Maneas, Efthymios;
Hauptmann, Andreas;
Alles, Erwin J;
Xia, Wenfeng;
Noimark, Sacha;
David, Anna L;
Arridge, Simon;
(2022)
Enhancement of instrumented ultrasonic tracking images using deep learning.
International Journal of Computer Assisted Radiology and Surgery
10.1007/s11548-022-02728-7.
(In press).
Preview |
Text
s11548-022-02728-7.pdf - Published Version Download (894kB) | Preview |
Abstract
PURPOSE: Instrumented ultrasonic tracking provides needle localisation during ultrasound-guided minimally invasive percutaneous procedures. Here, a post-processing framework based on a convolutional neural network (CNN) is proposed to improve the spatial resolution of ultrasonic tracking images. METHODS: The custom ultrasonic tracking system comprised a needle with an integrated fibre-optic ultrasound (US) transmitter and a clinical US probe for receiving those transmissions and for acquiring B-mode US images. For post-processing of tracking images reconstructed from the received fibre-optic US transmissions, a recently-developed framework based on ResNet architecture, trained with a purely synthetic dataset, was employed. A preliminary evaluation of this framework was performed with data acquired from needle insertions in the heart of a fetal sheep in vivo. The axial and lateral spatial resolution of the tracking images were used as performance metrics of the trained network. RESULTS: Application of the CNN yielded improvements in the spatial resolution of the tracking images. In three needle insertions, in which the tip depth ranged from 23.9 to 38.4 mm, the lateral resolution improved from 2.11 to 1.58 mm, and the axial resolution improved from 1.29 to 0.46 mm. CONCLUSION: The results provide strong indications of the potential of CNNs to improve the spatial resolution of ultrasonic tracking images and thereby to increase the accuracy of needle tip localisation. These improvements could have broad applicability and impact across multiple clinical fields, which could lead to improvements in procedural efficiency and reductions in risk of complications.
Type: | Article |
---|---|
Title: | Enhancement of instrumented ultrasonic tracking images using deep learning |
Location: | Germany |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1007/s11548-022-02728-7 |
Publisher version: | https://doi.org/10.1007/s11548-022-02728-7 |
Language: | English |
Additional information: | © 2022 Springer Nature Switzerland AG. This article is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). |
Keywords: | Deep learning, Interventional devices, Ultrasonic needle tracking |
UCL classification: | UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng UCL > Provost and Vice Provost Offices > UCL BEAMS UCL |
URI: | https://discovery.ucl.ac.uk/id/eprint/10155635 |
Archive Staff Only
View Item |