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Background: Automated tools for characterising dementia risk have the

potential to aid in the diagnosis, prognosis, and treatment of Alzheimer’s

disease (AD). Here, we examined a novel machine learning-based brain

atrophy marker, the AD-resemblance atrophy index (AD-RAI), to assess its

test-retest reliability and further validate its use in disease classification

and prediction.

Methods: Age- and sex-matched 44 probable AD (Age: 69.13 ± 7.13; MMSE:

27–30) and 22 non-demented control (Age: 69.38 ± 7.21; MMSE: 27–30)

participants were obtained from the Minimal Interval Resonance Imaging in

Alzheimer’s Disease (MIRIAD) dataset. Serial T1-weighted images (n = 678)

from up to nine time points over a 2-year period, including 179 pairs of

back-to-back scans acquired on same participants on the same day and

40 pairs of scans acquired at 2-week intervals were included. All images

were automatically processed with AccuBrain R© to calculate the AD-RAI.

Its same-day repeatability and 2-week reproducibility were first assessed.

The discriminative performance of AD-RAI was evaluated using the receiver

operating characteristic curve, where DeLong’s test was used to evaluate

its performance against quantitative medial temporal lobe atrophy (QMTA)

and hippocampal volume adjusted by intracranial volume (ICV)-proportions

and ICV-residuals methods, respectively (HVR and HRV). Linear mixed-effects

modelling was used to investigate longitudinal trajectories of AD-RAI and
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baseline AD-RAI prediction of cognitive decline. Finally, the longitudinal

associations between AD-RAI and MMSE scores were assessed.

Results: AD-RAI had excellent same-day repeatability and excellent 2-week

reproducibility. AD-RAI’s AUC (99.8%; 95%CI = [99.3%, 100%]) was equivalent

to that of QMTA (96.8%; 95%CI = [92.9%, 100%]), and better than that of HVR

(86.8%; 95%CI = [78.2%, 95.4%]) or HRV (90.3%; 95%CI = [83.0%, 97.6%]). While

baseline AD-RAI was significantly higher in the AD group, it did not show

detectable changes over 2 years. Baseline AD-RAI was negatively associated

with MMSE scores and the rate of the change in MMSE scores over time.

A negative longitudinal association was also found between AD-RAI values

and the MMSE scores among AD patients.

Conclusions: The AD-RAI represents a potential biomarker that may

support AD diagnosis and be used to predict the rate of future cognitive

decline in AD patients.

KEYWORDS

Alzheimer’s disease, Alzheimer’s disease-resemblance atrophy index, Minimal
Interval Resonance Imaging in Alzheimer’s Disease, AD diagnosis, AD progression
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease
progressively leading to dementia characterised by memory loss,
confusion, mood changes and difficulties in communicating,
problem-solving or coordination (Pini et al., 2016; Knopman
et al., 2021; Leng and Edison, 2021; Scheltens et al., 2021). While
treatments for AD are scarce, preclinical/prodromal biomarkers
(e.g., amyloid β, pathological tau protein, brain atrophy) hold
promise for the earlier disease detection and the development of
novel interventions designed to prevent or delay AD (Dubois
et al., 2014, 2021; Jack et al., 2018; Srivastava et al., 2021;
Mahaman et al., 2022; Teunissen et al., 2022). For example,
atrophy of the medial temporal lobe and hippocampus, as
measured using structural magnetic resonance imaging (MRI),
are now widely used AD biomarkers (Jack et al., 2011; Clerx
et al., 2013).

The AD resemblance atrophy index (AD-RAI) is a novel
machine-learning based brain atrophy biomarker for AD
diagnosis (Zhao et al., 2019; Liu et al., 2021; Mai et al., 2021,
2022). Unlike single brain regional biomarkers, the AD-RAI
summarises atrophy across multiple brain regions known to
be affected by AD including subcortical structures, ventricles,
and cortical lobar regions. This composite marker of AD-related
brain atrophy ranges from 0 to 1, where a higher AD-RAI score
indicates a greater amount of whole-brain atrophy matching the
typical progression patterns in AD (Zhao et al., 2019; Liu et al.,
2021; Mai et al., 2021, 2022). The AD-RAI has previously been
linked to greater cognitive decline over 2 years and represents
a strong predictor of conversion to mild cognitive impairment

(MCI) and AD with dementia in cognitively unimpaired (CU)
participants and MCI patients, respectively (Zhao et al., 2019).
The AD-RAI has also outperformed single brain regional
atrophy measurements (e.g., hippocampus, medial temporal
lobe, bilateral temporal lobe) in the discriminating between AD
patients and normal controls (Mai et al., 2021), in detecting early
AD at prodromal stage (MCI due to AD) (Liu et al., 2021), and in
predicting disease progression (Zhao et al., 2019). Most recently,
the AD-RAI was demonstrated to predict the progression to AD
in MCI patients carrying the APOE ε4 allele (Koutsodendris
et al., 2022; Mai et al., 2022).

The potential clinical utility of the AD-RAI in facilitating
earlier AD diagnosis and identifying at-risk individual AD
warrants further exploration. As obtaining large numbers
of AD patients is practically difficult for clinical study, the
sample sizes of previous studies – especially those of a
longitudinal nature – have been relatively small. This has
limited the extent to which the AD-RAI has been assessed for
technical reliability, repeatability, and reproducibility (Bartlett
and Frost, 2008), although a small analysis of 11 participants
(Mai et al., 2021) has previously found that AD-RAI scores
generated from 1.5T to 3T MRI scanners had strong inter-
scanner agreement when classifying individuals into patients or
controls. Besides inter-scanner reproducibility, it is yet to be
determined whether the AD-RAI has good repeatability (i.e.,
a high correspondence between AD-RAI scores taken from
the same participant under identical conditions) and good
reproducibility under other changing conditions other than
pathological atrophy (such as a high correspondence between
AD-RAI scores taken from the same participant over a period

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2022.932125
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-932125 August 18, 2022 Time: 13:57 # 3

He et al. 10.3389/fnagi.2022.932125

of time) (Bartlett and Frost, 2008). Furthermore, although the
group-level association between AD-RAI and cognition decline
has been revealed (Zhao et al., 2019), it remains unclear as to
whether the AD-RAI is able to accurately capture longitudinal
changes in cognitive impairment at individual level. With
the aim to examine the same-day repeatability and 2-week
reproducibility of the AD-RAI and further validate its use in
disease classification and prediction, in a longitudinal setting, we
selected the Minimal Interval Resonance Imaging in Alzheimer’s
Disease (MIRIAD) database for our study. The MIRIAD dataset
has stringently controlled scan and re-scan study design with a
wide range of inter-scan intervals over 2 years, allowing formal
assessments of the bias, repeatability and reproducibility of
measures of atrophy (Malone et al., 2013).

Materials and methods

Participants

Data were obtained from the MIRIAD database through
the MIRIAD XNAT database. Details of the study and sample
characteristics can be found in Malone et al. (2013). In brief,
the original MIRIAD project recruited 46 patients with probable
AD (aged 55+) and 23 age-matched, non-demented controls.
AD patients were diagnosed using the National Institute of
Neurological and Communicative Disorders and Stroke and
the Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA) criteria (McKhann et al., 1984) and were
required to have a Mini-Mental State Examination (MMSE)
score (Folstein et al., 1975) between 12 and 26 to be eligible
for the study. On the other hand, control participants were
only included if they had a MMSE between 27 and 30 and did
not have a history of cognitive impairment, head injury, major
psychiatric disease or stroke.

Image processing and Alzheimer’s
disease-resemblance atrophy index
calculation

Details of the image acquisition and pre-processing pipeline
are available in the Supplementary Methods or in Malone
et al. (2013) and in Abrigo et al. (2019). In brief, serial T1-
weighted images were acquired on the participants at up to
9-time points over a 2-year period. For most of the participants,
two back-to-back scans were also acquired within 1 day at 3-
time points. The images collected using a 1.5T MRI scanner
were automatically processed using AccuBrain R© IV1.2 system
(BrainNow Medical Technology Limited). Volumetric measures
[volume ratios of subcortical regions/ventricle structures to the
intracranial volume (ICV); ratios of the CSF volume to the
cortical volume of specific regions] were extracted for each

participant. These measures were used to compute the AD-RAI,
a single atrophy index ranging from 0 to 1, where higher scores
indicates greater AD-like brain atrophy.

To compare the performance of the AD-RAI in AD
diagnosis with established single-region biomarkers,
quantitative medial temporal lobe atrophy (QMTA),
hippocampal volume ratio (HVR), and hippocampal residual
volume (HRV) were either obtained automatically through
AccuBrain R© or computed manually. The QMTA was the ratio
of the inferior lateral ventricle to the ipsilateral hippocampus
volume and the HVR was defined as the ratio of the bilateral
hippocampal volume (HV) to the ICV. The HRV was defined as
the difference between the measured HV and the predicted HV.
The predicted HV for each participant was calculated using the
linear equation between HV and ICV, which was established
by fitting a linear regression using AccuBrain R©-measured HV
and ICV data only from the control group (Supplementary
Methods: Hippocampal residual volume calculation). The HVR
and HRV both represent the hippocampal volume marker
but are adjusted by the ICV-proportions method and the
ICV-residuals approach, respectively (O’Brien et al., 2011).

Data selection and exclusion

The scans that did not pass the quality control of the
AccuBrain R© analysis, and the MMSE scores that did not have age
recorded and matched scans were excluded from the analysis.
Therefore, 678 scans from 66 participants (22 controls and 44
AD patients) were selected for the following statistical analysis,
including a total of 179 pairs of back-to-back scans acquired on
the same participants on the same day and 40 pairs of scans
acquired at 2-week intervals. For further information on data
inclusion and exclusion, please see Supplementary Methods:
Data selection and exclusion.

Statistical analysis

All statistical analyses were conducted in R [RStudio
4.0.5 (2021-03-31)], where a p-value < 0.05 was considered
statistically significant. Independent t-tests were first used to
compare the age, baseline HVR and baseline HRV between
AD and controls, while Chi-squared test was used to compare
sex distributions. For variables with skewed distributions (i.e.,
baseline MMSE, baseline AD-RAI and baseline QMTA), the
non-parametric Mann-Whitney U test was used to enable
group comparisons. For multiple comparisons of AD diagnosis
between AD-RAI and HVR, HRV, or QMTA, the false discovery
rate (FDR) was controlled below 0.05. The corresponding
q-values were calculated and reported together with the original
p-values before the FDR correction. A q-value < 0.05 was
considered significant.
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Same-day repeatability and 2-week
reproducibility of Alzheimer’s
disease-resemblance atrophy index

The same-day repeatability of the AD-RAI was first
examined. For individuals who received back-to-back MRI
scans (n = 179), Bland-Altman plots (Bland and Altman, 1986)
were used to visualise the association between the difference
and average of the two AD-RAI scores calculated from
these paired MRI scans. Pearson’s correlation was then used
to quantify this association. Intraclass correlation coefficient
(ICC) analysis (McGraw and Wong, 1996) was also employed
to evaluate the agreement between the two AD-RAI scores
generated from paired scans. For the ICC analysis, a two-
way random effects model was used to take into account
differences between participants as well as scanner fluctuations
at different times. ICC less than 0.50, between 0.50 and
0.75, between 0.75 and 0.9, and greater than 0.9 indicates
poor, moderate, good, and excellent agreement, respectively
(Koo and Li, 2016).

Bland-Altman plots, Pearson’s correlation and ICC were
also used to investigate 2-week reproducibility of AD-
RAI, using 40 paired scans acquired at 2-week intervals
for 40 participants. Two-week reproducibility was assessed
as participants and scanner could undergo non-negligible
fluctuations (Bartlett and Frost, 2008) unrelated to the brain
pathological changes over time. We chose the 2-week interval
under the assumption that the brain atrophy will not change
significantly within 14 days.

Discriminative ability of Alzheimer’s
disease-resemblance atrophy index

We used logistic regression to examine whether baseline
AD-RAI scores and MMSE-based classifications (i.e., AD:
MMSE score ≤ 26; Control: MMSE score ≥ 27) predicted the
probability of belonging to a given group (AD or control).
The receiver operating characteristic (ROC) curve and the
area under the curve (AUC) (Hanley and McNeil, 1982)
were used to evaluate the discriminative ability of the
logistic regression model. The optimal threshold range
was identified by comparing predicted classifications with
reference classifications (i.e., MMSE-based classifications)
and calculating the confusion matrix including the true
positive percentage (TPP, i.e., sensitivity) and the false
percentage (FPP, i.e., 1-specificity). Separate logistic regressions
were also run with single brain structural imaging markers
(i.e., QMTA, HVR and HRV) as predictors of dementia
status for comparison. The AUC between baseline AD-
RAI and baseline QMTA, baseline HVR or baseline
HRV was then statistically compared using DeLong’s test
(DeLong et al., 1988).

Longitudinal trajectories of Alzheimer’s
disease-resemblance atrophy index

Linear mixed-effects (LME) models were used to examine
longitudinal trajectories of AD-RAI in AD patients and controls
(Fitzmaurice and Ravichandran, 2008). Using the R package
nlme, the AD-RAI was modelled as a linear function of time,
group and the interaction between time and group to examine
(1) whether the average trajectories of AD-RAI in AD patients
and controls significantly differ in their intercepts; (2) whether
there is a constant rate of increase in the average AD-RAIs
of all the participants for a single unit increase in time; and
(3) whether the rates of the increase (the slopes of the average
trajectories) over the 2 years are significantly different between
AD and control groups. Further details on these analyses
are provided in the Supplementary Methods: Linear mixed-
effects models.

Longitudinal trajectories of
mini-mental state examination

To investigate whether baseline AD-RAI was associated with
cognitive decline measured over a maximum of 2 years, we
modelled the MMSE scores as a function of time, baseline AD-
RAI and the interaction between time and baseline AD-RAI.
More details are available in Supplementary Methods: Linear
mixed-effects models.

To further assess the relationship between AD-RAI and
MMSE, we used the repeated measures correlation (rmcorr)
package (Bakdash and Marusich, 2017) to examine the
longitudinal associations between repeated measures of AD-RAI
and MMSE. This method assesses the common intra-individual
variance and offers high statistical power to detect the common
association between two measures, at the individual level. As
AD patients had significantly higher baseline AD-RAI than the
controls (Table 1) we expected the correlation between AD-
RAI and MMSE to be different in AD patients compared to the
controls. Therefore, we performed the rmcorr analysis for the
two groups separately.

Results

Participant demographics

Table 1 summarises the demographics of participants
included in the present analyses. In brief, participants with
AD were on average 69.1 years old (± 7.13; 50% females)
and controls were an average of 69.4 (± 7.21; 59.1% females).
No significant differences in either age (p = 0.895) or sex
(p = 0.483) between AD patients and controls. Baseline AD-
RAI score were significantly higher in AD patients (Median
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TABLE 1 Comparisons of age, sex, MMSE, AD-RAI, HVR, HRV, and QMTA at baseline across groups.

Variable Normality test* Controls AD patients Comparison
(P-value) (Mean ± SD**) (Mean ± SD**) (P-value)

Age 0.141 69.38± 7.21 69.13± 7.13 0.895∧

Female (%) N/a 11 (50) 26 (59.09) 0.4831

MMSE 0.0002 30 (1) 19 (7) 3.87E-11#

AD-RAI 5.38E-10 0.083 (0.132) 0.997 (0.009) 2.20E-16#

HVR 0.479 0.0044± 0.0004 0.0037± 0.0005 5.82E-07∧

HRV (ml) 0.572 −0.00005± 0.51982 −1.128± 0.748 2.63E-08∧

QMTA 9.18E-07 0.362 (0.075) 0.792 (0.431) 7.49E-10#

*Shapiro-Wilk test; ∧Student’s t test; 1Chi-squared test; #Mann-Whitney U test; **Normally distributed continuous variables were reported as Mean ± SD; while skewed continuous
variables were reported as median (interquartile range) and categorical variables were reported as count (%). AD, Alzheimer’s disease; AD-RAI, Alzheimer’s disease-resemblance atrophy
index; HVR, hippocampal volume ratio defined as the ratio of hippocampal volume to intracranial volume; HRV, hippocampal residual volume defined as the difference between the
measured HV and the predicted HV; MMSE, Mini-Mental State Examination; QMTA, quantitative medial temporal lobe atrophy defined as the ratio of the inferior lateral ventricle to the
ipsilateral hippocampal volume.

TABLE 2 Same-day repeatability and 2-week reproducibility analysis results.

Bland-Altman method ICC method

Analysis Difference in AD-RAI Pearson’s correlation coefficient ICC 95%CI F-testP-value

Mean 95% CI r 95% CI P-value

Same-day −0.002 [−0.006, 0.003] −0.019 [−0.165, 0.128] 0.801 0.997 [0.996, 0.998] 3.44E-198

2-week 0.005 [−0.003, 0.014] −0.155 [−0.445, 0.165] 0.340 0.998 [0.996, 0.999] 1.06E-48

AD-RAI, Alzheimer’s disease-resemblance atrophy index; CI, confidence interval; ICC, intraclass correlation coefficient; r, Pearson’s correlation coefficient.

AD-RAI = 0.997, Interquartile Range (IQR) = 0.009) relative
to controls (Median AD-RAI = 0.083, IQR = 0.132; p = 2.20E-
16), while baseline MMSE were significantly lower (median
MMSE for AD patients = 19, IQR = 7; median MMSE for
control patients = 30, IQR = 1; p = 3.87E-11). The baseline
HVR and baseline QMTA were significantly lower and higher,
respectively, in AD group than that in control group (p< 0.001).
The baseline HRV was also significantly different between the
control and AD group (p = 2.63E-08).

Alzheimer’s disease-resemblance
atrophy index had excellent same-day
repeatability and 2-week
reproducibility

The mean difference in AD-RAI scores between the back-to-
back scans was−0.002 [95% confidence interval (CI) = (−0.006
to 0.003)] (Table 2), which was not significantly different from
zero (p = 0.512). Bland-Altman plots (Figure 1A) demonstrates
the difference between the AD-RAI scores from back-to-
back scans against their average, for each participant. No
obvious trend were observed between the magnitude of the
differences changes and size of the averages, and Pearson’s
correlations between these metrics were not statistically
significant (p = 0.801). ICC analyses also indicated a high level
of agreement between the AD-RAI metrics (ICC = 0.997, 95%

CI = [0.996, 0.998], p = 3.44E-198, Table 2). Taken together, the
Bland-Altman method and the ICC method demonstrated the
excellent same-day repeatability of AD-RAI.

Due to the high agreement between AD-RAI scores of
the back-to-back scans, AD-RAI computed from the first scan
was used for all subsequent analyses. There was no statistically
significant difference in AD-RAI scores between the paired
scans 2-weeks apart (mean difference = 0.005, 95% CI = [−0.003
to 0.014], p = 0.231, Table 2). No significant correlation
was found between the difference and the average in the
corresponding Bland-Altman plot (p = 0.340, Table 2 and
Figure 1B), and the ICC analysis showed an excellent agreement
in AD-RAI scores between the paired scans (ICC = 0.998, 95%
CI = [0.996, 0.999], p = 1.06E-48, Table 2), suggesting the
excellent 2-week reproducibility of AD-RAI.

Baseline Alzheimer’s
disease-resemblance atrophy index
scores have higher discriminative
ability for Alzheimer’s disease relative
to hippocampal volume ratio

A significant association was found between AD-RAI scores
and the probability of belonging to AD/control group (Odds
Ratio (OR) = 1.133, 95% CI = [1.044, 1.230], p = 0.003,
Figure 2A and Table 3). Every increase of 0.01 in the AD-RAI
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FIGURE 1

Bland-Altman plots for same-day repeatability and 2-week
reproducibility analysis. The difference in AD-RAI of the paired
scans [two back-to-back scans (A) or the two scans acquired at
2-week intervals (B)] was plotted against their average. The
dashed lines in the middle, top and bottom indicate the mean
difference, the mean difference plus or minus 1.96 times the
standard deviation (SD) of the difference, respectively. AD-RAI,
Alzheimer’s disease-resemblance atrophy index.

increased the odds of belonging to AD group by 13.3% (Table 3).
The AUC of this model was 99.8% (95% CI = [99.3%, 100%],
Figure 2B black line). Table 4 demonstrates the sensitivity
and specificity of the AD-RAI at different thresholds, where
thresholding this metric between 0.46 and 0.58 resulted in a
sensitivity between 95.45 and 100% and a specificity ranging
from 95.45 to 100%.

Logistic regression models including baseline HVR, baseline
HRV and QMTA data (Figures 2C–E and Table 3) resulted in
an AUC of 86.8% (95%CI = [78.2%, 95.4%]) for baseline HVR
(Figure 2B brown line), an AUC of 90.3% (95%CI = [83.0%,
97.6]) for baseline HRV (Figure 2B yellow line) and an AUC of
96.8% (95%CI = [92.9%–100%]) for baseline QMTA (Figure 2B
blue line). The AUC of the ROC curve of baseline AD-RAI
(99.8%) was significantly higher than that of baseline HVR
(DeLong’s test, Z = 2.98, p−uncorrected = 0.003, q = 0.018) or
baseline HRV (DeLong’s test, Z = 2.55, p−uncorrected = 0.011,
q = 0.033), while the difference in AUC of the ROC
curves between baseline AD-RAI and baseline QMTA was
not statistically significant as indicated by the DeLong’s test

(Z = 1.66, p−uncorrected = 0.098, q = 0.098). The results indicate
that the performance of AD-RAI for AD diagnosis is equivalent
to that of QMTA, and is better than that of HVR or HRV.

Longitudinal trajectories of Alzheimer’s
disease-resemblance atrophy index in
Alzheimer’s disease patients and
controls were distinct in the intercepts
but not in the slopes

Figure 3 demonstrates the longitudinal trajectories of AD-
RAI scores in AD patients and controls during the 2-year
follow-up time. The two average trajectories of AD-RAI for each
group separated well from each other and both followed a slight
upward pattern over the 2 year interval.

The LME results with AD-RAI as the outcome are presented
in Table 5. Overall, there was a significant group effect on the
AD-RAI (β = 0.81757, p < 0.0001), suggesting that the average
baseline AD-RAI in AD patients was significantly higher than
that in controls. However, there were no significant effect of
time (p = 0.186, Table 5) or interaction between group and time
(p = 0.353).

Changes in Alzheimer’s
disease-resemblance atrophy index
scores of Alzheimer’s disease patients
are negatively associated with change
in mini-mental state examination
scores over time

Table 6 demonstrates the LME results where MMSE score
was the outcome of interest. There was a significant effect of
baseline AD-RAI on MMSE score (β = −10.8537, p < 0.0001)
and a significant interaction between baseline AD-RAI and time
(β = −0.0076, p = 0.0002), indicating higher baseline AD-RAI
scores was associated with lower MMSE outcome and a steeper
rate of change in MMSE over the 2-year observational window.

No significant longitudinal association was found between
changes in AD-RAI and changes in MMSE scores in the
control group (p = 0.289, Figure 4A). However, a significant
longitudinal negative association was found between AD-RAI
scores and MMSE scores in AD group with the (rrm = −0.202,
95% CI = [−0.364,−0.028], p = 0.022, Figure 4B).

Discussion

In this study, we found that the AD-RAI had excellent same-
day repeatability, 2-week reproducibility and discriminative
ability. Repeatability and reproducibility are the most critical
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FIGURE 2

The logistic regression modelling and the ROC curves for AD-RAI, HVR, HRV and QMTA. (A,C,D,E) Each dot indicates the predicted probability of
an AD diagnosis given baseline AD-RAI, HVR, HRV or QMTA. (B) The black line, brown line, yellow line, and blue line represent the ROC curve of
AD-RAI, HVR, HRV and QMTA, respectively. The ROC curve was plotted with the true positive percentage (TPP) on y-axis against the false
positive percentage (FPP) on x-axis, which represent the sensitivity and (1-specificity), respectively, at all the decision thresholds and were
calculated based on the logistic regression modelling and the MMSE-based reference diagnosis. The diagonal line shows where the TPP is the
same as the FPP. The AUC represent the area under the curve measuring the overall performance of the model to diagnose the AD. AD,
Alzheimer’s disease; AD-RAI, Alzheimer’s disease-resemblance atrophy index; AUC, area under the curve; HVR, hippocampal volume ratio; HRV,
hippocampal residual volume; QMTA, quantitative temporal lobe atrophy; ROC, receiver operating characteristic; MIRIAD, Minimal Interval
Resonance Imaging in Alzheimer’s Disease.

TABLE 3 Results of the logistic regressions for AD-RAI, HVR, HRV and QMTA.

Predictor* Odds ratio 95% Confidence interval of odds ratio P-value

Lower Upper

AD-RAI 1.133 1.044 1.230 0.003

HVR 0.687 0.567 0.833 0.0001

HRV 0.760 0.665 0.868 5.12E-05

QMTA 1.205 1.090 1.333 0.0003

*For a meaningful interpretation for the results of logistic regressions, we scaled up the AD-RAI, HVR, HRV and QMTA by 100, 10,000, 10 and 100 times, respectively, before performing
the logistic regressions. AD, Alzheimer’s disease; AD-RAI, Alzheimer’s disease-resemblance atrophy index; HVR, hippocampal volume ratio defined as the ratio of hippocampal volume
to intracranial volume; HRV, hippocampal residual volume defined as the difference between the measured HV and the predicted HV; QMTA, quantitative medial temporal lobe atrophy.
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TABLE 4 Sensitivity, FPP and specificity at different decision thresholds of AD-RAI.

Thresholds True positive percentage
(TPP)

False positive percentage
(FPP)

Specificity (%)

Sensitivity (%) 1-specificity (%)

AD-RAI Probability of the AD diagnosis (P)

0.409 0.072 100% 9.09% 90.91%

0.464 0.273 100% 4.55% 95.45%

0.501 0.520 97.73% 4.55% 95.45%

0.535 0.746 95.45% 4.55% 95.45%

0.579 0.913 95.45% 0 100%

0.593 0.940 93.18 0 100%

Logistic regression model formula: Log (P/1-P) = β0 + β1 × AD-RAI; β0 =−6.221, β1 = 12.500. AD, Alzheimer’s disease; AD-RAI, Alzheimer’s disease-resemblance atrophy index.

FIGURE 3

Longitudinal trajectories of AD-RAI in AD patients and controls.
The thin lines connecting the dots represent the trajectories of
AD-RAI of individual participants over time. The thick green and
red lines represent the average trajectory of AD-RAI over time in
control and AD groups, respectively. AD, Alzheimer’s disease;
AD-RAI, Alzheimer’s disease-resemblance atrophy index.

parameters for determining the reliability of any measurement
tool. Excellent reproducibility over time is particularly
important for an atrophy measuring tool intended to track
disease progression to ensure that any detected changes are
truly contributed by the changes of pathological atrophy. We
also demonstrated that the AD-RAI predicted cognitive decline
over a 2-year period and changes in the AD-RAI were sensitive
to changes in MMSE scores.

Using MMSE-based classifications as reference categories,
we found that the AD-RAI had an excellent discriminant
ability for AD (AUC = 99.8%). We also found that when the
AD-RAI was split to separate individuals at low/high risk,
the thresholds between 0.46 and 0.58 resulted in the highest
sensitivity (95.45 to 100%) and specificity (95.45 to 100%)
relative to any other thresholds. Our result coincided with
a previous study showing that 0.5 was the optimal AD-RAI
threshold for differentiating between stable normal control (NC)
and NC-to-MCI converters, as well as stable MCI from MCI-to-
AD converters (Zhao et al., 2019). However, the range identified
in our study is far from accurate and has limited clinical use

in diagnosing AD. This is because there were very few data
points with AD-RAI scores between 0.3 and 0.7 (Figure 2A),
suggesting that this metric may not be accurate in predicting
risk for individuals falling into this range. Larger studies with
representative samples are therefore needed to provide more
accurate estimates of the ideal diagnostic threshold to be
used for the AD-RAI.

Compared to single region biomarkers, the AD-RAI
(AUC = 99.8) had significant higher discriminative ability
relative to the HVR (AUC = 86.8%) or HRV (AUC = 90.3),
although performed equivalent to the QMTA (AUC = 96.8%).
Our results are consistent with another recent study, where
the AD-RAI performed better than HVR in participants whose
reference diagnoses were based on amyloid β and tau pathology
(Mai et al., 2021). In addition to HVR that normalised
hippocampal volume by ICV-proportions method, we also
applied the ICV-residuals method and computed the HRV to
adjust for inter-participant variations in head size. A recent
study showed that the ICV-residuals method performed better
than other ICV-correction methods in neuroanatomical volume
studies (Pintzka et al., 2015). Although the ICV-residuals
method slightly improved the numerical value of the AUC
of hippocampal volume marker (from 86.8 to 90.3%), that
improvement was not statistically significant (DeLong’s test:
Z = −1.76, p−uncorrected = 0.078, q = 0.098), and the AD-
RAI was significantly better in discriminative ability than the
HRV. The hippocampus and other substructures within the
medial temporal lobe represent the earliest affected regions
in AD-related pathology (Scheltens et al., 2002; Frisoni et al.,
2010), and hippocampal atrophy and MTA are well established
as biomarkers for AD diagnosis at the MCI stage. However,
a previous study revealed that ∼20% of amyloid biomarker-
defined AD dementia patients do not show abnormalities
with respect to hippocampal volume (Lowe et al., 2013),
challenging the ability of the hippocampal volume as a
marker in detecting hippocampal-sparing AD patients. While
speculative, some of the patients in our sample may have
fallen into the category of hippocampal-sparing AD, which
could explain why the AD-RAI appeared to performed
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TABLE 5 Estimated coefficients based on LME model for the AD-RAI.

Fixed effects Coefficients estimate t-value P-value

Symbol Estimate Standard error

Intercept β0 0.12967 0.02862 4.531 <0.0001

Time β1 0.00003 0.00002 1.325 0.186

Group (AD) β2 0.81757 0.03505 23.327 <0.0001

Group× Time β3 0.00025 0.00003 0.930 0.353

Model formula: AD-RAIit = (β0 + b0i) + (β1 + b1i)× Tit + β2 × Gi + β3Gi × Tit + eit . AD-RAI, Alzheimer’s disease-resemblance atrophy index; LME, linear mixed-effects modelling.

TABLE 6 Estimated coefficients based on LME Model for the MMSE.

Fixed effects Coefficients estimate t-value P-value

Symbol Estimate Standard error

Intercept β0 30.2874 0.8016 37.786 <0.0001

Time β1 0.0002 0.0016 0.142 0.887

Baseline AD-RAI β2 −10.8537 1.0169 −10.673 <0.0001

Baseline AD-RAI× Time β3 −0.0076 0.0020 −3.744 0.0002

Model formula: MMSEit = (β0 + b0i) + (β1 + b1i) × Tit + β2 × Baseline RAIi + β3 Baseline RAIi × Tit + eit . AD-RAI, Alzheimer’s disease-resemblance atrophy index; LME, linear
mixed-effects modelling.

significantly better than the HVR or HRV in AD classification
given its composite nature integrating atrophy a wide range
of brain regions. We didn’t see significant differences in
the performance of the AD-RAI relative to the QMTA as
observed in Mai et al. (2021), where the amyloid β and
tau pathology were included in the diagnostic standard. It
is possible that our reference diagnostic criteria (i.e., MMSE
only without pathologically confirmed diagnoses) may allow
possible confounds leading to decreased statistical power in
detecting a difference (to be discussed further later). We
may test this possibility in future study in pathologically
confirmed AD patients.

Our analyses indicated that higher baseline AD-RAI
associated with a faster rate of decline in global cognition
over time. A negative longitudinal correlation was also found
between the AD-RAI and MMSE for AD patients only, but
not in control participants. It has been well-established that
the progress of whole brain atrophy was associated with the
global cognitive decline in AD patients (Fox et al., 1999).
Our study together with the previous study (Zhao et al.,
2019) demonstrated that the AD-RAI successfully captured
that association and can therefore be an effective marker
for neurodegeneration in AD diagnosis defined by the 2018
NIA-AA research framework (Jack et al., 2018). With a
tremendously growing number of prospective MRI studies of
AD during the past decades, MRI-based automated computer
classification of probable AD versus controls as well as
disease prediction using various machine learning and pattern
recognition techniques have been an intensive focus in AD
research (Frizzell et al., 2022), leading to the development of

FIGURE 4

Intra-participant correlation between AD-RAI and MMSE in
controls (A) and in AD patients (B). The same-coloured dots
represent paired measures of AD-RAI and MMSE taken on the
same participant over the time. The coloured lines showed the
correlation between AD-RAI and MMSE for each participant.
AD-RAI, Alzheimer’s disease-resemblance atrophy index; MMSE,
Mini-Mental State Examination.

many synthetic atrophy indices, such as SPARE-AD index,
AD-PS scores, STAND scores, etc. (Davatzikos et al., 2009;
Misra et al., 2009; Vemuri et al., 2009; Spulber et al., 2013;
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Casanova et al., 2018). AD-RAI is conceptually similar to but
methodologically different from those indices. Being a strong
predictor of the clinical cognitive decline in AD patients as
evidenced by our study, the AD-RAI provides a promising
option in a pool of available auxiliary diagnosis tools for AD,
which is objective, time-saving, clinically meaningful and easy
to understand, and may play an important role in the detection
and management of AD.

Strengths and limitations

The strengths of this study were that the MIRIAD dataset
offered data quality ideal for methods validation. Both control
and AD participants received up to nine serial scans from
entering the cohorts to 2 years with a wide range of time
intervals and with back-to-back scans within 1 day at three
time points for most of the participants, and all scans
were conducted on the same scanner and acquired by the
same radiographer, eliminating the variability from different
machines and different radiographers. Those features allowed
sufficient numbers of paired scans and statistical power to
assess the same-day repeatability and 2-week reproducibility,
where we specifically tested the agreement between the paired
AD-RAI measurements by choosing the Bland-Altman method
(Bland and Altman, 1986) and the ICC method (McGraw and
Wong, 1996) rather than a paired t-test or a sole Pearson’s
correlation test. The former could not distinguish the true
equality from the situation that the difference between the
paired measurements relates to the value of their average
measurement; and the later could only assess the degree of
the association between the paired measurements but not their
equality (Berchtold, 2016). In addition, we chose rmcorr to
detect the common longitudinal association between AD-RAI
and MMSE from the longitudinally paired repeated measures of
each participant, which provides greater statistical power and is
more suitable than the popular Pearson correlation method that
needs to average the repeated data for each participant before
performing the correlation and thus could only assess the inter-
individual correlation with the data’s longitudinal feature lost
(Bakdash and Marusich, 2017).

However, this study also has several limitations. After
data exclusion, only 22 control and 44 AD participants were
included in the analysis. The small sample size likely reduced
the statistical power of our trajectory study. For example, we
did not find a significant slope in AD-RAI trajectories in either
AD or the control group during the 2-year follow-up time,
which might be because the power of the statistical test was
too low to detect the small but real change in brain atrophy
within the relatively short period. An alternative explanation
for the lack of significant slopes in AD-RAI is possible ceiling
effects. By carefully examining the data, we found that 35
participants among the 44 AD patients had an AD-RAI value

greater than 0.9 (where the maximum value is 1). It is possible
that the rate of brain volume loss may slow down when the
global atrophy has reached a certain severity level. In that case,
the average change in AD-RAI value could be hard to detect
when the data contained large numbers of AD participants
with very high AD-RAI scores. The imbalanced distribution
of AD-RAI in the participants in MIRIAD dataset also raises
caution in explaining the optimal threshold range (0.46 to
0.58). Because of the imbalanced distribution of AD-RAI in our
sample (i.e., very few participants with AD-RAI scores between
0.3 and 0.7), our findings may not generalise cohorts with more
heterogeneous AD-RAI scores. For example, our study could
not address whether AD-RAI can be used for differentiating
between preclinical AD and healthy controls and for predicting
their disease progression. Overall, replication studies with larger
sample size and a greater diversity of patients in the different
stages of AD (e.g., amnestic MCI) will help to address the
discussed shortcomings of this present study.

The MIRIAD dataset based its diagnosis of probable AD
on the NINCDS-ADRDA clinical Criteria (McKhann et al.,
1984), due to the lack of biomarker data (e.g., amyloid β

and pathological tau) available for a pathologically confirmed
diagnosis. Hence, we are unable to rule out the possibility
that our control group contained participants with cognitively
unimpaired preclinical AD and that the AD group could contain
participants who may have neurodegenerative disorders that
closely resemble AD symptomology (Lombardi et al., 2020).
This limitation represents a potential confound in our data
and as such, weakens the conclusion we could draw from our
analyses. This limitation may also explain why we did not
observe any significant difference in the AUC between AD-
RAI and QMTA.

Alzheimer’s disease diagnosis in clinic is often challenged
by the facts that (1) significant heterogeneity of regional brain
atrophy patterns occurs in AD (Dong et al., 2017; Risacher
et al., 2017); (2) other neurodegenerative disorders, such as
vascular dementia and Lewy’s body dementia, often coexist
with AD (Kling et al., 2013; Davey, 2014); and (3) AD may
overlap with other neurodegenerative diseases in brain regions
undergoing neurodegeneration, such as Parkinson’s (Weintraub
et al., 2012). Neither our study nor several previous studies
(Zhao et al., 2019; Liu et al., 2021; Mai et al., 2021) on AD-
RAI included patients with other pathologically confirmed
neurodegenerative disorders. Hence, the specificity of AD-
RAI in AD diagnosis remains to be tested in real-world
scenarios. A recent study (Yu et al., 2021) showed that the
AD-RAI alone could not distinguish between AD and FTD.
However, a combination of AD-RAI with another newly
developed Frontotemporal dementia (FTD) index, and with a
sequential decision strategy offered a solution to differentiate
AD and FTD (Yu et al., 2021). Future studies on mixed
groups of different pathologically confirmed neurodegenerative
disorders or on patients with brain atrophy contributed
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simultaneously by two or more types of pathological processes,
could further improve the performance of AD-RAI and fine-
tune its application.

Early diagnosis of AD by using structural MRI markers is
also hindered by the reality that brain atrophy is an outcome
of pathological changes at molecular and cellular levels that
precede detectable anatomic changes. Previous study found that
the sensitivity of AD-RAI was lower than that of hippocampal
volume in detecting preclinical AD (Liu et al., 2021). Therefore,
how early the AD-RAI could capture the macroscopic brain
alterations in association with the molecular-level pathological
changes of AD, and whether regional volumetric features could
be taken into consideration together with the whole brain
atrophic pattern to improve the sensitivity in early AD diagnosis
is also an interesting topic to explore.

Conclusion

In conclusion, we found that the AD-RAI had excellent
repeatability, reproducibility and discriminative ability in
AD and demonstrated that longitudinal changes in this
neuroimaging-derived metric were sensitive to cognitive decline
in AD patients. Our findings suggest that the AD-RAI represents
a promising biomarker that could aid earlier detection of
participants at risk of developing AD allowing for earlier
intervention and clinical trial recruitment.
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