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ARTICLE INFO ABSTRACT

Keywords: Introduction: Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are oncogenic drivers in various tumor

NTRK types. Limited data exist on the overall survival (OS) of patients with tumors with NTRK gene fusions and on the

TRK . co-occurrence of NTRK fusions with other oncogenic drivers.

g:sz;ﬁz};‘rloﬁling Materials and Methods: This retrospective study included patients enrolled in the Genomics England 100,000

Real world evidence Genomes Project who had linked clinical data from UK databases. Patients who had undergone tumor whole
genome sequencing between March 2016 and July 2019 were included. Patients with and without NTRK fusions
were matched. OS was analyzed along with oncogenic alterations in ALK, BRAF, EGFR, ERBB2, KRAS, and ROS1,
and tumor mutation burden (TMB) and microsatellite instability (MSI).
Results: Of 15,223 patients analyzed, 38 (0.25%) had NTRK gene fusions in 11 tumor types, the most common
were breast cancer, colorectal cancer (CRC), and sarcoma. Median OS was not reached in both the NTRK gene
fusion-positive and -negative groups (hazard ratio 1.47, 95% CI 0.39-5.57, P = 0.572). A KRAS mutation was
identified in two (5%) patients with NTRK gene fusions, and both had hepatobiliary cancer. High TMB and MSI
were both more common in patients with NTRK gene fusions, due to the CRC subset. While there was a higher
risk of death in patients with NTRK gene fusions compared to those without, the difference was not statistically
significant.
Conclusion: This study supports the hypothesis that NTRK gene fusions are primary oncogenic drivers and the co-
occurrence of NTRK gene fusions with other oncogenic alterations is rare.

1. Introduction

The neurotrophic tyrosine receptor kinase (NTRK) genes NTRK1, 2,
and 3 encode tropomyosin receptor kinase (TRK) proteins A, B, and C,
respectively, and are expressed during normal neuronal development
[1]. TRK receptors play a key role in the regulation of pain and body
temperature [2,3], appetite control [4-6], learning, proprioception, and
memory [7].

Recurrent NTRK gene fusions have been reported as oncogenic
drivers in a wide variety of adult and pediatric tumor types [1]. NTRK
gene fusions occur when the 3’ region of the NTRK gene is joined with
the 5’ end of a fusion partner gene through intra- or inter-chromosomal
rearrangement. This NTRK gene fusion encodes a TRK fusion protein
that contains the catalytic tyrosine kinase domain from the NTRK gene,
as well as one or more dimerization domains from the partner gene. The
result is a TRK fusion protein that is constitutively activated, leading to
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uninterrupted downstream signaling activity, and thus conferring
oncogenic potential of the TRK fusion protein [1,8]. These genomic al-
terations have emerged as targets for cancer therapy [1].

The prevalence of NTRK gene fusions varies widely across tumor
types and they are estimated to occur in up to 1% of all solid tumors [1,
9]. NTRK gene fusions occur more frequently (>80%) in certain rare
tumors (e.g., secretory carcinoma of the salivary gland and infantile
fibrosarcoma), and less frequently (<1%) in more common cancers (e.g.,
lung cancer and colorectal cancer (CRC)) [9-13].

TRK inhibitors have been demonstrated to be highly effective treat-
ment options in several clinical trials in patients with tumors that harbor
NTRK gene fusions [14,15]. In particular, larotrectinib is a first-in-class,
central nervous system (CNS)-active, highly selective TRK inhibitor
approved in more than 47 countries, including the US, for adult and
pediatric patients with TRK fusion cancer [16,17]. Larotrectinib
demonstrated a high objective response rate (ORR) in a pooled analysis
of three phase I/II trials in adults and/or children (NCT02122913,
NCT02637687, and NCT02576431) that included 153 evaluable pa-
tients with 17 different tumor types. Investigator-assessed ORR was 79%
(95% confidence interval [CI] 72-85), regardless of tumor type and age.
Median duration of response (DoR) was 35.2 months (95% CI 22.8-not
estimable [NE]) and median progression-free survival (PFS) was 28.3
months (95% CI 22.1-NE). In the 12 evaluable patients with CNS me-
tastases at baseline, the ORR was 75% (95% CI 43-95) [18]. The high
ORR, median DoR and median PFS have been confirmed in expanded
datasets that have had independent review committee assessments. In
this centrally reviewed assessment, the ORR was 69% (95% CI 63-75),
with a median DoR and PFS of 32.9 months (95% CI 27.3-41.7) and 29.4
months (95% CI 19.3-34.3), respectively [19].

Entrectinib is a multi-kinase inhibitor that targets ALK, ROS1, and
NTRK1/2/3 and is approved for adult and pediatric patients aged 12
years or older with locally advanced or metastatic TRK fusion cancer
[20,21]. Entrectinib demonstrated an ORR of 57% (95% CI 43.2-70.8)
in a pooled subgroup analysis of 54 NTRK fusion-positive patients. The
median DoR was 10.4 months (95% CI 7.1-not estimable) and median
PFS was 11.2 months (95% CI 8.0-14.9) [22].

Although there has been progress in treating patients with TRK
fusion cancer, data on the frequency and distribution of NTRK gene
fusions in various cancer types are still limited. There are minimal data
regarding real-world characteristics of patients with TRK fusion cancer
and understanding of the natural history of TRK fusion cancer in the
absence of TRK inhibitors is limited [23,24].

The UK 100,000 Genomes Project was developed by Genomics En-
gland to sequence 100,000 whole genomes from National Health Service
patients to understand the genomics of patients with rare diseases and
cancer. It aimed to benefit patients by providing advanced diagnosis and
enabling personalized treatments [25].

We conducted a retrospective study to evaluate the overall survival
(0S) in patients with NTRK gene fusions and frequency of NTRK gene
fusions across solid tumor types, as well as co-occurrence of other
genomic biomarkers in patients with NTRK gene fusions versus patients
without NTRK gene fusions enrolled in the UK 100,000 Genomes Project
[25]. These patients had not received TRK inhibitors previously.

2. Materials and methods

This retrospective cohort study used whole genome sequencing
(WGS) data from the 100,000 Genomes Project (Genomics England
database). Where possible, Genomics England links their genomic data
with clinical data from UK health care and cancer databases, including
Hospital Episode Statistics [26], which lists each visit of a patient to the
hospital, and the National Cancer Registration and Analysis Service
(NCRAS) [27], which contains a set of curated datasets with detailed
information on the tumor, as well as information on treatment received.
In addition, mortality data are provided based on the Office of National
Statistics (ONS) [28]. All analyses were conducted on the latest version
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available at the time of analysis (Data Release version 9 — 2020-04-02).

To be included in the Genomics England 100,000 Genomes Project,
patients must have a diagnosis from a World Health Organization
(WHO)/International Agency for Research on Cancer (IARC) cancer
classification. All participants must receive the usual clinical care and
tumor samples should be obtained as fresh or fresh-frozen. Access to
appropriate high-quality DNA from both tumor and germline samples,
enabling WGS, is required [29].

The study was conducted in two steps (Fig. 2A). In Step 1, cancer
patients with NTRK gene fusions were identified and their frequency,
demographic, and clinical characteristics at baseline were described.
Cancer patients who had undergone WGS between March 2016 and July
2019 were included. All patients had tumor and germline material
sequenced to an average coverage of 75x and 30x, respectively. Read
alignment against human reference genome GRCh38-Decoy+EBV was
performed with ISAAC (version iSAAC- 03.16.02.19). All coverage
metrics were calculated by including non-overlapping bases with min-
imal base quality of 30, where the read had a minimum mapping quality
of 10 after duplicates were removed. Structural variants (SVs) were then
called using Manta (version 0.28.0) [30]. Four filters were applied to all
Manta calls meaning that the following were excluded: SVs with a
normal sample depth near one or both variant breakpoints three times
higher than the chromosomal mean; SVs with somatic quality score <30;
somatic deletions and duplications >10 kb in length; and Manta-called
somatic small variants (<1 kb) where the fraction of reads with
MAPQO around either breakpoint was >0.4.

Subsequently, the remaining SVs were filtered to retain only NTRK
gene fusions, i.e., SVs were filtered to exclude out-of-frame fusions, fu-
sions where the TRK kinase domain was fully or partially omitted, fu-
sions where one of the breakpoints was within an intergenic region,
fusions where the transcriptional direction of the fused genes did not
match, and fusions with a low number of supporting reads (see Sup-
plementary Fig. S1 for details) since such fusions are unlikely to be
oncogenic.

In Step 2, a matched cohort of cancer patients without NTRK gene
fusions was created. A comparative analysis of OS and co-occurrence of
other biomarkers in patients with and without NTRK gene fusions was
conducted. NTRK gene fusion-positive and negative patients who linked
to NCRAS data at the tumor level were included to obtain detailed de-
mographic information. Matching was then conducted using exact
matching for the following baseline variables: primary tumor type (In-
ternational Classification of Diseases, Tenth Revision), histology, stage
at diagnosis, and sex; followed by the Mahalanobis distance matching
[31] for other variables including age, year of diagnosis, and Charlson
Comorbidity Index [32].

The primary OS and biomarker analyses included 18 patients who
were NTRK gene fusion-positive and 72 matched patients who were
NTRK gene fusion-negative (Fig. 1). A sensitivity analysis was performed
on the OS objectives in order to maximize the number of patients
included in the analysis. The sensitivity OS analysis used less stringent
criteria for linkage to NCRAS and, therefore, included a total of 31 pa-
tients who were NTRK gene fusion-positive and had date of diagnosis
information available and 124 matched NTRK gene fusion-negative
cohort patients. The matched biomarker analysis also included 31 pa-
tients that were NTRK gene fusion-positive and 124 matched NTRK gene
fusion-negative cohort patients. The sensitivity biomarker analysis
included all 38 NTRK gene fusion-positive patients, 124 matched NTRK
gene fusion-negative patients, and an additional 838 participants
(totaling 962 patients in the NTRK gene fusion-negative group)
randomly selected from the tumor types observed in the NTRK gene
fusion-positive cohort. The sensitivity analysis was capped at 1000 pa-
tients due to data access limitations (Fig. 2B).

3. Eligibility criteria

Step 1 of the analysis included all cancer patients who had
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Step 1 Analysis
All cancer patients who have genome sequencing of the tumor
sample in the Genomics England database (N=15,223)

Sensitivity OS analysis

Sensitivity OS analysis L
NTRK+ n=311

Sensitivity biomarker analysis NN@?;
NTRK+ n=38

Matched biomarker analysis

NTRK+ n=31*

Excluded: n=18

l (matched 1:4 to 31 NTRK+)
NTRK- n=124
NTRK- S :
N=15,185 Sensitivity biomarker analysis
NTRK- n=9628%
Matched biomarker analysis
NTRK- n=124*

Excluded: n=7,424

« Patients with a hematological malignancy
« Patients with >1 primary malignancy

—— | Step 2 Analysis | —

« Patients with a hematological malignancy
« Patients with >1 primary malignancy

« Patients without age and sex information available

« Patients without age and sex information available

A 4

\ 4
Primary OS and biomarker analysis <— NN7f2,§
NTRK+ n=18l

NTRK-

N=7.761 —— Primary OS and biomarker analysis

(matched 1:4 to 18 NTRK+)

NTRK- n=72

Fig. 1. CONSORT diagram. Shown is a CONSORT diagram describing the various cohorts in the analysis.

fA sensitivity analysis was performed on the OS objectives in order to maximize the number of patients included in the analysis. This utilized additional data on
diagnosis date and tumor type from HES for patients who did not have CAS data available. Date of diagnosis (i.e., index date for OS analysis) was only available in 31
patients who were NTRK+, so the seven other patients were excluded. *This sensitivity analysis was conducted using the same patients that were included in the OS
sensitivity cohort. 124 matched NTRK- patients and an additional 838 participants (totaling 962 patients in the NTRK- group) randomly selected from the tumor
types observed in the NTRK+ cohort. The sensitivity analysis was capped at 1000 patients due to data access limitations. l'Two patients in the NTRK+ group were
excluded from the OS analysis as their tumor and histology type were not present in the NTRK- group. CAS, Cancer Analysis System; HES, Hospital Episodes Statistics;
NTRK, neurotrophic tyrosine receptor kinase; NTRK+, NTRK gene fusion-positive; NTRK-; NTRK gene fusion-negative; OS, overall survival.

undergone tumor WGS in the Genomics England database between
March 2016 and July 2019 (Data Release version 9 — 2020-04-02). A
total of 38 NTRK gene fusion-positive patients were included in Step 1.
Patients from the full cohort included in Step 1 (Fig. 2A) who had a
diagnosis of a solid malignant tumor within the study period according
to NCRAS dataset, and with linked age and sex data available from
clinical databases, were eligible to be included in the sub-cohort of pa-
tients analyzed in Step 2. In the sub-cohort, patients with NTRK gene
fusions were matched with patients without NTRK gene fusions. Patients
who had more than one primary malignancy and those with a hemato-
logical malignancy were excluded from this sub-cohort. After applying
the inclusion and exclusion criteria, a total of 20 NTRK gene fusion-
positive patients remained available for matching in Step 2.

4. Statistical analysis

In Step 1, the frequency of NTRK gene fusions and patient charac-
teristics were calculated based on the full cohort. In Step 2, patients in
the sub-cohort with linked clinical data and NTRK gene fusions were
matched with patients without NTRK gene fusions. We analyzed co-
occurrence of the following biomarkers: small variant mutations in
BRAF, EGFR, ERBB2, and KRAS; exon insertions and deletions in EGFR;
exon insertions in ERBB2; fusions involving ALK or ROS1; tumor mu-
tation burden (TMB); and microsatellite instability (MSI). These bio-
markers were selected because in addition to being a part of the NTRK
signaling pathway and its parallel pathways, they are biomarkers that
are either clinically actionable (i.e., with an associated targeted therapy)
or of emerging research interest. OS was analyzed between the matched
patients.

Descriptive analysis of patient characteristics was conducted. Fre-
quencies were provided for categorical variables, while means, standard
deviations, and medians were provided for continuous variables. OS of
patients with and without NTRK gene fusions was analyzed by the
Kaplan-Meier method and Cox regression. Patients were followed up
until death or until the ONS data cut-off (Nov 2019). The index date for
OS was the date of initial diagnosis of cancer. Patients who were still

alive at the ONS data cut-off date were censored at that time.
5. Results
5.1. Patient characteristics

A total of 15,223 cancer patients present in the Genomics England
database (Data Release version 9 — 2020-04-02) were included in the
analysis. Thirty-eight patients (0.25%) were identified with NTRK gene
fusions, comprising 11 distinct tumor types per Genomics England
database classification. Frequency of NTRK gene fusions within these
tumor types ranged from 2.44% (brain and CNS childhood cancer) to
0.06% (lung cancer; Table 1A). The most common tumor types reported
in patients with NTRK gene fusions were breast cancer (n = 9), colo-
rectal cancer (n = 9), and sarcomas (n = 7; Fig. 3).

Among the 38 patients with NTRK gene fusions, 66% were female
and 34% were male. The median age at diagnosis was 62 (interquartile
range [IQR] 43-72) years (Table 1B). In the NTRK gene fusion-positive
group, fusions occurred more frequently in NTRK3, reported in 24 pa-
tients (63%), followed by NTRKZ2 in eight patients (21%), then NTRK1 in
six patients (16%; Fig. 3). A total of 29 different NTRK gene fusion
partners were identified (Supplementary Table S1). NTRK3, —2, and —1
were identified with 17, 8, and 4 different fusion partners, respectively.
Of the 29 different fusion partners identified, 25 were novel fusions that
have not been previously reported in the Quiver database, a curated
database of known gene fusions involved in cancer [33].

Of the 15,185 NTRK gene fusion-negative patients, 56% were female
and 44% were male, with a median age at diagnosis of 65 (IQR 55-73)
years (Table 1B). The most common tumor types reported in NTRK gene
fusion-negative patients were breast cancer (20%), CRC (18%), and lung
cancer (10%). These three tumor types make up the largest cohorts in
the Genomics England database.

5.2. Survival analysis

Based on the clinical database linkage and data availability, 20
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A. Study design
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Step 1: Identify and describe the frequency of patients with NTRK gene fusions, and their demographic

and clinical characteristics at baseline

» Patients who had undergone WGS between March 2016 and July 2019 were included
» Likely functional NTRK gene fusions in the genomics database were identified using an algorithm

Inclusion Criteria

» All patients who had undergone tumor WGS in the Genomics England database

Step 2: Create a matched cohort of patients without NTRK gene fusions and conduct a comparative
analysis of co-occurrence of other biomarkers and OS in patients with and without NTRK gene fusions
* Matching was conducted using exact matching for the following baseline variables: primary tumor type
(ICD-10), histology, stage at diagnosis, and sex. The MDM method®" was used for age, year of diagnosis,

and CCIt2

* A 1:4ratio (NTRK gene fusion-positive:NTRK gene fusion-negative) was used

Inclusion Criteria

» Patients from Step 1 who had a diagnosis of solid malignant tumor within the study period, and with
linked age and sex data available from clinical databases

Exclusion Criteria

» Patients who had more than one primary malignancy and those with a hematological malignancy

B. Patient population for OS analysis and biomarker analysis

Analysis Patient Population

OS Analysis

Primary OS Analysis 18 patients that were NTRK gene fusion-positive and 72 matched patients
that were NTRK gene fusion-negative

Sensitivity OS Analysis 31 patients that were NTRK gene fusion-positive and 124 matched patients

that were NTRK gene fusion-negative

Biomarker Analysis

Primary biomarker analysis

18 patients that were NTRK gene fusion-positive and 72 matched patients
that were NTRK gene fusion-negative

Matched biomarker analysis

31 patients that were NTRK gene fusion-positive and 124 matched patients
that were NTRK gene fusion-negative

Sensitivity biomarker analysis

All 38 patients that were NTRK gene fusion-positive, 124 matched NTRK
gene fusion-negative patients, and an additional 838 randomly selected
patients from tumor types observed in the NTRK gene fusion-positive cohort

Fig. 2. Study design and patient population for OS analysis and biomarker analysis. Shown is the study design of the study including inclusion and exclusion criteria
(A) and patient populations for the OS analysis and biomarker analysis (B). CCI, Charlson comorbidity index; ICD-10, International classification of diseases, tenth

revision; MDM, Mahalanobis distance matching.

patients with NTRK gene fusions were available for matching in the OS
analysis. Following covariate matching of demographic and clinical
characteristics using both exact matching and the Mahalanobis distance
method, the majority of variables were balanced, with a standardized
mean difference for each covariate between —0.1 and 0.1 (Supplemen-
tary Fig. S2). A threshold of 0.1 or 0.25 for the Mahalanobis distance
represent reasonable cut-offs for matching of baseline covariates [34]. In
this study a threshold of 0.1 was used, as an absolute mean difference of
<0.1 indicates a negligible difference between groups [35].

Two patients with NTRK gene fusions were excluded from the OS
analysis as their tumor and histology type were not present in the NTRK
gene fusion-negative group; therefore, 18 NTRK gene fusion-positive
patients were matched with 72 NTRK gene fusion-negative patients
(based on a 1:4 ratio). The median follow-up for OS was 2.01 years (IQR
1.40-2.97) in the NTRK gene fusion-positive group and 2.28 years (IQR
1.57-2.98) in the NTRK gene fusion-negative group. At the time of the
analysis, median OS was not reached for either group (hazard ratio [HR]
1.47 [95% CI 0.39-5.57, P = 0.572]; Fig. 4; Table 2). The 12-month OS

rate was 94% and 96% in the NTRK gene fusion-positive and NTRK gene
fusion-negative groups, respectively. The difference between the two
groups was not statistically significant.

5.3. Biomarkers

In the matched analysis, a KRAS mutation was identified in one
patient (3.2%) with an NTRK gene fusion. In patients without NTRK
gene fusions, the tested oncogenic drivers were detected in 33 patients
(26.6%; Table 3). In the sensitivity analysis, a KRAS mutation was
identified in two patients (5.3%) with an NTRK gene fusion; both pa-
tients had hepatopancreatobiliary cancer. In patients without NTRK
gene fusions, the tested oncogenic drivers were identified in 184 patients
(19%): KRAS (n = 112, 11.6%), BRAF (n = 50, 5.2%), ERBB2 (n = 14,
1.5%), EGFR (n = 6, 0.6%), ALK (n =1, 0.1%), and ROS1 (n =1, 0.1%;
Table 3). High TMB and MSI were more common in the NTRK gene
fusion-positive group than the NTRK gene fusion-negative group. This
appeared to be driven by patients with CRC: of the nine patients with
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Table 1
Baseline characteristics.
A.
NTRK
gene
fusion-
positive
patients
(n=38)
Tumor type (Genomics England Total number of n %
classification) patients, n
Childhood - brain and CNS 41 1 2.44
Childhood — other 127 3 236
Upper GI 267 2 0.75
Hepatopancreatobiliary 332 2 0.60
Sarcoma 1174 7 0.60
Adult glioma 597 2 034
Colorectal 2693 9 033
Breast 2983 9 0.30
Bladder 407 1 0.25
Renal 1390 1 0.07
Lung 1560 1 0.06
B.
Characteristics NTRK gene fusion- NTRK
negative gene
fusion-
positive
(n =15,185) (n=38)
Age, median (IQR), years 65 (55-73) 62
(43-72)
Sex, n (%)
Male 6659 (44) 13 (34)
Female 8526 (56) 25 (66)
Stage at diagnosis, n (%)
0 93 (1) 0
I 1293 (9) 4(11)
I 2360 (16) 6 (16)
111 1864 (12) 4(11)
v 548 (4) 103
Missing 9027 (59) 23 (61)
ECOG performance status, n (%)
0 769 (5) 1(3)
1 423 (3) 1(3)
>2 42 (0.3) 13
Missing 13,951 (92) 35(92)
Charlson Comorbidity Index
Mean (SD) 1.3(1.1) 1.1 (0.9)
Median (IQR) 1.0 (1.0-2.0) 1.0
(1.0-2.0)
Multiple primary malignancies, n (%)
Yes 1494 (10) 6 (16)
No 8393 (55) 19 (50)
Missing 5298 (35) 13 (34)

Frequency of NTRK gene fusions by tumor type (A) and demographics and
cancer history (B). GI, gastrointestinal; SD, standard deviation.

CRC, eight (89%) had high TMB and seven (78%) were MSI-high.
Similar results can be found in the primary analysis (Supplementary
Table S2).

6. Discussion

There is limited information on the natural history and genomic
context of TRK fusion cancer. Identifying co-occurring oncogenic drivers
in patients with an NTRK gene fusion is of particular importance as it
may not only help understand the role of an NTRK gene fusion as an
oncogenic driver in patients harboring these mutations, but also help
develop testing strategies to identify patients with NTRK gene fusions.
Understanding the prognostic effect of NTRK gene fusions is a critical
component of contextualizing the efficacy of TRK inhibitors observed in
single-arm studies in this disease area. This retrospective study
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investigated the characteristics and OS outcomes of patients with and
without NTRK gene fusions.

While the median OS was not reached in this study, there was a
numerically higher risk of death in patients with NTRK gene fusions
compared to those without (HR 1.47 [95% CI 0.39-5.57]); however, the
difference was not statistically significant. As this is a historic cohort, no
patients had received TRK inhibitors, and therefore the findings re-
ported reflect the natural history of tumors with NTRK gene fusions
under current standard of care. The results from this study are consistent
with a recent US study, in which a HR of 1.44 (95% CI 0.61-3.37) in OS
was observed [23]. In the absence of TRK inhibitors, the two studies did
not find statistically different survival between patients with or without
NTRK gene fusions, suggesting NTRK gene fusion is not a prognostic
indicator itself. A strength of this study is that the index date for this
analysis was the date of initial diagnosis of cancer, which allowed for OS
to be measured from a more uniform time point in the patient journey.
Access to advanced molecular diagnostics in the US study may have
varied more widely than in the UK Genomics England cohort, which had
stricter inclusion criteria. Our sequencing data are more consistent due
to the use of comprehensive WGS testing compared to the US study
which used NGS with targeted panels that varied over time in NTRK
gene coverage.

NTRK gene fusions are known to be rare, occurring at frequencies of
<1% in common cancer types such as lung cancer, CRC, and breast
cancer [9]. This study confirms the rarity of NTRK fusions in these tumor
types: among patients with lung cancer, only one (0.1%) was reported to
have an NTRK fusion, and among patients with CRC, NTRK gene fusions
were reported in nine patients (0.3%). In patients with breast cancer,
NTRK gene fusions were reported in nine patients (0.3%). Co-occurrence
of oncogenic alterations in ALK, BRAF, EGFR, ERBB2, KRAS, and ROS1
was infrequent in patients with NTRK gene fusions. This was consistent
in both the matched analysis and sensitivity analysis, which was con-
ducted with a larger sample size, thus supporting the hypothesis that
NTRK gene fusions may be mutually exclusive to other oncogenic drivers
[36,37]. The co-occurring biomarkers analyzed were selected for this
study based partially on the NTRK signaling pathway and its parallel
pathways (e.g., signaling into the RAS-RAF axis). It would be of interest
to expand the scope of co-occurring mutation interrogation (e.g.,
CDKN2A/B loss) in future studies.

These results are consistent with other studies based on large pop-
ulations that evaluated the co-occurrence of NTRK gene fusions with
known oncogenic drivers [23,24,38]. High MSI and TMB were more
frequent in patients with NTRK gene fusions and were observed in pa-
tients with CRC only. While MSI status and TMB are typically correlated
in CRC, around 3% of microsatellite-stable cases were confirmed as high
TMB in a recent cohort of patients with CRC, and a typical pattern of
aberrations were identified [39]. In the patients with CRC in this anal-
ysis, MSI-high frequency among NTRK gene fusion-positive patients was
77.8% and among NTRK gene fusion-negative patients was 33.3%. This
is consistent with current literature indicating that NTRK gene fusions
are enriched in MSI-high CRC [40-42], a pattern that has been docu-
mented at the molecular level [43]. While we did not study the patients
with breast cancer in detail, other studies have found a negative corre-
lation of NTRK fusion occurrence with HER2 and estrogen receptor
status, and also with high TMB/MSI [44].

The main limitation of this study was the small sample size of NTRK
gene fusion-positive patients in the study cohort. Patient selection was
limited to those with sufficient linkage between all data sources;
therefore, it was not possible for all the NTRK gene fusion-positive pa-
tients identified in the database to be included in all aspects of the
analysis. Furthermore, there were some limitations with the matching
process due to the modest level of data that was available. For instance,
Eastern Cooperative Oncology Group performance (ECOG) status was
missing in the majority of patients, and NTRK gene fusion-positive pa-
tients with missing ECOG were matched with NTRK gene fusion-
negative patients who also had missing ECOG, assuming missing at
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Patients (n)
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B NTRK1 (n=6)
B NTRK2 (n=8)
B NTRK3 (n=24)
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Fig. 3. Distribution of tumor types in the NTRK gene fusion-positive group. Shown are the tumor types in the NTRK gene fusion-positive group, divided into NTRK1
(green), NTRK2 (dark blue), and NTRK3 (light blue) for each tumor type. GI, gastrointestinal.
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Fig. 4. Kaplan-Meier plot for OS analysis. Shown is the overall survival for both NTRK gene fusion-negative and NTRK gene fusion-positive patients at 12, 24 and

36 months.

random; this may be a potential source of bias for OS analysis if the
assumption does not hold. Another limitation of this study was that
while the sequencing algorithm ensured an intact open reading frame
was present prior to the call of an NTRK gene fusion (see Supplementary
Fig. S1 for details), RNA was not available to confirm that the fusions
identified here are expressed and are in frame. Analysis of other bio-
markers was limited to the six common, actionable biomarkers, and
further comprehensive genome profiling analysis is needed. Further
studies, with a larger sample size, should be conducted to determine
whether there is a difference in survival between NTRK gene fusion-
positive and NTRK gene fusion-negative patients as well as to improve
our understanding of this disease.

In the present study, out of the 38 patients that were NTRK gene
fusion-positive, 24 (63.2%) patients had NTRK3 fusions, compared to
eight (21.1%) with NTRK2 fusions and six (15.8%) with NTRK1 fusions.

A total of 29 different NTRK gene fusion partners were identified, with
25 of those being novel gene partners. These gene partners have not
previously been reported in the Quiver database and indicate potentially
new mechanisms of action for the NTRK fusion events and their role in
oncogenesis. Several of these novel genes were partnered with NTRK3,
which combined with the fact that many DNA-based next-generation
sequencing assays use ETV6 as a surrogate for detecting NTRK3 fusions,
suggests that NTRK3 fusion events may be under reported [45,46]. Due
to the large size of NTRK3 introns, various NGS platforms utilized ETV6
as a surrogate for detecting NTRK3 fusions and, therefore, would not
have discovered novel partners because the testing methods were not
agnostic to fusion partners, in contrast to the WGS approach used in our
study. Other NGS approaches currently used to detect NTRK fusions,
such as RNA-based technologies, are also agnostic to the fusion partner.
Therefore, an increasing number of fusion partners are being discovered.
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Table 2
Overall survival.

Primary analysis Sensitivity analysis

NTRK gene NTRK gene NTRK gene NTRK gene
fusion- fusion-positive  fusion- fusion-positive
negative (n = (n=18) negative (n (n=31YH
720 =1249
Median 2.28 2.01 1.96 (1-3) 1.86 (1-3)
follow- (1.57-2.98) (1.40-2.97)
up
(IQR),
years
Median OS NE (NE-NE) NE (NE-NE) 7.94 7.92
(IQR), (7.52-NE) (7.92-8.59)
years
Landmark 0S,% (95% CI)
1 year 96 (91-100) 94 (84-100) 92 (87-97) 90 (80-100)
2 years 94 (89-100) 87 (71-100) 88 (82-94) 80 (65-98)
3 years 88 (78-99) 87 (71-100) 79 (70-90) 80 (65-98)
HR (95% 1.47 (0.39-5.57) 1.39 (0.59-3.3)

(@)]

T Only patients with linked clinical data and who were matched were included
in the OS analysis. *Sensitivity analysis was conducted to maximize the number
of patients included in the analysis and patients were matched according to the
source of their diagnostic information.

Table 3
Co-occurrence of biomarkers.

Biomarker, n (%)  Matched analysis Sensitivity analysis

NTRK gene NTRK gene NTRK gene NTRK gene
fusion- fusion- fusion- fusion-
negative positive negative positive
n=124 n=31 n =962 n=238
ALK 1(0.8) 0 1(0.1) 0
BRAF 15 (12.1) 0 50 (5.2) 0
EGFR 1 (0.8) 0 6 (0.6) 0
ERBB2/HER2 1(0.8) 0 14 (1.5) 0
KRAS 15 (12.1) 1(3.2) 112 (11.6) 2(5.3)
ROS1 0 0 1(0.1) 0
TMB high (>20 16 (12.9) 8(25.8) 55(5.7) 8(21.1)
mut/mB)
TMB medium 9(7.3) 0 109 (11.3) 0
(<20, >5 mut/
mB)
MSI high (>6) 14 (11.3) 7 (22.6)' 53 (5.5) 7 (18.4)
MSI low/MSS 110 (88.7) 24 (77.4) 909 (94.5) 31 (81.6)
(<6)

Patients had hepatopancreatobiliary cancer.
All had colorectal cancer. MSS, microsatellite stable.

FEE—

This is significant progress over older literature where ETV6-based
screening technologies were used to identify cases and estimate preva-
lence of fusions [47,48]. We anticipate that in the future, advances in
technology may allow all biologically possible partners to be identified.
Other actionable fusions of this type (e.g., neuregulin 1 [NRG1] fusions)
also have this characteristic [49].

Both entrectinib and larotrectinib are approved by the UK National
Institute for Clinical Excellence (NICE) and, consequently, NTRK fusion
has been placed into the national directory [50,51]. We hope this will
help expand the existing database of NTRK fusion data.

In conclusion, the study did not find a statistically significant dif-
ference in survival between the NTRK gene fusion-positive and -negative
groups, where none of the patients had received TRK inhibitors. The
results from the present study suggest that in patients with tumors
harboring an NTRK gene fusion, co-occurrence of other actionable bio-
markers is generally uncommon, except for high-MSI and TMB, which
were mainly driven by colorectal cancers [40,41], supporting the hy-
pothesis that NTRK gene fusions are the primary oncogenic drivers in
tumors that harbor them. This highlights the importance of NTRK gene
fusions as actionable drug targets and emphasizes the need for

Cancer Treatment and Research Communications 33 (2022) 100623

widespread adoption of broad panel genomic testing in routine oncology
clinical practice. This underscores the potential clinical benefits of TRK
inhibitor therapy for patients with TRK fusion cancer.
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