the evidence
for one process theory or model, relative to another.
Although synaptopathy of a certain kind may be a common

theme—in terms of computational and pathophysiological
mechanisms—where and how these pathologies manifest is an
open question: a question that may require a different answer for
every condition (and possibly every patient). For example, at the
level of (canonical) microcircuits, neuromodulatory abnormalities
may manifest in different ways at different levels of cortical
hierarchies and, indeed, in the (inter and intralaminar) message
passing within microcircuits. This means that one needs a way of
identifying functional brain architectures—and, particularly, con-
text sensitive changes in synaptic efficacy—that report the
presence or absence of synaptopathy. In short, this calls for
in vivo and ex vivo assays of synaptic efficacy [178, 179] that can
be deployed across scale; i.e., from molecular biology through to
patients in the clinic (or bedside).
There have been amazing advances in the measurement of

neuronal processes; ranging from laminar fMRI [180, 181] through
to optogenetics [33, 91, 182–184]. From a computational
perspective, there is one universal imperative for quantifying
changes in synaptic efficacy: one has to be able to assess the
evidence—in any empirical measurement—for changes in effec-
tive connectivity. In turn, one has to commit to generative models
of how the data were generated, in order to assess the evidence
for models with and without a change [185]. Again, we come back
to the foundational role of generative models but now from the
perspective of a scientist, as opposed to the brain (as a scientist).
At its simplest, synaptic efficacy is modelled as a connection
strength (or rate) with accompanying synaptic rate or time
constants. These have to be estimated under some model of
hidden or latent physiological fluctuations that generate observed
data. This can be at a molecular scale or the scale of whole brain
imaging.
In imaging neuroscience, there are two approaches to

connectivity; namely the weak approach called functional
connectivity and the strong approach called effective connectivity
[186]. Functional connectivity is essentially looking for patterns or
correlations between measured neuronal responses. In contrast,
effective connectivity is the estimate of directed connection
strengths, under some forward or generative model. The power of
effective connectivity analyses rests on being able to compare the

evidence for one model (sometimes, of functional connectivity as
a data feature) relative to another. A prescient example of this is
the estimation of intrinsic excitability or gain, usually associated
with the neuromodulatory precision control above. To assess the
intrinsic (within node or source) excitability of a node—in a
distributed network of nodes coupled by extrinsic (between node
or source) connections—one has to parameterise network models
in terms of intrinsic or self-connections [187]. This foregrounds
one of the weaknesses of descriptive or functional connectivity: in
the sense that the correlation of a source with itself tells you
nothing (it is always one).
In imaging neuroscience, the predominant analysis of effective

connectivity is dynamic causal modelling, usually based upon
neural mass models with a greater or lesser degree of biological
plausibility [16, 17, 19, 20, 22, 36, 37, 188–190]. In brief, modelling
neuronal dynamics in terms of neural mass models means that
one can parameterise intrinsic and extrinsic connectivity—and
context sensitive changes—in terms of model parameters and,
crucially, assess the evidence for models with and without certain
parameters, by fitting the models to empirical timeseries.

MEASURING SYNAPTIC EFFICACY IN VIVO
Pursuing the narrative of testing hypotheses about neuromodu-
latory synaptopathies, the three-way link between precision
control, attention (and sensory attenuation) and neuromodulation
means there has been considerable progress in characterising the
synaptic basis of sentience using attentional and oddball
paradigms. Indeed, in schizophrenia research, one of the best
studied paradigms is the mismatch negativity that allows one to
estimate excitability (i.e., intrinsic connectivity) induced by a
changing context, signalled by an oddball stimulus; e.g., [22, 191].
Clearly, changes in synaptic efficacy over a hundred milliseconds
to seconds requires electrophysiological measurements of the
kind afforded by electrophysiology (e.g., EEG and MEG). This
allows one to pinpoint the expression of aberrant gain or precision
control to various neuronal populations in cortical hierarchies. See
Fig. 4 for an early example. The dénouement of this kind of
computational study of schizophrenia (at the time of writing)
concludes: (i) EEG responses in three classic paradigms are all
attributable to the same underlying synaptic change: greater self-
inhibition in pyramidal cells; (ii) psychotic symptoms relate to
disinhibition in neural circuits and “these findings are more
commensurate with the hypothesis that a primary loss of synaptic
gain on pyramidal cells is then compensated by interneuron
downregulation (rather than the converse)” [192].
The construct validation of these synaptic assays speaks to

integration across scales. Perhaps the most developed use cases
here are in epilepsy research and the characterisation of
neurodegenerative disorders [179, 193–196]. A compelling exam-
ple of applying generative (i.e., dynamic causal) modelling across
scales can be found when drilling down on the molecular basis of
childhood epilepsy, using data from small animal models and
patients. For example, local field potential recordings in a mouse
model were used to validate a dynamic causal model of NMDAR-
Ab effects on cortical microcircuitry. The ensuing DCM was then
used to identify the synaptic parameters that best explain EEG
paroxysms in paediatric patients with NMDAR-Ab encephalitis. The
authors then returned to the mouse model to show that NMDAR-
Ab-related changes render microcircuitry critically susceptible to
overt EEG paroxysms [197]. See Fig. 5.
Another field that is pursuing a similar approach is the

characterisation of synaptopathies in neurodegeneration; again,
with convergence on the interactions between pyramidal cells
and inhibitory interneurons. For example, [198] used the mismatch
negativity paradigm to validate a dynamic causal model of
laminar-specific microcircuitry and GABAergic neurotransmission.
Bayesian model comparison identified an effect of tiagabine on
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GABAergic modulation of deep pyramidal populations and
inhibitory interneurons. The authors then applied this model to
patients with frontotemporal lobar degeneration, showing that
“the phasic inhibition of deep cortico-cortical pyramidal neurons
following tiagabine, but not placebo, was a function of GABA
concentration” [199].
Similar approaches have been considered in Parkinson’s disease

and schizophrenia, spanning cell cultures to human subjects. The
basic idea behind these proposals is to link scales through
Bayesian model comparison. In other words, optimise the model
of neuronal microcircuits in ex vivo cell cultures, in terms of
synaptic time constants of intrinsic connections, using Bayesian
model inversion and selection. One can then use the posterior
estimates as priors for the next scale (e.g., small animal
preparations, through to humans). Crucially, the superordinate
scale introduces additional parameters (e.g., extrinsic connections
among cortical areas) that are estimated more efficiently, having
resolved uncertainty about the parameters that are shared with
lower scales. In short, by recursively using yesterday’s (one scale)
posteriors as tomorrow’s (next scale) priors, one has a seamless
and principled approach to integrating across scales.

COMPUTATIONAL PHENOTYPING AND NOSOLOGY
The narrative so far has moved from the theoretical frameworks,
within which to place synaptopathy, to the requisite modelling of
empirical data to identify the synaptopathy that characterises

different disorders. This could be regarded as one kind of
precision medicine [200]; however, there is another kind that
speaks to characterising each individual in the sense of
personalised medicine. Computational approaches in this setting
are potentially important in stratifying and classifying various
clinical phenotypes for the mechanistic studies outlined above.
This usually involves summarising a subject’s behaviour in terms

of a computational model of that behaviour. Traditionally, this has
been a descriptive (e.g., reinforcement learning) model. This
represents a weak kind of phenotyping because there are no well-
developed process theories for reinforcement learning. A strong
complement to computational phenotyping can however be
formalised using something called the complete class theorem
[201, 202]. This basically says that there for any pair of behaviours
and reward functions, there exists some priors that render the
behaviour Bayes optimal. This could be read as licensing any
Bayesian ‘just so’ stories about choice behaviour [203]. However, it
has a deeper and more pragmatic implication.
It means that any given patient can be fully characterised by her

prior beliefs under ideal (active Bayesian inference) observer
assumptions. This motivates the difficult game of inferring what
generative model this subject is using, based purely upon their
behavioural or neuronal responses [204–206]. Although at an early
stage, this sort of computational phenotyping shows promise, in
the sense that it can be more efficient than simply trying to
classify or stratify patients on the basis of their responses per se
[20]. This approach, sometimes called generative embedding,
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A failure of precision control in schizophrenia:

Fig. 4 Synaptic gain control in schizophrenia. This figure summarizes an early example of using DCM of event related responses (ERPs), to
assess the modulation of synaptic efficacy in schizophrenia using EEG [191]. ERPs were elicited in a visual target detection paradigm, under
predictable and unpredictable conditions, in neurotypical and schizophrenic subjects, respectively. Sources—modeled as small cortical
patches (lower left panel)—include: a midline visual source (V1), right and left sources near the temporoparietal junction (V5), right and left
inferotemporal sources (IT) and bilateral superior parietal sources (PC). The distributed network connecting these sources (upper right panel)
entails top-down connections from PC and IT to V5 that send backward connections to V1 (black lines); reciprocal forward connections (red
lines); and intrinsic connections for each source (black loops). The principal components of predicted and observed ERPs (upper right panel)
show a pronounced difference in the evoked responses of normal subjects to predictable and unpredictable targets around 300 to 400ms
after stimulus onset (compare the red and blue traces). This difference is attenuated in the schizophrenia patients (green and magenta). The
lower right panel reports (log scaling of) intrinsic connections and their 90% posterior confidence intervals, for predictable versus
unpredictable targets, for patients (white) and controls (teal). The notable thing here is a failure of predictability to modulate the intrinsic gain
(i.e., self-connectivity) throughout the hierarchy in the schizophrenic subjects.
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has been applied both to the generative models a subject might
use to specify her behaviour and the generative models the
researcher uses to explain her physiological or neuronal responses
[4, 207].
A related application of generative models to phenotyping

involves constructing dynamic causal models of hidden variables
or states that underwrite the signs and symptoms expressed by
patients over weeks and years. This was a notable outcome of an
Ernst Strüngmann forum on computational psychiatry [208],
which concluded that conventional diagnoses—based upon
traditional nosology—could play an important role in this kind
of computational nosology. However, the role was not to stratify
patients but rather as data features that supply evidence for or
against models of the mapping between pathophysiology and
psychopathology that are hidden from direct observation.
A key tenet of this approach is to cast pathophysiology and

psychopathology as slowly fluctuating dynamical processes. This
speaks to a separation of temporal scales between processes like
active inference [206], active learning [32] and structure learning
[209]. The mandatory coupling among these (fast and slow)
processes may underwrite cyclothymic disorders, relapsing-
remitting presentations and neurodevelopmental determinants.
An illustrative example of modelling the dynamics of schizoaffec-
tive disorders can be found in [208].
An important aspect—of this application of computational

psychiatry—is the quantification of uncertainty about how a
patient will behave, and what is likely to happen to her in the
future. Indeed, uncertainty quantification is a primary focus of
related approaches in quantitative epidemiology and meteorol-
ogy; especially in the context of forecasting and scenario

modelling [210]. In principle, finding the right generative model
for a patient guarantees the best predictions. This is because a
model with the greatest evidence precludes overfitting and
ensures generalisability [211]; namely, the generalisation from old
(i.e., what has happened to the patient in the past) to new data
(what will happen to her in the future).

COMPUTATIONAL NEUROPSYCHOLOGY
A final part of the narrative is that a generative model of
pathophysiology, and ensuing psychopathology, allows one to
perform in silico or synthetic experiments [212–214]. These entail
optimising the parameters of a model of a particular subject or
cohort, and seeing what would happen if one increased or
decreased certain synaptic efficacies, e.g., [197]. Alternatively, one
can emulate extremes of aberrant precision by simply deleting
connections in active inference models of diagnostic paradigms,
e.g., [215]. In these computational studies, the extrinsic (between
node) connections are usually assigned to likelihood mappings
relating sensory observations to representations or expectations
about hidden states of affairs. Conversely, intrinsic (within node)
connections are usually treated as embodying prior beliefs about
state transitions and narratives that characterise the paradigm in
question.
One obvious advantage of being able to create a ‘digital twin’ of

a patient in silico, is the ability to perform synthetic lesion studies
and psychopharmacology, to test various hypotheses about the
effect of therapeutic interventions. This is probably best illustrated
in the setting of epilepsy, particularly, in predicting the effects of
pharmacological and surgical interventions; e.g., [216].

Fig. 5 Measuring synaptopathy in vivo. This figure summarises the results of a DCM study of seizure activity in mice—induced with PTZ—in
NMDA receptor antibody (Ab) negative and positive cohorts, respectively [197]. Its agenda was to examine the effects of PTZ and receptor
antibodies on synaptic efficacy; summarised here in terms of the principal [eigen] component of changes in intrinsic connectivity. The
principal component of time constants implicated superficial pyramidal and spiny stellate cell changes (A), while the principal component of
connectivity-strength reflects changes in the coupling of spiny stellate to superficial pyramidal cells (B). The two principal components (of
variations in time constants and intrinsic connectivity) constitute a parameter space summarising the modulation of synaptic efficacy. For
each point in this parameter space, one can simulate the spectral responses one would observe data space. C in this panel, estimates of
synaptic efficacy for experimental subjects in the four conditions (pre-and post-PTZ, with and without antibodies) are shown as coloured dots.
These are superimposed on the predicted log mean delta power (with selected centile isoclines). The basic message here is that seizure
induction with PTZ shifts synaptic efficacy into regimes of high delta (c.f., slow-wave activity), and that this effect is more marked in the
presence of NMDA receptor antibodies. dp, deep pyramidal cells; ii, inhibitory interneurons; sp, superficial pyramidal cells; ss, spiny stellate
cells. Adapted with permission from the authors from.
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CONCLUSION
This review has taken a somewhat colloquial tour through the
fundaments of one (strong) kind of computational psychiatry.
Perhaps the take-home message is the foundational importance
of a hypothesis or generative model—and being able to articulate
this model in computational or formal terms. This is a difficult
problem; both in terms of identifying or selecting the right sort of
generative models that explain sentient behaviour and its
pathologies, but also the biophysical (e.g., dynamic causal) models
we, as researchers, use to make sense of our data. This difficulty
should not be understated. For example, although dynamic causal
modelling has enjoyed wide uptake in fMRI, the requisite models
—necessary to explain fine-grained neuronal dynamics in
electrophysiology—are notoriously difficult to build and explore
using model comparison (a.k.a., structure learning). This usually
calls for researchers that are well versed in the system and scale of
enquiry, who are also fluent in Bayesian and variational modelling
procedures.
The ultimate goal of this endeavour is a generative model or

explanation for various psychiatric disorders that furnishes a
parsimonious yet accurate account of all the data at hand. This
truism reflects the fact that model evidence can be decomposed
into accuracy minus complexity; speaking to the pressure to find
minimally complex explanations that are as simple as possible but
not too simple. In short, the mechanistic explanations we seek will
be alluringly simple, but the journey may be difficult. One could
argue that psychiatry has chosen the most difficult journey of all;
namely, to explain ourselves.
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GLOSSARY
Active inference securing evidence for a generative model of the world

through Bayesian inference and active sampling of
(sensory) data. This is equivalent to resolving uncertainty
and maximising model evidence.

Bayesian belief a posterior probability distribution over a random
variable, such as a latent cause or hidden state of the
world causing (sensory) data.

Belief updating the process of statistical inference, in which Bayes’
theorem is used to update a prior belief to a posterior
belief on the basis of new evidence.

Disconnection
(syndrome)

a term for neuropsychiatric syndromes caused by
damage to the white matter axons of associational or
commissural pathways: i.e., a disrupted connection.

Dysconnection
(syndrome)

a term for neuropsychiatric syndromes caused by a
synaptopathy involving associational or commissural
pathways: i.e., a dysfunctional connection.
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Inference updating beliefs to maximise model evidence. Varia-
tional Bayesian inference corresponds to minimising
variational free energy, which provides an upper bound
on log evidence.

Interoceptive pertaining to internal (e.g., autonomic) states
Likelihood the probability of observing some (sensory) data, given

the causes of those data
Model evidence the probability of some (sensory) data under a generative

model. Also known as the marginal likelihood, i.e., having
marginalised over the causes of the data.

Precision The inverse variance of a random variable. More
generally, the precision of a probability distribution
decreases with its entropy.

Prediction the prediction of some (sensory) data, based upon
posterior beliefs about how those data were generated.

Prediction error A quantity used in predictive coding to denote the
difference between an observation or point estimate and
its predicted value. Predictive coding uses precision
weighted prediction errors to update posterior beliefs
that generate predictions.

Prior belief a belief prior to sampling (sensory) data.
Sejunction
hypothesis

(from the Latin noun seiunctio: divorce, separation) was
introduced by Carl Wernicke (1848-1904) to suggest that
psychopathology results from interruption (“sejunction”)
of associative connections in the brain.

Variational
inference

a tractable form of Bayesian belief updating based upon
minimising variational free energy (a.k.a., an evidence
bound). The gradients of variational free energy corre-
spond to precision weighted prediction errors.
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