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ABSTRACT
We propose a novel approach to the estimation of multiple Graph-
ical Models to analyse temporal patterns of association among a
set of metabolites over different groups of patients. Our motivat-
ing application is the Southall And Brent REvisited (SABRE) study, a
tri-ethnic cohort study conducted in the UK. We are interested in
identifyingpotential ethnic differences inmetabolite levels and asso-
ciations as well as their evolution over time, with the aim of gaining
a better understanding of different risk of cardio-metabolic disor-
ders across ethnicities. Within a Bayesian framework, we employ a
nodewise regression approach to infer the structure of the graphs,
borrowing information across time as well as across ethnicities. The
response variables of interest are metabolite levels measured at two
time points and for two ethnic groups, Europeans and South-Asians.
We use nodewise regression to estimate the high-dimensional preci-
sionmatrices of themetabolites, imposing sparsity on the regression
coefficients through the dynamic horseshoe prior, thus favouring
sparser graphs. We provide the code to fit the proposedmodel using
the software Stan, which performs posterior inference using Hamil-
tonian Monte Carlo sampling, as well as a detailed description of a
block Gibbs sampling scheme.
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1. Introduction

The Southall And Brent REvisited (SABRE) [68] population based cohort study was initi-
ated in the late 1980’s in north-west London with the aim of studying ethnic differences in
cardiovascular diseases and diabetes. The study includes individuals of European, South-
Asian and African-Caribbean descent, aged 40–69 years at baseline. Recently, metabolites
measurements, obtained using nuclear magnetic resonance spectroscopy [61], have been
collected on over 3000 stored blood samples at baseline and 20-years follow-up. All partic-
ipants gave written informed consent. Approval for the baseline study was obtained from
Ealing,Hounslow and Spelthorne, Parkside, andUniversityCollege London research ethics
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committees, and at follow-up from St. Mary’s Hospital Research Ethics Committee (refer-
ence 07/H0712/109). In this work, we investigate the complexmetabolic pathways involved
in cardiac metabolism, combing metabolite concentration data with more traditional clin-
ical makers.Metabolites are small molecules that participate inmetabolic reactions and are
involved in biochemical pathways associated with metabolism in health and disease [19].
Indeed, there is increasing evidence that most cardiovascular diseases, such as diabetes
mellitus, involve disturbances in cardiacmetabolism and that, on the other hand, heart dis-
eases can affect themetabolism, hence initiating a vicious cycle [49]. In the last two decades,
metabolomics (i.e. the large-scale study of metabolites within cells, bio-fluids, tissues or
organisms) has emerged as a powerful tool for defining changes in metabolism that occur
across a range of cardiovascular disease states. Findings from metabolomic studies have
contributed to a better understanding of the metabolic changes that occur in heart failure
and ischaemic heart disease and have identified new cardiovascular disease biomarkers.

Here, we focus on type 2 diabetes, a main clinical outcome of interest in the SABRE
study, as it poses an enormous individual and societal burden, with high risk ofmajor com-
plications and diminished quality and length of life. Hence, it is imperative to understand
causal mechanisms in order to identify subjects at highest risk and to tailor preventive and
therapeutic measures for appropriate periods during the life course. The global epidemic
of type 2 diabetes disproportionately affects non-European ethnic groups. South-Asians
(from the Indian subcontinent) form the largest ethnic minority group in the UK with
prevalence of diabetes estimated to be 2–4 times higher than that of the general popu-
lation [63]. Research to date suggests that insulin resistance and differences in body fat
distribution explain some of the ethnic differences in diabetes risk, but the underlying
mechanistic pathways are poorly understood, although they are likely to involve a complex
interplay between environmental, behavioural, metabolic, genetic and epigenetic influ-
ences. Therefore, it is essential not to limit the analysis to differences in metabolite levels
across ethnicities over time, but to also consider patterns of variations in metabolic asso-
ciations to gain better insight in molecular mechanisms of disease pathogenesis and to
formulate novel data-driven scientific hypotheses.

In the SABRE studymeasurements are available on over 200metabolite concentrations,
covering a wide range of chemical classes, at baseline and 20-years follow up.We represent
association patterns amongmetabolites through a graph, which is themain object of statis-
tical inference. Within a Bayesian framework, our model is based on nodewise regression,
originally introduced by [50]. In the nodewise regression approach, estimating a graph is
equivalent to estimating the precisionmatrix between variables, in our casemetabolite lev-
els. This is achieved by rewriting the problem in terms ofM independent linear regressions,
where M is the number of variables/metabolites, and each variable is regressed on all the
others. It is a local method, because it infers the neighbourhood structure of each node (i.e.
the connections involving the node) independently, as opposed to global methods that aim
to infer jointly the association patterns across all the nodes. The element j, l in the preci-
sion matrix is estimated to be non-zero (implying an edge in the graph between the two
variables) if either the estimated regression coefficient of variable j on l, or the estimated
coefficient of variable l on j, is non-zero. Alternative approaches to graphical models esti-
mation are available in the literature. Graphical Lasso is a popular global method in both
frequentist andBayesian domain, based on a penalisedmaximum likelihood estimator [24]
or on a double exponential prior [74], respectively. Graphical Lasso has the advantage of
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ensuring a positive definite estimate of �, but requires a greater computational effort and
it is less flexible in estimating the individual scaling levels (i.e. the diagonal elements of �)
compared to the nodewise approach [36]. Other Bayesian approaches to graphical model
estimation rely on the specification of a suitable prior distribution over the graph space and,
conditional on the graph, a prior for precision matrix is selected. For example, [42] pro-
pose an algorithm to perform posterior inference on graph space assuming a G-Wishart
prior, a generalisation of the Hyper-Wishart distribution, that allows to deal with non-
decomposable graphs. However, the convergence of associated MCMC algorithms can be
slow due to the single edge update and the intractable normalising constant in themarginal
posterior that requires numerical approximations. A more efficient algorithm, based on a
birth-death MCMC, has been proposed by [51].

In several applications, including the one presented in this work, information regard-
ing the grouping of the subjects is available, e.g. different ethnic groups. Therefore, it is of
interest to estimate a group-specific graph, by specifying a joint model for multiple graphs
able to identify common structure as well as group-specific connections. This is particu-
larly relevant in our application as it allows to highlight biological mechanism which differ
between ethnicity and potentially lead to different disease development. Examples of mod-
els formultiple graphs are found in thework of [60], which specify a global penalisation and
use optimisation techniques, and of [54], which in a Bayesian framework propose a joint
model involving a Markov random field prior to encourage sharing of information among
edges. A Markov random field prior modelling both spatial and temporal dependence is
also used by [44]. Additional examples are the approaches of [65], where shared structures
are modelled via a multiplicative prior, and of [8], where multiple precision matrices are
estimated via a penalisation approach which allows the inclusion of information a-priori.

The main methodological contribution of this work is to extend nodewise regression
to (i) achieve sparsity in the resulting precision matrix (ii) accommodate multiple groups
(iii) account for different time points. This will allow not only to better understand group-
specific and global dependence structure, but also how they evolve across time. To this end,
we exploit recent contribution on shrinkage prior and dynamic stochastic volatilitymodels.
In a nodewise regression framework, inducing sparsity in the graph is equivalent to esti-
mating some regression coefficients equal to zero. A wealth of proposals is available in the
literature to impose sparsity on regression coefficients (see, for instance, [53] for a reviewon
shrinkage priors).We opt for the Horseshoe prior, which belongs to the class of continuous
global-local shrinkage priors (see, for example, [2,6,12]). The Horseshoe prior is charac-
terised by an accentuated spike at zero to strongly shrink small or negligible coefficients,
while leaving important coefficients unaffected thanks to its heavy tails. Moreover, this
prior allows for efficient computations. Linking the hyper-parameters of theHorseshoe pri-
ors across groups and employing the dynamic extension of the Horseshoe prior proposed
by [40], we are able to accurately estimate dynamic evolving complex precision matrices,
across multiple groups of observations of different sample sizes at different time points. A
similar approach is taken by [44], where the neighbourhood selection of each node is based
on the nodewise regression method of [50], but it is different from our approach in two
ways: (i) a Spike and Slab prior is imposed on the regression coefficients to induce sparsity
on edge selection, increasing computational cost; (ii) information is shared across multiple
groups and time points through a Markov Random Field structure, which also involves
neighbourhood selection. Our choice of a Horseshoe prior, which is continuous and does
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not require hyper-parameter tuning (in its original formulation), significantly speeds up
computations, allowing the use of different inference approaches, such as Markov chain
Monte Carlo and Hamiltonian Monte Carlo (HMC). Furthermore, information across
multiple groups is shared by imposing a hierarchical structure on the hyper-parameters
of the horseshoe prior, while time dependence is incorporated through an autoregres-
sive model specified on the regression coefficients as proposed by [40]. Both extensions
are computationally efficient, being also suitable for parallel computations on multicore
machines. Moreover, the approach proposed by [40] scales linearly in the number of time
points. A limitation of the neighbourhood selection based on nodewise regression is the
lack of a direct posterior estimate of the joint precision matrix. As detailed in [44], the
Bayesian version of nodewise regression allows to accurately estimate the posterior dis-
tribution of the edge selection, but does not directly provide an estimate of the precision
matrix. Nonetheless, we can use the estimated posterior distribution of the regression coef-
ficients to approximate the precision matrix and as a measure of the strength and direction
of each specific connection in the graph.

The paper is organised as follows. In Section 2 we introduce nodewise regression, its
extensions and discuss prior specification. In Section 3 we show the performance of the
proposed model in simulations. Section 4 illustrates the application to the SABRE study.
Section 5 concludes the paper summarising main results and contributions.

2. Methodology

In this Section, we introduce nodewise regression and its use for graph estimation.We first
provide a detailed description of the basic model for a single graph. Next, we explain our
strategy to extend nodewise regression tomultiple graphs and to themore general dynamic
multiple graphs framework. Hence, we explain how to perform posterior inference on such
models.

2.1. Nodewise regression for graphical models

We first introduce basic concepts from graph theory. For more details, we refer to [41].
Let G = (V ,E) be an undirected graph, with vertex set V = (1, . . . ,M) and edge set
E ⊂ {(j, l) ∈ V × V : j < l}. The vertices of the graph are associated with aM-dimensional
vector of variables y = (y1, . . . , yM) assumed to follow a multivariate Normal distribution

y ∼ NM (μ,�) (1)

where μ is the mean vector and � = [ωjl]Mj,l=1 is theM × M precision matrix. In the con-
text of Gaussian Graphical Models (GGM) [17], it is standard practice to specify a prior
distribution on G and, then, conditional on G, a prior for � as there is a direct correspon-
dence between the elements of the precision matrix � and the edges in the graph G. An
edge is present between nodes Vj and Vl, that is (j, l) ∈ E, if and only if ωjl �= 0 [41,76].
If ωjl = 0 (absence of an edge), then yj and yl are conditionally independent given the
remaining variables y−jl, where y−jl denotes the random vector y excluding the elements j
and l. In this context the main object of inference is the graphG and usually� is treated as
a latent variable. Posterior inference is often complicated by the complexity of graph space.
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In this paper we opt for a different approach as it is more scalable to higher dimensions.
To estimate the graph G we use nodewise regression [50], a technique that exploits the
relationship between the partial correlation coefficients and the regression coefficients of a
linear regression, without directly specifying a probability model for G. Recall that for the
standard linear regression

yl =
∑
j�=l

βjlyj + εl, εl ∼ N(0, σ 2
l ) (2)

the regression coefficients βjl can be expressed in terms of partial correlationsωjl, i.e. βjl =
−ωjl
ωll

and analogously βlj = −ωlj
ωjj

. Then

ωjl �= 0 ⇐⇒ βlj �= 0 ⇐⇒ βjl �= 0

This result can be also derived from the moments of the conditional Normal distribu-
tion. Here, σ 2

l denotes the error variance. In our context, consider the partition where
the random variable yl is the l-th coordinate of y and y−l corresponds to the remaining
coordinates. The conditional distribution of yl given y−l is

yl | y−l,μ,� ∼ N

⎛
⎝μl −

∑
j�=l

ωjl

ωll
(yj − μj),

1
ωll

⎞
⎠ (3)

where ωjl/ωll = βjl, for j �= l. In many application, as in Section 4, μl captures covariate
effects on the response yl, i.e.μl = Zlηl, whereZl is the covariate vector and ηl is the vector
of regression coefficients. In this case, the nodewise regression model is defined on the
responses centred on the covariate term. For ease of explanation, in the following sections
we assume, without loss of generality, that μ = (μ1, . . . ,μM) = 0.

This framework allows us to express the problem of graphical model selection as M
independent linear regression problems, since a regression coefficient estimated equal to
zero implies a zero in the corresponding element of the precision matrix and, implicitly, a
lack of an edge in the underlying graph. For this reason, we are interested in identifying
regression coefficients equal to zero. In the Bayesian framework, awealth of sparse Bayesian
regression techniques is available. When performing variable selection, a popular choice
is to impose shrinkage priors on the regression coefficients. Typical examples include the
class of two components discretemixture priors, known as spike and slab [26], and the class
of continuous shrinkage priors, of which examples are the Horseshoe and the Horseshoe+
prior see [6] for a review. The spike and slab approach implies a positive probability for
the regression coefficient to be zero, but it can be computationally demanding with a high
number of parameters, due to the large state space. In contrast, continuous priors are easier
to implement and are usually more computationally efficient, although the probability for
the coefficient to be exactly zero is null and further thresholding is required.We opt for the
Horseshoe prior [12], which is a scale mixture prior defined as

βj | λj, τ ∼ N
(
0, λ2j τ

2
)

λj, τ
ind∼ C+(0, 1)
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where C+(0, 1) denotes the standard half-Cauchy distribution, with probability density
function

p(λj) = 2
π(1 + λ2j )

, λj > 0

The Horseshoe belongs to the family of global-local shrinkage priors, as the global (i.e.
common to all βj) parameter τ shrinks all the coefficients towards zero, while the thick
half-Cauchy tails for the local scales λj allow some regression coefficients βj to escape the
shrinkage and counter-balance the effect of τ . Moreover, the Horseshoe prior is charac-
terised by a singularity at zero to strongly shrink small or negligible coefficients, while
leaving the important ones unaffected thanks to its heavy tails (given by the half-Cauchy
distribution).

We now describe the proposed model for single graph estimation. Let Y be a n × M
matrix of observations, where n is the sample size and M is the number of random
variables/nodes. Each column yl = (y1l, y2l, . . . , ynl)T , for l = 1, . . . ,M, contains the mea-
surements of the l-th variable. The regression model for the l-th column can be written
as

yl | β l, σ
2
l ∼ Nn

(
Xβ l, σ

2
l In

)

βjl | λjl, τl ∼ N
(
0, λ2jlτ

2
l

)

σ 2
l | aσ , bσ ∼ Inverse − Gamma (aσ , bσ )

λjl ∼ C+ (0, 1)

τl ∼ C+ (0, 1)

(4)

where X is the matrix of explanatory variables given by Y−l (i.e. Y excluding the l-th col-
umn) and β l = (β1l,β2l, . . . ,βpl), with p = M−1, is a vector of regression coefficients for
the l-th regression. A pseudo inclusion probability parameter κjl is defined by [12] as

κjl = 1
1 + Var(βjl|λjl, τl)

= 1
1 + λ2jlτ

2
l

(5)

which is interpretable as the amount of shrinkage towards zero, with κjl ≈ 1 yielding
maximal shrinkage and κjl ≈ 0 corresponding to minimal shrinkage and leading to the
inclusion of the variable/edge in the graph. As previously shown [12], variable selection
based on (5) (with a threshold level of 0.5) performs similarly to explicit variable selection
based on spike and slab prior. Throughout this work, we follow this criterion to decide
which edges to include in the graph.

To improve computational efficiency, we use the representation of the standard half-
Cauchy distribution employed by [25,55]. The standard half-Cauchy distribution can be
expressed as the product of a standard half-Normal distribution times the square root of
an Inverse-Gamma distribution. Let z ∼ N+(0, 1) and y ∼ Inverse − Gamma(1/2, 1/2)
and define x = z√y, then x ∼ C+(0, 1). N+(0, 1) denotes the standard half-Normal dis-
tribution, which is defined as the absolute value of a Normal distribution [43]. This
re-parametrisation can help to avoid divergent transitions in an HMC algorithm (a prob-
lem commonly encountered with funnel shaped distributions). As suggested by [55], we
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Figure 1. Summary of the nodewise regression models, highlighting the relationship between the
observations and the parameters of the model. Circles represent random variables, while squares corre-
spond to observations or fixed hyper-parameters. (a) Static Horseshoemodel for each observed variable
yl , with l = 1, . . . ,M, when only a group of observations is under investigation at one time point. (b)
Dynamic Horseshoemodel for each observed variable ylrt at time t andwithin group r, with l = 1, . . . ,M.

also allow for a tunable global scale parameter τl, which can help achieving the desired level
of sparsity. Thus the prior distribution on the regression parameters becomes

βjl | λjl, τl ∼ N(0, λ2jlτ
2
l )

λjl = λajl

√
λbjl

τl = τ al

√
τ bl τ0

λajl ∼ N+(0, 1)

λbjl ∼ Inverse − Gamma(1/2, 1/2)

τ al ∼ N+(0, 1)

τ bl ∼ Inverse − Gamma(1/2, 1/2)

(6)

where τ0 = p0
p−p0

σ√
n and p0 is a prior guess about the number of non-zero coefficients. The

choice of p0 is extensively discussed by [55]. A schematic representation of model (6) is
shown in Figure 1(a).

2.1.1. Extension tomultiple groups
Wenowextend theHorseshoe prior to allowborrowing information acrossmultiple groups
of observations. The groups are usually defined by the problem under investigation, for
example they might correspond to different biological conditions, disease status or spa-
tial regions. Estimating a single graphical model would lead to an implicit assumption of
homogeneity of the underlying graphs across groups, with a consequent loss of information
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about their heterogeneity and a high risk of false positives. On the other hand, inferring
each graph individually might lead to a loss of power given the reduction in sample size.
Several approaches for joint inference ofmultipleGGMshave been recently developed (see,
for example, [14,15,30,52,54,65,67,75]). We opt for nodewise regression for computational
convenience and ease of extension to more complex setups.

Let R be the number of groups and let Yr be a matrix of dimension nr × M containing
only the observations belonging to group r, with r = 1, . . . ,R. We introduce dependence
across multiple graphs through the group specific global shrinkage parameter τlr of the
Horseshoe prior, extending easily model (6) to this setup. The model is now defined as
follows

ylr | β lr, σ
2
lr ∼ Np

(
Xrβ lr, σ

2
lrInr

)

βjlr | λjlr, τlr ∼ N
(
0, λ2jlrτ

2
lr

)

λjlr = λajlr

√
λbjlr

τlr = τ al

√
τ bl τ0r

σ 2
lr | aσ , bσ

ind∼ Inverse − Gamma (aσ , bσ )

λajlr ∼ N+(0, 1)

λbjlr ∼ Inverse − Gamma(1/2, 1/2)

τ al ∼ N+(0, 1)

τ bl ∼ Inverse − Gamma(1/2, 1/2)

(7)

where Xr is a nr × pmatrix corresponding to Y−lr (i.e. Yr excluding the l-th column) and
β lr = (β1lr,β2lr, . . . ,βplr) is a vector of regression coefficients specific to equation l and
group r. We exploit the structure of the Horseshoe prior, retaining group-coefficient spe-
cific local shrinkage parameters λjlr, while we link the parameters τlr. The rationale behind
this strategy is the following. The global shrinkage parameter τlr pulls all the coefficients
globally towards zero, while the thick half-Cauchy tails for the local variances λ2jlr allow the
important coefficients to escape the global shrinkage independently in each group [12]. In
practice, we expect the graphs to have group specific connection patterns, allowed by the
group-coefficient specific local shrinkage parameters λjlr. We also expect groups to share
some common structures and to be sparse. For this reason, we link the global shrinkage
parameters τlr, allowing borrowing information across groups about the global level of
sparsity of the graphs.

2.1.2. Extension tomultiple time points – dynamic horseshoe prior
Anatural extension of themodel above is to introduce a temporal dimension, which allows
joint inference of time dependent graphs frommultiple groups. Some recent proposals for
inference of dynamic Graphical Models can be found, for instance, in [1,21,28,31,33,44].

In this work, we consider the evolution over time of the patterns of metabolic associa-
tions for two ethnic groups. Our goal is to estimate sparse multiple-graphs evolving over
time. Here, we provide an extension of the nodewise regression which enables estimation
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of time dependent graphs for multiple groups, enabling borrowing of information across
time and groups. One of the main goals is to gain a better understanding how the differ-
ences in associations among groups evolve over time. To this end, we extend the model
in (7) by imposing a time structure over the shrinkage scale parameters of the Horseshoe
prior following the approach proposed by [40]. Time dependence is introduced by speci-
fying a stochastic volatility model on the log-variance of each regression coefficient, as well
as an autoregressive term in the distribution of βjrt . Let t = 1, . . . ,T be the time index and
let Yrt be a nrt × M matrix containing the observations belonging to group r at time t. In
what follows, we omit the equation subscript l for ease of notation. Define hjrt as

hjrt = log
(
τ 2jrτ

2
0 /

√
pnrt

)
+ φjr

(
hjrt−1 − log

(
τ 2jrτ

2
0 /

√
pnrt

))
+ log

(
λ2jrt

)
(8)

where p = M−1, φjr is an autoregressive coefficient specific to the j-th covariate and r-
th group, τ0 is a global shrinkage parameter common to all regression coefficients and
shared by all groups, τjr is a group-coefficient specific shrinkage parameter and λ2jrt is
a time-group-coefficient specific local shrinkage parameter. Note that τ0 allows sharing
information across groups, while the time dependence is captured by the parameter φjr.
Finally, the time-dependent multiple-groups nodewise regression model becomes

yrt | βrt , σ
2
rt ∼ Np

(
Xrtβrt , σ

2
rtInrt

)

σ 2
rt | aσ , bσ ∼ Inverse − Gamma (aσ , bσ )

βjrt = βjrt−1 + γjrt exp(hjrt/2)

γjrt
ind∼ N(0, 1)

hjrt = log
(
τ 2jrτ

2
0 /

√
pnrt

)

+ φjr

(
hjrt−1 − log

(
τ 2jrτ

2
0 /

√
pnrt

))

+ log
(
λ2jrt

)

(φjr + 1)/2 | φa,φb ∼ Beta(φa,φb)

τ0 ∼ C+ (0, 1)

τjr ∼ C+(0, 1)λjrt ∼ C+(0, 1)

(9)

where βrt = (β1rt , . . . ,βprt) is a time and group specific vector of regression parameters
and Xrt is a nrt × p matrix corresponding to Y−lrt (i.e. Yrt excluding the l-th column). A
schematic representation of model (9) is shown in Figure 1(b).

The distribution of the logarithm of the square of a half-Cauchy random variable is a Z-
distribution [40]. In particular, if ζ = log(λ2), where λ ∼ C+(0, 1), then ζ has probability
density function

g(ζ ) = π−1 exp (ζ )
[
1 + exp (ζ )

]−1 , ζ ∈ R (10)

The Z-distribution can be represented as a mean-variance mixture of Gaussian distribu-
tions [4] and, thanks to the Polya-Gamma expansion proposed by [40], we can develop
a multiple groups hierarchy similar to the one in model (7). To this end, we define ζjrt =



10 M. MOLINARI ET AL.

log(λ2jrt),μ0 = log(τ 20 ) andμjr = log(τ 2jrτ
2
0 ) and we re-write the prior distributions for the

parameters on a log scale as

ζjrt | ξζjrt ∼ N
(
0, ξ−1

ζjrt

)

μjr | μ0, ξμjr ∼ N
(
μ0, ξ−1

μjr

)

μ0 | ξμ0 ∼ N
(
0, ξ−1

μ0

)

ξζjrt ∼ Polya − Gamma(1, 0)

ξμjr ∼ Polya − Gamma(1, 0)

ξμ0 ∼ Polya − Gamma(1, 0)

(11)

This modelling strategy allows us to propagate the shrinkage profile of each regression
coefficient over time, allowing fast structural changes or slowly adjusting processes. The
theoretical properties of the dynamic Horseshoe prior are discussed by [40], who also
show its good performance when compared to alternative priors. Moreover, the Polya-
Gamma expansion in (11) leads to efficient computations as it allows to design a fast
block-Gibbs sampler (although, for the application in this work, posterior inference is
performed through Hamiltonian Monte Carlo methods as implemented in the software
Stan).

2.2. Posterior inference

For datasets of moderate size, e.g. M ≤ 30 and sample size n ≤ 1000, posterior infer-
ence for the nodewise regression model with Horseshoe prior (static and dynamic)
can be performed efficiently using Bayesian softwares like Stan [11] or JAGS
(http://mcmc-jags.sourceforge.net/). The main computational bottleneck for our model is
sampling from the posterior distribution of the regression coefficients, which can be expen-
sive for large values of p with complexity equal to O(p3) in general settings [7,59]. [37]
propose an approximation scheme for the horseshoe posterior, which exploits the struc-
tural sparsity of the posterior to reduce the cost per step and that can scale to hundreds of
thousands of predictors. The per step computational cost of the approximate algorithm is
of the order (κ ∨ p)N, where κ is the number of included variables at every step.

In Section 1 of Supplemental Material, we provide sample code to implement the pro-
posed approach inStan, which implementsHamiltonianMonteCarlo (HMC, [9], chapter
5). WhenM is large (> 100), implementation in a low level language is advisable. We also
develop a block Gibbs sampling, extending the algorithm provided by [40] to allow for
multiple groups of different sample sizes across time. Details of the MCMC algorithm are
provided in Section 1 of Supplemental Material. The computational efficiency of the two
algorithms is assessed through a simulation study.We considerN = 100 observations split
equally between two groups and different values for the number of nodes M and of time
points T. We record the computational times (in seconds) per iteration for both the stan
implementation and the block Gibbs sampler MCMC algorithm (implemented in R). The
computer on which we have run the simulations is a Linux machine with Intel Core i7

http://mcmc-jags.sourceforge.net/
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1.8GHZ. As it is shown in Table 1 of Supplemental Section 1, both algorithms are com-
putationally efficient when T = 3, with the Gibbs sampler outperforming Stan for larger
number of time points. This is due to the ability of the Gibbs sampler to perform joint
updates without looping over the number of time points. Recall also that the computa-
tional burden of the dynamic Horseshoe approach scales linearly with the number of time
points [40]. The results can be further improved by implementing a parallel programming
strategy, thanks to the conditional independence of the different regressions.

Finally, posterior inference on the implied graph can be performed by applying either
the OR rule or the AND rule. In practice, at every iteration of the MCMC algorithm, we
obtain a draw for the graph, by including an edge between nodes j and l if and only if the
draws βjl �= 0 or βlj �= 0, in the case of the OR rule. When using the AND rule, we include
an edge between nodes l and j if and only if the draws βjl �= 0 and βlj �= 0. Moreover, given
βjl and σ 2

l , we obtain a sampled value for� by setting the diagonal elements equal to 1/σ 2
l

and off-diagonal elements equal to −βjl/σ
2
l .

3. Simulation study

We investigate the performance of the proposed models on synthetic datasets. We evaluate
the ability of each model to estimate the precision matrix � through the Mean Absolute
Error (MAE), calculated between the true matrix and its posterior mean estimate. We also
investigate the ability of the model to recover the true graph structure G using the Area
Under the Curve (AUC), which is a normalised measure of the area under the Receiver
Operating Characteristic (ROC) curve. The ROC curve is obtained by plotting the true
positive rate against the false positive rate evaluated at different thresholds for the edge
inclusion probability. We also include results relative to the false positive rates (FPR) and
false negative rates (FNR) when comparing different network estimates. For all the sim-
ulation scenarios presented in this Section, we show the results obtained by applying the
AND rule. Using the OR rule yield comparable results.

In the first simulation, we compare the estimate of themultiple groupsmodel in (7) with
that of the R package BDgraph, which implements a birth-death MCMC algorithm for
Bayesian structure learning in graphical models, and with the Graphical Group Lasso [15].
We construct three precision matrices �1, �2 and �3, corresponding to graphs G1, G2
andG3, ofM = 20 nodes. Following [54], we first define the precision matrix�1 and then
derive the others as a perturbation of the first. We set the main diagonal elements of �1
equal to 1, first off-diagonal elements ωi,i+1 = ωi+1,i = 0.5, for i = 1, . . . , 19 and second
off-diagonal elements ωi,i+2 = ωi+2,i = 0.5, for i = 1, . . . , 18. Then we set all ωi,j = 0.9,
for i< j<6, while the rest of the elements are set to zero. �2 is derived from �1, setting
the second off-diagonal elements ωi,i+2 = ωi+2,i = 0, for i = 1, . . . , 18, all the remaining
elements being equal.�3 is derived from�1, setting the first off-diagonal elementsωi,i+1 =
ωi+1,i = 0, for i = 1, . . . , 19, all the remaining elements being equal. The newly created
matrices are not positive definite and, therefore, we compute the nearest positive-definite
approximation through the R function nearPD ([32], from the R package Matrix. The
precision matrices �2 and �3 constructed with this procedure are a perturbation of �1:
as a result they exhibit some common edges and some group specific connections. The
number of observations is fixed to 60, 40, 30 for group 1, 2 and 3, respectively. Each graph
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is characterised by a dense group of edges on nodes 1 to 6, representing a set of high partial
correlations (absolute value of 0.9).

In the second simulation scenario we compare the multiple groups dynamic node-
wise model in (9) with (i) the static multiple groups nodewise model in (7) (where we
assume the three time periods to be independent); (ii) the BDgraph package and (iii)
the Graphical Group LASSO. We consider M = 20 nodes, two groups and we construct
two matrices �1t1 and �2t1 , one for each group at time 1. First we set the main diago-
nal elements of �1t1 equal to 1 and we add 12 non-zero off-diagonal elements, chosen
randomly from the K possible edges and setting them equal to 0.5. Then �2t1 is con-
structed removing two edges from �1t1 at random and adding three new edges chosen
randomly as before. These three new edges are set equal to 0.5. Finally, we simulate the
evolution over time of the two precision matrices, removing two edges and adding a new
edge randomly chosen for each time point (setting the corresponding elements in the
precision matrix equal to 0.5) for a total of T = 3 time points. In Figure 3 in Section 2
of Supplemental Material, we show the networks generated with such procedure from
which we simulate the datasets. The number of observations is fixed to 50, 40, 30 respec-
tively for t1, t2 and t3 (where each group has half of the total sample size at each time
point).

In the third simulation we construct the dynamic precisionmatrices following the same
procedure as the second scenario, changing the number of time points to T = 10. The
number of observations is fixed to 40 per time point (equally split between two groups).
The generated graphs are characterised by a slowly changing pattern, where only one edge
is added or removed at each time point.

3.1. Simulation results

In Figure 1 in Supplemental Section 2 we report the results of the first simulation scenario
by displaying the boxplots of theMAE andAUC, calculated over twenty replicates obtained
with the multiple groups nodewise model (7) and with the BDgraph package. The node-
wise model works better in terms ofMAE, for which a value closer to 0 denotes an estimate
of � close to the truth, and in terms of AUC, for which a value close to 1 denotes a bet-
ter recovery of the true graph. The values of the FPR and FNR for the two models, shown
in Figure 2 in Section 2 of Supplemental Material, are comparable in all groups, and in
particular equal to zero for groups G2 and G3.

In Figures 4 and 5 in Supplemental Section 2 we show the results for the second sim-
ulation scenario. We compare the results obtained using the dynamic and static multiple
groups nodewise models in (7) and (9), the BDgraph package and the Graphical Group
LASSO method. We notice a competitive recovery offered by the proposed model of the
true precisionmatrices (Figure 4,MAE, top two panels). The graphical structure (Figure 4,
AUC, bottom twopanel) is recoveredwell by the proposedmethod in twoof the time points
for the first group, and in the second time point for the second group. In this simulation
setting, no method consistently outperforms the others. This is not surprising given the
sample sizes. In Figure 5 we display False Positive and False Negative Rates for the four
models. As expected, given the use of a shrinkage prior,the proposed models perform bet-
ter in terms of FPR and, in general, similarly to BDgraph. We note that Graphical Group
LASSO induces less sparsity in graph reconstruction.
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Figure 2. Third simulation scenario. MAE and AUC comparison between the results obtained using the
dynamicmodel in (9) (black), the staticmodel in (7) (red),BDgraph (green) andGraphical Group LASSO
(blue). Each row refers to one of the groups and shows the boxplots for each of the ten time points.
The results are obtained over twenty replicates and by adopting the AND rule. In terms of MAE, the
dynamic model yields the lowest values, indicating overall a good performance in estimating the preci-
sion matrix. On the other hand, BDgraph shows the worst performance in terms of MAE. Themethods
are comparable in terms of AUC.

The results of the comparison between the dynamic and static nodewise models
obtained from the third simulation scenario are shown in Figures 2 and 3, where we
report the boxplots of the MAE, AUC, FPR and FNR calculated over twenty replicates.
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Figure 3. Third simulation scenario. False positive rates (FPR) and false negative rates (FNR) for the
dynamicmodel in (9) (black), the staticmodel in (7) (red),BDgraph (green) andGraphical Group LASSO
(blue). Each row refers to one of the groups and shows the boxplots for each of the ten time points. The
results are obtained over twenty replicates and by adopting the AND rule. In both groups, the dynamic
and Graphical Group LASSO models differ the most in terms of FPR and FNR. On the other hand, the
results for the static model and BDgraph are comparable at the first time points, and diverge slightly at
later time points.

The dynamicmodel has the lowestMAE values in both groups and at all time points, while
BDgraph shows the worst performance in terms of MAE. In terms of graph recovery, as
measured by AUC, the methods are comparable.In terms of FPR, the dynamic Horseshoe
model performs most shrinkage, although it suffers the highest FNR.
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4. Application

In this Section, we apply the nodewise regressionmodel for dynamicmultiple graphs to the
SABRE metabolic data. The dataset has a total of 1246 observations at baseline (T1) and
875 at follow-up time (T2). In this application, groups are defined by ethnicity. Individuals
are stratified into two ethnicities at each time point, 690 Europeans and 556 South-Asians
at T1 and 503 Europeans and 372 South-Asians at T2. Measurements of different classes of
metabolites are available. Lipoproteins, which constitute the majority of the metabolomic
dataset, are classified according to their density (very-low-density lipoprotein (VLDL),
low-density lipoprotein (LDL), intermediate-density lipoprotein (IDL) and high-density
lipoprotein (HDL)). Each lipoprotein subclass can be further characterised by its lipid com-
position (i.e. triglycerides, phospholipids, free cholesterol and cholesteryl esters) and its
particle size. The full list of metabolites included in the analysis is reported in Table 2 in
Section 2 of Supplemental Material. We include in the analysis clinical markers, such as
the homeostasis model assessment (Homa IR) as an index of insulin resistance [48] - an
important risk factor for the development of type 2 diabetes -, waist to hip ratio (WHR) as
a measure of body fat distribution, control variables such as gender, age, smoking habits,
physical activity and alcohol consumption. We control for previous disease status, in par-
ticular we include indicators of coronary heart disease (CHD), stroke and diabetesmellitus.
We also include indicators of drug treatments for blood pressure, diabetes and blood lipids.
The full list of covariates included is given in Table 3 in Section 2 of SupplementalMaterial.

The nodes of the graph correspond to the different metabolites and there are a total of
M = 88 nodes (i.e. the number of equations in the nodewise regression). When analysing
these data, it is important to control for clinical events of interest (e.g. development of
diabetes) that occur before T1 and between T1 and T2. To this end, we model the mean μl
of the multivariate Normal distribution in (3) through a linear predictor and assume that
μlrt = Zηlrt , where Z is a matrix of predictors common to all equations and ηlrt is a pz-
dimensional vector of regression coefficients for the mean level. The model is completed
by specifying a time dependent structure and a prior distribution on ηlrt as follows

ηklrt = ηklrt−1 + γ z
klrt

γ z
klrt ∼ N(0, s0)

for k = 1, . . . , pz, where s0 is the prior variance, here specified to induce a flat Normal dis-
tribution. Posterior inference is performed by updating jointly the regression coefficients
β lrt and ηlrt . We also include an intercept term so that the total number of covariates is
pz = 20.We run theMCMC for 10,000 iterations, including a burn-in period of 2000 itera-
tions and thinning every 4 iterations.Weperformposterior analysis applying both theAND
and OR rule. In Figures 6 to 9 in Supplemental Section 2, we report the posterior expecta-
tion of κ for each group and time point. Furthermore, in Figures 10 to 17 we display the
inferred individual networks for each ethnic group at both baseline and follow-up times.
These networks are characterised by a high number of edges, in particular, we can notice
a very highly connected group of lipoproteins in all graphs. In addition to the individual
networks we also estimate the differential networks [16,65,71] derived from the pairwise
comparison between the graphs corresponding to the two ethnicities for each time point
and the pairwise comparison between T1 and T2 for each ethnicity. Following [65], a dif-
ferential network includes all the edges that are present only in one of the two groups/times
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(i.e. present in one group/time and not the other and vice-versa), thus shedding light on
the main differences between ethnicities and the evolution of the metabolic associations
over time. Differential networks obtained with the AND are shown in Figures 4 to 7, while
those obtained with OR are reported in Figures 18 to 21. In a differential network, an edge
between two nodes is added if the posterior probability of an edge being in one graph but
not in the other is higher than 0.5. In this Section, we only discuss the results obtained with
the AND rule since it implies a more stringent selection criteria.

In Figures 4 and 5 we show the differential networks between T1 and T2 for Europeans
and South-Asians, respectively. It is worth noticing that there are no edges among the
majority of the metabolites in both differential networks, which implies that the presence
or absence of those connections is shared by the respective ethnicity both at T1 and T2.
Moreover, for both ethnic groups, the majority of the edges in the differential networks
derives from edges present at baseline, but not at follow-up. The connected metabolites in
the differential networks for both ethnicities (Figures 4 and 5) belong predominantly to the
groups of very low density lipoproteins and high density lipoproteins, with the addition of
an edge between leucine and isoleucine. These are, together with valine, essential amino
acids which account for 35–40% of the dietary indispensable amino acids in body protein
and 14% of the total amino acids in skeletal muscle [46]. Their association with a number
of disorders has often been reported in the literature, including insulin resistance, type-2
diabetes [29] and cardiovascular diseases [69].

In Figures 6 and 7 we report the differential networks between Europeans and South-
Asians, respectively at time T1 and T2. These networks present edges connecting amino-
acids and lipoproteins sub-fractions, highlighting potential differences in underlying
metabolic processes. In the last column of Table 2 in Supplemental Section 2 we report the
metabolites differentially connected at both time points. To gain a better understanding
of the estimated connections and to relate the estimated graph to known metabolic path-
ways, we conduct a pathway over-representation analysis (ORA) using the online software
IMPaLA [Integrated Molecular Pathway Level Analysis][38]. We include in the analysis
all metabolites that have a connection in the differential network. ORA evaluates statisti-
cally the fraction of metabolites in a particular pathway found among the user-specified
set of metabolites, in our case the metabolites with connections in the differential network.
For each pathway, input metabolites that are part of the pathway are counted. Next, every
pathway is tested for over- or under-representation in the list of inputmetabolites using the
hypergeometric test. Themost represented pathways are the ones with smaller p-value and
higher number of over-represented metabolites. Here we discuss the first four top-ranked
pathways at timeT2:Cholesterol metabolism, Fat digestion and absorptionmetabolism, Lipid
and atherosclerosis metabolism and Vitamin digestion and absorption. Note that the differ-
ential network at time T1 contains only one extra metabolites as compared to T2, leading
to substantially the same pathways.

Cholesterol metabolism in humans is a complex process which involves multiple
metabolic pathways subject tomany points of regulation under genetic andmetabolic con-
trol [27]. In brief, cholesterol is either supplied from diet or synthesised by many cells of
the body, with the liver being one of the major sites of cholesterol synthesis. A diet charac-
terised by high intakes of cholesterol itself, or of saturated fats and excessive calories, may
increase the level of cholesterol in the blood. The response to changes in dietary cholesterol
is heterogeneous in humans and many studies show that cholesterol consumption should
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Figure 4. European Differential network between baseline and follow-up obtained with the AND rule.
Red lines correspond to edges only present in the baseline network, while blue lines to those only
present in the follow-up network. Continuous lines represent differential positive partial correlations,
while dashed lines indicate negative ones. Note that the majority of the differential edges comes from
those only present in the baseline network.

be restricted by diabetics and others at risk for cardiovascular disease [18]. Moreover, lev-
els of cholesterol in blood are also influenced by environmental factors such as dietary
fatty acids and metabolic perturbations such as diabetes, obesity and genetic factors [3].
Lipids and lipoproteins crucially contribute to atherosclerosis, the pathological basis of
cardiovascular diseases and influence inflammatory processes as well as function of leuko-
cytes, vascular and cardiac cells, thereby impacting on vessels and heart. Clinical studies
have found a clear causal relationship between hypercholesterolaemia and atherosclerotic
disease [see, for instance,][56]. Furthermore, beyond LDL cholesterol, there is evidence
that also other lipid mediators contribute to cardiovascular risk [62]. Consistently with
our analysis, ethnic differences in dyslipidemia patterns, lipid metabolism, total and HDL
cholesterol have been reported in the literature [20,23,70].
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Figure 5. South-AsiansDifferential network betweenbaseline and the follow-upobtainedwith theAND
rule. Red lines correspond to edges only present in the baseline network, while blue lines to those only
present in the follow-up network. Continuous lines represent differential positive partial correlations,
while dashed lines indicate negative ones. Note that the only difference between the two networks
comes from edges only present in the baseline network.

Lipids have physical, chemical, and physiological characteristics that make them impor-
tant factors in human nutrition. They form a group of compounds of varied chemical
nature, with the common property of being soluble in organic solvents but insoluble in
water. This property affects their digestion, absorption and transport in the blood and
metabolism at cellular level [57]. Dietary fats consist of a wide range of polar and nonpolar
lipids [10]. Triacylglycerol is the dominant fat in the diet, contributing 90–95% of the total
energy derived fromdietary fat. Dietary fats also include phospholipids, sterols (e.g. choles-
terol), and many other lipids (e.g. fat-soluble vitamins). Lipid digestion, absorption, and
metabolism have been linked to lipid-associated disorders, including dyslipidemias and
cardiovascular diseases. Efficient absorption of dietary fats is important as fat can be used
as a source of energy to support various cellular functions or stored until it is needed to sup-
port intracellular processes [35]. Most circulating and stored fatty acids are derived from
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Figure 6. Differential network between Europeans and South-Asians at baseline obtainedwith the AND
rule. Red lines correspond to edges only present in the European network, while blue lines to those only
present in the South-Asian network. Continuous lines represent differential positive partial correlations,
while dashed lines indicate negative ones.

the diet [72] and in recent years the relationship between fatty acids and cardiovascular
disease has received increasing interest [73]. For instance, a major risk factor for obe-
sity and obesity-related metabolic disorders is the regular consumption of fat-rich meals.
Hence, a tremendous effort has been devoted towards limiting the amount of dietary lipids
absorbed through the gastrointestinal tract. In general, most focus has been placed on lim-
iting triglyceride digestion in the intestinal lumen and the transport and absorption of fatty
acids and cholesterol through the intestinal mucosa. Other fats also contribute to obesity-
related disorders, such as phospholipids, which are major constituents in the intestinal
lumen after meal consumption, and products of phospholipid metabolism in the intestine,
which directly contribute to cardio-metabolic diseases throughmultiple mechanisms [34].

Regarding the lipid and atherosclerosis pathway, atherosclerosis is a chronic inflamma-
tory disease marked by a narrowing of the arteries from lipid-rich plaques present within
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Figure 7. Differential network between Europeans and South-Asians at follow-up obtained with the
AND rule. Red lines correspond to edges only present in the European network, while blue lines to
those only present in the South-Asian network. Continuous lines represent differential positive partial
correlations, while dashed lines indicate negative ones.

the walls of arterial blood vessels [39]. Elevated levels of low density lipoprotein (LDL)
cholesterol constitute a major risk factor for genesis of atherosclerosis as LDL can accu-
mulate within the blood vessel wall and undergo modification by oxidation. It is generally
accepted that atherosclerotic lesions are initiated via an enhancement of LDL uptake by
monocytes and macrophages [13,45]. Ethnic differences have been reported in the risk
of atherosclerosis. For example, Lipoprotein(a) (LP(a)) is a well-known risk factor for
atherosclerosis and Lp(a)-associated risk may vary by ethnicity [e.g.][22]. Lp(a) has been
related to greater risk of carotid plaque and its progression in whites and Lp(a)-associated
risk of plaque outcomes vary significantly in white and black individuals [64]. More-
over, there are distinct patterns of lipid profiles associated with ethnicity regardless of the
glucose levels [77] and in the biological relationships underlying the serum lipids-disease
association [5].



JOURNAL OF APPLIED STATISTICS 21

The fourth identified pathway isVitamin digestion and absorption. Vitamins are organic
substances which are essential for health and well-being as they catalyse numerous bio-
chemical reactions. Vitamins must be obtained from exogenous sources via intestinal
absorption since humans and other mammals cannot synthesise these compounds [39].
The importance of vitamins in health has been widely reported [47,66].

These findings suggest plausible metabolic pathways which may be disordered to a
greater extent in South-Asians and contribute to their excess risk of diabetes and cardio-
vascular disease.

In Figures 22, 23, 24 and 25 we plot the posterior mean of the regression coefficients
ηjlrt , for each Equation l and covariate j, grouped by ethnicity and time. The measure of
body-fat distribution WHR has a negative effect on many metabolites for both ethnicities,
particularity at T1, while a few metabolites are affected at T2. Blood lipids (triglycerides,
cholesterols) and HDL are important for both groups and time periods. The presence of
diabetes, or diabetes treatment, also affects the mean level of some metabolites, in par-
ticular in Europeans. Homa IR has an effect on an elevated number of metabolites at T1
and T2 in both Europeans and South-Asians. Overall, Homa IR, blood lipids and serum
HDL are the control variables that have stronger effect (see the 95% credible region) on the
metabolites. High blood triglycerides and low HDL are among the risk factors that deter-
mine themetabolic syndrome [58], which can lead to the development of type 2 diabetes. In
summary, these findings highlight the presence of complex interplays between metabolic
processes, anthropometric factors and clinical markers, which can have different impacts
on the risk of diabetes and other cardiovascular diseases across ethnicities and across time.

5. Discussion and conclusion

This paper extends nodewise regression technique to infer dynamic evolving multiple
graphs. The model allows us to analyse multiple groups of different sample sizes observed
at multiple time points, borrowing information across time and groups. We impose reg-
ularisation on the regression coefficients and the model allows for the inclusion of prior
information about specific connections between pairs of nodes, when prior knowledge
is available. The structure of nodewise regression ensures good scalability of the MCMC
algorithm thanks to the possibility to infer each regression independently. The Horse-
shoe prior effectively shrinks small and negligible coefficients to zero (inducing sparsity
in the graph), while leaving important coefficients unaffected due to its heavy tails, hence
performing (group and time specific) variable selection.

We illustrate the performance of the proposedmodel in a simulation study and compare
it with an alternative Bayesian model for graph estimation as well as a frequentist method.
The results highlight the ability of themodel to recover the true underlying structure of the
graphs and to accurately estimate the corresponding precision matrices. In most scenar-
ios, the proposedmethods outperforms the competitors, still maintaining a computational
advantage. Finally, we employ the proposed dynamicmodel to analysemetabolic data from
the SABRE cohort study, an information rich dataset on cardiovascular and metabolic dis-
eases. Our clinical interest focuses on different patterns of metabolite associations which
characterise the European and South-Asian ethnicities and their evolution over time, from
the baseline visit to follow-up. Our approach enables us to detect an interpretable set of
unique association patterns which can aid mechanistic understanding of between-group
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and between-times differences in the development of insulin resistance, diabetes and car-
diovascular diseases and has the potential to help generating new scientific hypotheses.
In doing this, we correct for potential confounders and clinical events that could affect
metabolites levels.
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