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Abstract

This thesis demonstrates that trading algorithms trained through Reinforce-

ment Learning will learn to manipulate prices (thereby breaking the law)

through a process called spoofing in a fully functioning limit order book envi-

ronment. The regulatory definition of Spoofing requires the establishment of

intent on part of the accused: it is defined by the US CFTC as the placement

of orders with the intent to cancel them. This needs to be defined for auto-

didactic algorithms where behaviour emerges somewhat independently from

the programmer. I propose a high-level definition informed by current law

then test to see whether it matches with a laypeople’s natural understanding

of the concept. Finally, I implement a constrained learning method in Rein-

forcement Learning using an appropriate definition of intent to cancel which

allow auto-didactic trading algorithms to be trained and deployed safely with-

out the risk of spoofing behaviour emerging.

This subject is important because algorithmic trading leads other areas in the

degree of agency that algorithmic actors are permitted. The simple pursuit

of high-level objectives like profit maximisation can result in behaviour that

contradicts the law. Without a method of encoding laws within the training

and testing process, algorithms will likely learn to break laws when it is rational

to do so.

The research comprises:

1. Platform: BUCLSE A Limit Order Book simulation environment pro-
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grammed in Python. It is flexible enough to admit multiple types of

traders of varying ability ranging from simple zero intelligence traders

to complex reinforcement learning based traders. Having a limit order

book simulator that accurately reflects the market impact of a trader’s

actions is a prerequisite for investigating market manipulation risk. As

such it is an example of a digital twin where emergent behaviour can be

studied and controlled safely.

2. Emergence of spoofing in a RL LOB In this experiment we demonstrate

that a Reinforcement learning agent, fed with a simple state space rep-

resentation of a limit order book, can learn to manipulate the market to

its favour. We test a variety of RL techniques including Deep Q learning

and Dyna Q using both a Conditional Variational Autoencoder and a

traditional tabular based model. The resulting strategies are distilled

into a simple decision tree for interpretation.

3. A definition of intent for algorithms In this chapter we construct various

definitions of intent suitable for algorithms from the body of research that

concerns intent in common law.

4. Testing a definition of intent for algorithms on laypeople Here we test

laypeople’s attitude towards intent in an algorithm and test a simple

definition of intent. We contrast judgements of intent of AI with a Human

and judgements made with and without a provided definition of intent

over various experimental configurations.

5. A method to identify and restrict intent to cancel in a simple queu-

ing example For autonomous algorithms to be deployed in regulated

environments they need to be law abiding. Building on the definitions

introduced earlier we discuss the minimum requirements for a trading al-

gorithm to have intent, and illustrate how to measure and control intent

using a shield in a minimal queuing game example.

The thesis makes the following contributions to science:
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• Establishes that the risk of market manipulation is ‘foreseeable’ for any-

one wishing to deploy RL-trained trading algorithm in a Limit Order

Book. This could be important in deciding how legal liability is imposed

in court.

• Defines the concept of intent for autonomous algorithms which is based

on existing legal principles. This allows the testing of trading algorithms

for compliance purposes and is necessary for their safe training and de-

ployment in the market.

• Tests how the concept of intent in autonomous algorithms is received by

laypeople. This is important because juries are comprised of laypeople

in the United Kingdom amongst other common law countries

• Presents a practical method to define ‘intent to cancel’ along with a

method in Reinforcement Learning to create trading policies that do not

exhibit intent to cancel at the point of order placement and therefore do

not spoof.
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Impact Statement

As the aptitude of algorithmic actors increases so will their autonomy and

agency. Important legal questions need to be asked about what constitutes a

crime when algorithms are perpetrators or co-conspirators and their behaviour

is not generated by another human.

Algorithmic trading leads other areas in terms of algorithmic agency and au-

tonomy yet the legal and regulatory framework of the sector requires urgent

work in order to prevent autonomous algorithm ‘crime’ or law-breaking from

becoming an issue. To date, regulation has typically been written to consider

human actors; this can lead to ambiguities when the actors are algorithms.

The stakes are high with American and European regulators imposing multi-

million dollar fines on financial organisations for market abuse with increased

regularity.

The experiments contained in this thesis cover the topics of prevention, in-

terpretation and prosecution. They are relevant to a range of stakeholders

across the spectrum of the finance industry from trader, to broker, exchange,

regulator, law enforcement and prosecutor.

Whilst the setting of much of this thesis is that of algorithmic trading and the

specific market manipulative practice of spoofing, the techniques developed in

this thesis should be readily transferable into other areas governed by laws

where algorithmic actors interact with us and each other, as and when they

develop.
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Chapter 1

Introduction

This chapter contains an introduction to the topic of market manipulation, a

brief look at the problem’s background in published literature and the research

questions that the thesis attempts to answer. Following this there is a summary

of this thesis’ scientific contributions before an outline of the rest of the work.

1.1 Motivation

Efficient price discovery is of fundamental importance to society. Exchange

markets are a prime mechanism for this process to take place for many fi-

nancial and physical assets. Unfortunately, actors have been found guilty of

manipulating this process in the past for personal gain. Whilst society has

responded by making certain trading practices illegal within markets 1, there

remains a proportion of market participants who believe it profitable to act il-

legally. Since the laws exist, it is the duty of the regulator, the market operator

and the market’s participants to make sure they are not broken.

Algorithmic trading accounts for approximately 50% of volume within most

modern markets (Hodge, 2019). Algorithms have superhuman capabilities of

speed, memory and computational power in comparison with human traders.

1See FMSB (2018) for a comprehensive ontology.
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They have been successful operating in modern markets for many years and

there is no reason to believe this won’t remain the case in the future. With

these advantages, it comes as no surprise that they are being used to commit

market abuse (Lin, 2016).

Over the past decade, developments in deep learning have allowed Deep Re-

inforcement Learning trained algorithms to surpass human mastery of certain

games with minimal guidance from the experimenter. Development has been

fast in recent years; a variety of Atari games were mastered by Mnih et al.

(2015) using a single neural network with different game specific parameter

weightings. Most recently Reed et al. (2022) have developed a generalist agent

capable of many varied tasks using the same network weightings. Trading

markets have obvious parallels with these games because they also have a lim-

ited state and action space that is already machine interpretable and a reward

function in the form of profit. There is growing interest in applying these meth-

ods to develop a new generation of algorithmic traders similarly unguided by

human hand in the hope that novel money-making trading strategies can be

unearthed.

If human actors have found it rational to act illegally in regulated markets,

it is a reasonable question to ask when self-taught algorithmic traders will

follow suit. Algorithm led ‘crime’ or transgression poses questions about the

responsibility and culpability of their original programmers and owners. How

can market participants ensure that their auto-didactic algorithms are not

market abusive by design? Do regulators and exchanges require a different set

of tools to detect market manipulation instigated by algorithmic traders?

Spoofing is a simple example of a proscribed practice in most regulated mar-

kets. The Dodd-Frank Wall Street Reform and Consumer Protection Act,

7 U.S.C.A. §6c(a)(5)(C) defines it as "bidding or offering with the intent to

cancel the bid or offer before execution". There are multiple motivations for

a trader to place orders on an exchange without wanting to those orders to
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be settled. Various terms for practice related to spoofing like pinging, quote-

stuffing, layering have emerged in practice and literature but it is noticeable

that regulators haven’t seen fit to mention these in statute. This is under-

standable because they are already regulated under the definition of spoofing.

Recognition of these terms is not appropriate because the motivation of the

spoofer is irrelevant in labelling their behaviour prohibited.

This thesis will concentrate on spoofing as a deceptive practice whose motiva-

tion is to engender some predictable response from other market participants.

This is achieved by the strategic posting of orders on a limit order book. The

predictable response is triggered by making other market participants believe

something about the state of the order book which is known to be false by

the spoofer. Wang et al. (2018) draw parallels between this tactic and that

of poisoning in adversarial learning Barreno et al. (2006), where agents inject

false data into an opponent’s data so as to induce a certain future response.

Chapter 4 will consider the specific case where spoofing behaviour emerges

from an auto-didactic algorithm whose utility function is based on improving

the exit price of an existing holding. This is spoofing motivated by simple

trading profitability. For a putative spoofer wishing to profit from an increase

(decrease) in best bid (ask), they will place a large order on the bid (ask)

side. This should fool other market participants into believing the new large

orders represent some informed information coming into the market. They

will attempt to out bid (or under-ask) this large order. The spoofer hopes this

reaction will improve best bid (ask), and they will take this new liquidity and

cancel their original spoofing orders.

1.2 Background in Research

Definitions of market manipulation vary across markets globally but Lomnicka

(2001) believe they are converging as markets become more interconnected.
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The FMSB (2018) find there to be 13 ‘behavioural clusters’ of market abuse.

Amongst those, we have chosen to concentrate on an illegal behaviour known

as Spoofing (or layering). Wang and Wellman (2017) define the practice as the

submission of large orders to the market which the trader does not intend to be

executed, but instead be interpreted by other market participants as indicators

of imminent price movements. The trader can profit from the induced price

movement by executing real orders on the opposite of the market before can-

celling the original large order. Actually, regulators are not prescriptive about

the motivation for spoofing simply defining it as the placement of orders with

the intent to cancel them. In their guidance of anti-spoofing regulations, the

CFTC (2013) suggests a non-exhaustive list of alternative motivations to spoof

other than price movement. They might be to give a false impression of liquid-

ity in a security, carrying out a denial-of-service attack on an exchange venue

by overloading their systems or attempting to delay the execution of another

participant’s orders. Of the 13 behaviours detailed in FMSB (2018), we feel

spoofing could manifest itself most easily in a simulated environment in con-

junction with an auto-didactic trading algorithm because the requisite actions

exist exclusively on exchange. This is classified as a ‘trade-based’ manipulation

by Allen and Gale (1992), Figure 1.1. A simple objective function - maximise

trading profit within any trading period - is sufficient to rationalise spoofing

behaviour whilst the required action space - place and cancel buy or sell orders

of variable size and price on a market is relatively simple.

Continuing with Allen’s taxonomy, ‘Information based’ manipulation through

the dissemination of false information could almost certainly be learnt by al-

gorithm - see Lin (2016). The link between potentially bot generated tweets

and stock performance has been explored by amongst others (Fan et al., 2020;

Renault, 2017). Since realistic novel text can be generated by large language

models such as GPT3 (Brown et al., 2020), the means to achieve this type of

manipulation is within the scope of current algorithm capability. An integrated

algorithm with the ability to write tweets and place orders would likely find
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an effective information-based manipulation scheme. As a researcher, short

of actually implementing such a structure in real life and breaking myriad se-

curity laws, information-based manipulation is harder to study because the

world models required are substantially more complex than those of a limit

order book alone. Similarly emergent action based manipulative algorithms

are feasible if say a large commodity trading company with market power

and physical storage capacity integrated an inventory control algorithm with

a trading algorithm in a scheme similar to the one described by Stevens and

Zhang (2016).

Action Based

- Take actions to impact underlying 
valuation of asset (actual or 
perceived)

Information Based

- Spreading of false rumours
- Eg Twitter

Trade Based

- Attempts to manipulate stock simply 
through buying and selling and 
order placement

Manipulation Types (Allen & Gale 1992)

Figure 1.1: Classification of price manipulation activity, adapted from Allen and
Gale (1992)

The study of price manipulative strategies within financial markets has a long

history. One of the early papers to consider the problem within a rigorous

mathematical model is Hart (1977), which proves that uninformed speculators

are able to profitably manipulate the price of an asset. Jarrow (1992) builds

on this further by defining basic conditions for the existence or non-existence

of profitable price manipulation strategies. He finds that if the pricing process

only depends on an agent’s current holding and not the sequence of trades
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used to attain it, then there can be no profitable manipulation. This is the be-

ginning of a noticeable theme in the literature surrounding price manipulative

behaviour: proof of non-existence. This is motivated by Jarrow’s observation

that ‘no price manipulation’ is analogous to the concept of ‘no price arbitrage’

which is an important assumption in other areas of quantitative finance such

as option pricing (see for example Ross (2004)). In many subsequent market

models, the possibility of profitable market manipulation strategies existing

is an inconvenience when considering optimisation problems because they are

potentially infinitely profitable. This messes up optimisation procedures for

obvious reasons. Thus a significant amount of research effort has been under-

taken to build trading models where price manipulation is provably irrational

- (Alfonsi and Acevedo, 2014a; Donier, 2012; Fruth et al., 2014).

Whilst the papers in the previous paragraph tackle market manipulation by

attempting to model the market and its response to orders, an equally valid

approach more in line with modern ideas of machine learning would be to try

and learn facts from historical data. This data driven approach precludes the

training of market manipulative strategies and is principally focused on the

problem of detection. This is because any trade-based manipulation relies on

the market reacting predictably to order placement and the strategy being able

to benefit from the predictability of that response. Methods using historical

data are naturally tied to a single realisation of a price series or a limit order

book. Here a trading algorithm that learns by doing, cannot learn about the

effect of its actions on a market’s state, because that trajectory is fixed. His-

torical data can be usefully used to study market manipulation in the context

of classification tasks, i.e., given some historical trading data which may or not

be labelled as manipulative, can we construct a classifier to determine whether

this unseen trading data is manipulative? This constitutes a very large part

of machine learning research regarding market manipulation; Zulkifley et al.

(2021) provide a recent survey of approaches. Many methods have been used

including Hidden Markov Models (Cao et al., 2015), recurrent neural networks
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(Wang et al., 2019) and SVM (Öǧüt et al., 2009).

Supervised learning applied to criminal activities is often made harder by im-

balanced datasets and the likelihood that not all criminal behaviour is labelled

correctly (false negatives). Unsupervised approaches can sidestep this issue to

some extent: Leangarun et al. (2019) use the discriminator trained in a GAN

(Generative Adversarial Network - see for example Creswell et al. (2018)) to

detect price manipulation. Other unsupervised approaches used include clus-

tering through kernel density estimation (Abbas et al. (2018)).

The study of emergent price manipulative trading strategies requires a third

course which in some respects sits between the strict model and the model

free, data centric approaches. This approach requires a market environment

which obeys certain mechanical rules (like a functioning Limit Order Book)

and reacts to orders submitted to it. This ‘reaction’ could be according to a

parametric function which has separately been fitted from data. Alternatively,

the ‘reaction’ could be generated by a multi agent simulation, where multiple

actors, each interacting with the market using simple rules, on aggregate create

a market place which mirrors properties of real markets. Such an approach

Cliff and Bruten (1997); Palit et al. (2012)) has been able to create some of

stylised properties of markets as described in Cont (2001).

1.3 Research Questions

This thesis will attempt to answer the following questions:

• Does price manipulative behaviour (spoofing) emerge in continuous dou-

ble auction market where trading algorithms are self-taught (through

reinforcement learning)?

• Motivated by the definition of spoofing as the intent to cancel an order

at the point of its placement, how can the legal concept of intent be

established in an algorithm?
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• Are lay people willing to accept the concept of intent in algorithmic

actors and are they able to interpret evidence for it based on a given

definition? This is motivated the observation that criminal trials are

decided by juries of lay people (in common law jurisdictions).

• How can we ensure that an algorithmic trader, taught through reinforce-

ment learning never places an order with the intent to cancel it?

1.4 Scientific Contribution

This thesis makes the following contributions to science:

• Demonstrate that spoofing behaviour is a consequence of reinforcement

learning and therefore foreseeable.

• Present a definition of intent for algorithmic actors based on current

(common) law.

• Conducts quantitative research on the willingness and ability of lay peo-

ple to judge intent in algorithmic actors and how it differs from their

judgement of human actors.

• Demonstrate methods to constrain the behaviour of autonomous algo-

rithms to be law abiding.

• Further widen research and debate in the nascent area of algorithmic

crime and regulation.

1.5 Outline of Thesis

In the Chapter 2 we present a literature review covering the subjects of Market

abuse and Algorithms (Machine Learning or otherwise)

In Chapter 3 we introduce the limit order book platform BUCLSE and the sim-

ulation environment built around it which underpins the quantitative research

undertaken in this doctoral thesis. Included in this chapter is a trader bestiary

which describes the workings of various zero intelligence traders included as
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standard with the platform.

Chapter 4 takes the BUCLSE platform, populated with a range of standard

and novel traders, and shows how a trading algorithm trained using a variety of

Reinforcement Learning methods centred around Q-learning, will readily learn

strategies that are price manipulative. This is done by comparing strategies

found with an unrestricted action space which will permit order book manip-

ulation and an action space which will not. Analysis of the found strategies

is achieved by looking at the frequency of actions chosen, the circumstances

under which trading episodes finish and finally by supervised training of a tree

classifier using the state, action data gathered during strategy testing.

Chapter 5 defines the concept of intent for algorithms by referring to the legal

definition of intent that can be found in most common law countries.

Chapter 6 tests a definition of direct intent on lay-people. This has two pur-

poses. Firstly, it is to test whether a common definition of intent differs from

people’s natural understanding of the concept. Secondly it is to see whether

people differentiate between human and AI actors when presented evidence

about the intent of the actor.

Chapter 7 takes the US definition of spoofing - placement of orders with the

intent to cancel - and trains a RL agent not to spoof in a minimal queuing

environment analogous to a limit order book. Two definitions of intent are

considered. A statistical definition of intent is rejected in favour of one based

on a counterfactual evaluation of disappointment, justified by legal reasoning.

A structure known as a shield or ethical governor is used in the training process.

1.5.0.1 Reading Order

Whilst it might be best to read this thesis in the chapter order presented (and

the order reflects the development of ideas that I have gone through), it is not

a requirement. Chapter 3 introduces the LOB simulation environment that
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Chapter 4 uses to train a RL agent so they should be read in conjunction with

each other. Otherwise Chapters 5, 6 and 7 are self-explanatory and can be

read in any order.
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Chapter 2

Literature Review

A literature review concerning Spoofing and related market abuse practices

within the Limit Order book (LOB). I find little research concerning market

abuse emergence in interactive LOB. Instead I find a concentration of studies

on detection methods.

2.1 Introduction

In this chapter I review the existing literature concerning spoofing and related

market manipulative techniques. The scope of the search is primarily focused

on quantitative research originating from computer science and related subject

areas. Subsequent chapters will consider the output from legal research.

Literature concerning spoofing is somewhat limited for many technical reasons

which I will discuss later but also an important social/regulatory one. The

practice was as MacKenzie (2022) observes, just considered good trading 30

years ago when humans engaged in it, and criminalisation (with enthusiastic

enforcement) is a relatively recent occurrence. The change as Mackenzie points

out may be connected to the rise and dominance of electronic order books and

algorithmic trading. The $920 million fine of JP Morgan Chase in 2020 (CFTC,

2020) for spoofing in precious metals and treasury markets is the largest single
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fine for the practice and indicative of the increasing focus that the regulator has

on the practice. According to the CFTC’s annual enforcement report (CFTC,

2021), the number of cases filed for manipulative conduct or spoofing between

2011 and 2014 averaged five per year; in the three years from 2018 to 2020

there were 19 per year.

Research concerning spoofing can be classified by objective. The largest part

of research concerns detection efforts. Related are case studies which analyse

certain episodes in market history. A more theoretical strand considers the

existence or non-existence of order-based manipulation in parametric models

of a market. Often this is motivated by the study of order impact, and the ar-

bitrage problems that spoofing raises if achievable in the model. A final strand

of research considers simulations of markets, which are often agent-based mod-

els. The objective of these studies might be to consider the profitability and

welfare effects of spoofing. A model of the market also allows analysis of pos-

sible mechanisms to reduce spoofing. Most pertinently for this thesis, some

studies consider the emergence of spoofing strategies through machine learning

techniques.

Choosing to classify research by its objective also aligns with the type of data

that these studies use. Classification research will predominantly use historic

data whilst General equilibrium approaches will use data, usually generated

by multi agent simulations.

2.1.1 Empirical research

Spoofing research is often concerned with the classification of spoofing be-

haviour when presented with historic data. A difficulty in such a task is that

labelled data is both rare because exchange data is anonymised; typically the

regulator or exchange is the only party in possession of data that identifies

individual traders with their orders. The task is further complicated by the

likely presence of false negatives in any database (assuming regulators are not
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100% efficient in detecting spoofing). An alternative to using labelled data is

to identify ’likely’ cases of spoofing, which is what Lee et al. (2013) and Men-

donça and De Genaro (2020) do in Korea and Brazil respectively. Using data

from a brokerage, they reconstruct the order book over the day and identify

situations where a party has positions on both side of the order book simul-

taneously, one substantially larger than the average for the day after, which

the large order is cancelled. Lee et al find that traders who spoofed enjoyed

higher returns and that stocks which were targeted tended to be smaller in

market capitalisation and have higher volatility. Kong and Wang (2014) are

able to use a labelled dataset by examining the trading data of someone who

was prosecuted for spoofing in the Shanghai and Shenzhen stock exchange.

They hypothesise that spoofing is more likely to work when the spoofer can

pose as an informed trader, and this is easier when news-flow for the stock is

higher. They find that investor sensitivity to orderbook imbalance, that is to

say the overweight of one side of the LOB over the other is reduced following a

period of manipulation. This they believe indicates that investors learn not to

trust the statistic as having informational content after it has been deliberately

manipulated by a spoofer.

Tao et al. (2022) present an approach to detect spoofing based on the observa-

tion that for a spoofing strategy to be profitable, it must result in a transaction,

after which there is an order cancellation. This should imply that in the case

that any particular trade is part of a spoofing scheme, the orderbook imbalance

distribution pre and post that trade will be different whilst for a legitimate

trade it should be similar. They use the Wasserstein distance to measure the

distributional difference and calibrate it using level 2 data from the TMX, a

Canadian stock exchange.

As Tao et al recognise, a complicating factor to empirical work concerning

spoofing is the possibility that it is conducted on multiple exchanges concur-

rently. The correlation between trade execution and order cancellation in other
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exchanges is shown by van Kervel (2015). Practically speaking, this means that

orderbook data needs to be aggregated across different exchanges in order to

gain a cohesive picture of the situation. Efforts at any single exchange to

detect spoofing are therefore hindered and in some cases, it may only be the

regulator who has the ability to coordinate such a data collection effort. An

even more elaborate problem is the possibility of spoofing across several as-

sets simultaneously. Stenfors et al. (2022) investigate the problem in Over the

counter (OTC) foreign exchange currency pairings. They find that predictable

moves in one currency pair (EURJPY) can be initiated by spoofing in a dif-

ferent currency pair (EURUSD and USDJPY). They argue that predictability

and therefore profitability indicates at the very least a danger that someone

will exploit it. In an earlier empirical study, Stenfors and Susai (2021) show

the practice of spoofing takes place to various degrees in OTC FX markets.

This study also considers the practice of ’pinging’, the practice of flashing or-

ders on an order book in order to gain information about the conditions in the

market-place. Whilst always considered a dubious practice (Scopino, 2014),

as the CFTC makes clear in their guidance note (CFTC, 2013), spoofing is

not defined by a motivation to make profit and traders fishing for information

will be prosecuted. This position was exemplified in CFTC (2018a) with a

$250,000 fine issued to the offending bank.

A common issue with many empirical approaches to detecting spoofing is that

they typically require the spoofer to be engaging in the practice for profit,

i.e. placing and executing trades as well as placing orders that they intend

to execute. As the CFTC make clear, spoofing is not defined by motivation.

Quote stuffing is the practice of overwhelming an exchange with orders. It

can slow other participants’ access to execution and can slow price evolution

which might open arbitrage opportunities when assets are also traded at other

exchanges (Dalko and Wang, 2020). Egginton et al. (2016) find quote stuff-

ing to have occurred in 74% of exchange listed securities in 2010. Mavroudis

(2019) classifies this mode of manipulation as a physical attack on the workings
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of the exchange requiring a knowledge of its systems. It is an open question

under which circumstances an algorithm could learn a quote stuffing strategy.

Perhaps it would be possible from historical data alone if an association could

be learned between large order submission episodes and the arbitrage oppor-

tunity this might open up. Otherwise, a very realistic simulation of multiple

exchanges would be required for the strategy to emerge.

2.1.2 Existence or Non-existence

A surprising amount of research on the subject of order-based price manip-

ulation concerns its existence or non-existence in parametric models of asset

markets (see for example Alfonsi and Acevedo (2014b)). As discussed, the

evidence for spoofing was relatively scant until recently (Lee et al., 2013) so

a market model with no spoofing possible was not obviously unrealistic. The

main objective for this avenue of research is connected to market-impact and

efficient execution. Market models where order-based manipulation is prof-

itable risk producing arbitrarily profitable liquidation strategies (Klöck et al.,

2017). Cartea et al. (2020) consider the optimum execution problem in a

parameterised trading environment calibrated with Nasdaq data. Their mar-

ket model does admit spoofing, but it is limited by a penalty for engaging in

the practice which corresponds to the fine for being caught weighted by the

probability of detection. They find lower fines lead to more spoofing.

2.1.3 Profitability, Emergence and Welfare of spoofing in mar-

ket models

Research concerning the emergence of market manipulative strategies such

as spoofing is limited. It requires both a simulated environment capable of

responding to different strategies and a trading agent who is capable of learning

new trading strategies. The risk of emergence, and the difficulty in prosecuting

it is predicted, to various degrees in legal research by Scopino (2015); Lin
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(2016); Bathaee (2018). Perhaps this is an example of the public imagination

of the capabilities of AI in trading running ahead of the reality.

Martínez-Miranda et al. (2016) seek to answer the question: Under what con-

ditions do agents undertake market manipulative behaviour, and what can

be done to prevent it? Their approach is one of reinforcement learning, with

agents seeking to navigate an obstacle in a maze block world as an analogy for

market manipulation (spoofing and pinging). The obstacle in the maze world

represents a lack of liquidity at a price level that the agent wants to buy at. It is

’moved’ by the agent undertaking a manipulative action. The authors consider

two mechanisms for discouraging the manipulative behaviour which otherwise

emerges from their setup. Firstly, they increase the costs of manipulation to

the agent (fines). Secondly they model the exchange led practice of ’controlled

liquidity’ by adding uncertainty in the transition probabilities of the model.

Spoofing creates an orderbook imbalance for the purpose of giving a percep-

tion of skewed supply or demand. Controlled liquidity is a possible response

from exchanges where large imbalances are automatically rebalanced in some

prearranged mechanism. Thus, in an exchange that uses controlled liquidity

mechanisms, manipulative action will only work with a certain probability.

The idea of representing a profit maximisation problem as one of two dimen-

sional movement in a maze action space is novel but is quite an abstraction.

As the authors admit, the results might not be robust: "other grids with more

complex structures may also reproduce trading strategies, but the manipulative

behaviour may not emerge as an optimal control according to the simulated

market conditions, thus eliminating the core of the analysis we present".

Mizuta (2020b) considers the question of emergence of market manipulative

trading strategies in an agent-based model. The agent-based model is de-

scribed in Mizuta (2020a) and recreates a fully functioning double auction

market. Zero intelligence type traders take turns to buy or sell single units

of an asset according to a strategy which mixes fundamental valuation and
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momentum-based criteria. The learning mechanism of the agent is evolution-

ary, with genes expressing unconditional buy, sell or pass action decisions. All

strategies are assessed against the same market, so that an identical strategy

would lead to an identical profit. Multiple learning agents with randomised

genes are assessed and a random crossover and mutation process evolves the

best performing strategies of a ’gene pool’. Mizuta contrast strategies in an

environment without market impact to those obtained in full simulation. In

the case of the former, a fundamental type strategy emerges where the strategy

buys when the asset is historically undervalued. In contrast, in the fully sim-

ulated environment, the evolved strategies exhibit overbuying or overselling,

which drives the market upwards or downwards to extreme price levels, after

which the trader exits their position. This Mizuta claims, is indicative of a ma-

nipulative pump and dump type strategy. The experiment neatly demonstrates

the different strategies which emerge in otherwise identical environments de-

pending on whether market impact exists or not, but the fact that the learned

strategies are not conditional on market conditions weakens the strength of

the conclusion.

Whilst not a proof of emergence, Withanawasam et al. (2013) show in some

conditions a pump and dump strategy is profitable in a multi agent simulation

of a LOB market. Profitability is dependent on the presence and concentration

of ’technical traders’ who use recent data in order to make trading decisions.

Manipulating agents are able to ’ignite’ strong periods of price momentum by

buying shares in an initial period, waiting for the technical traders to bid up

the asset price in a momentum period before exiting their positions in cooling

off period during which the price of the traded asset collapses. The authors

extend the LOB model of Maslov (2000) by adding a class of technical traders

to the existing liquidity traders. At each period a trader type is drawn at ran-

dom according to a constant distribution parameterised by (pL,pT ,pM ), the

proportions of Liquidity, Technical and Manipulating traders respectively. A

trader submits a buy or sell order with probability µ, 1−µ. They choose a
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limit order with probability θ or a market order with 1−θ. These parameters

vary according to trader type. Market orders are offset from the contraside

best price by a random integer x ∈ [1,2,3,4]. This price choice was found in

Withanawasam et al. (2010) to better match price movements observed in real

markets than Maslov’s original specification. Technical traders make their buy

or sell decisions based on the previous period’s observed price movement, order

type (buy or sell, limit or market) and whether they think that order’s origina-

tor was ’informed’ or uninformed. They (falsely) believe informed traders will

only buy (sell) if the price rose (fell) in the last period. The authors find that

the profitability of the manipulating strategy increases with pT , the proportion

of technical traders in the environment.

In Wang and Wellman (2017); Wang et al. (2020) and in greater depth Wang

(2021), a similar dichotomy of non-manipulable and manipulable agents are

used in an agent-based model to investigate the practice of spoofing in a LOB.

The objective of the experiment is to assess the welfare implications of spoofing

traders being present in a market.

The non-manipulable agent class are a modified type of the ’Shaver’ zero intel-

ligence trader described by Cliff (2018). The manipulable agent class is called

a Heuristic Belief Trader (HBL). An agent receives a noisy signal (Gaussian

additive unbiased noise with variance σ2
n) of the fundamental value every time

it trades. The Shaver traders just submit orders with a random sized offset to

their valuation of the asset. The HBL trader users order book information to

assess the probability of execution at each price and then chooses a price to

maximise their utility. This is also dependent on an agent specific parameter

which corresponds to the marginal utility for acquiring another unit of the

asset.

The spoofing strategy consists of an agent placing a large quantity order one

tick behind the best bid. Since the other ’background’ traders can only trade

single units, the spoofer is able to avoid any risk of execution - they are assumed
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to have a privileged position where they can cancel and replace their order if

the best bid/ask moves. In some of the experiments the spoofer is given an

exploitation strategy in order to assess their profitability. The spoofer will buy

when there is an order below estimated fundamental mean, it will then begin

spoofing as described above and subsequently sell if a limit order bid is greater

than estimated fundamental mean.

Parameters for the traders are found using Empirical Game-Theoretic Anal-

ysis (EGTA) which is an iterative procedure to find Nash-equilibria amongst

parameterised strategies. The surplus of the equilibrium strategies are then

compared with and without the presence of a spoofer. They find that the pres-

ence of HBL traders (i.e. traders who use order book information) increases

aggregate surplus and the presence of a spoofer reduces it.

Liu et al. (2022) use EGTA to investigate whether frequent call markets are also

vulnerable to spoofing. Frequent call markets (Wah et al., 2015) operate as a

sequence of closed bid auctions over a timeline discretised by clearing periods.

Orders submitted during any clearing period are not time prioritised. They

were developed as a putative solution to the latency battle that High Frequency

Traders (HFTs) wage in order to enable, what some would consider, market

manipulative spoofing strategies (Cooper et al., 2016; Dalko and Wang, 2020).

Liu et al use a similar setup and method to Wang and Wellman (2017). They

find spoofers have a similar negative effect on overall market efficiency but a

smaller one than one found in a traditional continuous double auction market.

They also find that the profitability of the spoofer is dependent on their speed

in updating their orders to avoid unexpected execution.
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2.2 Justification of research problem based on liter-

ature review

Research concerning spoofing can be classified by objective. The largest part

of research concerns detection efforts. Related are case-studies which analyse

particular episodes in market history. A more theoretical strand considers the

existence or non-existence of order based manipulation in parametric models

of a market. Often this is motivated by the study of order impact, and the

arbitrage problems that spoofing raises if achievable in the model. A final

strand of research considers simulations of markets, which are often agent based

models. The objective of these studies might be to consider the profitability

and welfare effects of spoofing. A model of the market also allows analysis

of possible mechanisms to reduce spoofing. Most pertinently for this thesis,

some studies consider the emergence of spoofing strategies through machine

learning techniques.

There exists a gap in existing knowledge surrounding the genuine emergence of

market abusive behaviour within a continuous double auction market from a

learning trading algorithm. By extension, there is even less research concern-

ing the problem of an algorithm learning under a restriction not to commit

market abusive behaviour. Whilst Wang and Wellman (2017), Withanawasam

et al. (2013) do prove the viability and stability of such behaviour in a real-

istic limit order book environment, their manipulative agents behave with an

experimenter imposed behaviours. Martínez-Miranda et al. (2016) goes part

of the way to study the question of market abuse as learned behaviour, but

the approach is quite abstract to be satisfactory.

For market abusive behaviour to successfully emerge I believe there to be three

necessary conditions to be satisfied.

1. Price manipulation requires actions taken in the current period to affect

the state of the market in the future. Price formation must be endoge-
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nous to the model.

2. Price manipulation is concerned with the deception of other traders, so

the behaviour of other traders (the marks) must be accounted for in a

model of the situation.

3. The trading strategies of the other agents must be conditional on the

state of the system in a way which can be affected by manipulator as

observed in Wang and Wellman (2017) and Withanawasam et al. (2013).
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Chapter 3

Platform: BUCLSE

I present a Limit Order Book simulator named BUCLSE, capable of multiagent

simulations, offering flexibility over underlying supply and demand setups. The

environment has been designed specifically for the study of market manipulation

and market abuse. It is programmed in Python and has been designed for future

extension to a large multi-core setting.

3.1 Introduction

The study of emergent manipulative trading behaviour necessitates an envi-

ronment which provides feedback to the trading agents within it. That is to

say, the actions of the every trading agent, have the potential to affect the

environment and thereby the actions of the other agents. This precludes the

use of historic pricing data as a way to explore the problem. In machine learn-

ing terminology, learning must be done predominantly online (as apposed to

a batch setting).

This is a two edged sword. On one hand data can be obtained for free; it is

generated by the trading environment itself. Any enquiries about the cost of

acquiring multi-level orderbook trading data from external vendors will con-

vince the reader of the attraction of this. It is kept under lock and key by
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a small number of guardians and the cost of the key is prohibitive for most

independent researchers1. On the other hand there are two problems with a

market simulation approach, one theoretical and one mechanical. Firstly the

theoretical problem is that there is no guarantee that any data produced in a

market simulation is realistic and of any practical use. Thankfully, since the

objective of this research is not to find magical money making machines but

to investigate the emergence of illegal behaviour and how to arrest it, we don’t

need to worry too much about this problem. A robust finding of emergence

should mean that the problem of emergent spoofing strategies is foreseeable

and foreseeability does not make huge demands about likelihood thus the re-

alism of the simulator is not of primary importance. That said, the trading

environment will work as realistically as possible and is designed to have the

flexibility to potentially produce a realistic simulation. The parameter search

to achieve this is left for another research project - methods themselves based

on machine learning techniques to do this are emerging (Bai et al., 2021).

Previous work on multi agent models and zero intelligence traders has con-

sistently shown that certain market ’facts’ are reproduced quite robustly as

an artefact of the price matching model found in limit order books. (Cliff

and Bruten, 1997; Palit et al., 2012; Gode and Sunder, 1993). To reiterate,

it should be enough to demonstrate that if a certain market manipulative

behaviour emerges in a limit order book simulator, the emergence of market

manipulative behaviour is foreseeable in more complex simulations and real

life. This is because the concept of foreseeability of an outcome does not rely

on proving a high likelihood of that outcome. Anyone therefore working on

auto-didactic trading algorithms should be very aware of the risk of market

manipulative trading strategies arising either from simulation or learning in

deployment.

The mechanical problem relates to the efficiency of the trading environment.

1An academic service LOBSTER providing limit order book reconstruction data for ex-
ample is €5000 pa. https://lobsterdata.com/
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If data generation and learning are online, can we make the environment suffi-

ciently efficient enough to generate data at the speed and volume which mod-

ern machine learning methods require? Benchmark reinforcement learning

problems enjoy fast, lightweight toy environments as a given. For a market

simulator to be suitable for reinforcement learning, it should be suitably fast

and robust, and that requires a significant amount of additional effort. At the

same time, a balance has to be made between speed and code interpretability.

3.2 Background

BUCLSE was created as a means to an end - the study of emergent market

manipulative behaviour via reinforcement learning - because no other solu-

tion existed with the capacity to do what I needed. Since I created it, other

open source platforms have become available such as ABIDES (Byrd et al.,

2019; Byrd, 2019), SHIFT (Alves et al., 2020b) and MAXE (Belcak et al.,

2020). Aside from indicating a preponderance for capitalisation amongst pro-

grammers, the growing interest in Agent Based Modelling (ABM) applied to

finance reflects the increased application of reinforcement learning to trading

problems (surveyed in Meng and Khushi (2019); Pricope (2021); Borrageiro

et al. (2022)) and the realisation that static data cannot service this method

properly. Of the simulation environments mentioned above, perhaps ABIDES

is best supported; just as with BUCLSE it is integrated with common rein-

forcement learning package Pygym by Amrouni et al. (2021). It has been used

to consider optimal market making problems by Gašperov et al. (2021) and in

multi agent reinforcement learning by Karpe et al. (2020).

3.3 Introduction to BUCLSE

BUCLSE was built upwards from BSE (Cliff, 2018) to provide a minimal trad-

ing environment to investigate the emergence of illegal trading behaviour. BSE

was built in Python 2 as a teaching aid for a university algorithmic trading
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course. As such it was a convenient starting point for BUCLSE. BUCLSE is

programmed in Python 3 and suitable for versions 3.7 and beyond.

Within a multi agent trading environment there are four main elements to

consider:

1. The Traders - Variable in quantity and type, these are the agents that

make trading decisions within the simulation.

2. The Exchange - This provides the price matching mechanism through

which traders transact.

3. Supply and Demand dynamics for the asset - This can be described

through supply and demand curves, or an underlying fundamental price

for an asset. It is the information source that some trader use to reach

trading decisions and drive the simulation.

4. The experiment Controller - The most varied of the four elements, it

is the mechanism that coordinates the previous three elements into a

simulation. It is ’outside’ the simulation is just directs the elements to

work in the way specified by the experimenter.

Since Python is an object oriented language, these elements have natural im-

plementations as objects and appear as such in BUCLSE.

A point of differentiation in BUCLSE is the method through which the el-

ements interact. From inception BUCLSE has been designed with one eye

towards multi-core operability with the introduction of timer and messenger

objects. As such we add two more necessary elements to the preceding list:

1. A Message system - The mechanism through which the various simula-

tion objects communicate with each other.

2. A unified Timer - Time needs to be agreed upon between all parties since

this is an online, sequential simulator. The passage of time is controlled

by the Controller 2.
2We considered natural time, but this is problematical when some types of trader are
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Message Exchange

Supply 
Demand/Price 

Object

Session 
Controller

Timer

Traders Exchange

New Orders, Cancels

Confirms,Fills, 
Ammends, Lob info

Figure 3.1: A message route map for the BUCLSE system. In a single core setup,
the timer object is common to all objects, obviating its need to send
messages. As the system is developed for multi core setups and asyn-
chronous operation, time updates via message will become necessary.

3.4 Timer and Messenger

The messenger object is the conduit through which all elements of the simulator

communicate with each other. Enforcing inter-object communication through

a messenger system is desirable because it removes the limiting factor of a

single computer’s memory or CPU on the simulation. Thus BUCLSE has the

potential to be scaled to an arbitrary number of independent cores - a multi

agent simulator using multiple computing units. A route map of the system’s

messages is shown in figure 3.1 on page 53.

The messenger object is in effect a message server which maintains a list of

subscribers. Traders subscribe and submit messages to the messenger which in

turn sends them on to the exchange and vice versa. Likewise the Controller can

coordinate its traders through the emission of messages. Thus, every element of

able to reach decisions faster than others. The current structure does not preclude it in
future implementions
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the BUCLSE becomes independent of every other element by having a method

of receiving and sending messages. Whilst in the single core environment this

appears to be an over elaborate way of getting two objects within the same

memory to communicate with each other, the log of passed messages becomes

in itself a very useful debugging tool. 3

The timer object is a simple object which is common across all elements within

BUCLSE 4 It allows all objects in the environment to agree about what ’time’

it is within the simulation. Unlike using a simply clock however, we are able

to control the passage of time within the environment. This means differing

computation time for agents with different strategies is not an issue even if the

simulation environment is distributed across multiple cores.

The object based approach and the use of a messages to communicate between

them can be seen as an example of agent based programming as introduced in

Shoham (1993).

3.5 Exchange

The Exchange object maintains a Limit Order Book (henceforth LOB) for a

single asset. Individual orders at a price are given a price based on First In

First Out (FIFO ordering). Orders can be of any integer quantity.

For ease of communication, I created an Order object which contains the vital

information of an order and is used extensively in the communication between

trader and exchange. The exchange can receive two types of message, "New

Order" and "Cancel". It can send "Fill", "Ammend"5 and "Confirm" messages.

Reject messages were not necessary since the trading agent in any period has

up to date information and no agents can place orders before them.
3And as the author found out, multi agent simulations are finickity to develop.
4Time changes can be communicated and coordinated through messaging in the true

decentralised implementation
5Orders with heterogenous quantity necessitate the ability to ammend orders on the

orderbook since orders can be ’partially filled.’
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In the event of a receiving a New Order message from a trader, the exchange

replies with a quote ID and then checks for execution if the order price crosses

best bid or ask. On execution, all counterparties are contacted with Fill mes-

sages (and Ammends when applicable). Market orders can be submitted if the

limit order price is better than the current best level.

The exchange also functions as an information repository for the traders. It

can respond to the following types of request:

1. LOB requests: Publish a version of the LOB which is anonymised. Best

Ask and Best Bid are also given.

2. Tape requests: Publish the history of new orders, cancels, fills and trade

ammendments up to a user defined duration.

3. Personalised position: The positions (levels and ordering) of a trader

within the current LOB.

In future versions, it will provide more advanced order and market statistics

so as to prevent trading agents replicating operations.

3.6 Supply and Demand

In some ways this is the hardest of the main four elements to describe, but all

multi agent market simulations require some kind of mechanism which drives

the moves of the LOB. More often than not in ABM approaches to LOB

simulation there is just an underlying ’fundamental’ price sequence which we

assume implicitly reflects supply and demand conditions.

The fundamental price setup is the one which I use in the following chapter so

the one I will describe here but BUCLSE works with an alternative formulation,

described in Appendix A. This is where customer order are distributed to

traders, drawn at uniform from a supply or demand curve of prices. These

curves can be shifted over time to alter the equilibrium price of the market.
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3.6.1 Supply Demand setup: Fundamental Price

This formulation specifies a fundamental price sequence from which traders

receive noisy signals. The price process specified in Wang and Wellman (2017)

and shown in Equation 3.1, is a mean reverting random walk and noise is

Gaussian. As long as the traders apply the correct bayesian update regarding

their beliefs concerning the price process, there is no particular reason why

this price process couldn’t be different.

rt =max{0,κr̄+ (1−κ)rt−1 +ut} for ut ∼N(0,σ2
s), κ ∈ (0,1) (3.1)

As before, a sequence is set on environment initiation which determines when

traders receive information and are subsequently prompted for orders. At most

one trader is prompted for an order per period. The price, noise and trader

prompt sequences are set before the experiment begins, allowing the repeat of

any experiment.

3.7 Traders

The role of the basic trader object is to receive information and submit orders

to the exchange.

From the Controller it receives order ’Prompt’ messages which invite the

trader to submit or refresh orders to the exchange through invocation of the

"getOrder" method. In future versions where the traders are run on indepen-

dent, individual cores, prompt messages may be unnecessary, the trader will

decide themselves when to to submit orders. A benefit of ’inviting’ traders to

submit is that the invitation sequence can be saved to recreate the experiment.

After sending new order or cancel order instructions to the exchange they

receive an order confirm message in return. When an existing order is filled,

they will receive ’Fill’ and ’Amend’ messages from the exchange. On receipt
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of these messages, internal records are updated accordingly.

A bookkeeping function exists to keep track of profitability once trades have

been executed. Various data structures exist within the trader object to keep

track of submitted orders and the current state of the LOB. Where a trader

has the capability of holding inventory, unrealised profit is calculated on a

FIFO basis.

Typically, the market variables of a trader (with which it makes trade deci-

sions) are updated at the end of each period on receipt of a "Respond" message

sent by the controller.

Additionally in a setup where there is an underlying fundamental price se-

quence driving dynamics, the trader can receive private information about the

price through prompt messages.

In practice, specific traders are subclasses of the the default trader object.

They are typically differentiated by the mechanism through which they decide

on orders to submit to the exchange. Depending on what information they use

to reach trading decisions, their internal data maintenance methods will also

differ.

To save on memory and calculation time, the statistics based on order book

information which traders maintain are calculated at a trader class level. This

means that only one representative trader of that class need update market

statistics each period for all other traders to have the same information. Whilst

this decouples the overhead of having more traders of any particular class by

eliminating duplication of market statistic calculation, it does come at the

expense of restricting decentralisation (Traders of any particular class would

have to be housed in the same core). As a downside this makes running parallel

experiments more complex.
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3.7.1 Trader Bestiary - Fundamental Price type

This type of traders is given noisy signals about an underlying price sequence

by the Controller. Traders are free to take inventory within bounds and can

submit both bids and asks simultaneously. Typically they are given a randomly

generated preference over their inventory holdings which affects their price

submissions. An alternative set of zero intelligence traders adapted from Cliff

(2018) are described in Appendix A which work in the supply and demand

experimental setup.

3.7.1.1 Wang Wellman Zero Intelligence Trader WWZI

WWZI traders receive a noisy signal of the fundamental value r̃t+σs.ε, with

ε∼N (0,1) every time they are due to submit orders. WWZI traders are free

to submit both bids and asks should their future inventory on execution of that

order not exceed their inventory limits. WWZI are Bayesian and estimate a

posterior value of the future6 fundamental value of the asset based on their

new signal and a posterior summarising previous signals. They are assumed

to know the parameters of the fundamental price process and their signal.

In the case of buying they add their buy preference Θq+1 (which is a function of

their inventory q) to their asset valuation r̂t+F and choose a bid price uniformly

at random from the range [r̂t+F + Θq+1−K,r̂t+F + Θq+1] for some constant

K ∈ (0,∞]. Selling is similarly defined. See also exposition on page 77.

3.7.1.2 Heuristic Belief Traders HBL

HBL traders Wang and Wellman (2017) are as WWZI traders in their estimate

of a future fundamental price r̂t(F ). In addition they estimate the probability

of order execution as a function of order price p. They then choose a price p
6In the original formulation of Wang et al. (2018), the traders estimate the final fun-

damental value of the asset. We found that this caused agents to choose r̄ = 100 as their
valuation in all but final most periods. We therefore made the traders choose a valuation
K = 10 periods into the future
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which maximises their expected surplus (r̂t+F −p)ft(p).

The probability distribution is given by:

ft(p) ==


TBLt(p)+ALt(p)

TBLt(p)+ALt(p)+RBGt(p) if buying
TAGt(p)+BGt(p)

TAGt(p)+BGt(P )+RALt(p) if selling
(3.2)

The three and two letter quantities of the type XY Z(p) and Y Z(p) in equation

3.2 correspond to the logical intersection of certain types of orders that have

been submitted to the exchange. Specifically XYZ is shorthand for Q(X∩Y ∩

Z(p)) where X,Y,Z are defined as follows:

X ∈


T transacted orders

R ’Rejected’ orders
(3.3)

Y ∈


A Asks (sells)

B Bids (buys)
(3.4)

Z ∈


L(p) # orders less than or equal to price p

G(p) #orders greater than or equal to price p
(3.5)

and Q(O) is the quantity in order set O. Trade history is restricted to the last

L= 100 periods.

The formulation of equation 3.2 originates from Gjerstad (2007) but their

concept of order rejection was replaced by Wang and Wellman (2017) through

a decay factor analogous to order rejection: Orders are considered rejected

if in the LOB for longer than a period termed the ’grace period’. Else their

quantity is weighted by their age as a fraction of the grace period. We used a

grace period of 20 periods.

59



3.7. Traders 60

3.7.1.3 Noise Traders NOI

The Noise trader receives no private signal of the underlying fundamental

price sequence. Instead their estimate of the underlying fundamental price

r̂t+F is a quantity weighted average price of all recent (within memory) bids

(asks) submitted to the exchange less any recent cancelled bids (asks). As

before this is modified additively by an inventory preference Θq+1. Because

this formulation would rarely lead the Noise trader to ever improve best bid or

ask, the trader also adds (subtracts) a constant to their bid (ask) price when

the most recent orderbook shows an increase (decrease) in best bid (ask). For

our experiments we chose a memory of 20 periods and the constant equal to

one.

3.7.1.4 Imbalance Traders IMB

This class of zero intelligence traders places bids when a statistic called Order

Flow Imbalance (OFI(K)) is greater than zero and places ask orders when the

statistic is negative. In the bid case their choice of order price for trader i is

given in equation 3.6. Order price for ask orders is determined analogously.

pCONTt,i = p
B(1)
t + ci.OFIt+ Θq+1

for best bid = p
B(1)
t and for ci ∼ U [0.2,0.8] (3.6)

The Order Flow Imbalance statistic originates from Cont et al. (2013) and is

defined in equations 3.7 and 3.8 for trader i. Here pB(1)
s and qB(1)

s mean best

bid price and best bid quantity respectively at time s. Similarly p
A(1)
s and

q
A(1)
s for best ask.

OFI(K) =
t∑

s=t−K
es where (3.7)
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es := 1(pB(1)
s ≥pB(1)

s−1 ).q
B(1)
s +1(pB(1)

s ≤pB(1)
s−1 ).q

B(1)
s−1 −

1(pA(1)
s ≤pA(1)

s−1 ).q
A(1)
s +1(pA(1)

s ≥pA(1)
s−1 ).q

A(1)
s−1 (3.8)

The coefficient ci ∼ U [0.2,0.8] is drawn at random when trader i is spawned

and is approximately equal to the least squares coefficient β obtained when

fitting the equation ∆pt = α+βOFIt(K) + ε in the environment without the

IMB traders. Similarly the memory coefficient Ki is drawn at random for each

trader on spawning with distribution Ki ∼ U [5,15].

3.8 Market Session Objects

The final element organises the experiment - it defines traders within the mar-

ket, and the supply and demand related schedules and records any information

where appropriate. The Market Session is able to control the passage of time

via the timer object, thereby controlling the entire experiment. Experiments

are structured as a set sequence of events that happen within a period. Periods

are repeated by incrementing the timer object until the timer has reached its

limit.

On initiation the fundamental price sequence, noisy signals thereof and trader

submission sequence are defined. The sequence for a period then proceeds as

follows:

1. A trader is picked to submit an order to the exchange. It is given a

signal about the value of the fundamental with which to base its order

submission. It can submit both bids and asks concurrently as long as it

is below its inventory limits.

2. Trader submits order directly to exchange and any resulting trades are

processed.

3. Traders update their records according to changes on the LOB.
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3.9 Reinforcement Learning adaptation

BUCLSE can be easily adapted for the purposes of reinforcement learning with

the addition of a RL Trader object and an RL Environment object which sits

above the experiment controller.

The RL trader inherits much of the machinery developed for other traders

(principally order submission and bookkeeping). It has an interface to submit

any type of order to exchange.

The RL Environment object is a subclass of the Environment class found

in OpenAI Gym. This was chosen because of its simplicity and familiarity

to anyone who has undertaken RL research. It also means standardised RL

toolkits can be brought to BUCLSE at low cost.

The bulk of the effort in adapting the platform for RL is spent formatting

state space information (and to a lesser extent action space and writing reward

functions). Since this is experiment specific, the RL Environment object will

always be quite variable and adaption will be up to the user. As a minimum

requirement custom Step and Reset methods should be written. The Step

method takes the user’s action as input, applies it to the trading environment

and returns the resulting new state. The Reset method is invoked when a

training episode is deemed to have ended. It resets the environment back to

starting conditions for a new training episode and returns an initial state for

the RL trader. Examples of the Reset and Step methods for Experiment 1 are

described in detail on pages 83 and 83.

3.10 Future development

We would like to adapt the exchange to accept FIX protocol message. Financial

Information eXchange or FIX, is the method through which most exchanges

receive and communicate trade instructions with participants. Making BU-
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CLSE compatible with this standard would allow any algorithm developed for

commercial deployment work with the simulator.

As a function of this development, the exchange should be developed to accept

a wider variety of orders. Time dependent orders (orders with a expiry time)

are a commonly used in real markets and would be useful in simulations where

traders have a prior over how long their beliefs about the market are valid.

Early tests using the simulator for Reinforcement Learning have shown that

the simulator is not fast enough. We think that the simulator can be optimised.

This might involve translating it into a higher level language (C++), a faster

language (Julia), a hybrid approach (Cython) or an attempt to parallelize the

existing exchange.

Visualisation is an important feature for demonstration. In particular live or

online visualisation whilst events are unfolding. We would like to incorporate

a visualisation server such as Visdom into the simulator.

In initial tests for a multi-core setup, we used the MQTT message protocol

because it is lightweight, easy to understand and is freely supported in Python.

A further attraction to using a messaging system in the environment is that

traders and exchanges communicate with each other using a standardised mes-

saging protocol called FIX (Financial Information eXchange). Further itera-

tions of BUCLSE might adopt this protocol, thereby facilitating the testing of

actual trading algorithms within the simulation environment.

When running multi agent simulations we have noticed a duplication of work

surrounding the calculation of market based statistics. This slows simulation

performance and increases the code complexity of writing zero intelligence

traders. We think it would be more efficient to centralise statistic calculation

at the exchange level and then distribute from there. This is a reflection of

real life, where subscribers to exchanges pay for additional processed data.
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Market manipulation succeeds by changing or aligning the beliefs of other

market participants Dalko et al. (2020). A benefit from using a multi agent

simulation of the market to study market abuse (over a less explicit parametric

representation of the market) is that we have the ability to measure the effect

of strategies on participant’s beliefs. Such analysis is an avenue to be explored

in the future.

3.11 Summary

In this chapter we present a limit order book and surrounding simulation envi-

ronment called BUCLSE which is designed specifically for the task of studying

algorithm led market abuse. This objective relaxes the requirement for its out-

put to be fully realistic since its purpose is to determine the foreseeability of

market abuse emerging. It has been built around the BSE of Cliff (2018) but

extended to allow such things as non-unit quantity trades, multiple orders per

trader, FIFO accounting, trader types with different latency characteristics,

predefined trader selection sequences, a decentralised timer and a messenger

system for objects to communicate with each other. We also show how differ-

ent supply and demand setups can work with the simulator (as in Wang et al.

(2018)). The direction of design has also been towards decentralisation of ex-

change from test environment and market participants. This is motivated by

knowledge of the heavy computational workload that deep learning requires.

A simulation platform that is truly decentralised has greater scope for multi

agent learning.
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Chapter 4

Emergence of spoofing in a RL LOB

environment

In this experiment, a Reinforcement Learning (RL) trader is trained in a multi

agent simulation of a Limit Order Book (LOB) to develop a profitable selling

strategy in a repeated, trading task. The trader is given the option to posting

additional bid orders but is penalised if these orders are executed. Posting

bid orders will increase the Order Flow Imbalance statistic which one class of

trading agent uses to make trading decisions. This can encourage this class of

trader to respond by submitting bid orders in anticipation of a higher future

price. By comparing the trader’s performance with a restricted action space

which does not include the posting of bid orders, I find that the trader will

learn to manipulate the LOB in its favour.

4.1 Introduction

In this experiment I aim to investigate whether a market abusive behaviour

known as spoofing is exhibited by a trading agent which learns via reinforce-

ment learning in a multi agent simulation of a limit order book for a single

asset. Spoofing is defined differently across markets:
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• In the USA it is defined as "bidding or offering with the intent to cancel

the bid or offer before execution" 1.

• In the United Kingdom the definition is wider: Market abuse is commit-

ted if the trader commits orders or transaction which "give, or are likely

to give, a false or misleading impression as to the supply of, or demand

for, or as to the price of, one or more qualifying investments, or secure

the price of one or more such investments at an abnormal or artificial

level" 2

In this chapter I will take spoofing to mean the deliberate manipulation of the

future state of the limit order book by the strategic submission of orders. The

practical benefit of spoofing for a trader in this experiment is to distort asset

price upwards or downwards by influencing other participant’s perception of

supply or demand within the market. Chapter 7 will consider the US definition

in a more general sense. Whilst spoofing is typically thought about as an

activity to increase trading profits, this motivation is not a prerequisite.

The experiment uses the BUCLSE LOB simulator introduced in the previous

chapter, which is an augmented version of the BSE in Cliff (2018). The mar-

ket is populated with a variety of zero intelligence type traders and heuristic

traders as found in Wang and Wellman (2017) along with two original types

of heuristic trader. Heuristic traders are a necessary component for spoofing

to work - someone in the market has to trade using order book information

because this is the vector through which a spoofing strategy is able to deceive

them ( Withanawasam et al. (2013); Wang et al. (2018)). I assess the presence

or absence of spoofing by comparing the Agent’s profitability in two scenarios

where the agent does have the action space capable to spoof and one where

they do not. I will then examine the RL agent’s policy function by approxi-

mating it through a decision tree trained on the state input and action output

1The Dodd-Frank Wall Street Reform and Consumer Protection Act, 7 U.S.C.A. Âğ
6c(a)(5)(C)

2UK FSMA 2001 118 5
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of the agent’s policy obtained during training.

Alongside conventional Reinforcement Learning (RL), the experiment also uses

the Dyna-Q (Sutton, 1990) method of learning whereby the RL trader (the

Agent) learns a trading strategy both through direct interaction with the en-

vironment and through planning using a self constructed model. The Agent

is able to use this model to improve their strategy without having to inter-

act with the environment in a planning stage. This approach was inspired

by practical considerations: Whilst the market simulator is reasonably fast,

it cannot generate data quick enough to slake the thirst of modern deep RL

methods. Market-simulation using a model trained by the Agent is much faster

since training episodes can be run without the computational baggage that a

multi-agent market simulation requires. Reinforcement Learning is an inher-

ently wasteful process and time-consuming when state and action spaces are

anything but small. By learning a model of the environment, I expect that

our Agent is more efficient. Moreover the model should aid with generalisa-

tion and opens up alternative, model-based planning and learning techniques

in future work. I feel that the concept of trading agents learning a simplified

model of the world is a natural one and a fair reflection of algorithmic traders

in the real world. Learning by doing is an expensive activity to do in real

markets, it makes sense for policy exploration to be done in the agent’s zero

cost simulation 3.

The direct stage of the learning process is through deep-Q learning coupled

with experience replay as used by Mnih et al. (2015). The attraction of this

approach is that previous experience can be retained and reused efficiently.

This is possible because Q-learning is an off policy learning process whereby it

is assumed that data is not dependent on the learning agent’s current policy.

The Agent estimates its value function (the discounted value of being in any

state and taking any action) using a neural network. Since neural networks

3This experiment involves a performing a market simulation where an learning agent
learns and operates a market simulation to learn - a story within a story
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Value Function 
Learning

Take Actions in Environment
Gain experience

Experience Buffer 
(s,a,reward,s’,done)

Input Data 
from experience

Supervised Model 
Learning 

argminφd(fφ(s,a),s’) 
Learned model (Transition Function)

Simulation for 
planning

(Direct) Q-Learning

1.

2.

3.

Figure 4.1: A schematic of the Dyna-Q method of learning and planning as adapted
from Sutton and Barto (2018). The Numbered stages refer to those
parts of the process that require machine-learning both. 1 and 3 are
both RL-learning processes, whilst 2 is supervised learning.

can be efficiently evaluated and optimised with batch data, deep-Q learning

and experience replay have been shown to work well together.

The planning stage of the learning process makes further use of data gathered

by the Agent. It is divided into two stages: Supervised model learning and

Simulation for planning. In the model learning stage, the Agent learns a state-

transition model through which it can use to simulate the trading environment.

This is a mapping of state and action to next state. The training of the Agent’s

model is through supervised learning, using the data already gathered in the

agent’s experience replay buffer. The simulation for planning stage proceeds

much as the direct learning stage with the agent learning its value function

but with the internal model providing state-transitions instead of the actual

environment.
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4.2 Background

4.2.1 Problem as a MDP

The learning problem of the trader can be modelled as a Markov Decision

Problem (MDP) defined by the tuple (S,A,R,P,µ) where:

• S is the set of states. This is divided between public states SLOB and

private states specific to the trader STra. An example of private state is

the trader’s level of inventory, or their level of unrealised profit and loss.

• A is the set of actions available to the trader. This can be described as:

1. Place limit bid (ask) order at price pb− kmin (or pa + kmax), for

quantity q, kmin = 1, . . .pb− 1, kmax = 1,2,3 . . . where pb (or pa) is

best bid (ask).

2. Cancel order (bid or ask)

3. Liquidate open positions at market.

• R : S×A×S → R is the reward function. In this experiment it is de-

terministic and not dependent on the prior state st only st+1. It is a

period-wise decomposition of the profit that the trade receives over the

episode, described in Equation 4.10.

• P : S×A×S→ [0,1] is the transition probability function of the model.

P (s′|s,a) is the probability of transitioning from state s to s′ after taking

action a. I will denote this P as,s′
• µ : S→ [0,1] is the distribution of the starting state.

The trader seeks to find an optimal stationary policy π ∈Π, where Π is the set

of all mappings from states to probability distributions over actions π : S →

P(A).

The objective function of the trader is to maximise the expected discounted
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sum of rewards from a strategy for some discount rate γ = 0.99 ∈ (0,1):

max
π∈Π

J(π) := Eπ
[ T∑
t=0

γtR(st,at, st+1)
]

(4.1)

The transition function is unknown to us (and the Trader) but we are able

to sample from it using the trading environment which I have adapted. The

distribution(s) of these samples are dependent on the current policy of the

agent. This is something that Q-learning ignores.

4.2.2 Q-learning

The action value function or Q function is the expected value of taking action

a in state s before following policy π thereafter.

Qπ(s,a) :=E[R1 +γR2 + . . . |S0 = s,A0 = a,π] =Qπ(s,a) =
∑
s′
P s
′
s,a(Rs

′
s,a+γQπ(s′,a))

(4.2)

A closely related concept is the state value function Vπ(S) which is the expected

value of being in state s and following policy π, see appendix B.1.

Q-learning is concerned with finding the optimal action value function Q∗(s,a)

and its associated policy 4 π∗ which is the solution to Equation 4.3. Once Q∗ is

known, the optimal policy can be derived on the fly by choosing the a∗ which

maximises Q∗(a,s) when in state s.

Q∗(s,a) := max
π
Qπ(s,a) = EP [rt+1 +γmax

a′
Q∗(st+1,a

′)|st = s,at = a] =∑
s′
P s
′
s,a(Rs

′
s,a+γmax

a
Qπ(s′,a)) ∀s,a (4.3)

4or policies since it may not be unique
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Equation 4.3 is known as the Bellman optimality equation for Q∗

(Sutton and Barto, 2018). The second term in the equality corresponds to the

definition of the Q-function. The third term is an expansion of this definition

over one period, and is a reformulation of Equation 4.2. The final term explic-

itly converts the expectation operator into its algebraic form with reference to

the transition function P s′s,a.

The following update is used in one step classical classical Q-learning, and can

be proven to converge in a finite action and state space to Q∗ (Melo, 2001).

Qt+1(st,at) =Qt(st,at) +αt(rt+γmax
a
Qt(st+1,a)−Qt(st,at)) (4.4)

α controls the rate of update for each iteration of the Q-Value estimate and is

reduced over time for convergence. The update uses a single observation of the

reward r and subsequent state s′ after choosing action a to update the state

value Q(s,a). In other words the expectation in equation 4.3 is approximated

with a one sample estimate. Miraculously, this works well in practice.

For large action and state spaces, Q(s,a) is impractical to estimate directly.

Instead it is typically approximated with a parameterised function Q(s,a,θ).

The cost of tractability that a function approximator gives is that convergence

is no longer guaranteed. Since neural networks are decent general purpose

function approximators, they are a popular choice but are by no means the

only one, see Chapter 8 in Sutton and Barto (2018). I will use a neural network

and the following parameter update from Hasselt et al. (2016). Note that the

st and at in practice are sampled batches of state and action analogous to

normal updates in stochastic gradient descent.

θt+1 = θt+α(t)
(
Y Qt −Q(st,at,θt)∆θtQ(st,at,θt)

)
(4.5)
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Where α(t) is a declining update size and Y Qt is the known as the target

function and defined as:

Y Qt :=Rt+1 +γmax
a
Q(st+1,a,θt) (4.6)

The derivation behind this update is shown in Appendix B.2, page 245. At

root it is motivated by a least squares error minimisation between the optimal

state-action function Q∗ and its parameterisation Q(·, ·,θt)5.

4.2.3 Dyna-Q

Dyna-Q is an augmented type of Reinforcement Learning whereby the RL

learner, learns both through direct interaction with the environment and

through simulation with an internal model of the environment, built from

experience.

The Dyna-Q model offers flexibility over the choice of RL learning technique

for the direct and simulated learning process and the type of supervised learn-

ing for the model fitting process. Introduced in Sutton (1990), it initially

used tabular learning for learning and modelling. This was updated to lin-

ear function approximation in Sutton et al. (2008), and deep Q style learning

in Peng et al. (2018). Deep Dyna Q means that in both the direct learning

and simulated learning part of the process the agent learns through Deep Q

learning using experience replay (Mnih et al., 2015). This means fitting a

neural network Q̃ : S ×A :→ R to estimate the value function Q∗. This is

achieved through batch sampling of the experience replay memory and single

step backups. I chose a family of neural networks known as Conditional Vari-

ational Autoencoders or CVAEs (Doersch, 2016). These are a generative deep

learning technique which allow the user to fit a distribution to the process to

5An circular formulation since Q∗ is unknown and the finding it is the greater objective
of the exercise!
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be modelled (instead of a point estimator). This is suitable for this application

because the market dynamics are highly stochastic and the technique has the

capacity to fit multimodal distributions (which the market is likely to pro-

duce). Applying this technique to Dyna-Q was introduced in Moerland et al.

(2017). See Appendix B.6 for a quick introduction to CVAEs.

I use the deep Q variant but also a tabular approach for reference. I also test

a hybrid approach where the model learnt by the agent is the empirical one,

but the Q function remains a neural network.

1. Initiate Q network and Model network. Optionally initiate Re-
ward, Done networks

2. Do until stopping criteria:
(a) Acting Until episode is in terminal state:

i. s0← current state, episode reward repisode = 0
ii. Choose action a← ε-greedy Q(s,a)
iii. Execute action a, observe state s′ reward r and done

(terminal state) indicator d ∈ {0,1}. repisode+ = r, Store
s,a,r,s′,d

(b) Direct learning Do deep Q learning:
i. Sample batch from memory: s,a,r,s’,d
ii. Calculate target value:

Q̂ := r+γ.d.maxa′Q(s’,a’)
iii. Update Q network: Using stochastic gradient descent to

minimise: L(Q(s,a), Q̂) for some appropriate loss func-
tion L

(c) Update Model (unless tabular learning)
i. Supervised training of (Transition) Model (and Reward,

Done models if using) using batches from memory.
(d) Planning through simulation Repeat for N batches:

i. Batch Sample s and a from memory.
ii. Predict ŝ′←model(s,a)
iii. (Optionala) Predict d̂←Done(ŝ′) and r̂←Reward(ŝ′)
iv. Deep Q learning as in step 2b with batch: (s,a, r̂, ŝ′, d̂)

(e) Reset Environment. Reduce exploration and learning param-
eters.

(f) Check stopping criteria
aThe reward and done variables are deterministic functions of new state only.

Giving the agent access to them simplifies the learning task.

Algorithm 1: Dyna Q algorithm
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4.2.4 Model learning

I tried two formulations for the Agent’s internal model:

1. Stochastic model The agent learns a stochastic neural network fψ :

S×A×Z → S, where Z = Rd is a latent space of user defined dimen-

sion. At prediction time, the latent space is sampled from at prediction

time to inject stochasticity into predictions. This function is a direct

approximation of the state transition P (s′|s,a) for s,s′ ∈ S and a ∈ A.

2. Tabular Learning By recording every state encountered, the counts of

actions taken therein and the counts of resulting states and rewards, the

agent can build a sample estimator of the transition function. This is

the simplest method and is only viable in a setup with a limited number

of states. Simulation is limited to state, action, next state triples that

have been experienced. Knowing an estimate of the transition function

P (s,a) does allow the possibility of full back ups as apposed to sample

backups.

A motivation for the stochastic model provided by the CVAE can be seen in

figure 4.2. In the situation where outcomes are multimodal, a deterministic

model of the sort created by a vanilla neural network can cause trouble because

they may end up predicting outcomes which never occur by averaging between

common modes.

One problem with fitting a model using a neural network is that our state

space is integer based. The model will make real value predictions for the next

period but these predictions are unlikely to look like any state that the agent

has encountered before. There is no guarantee therefore that the agent learns

anything useful when simulating the environment with a model based on a

neural network.

Integers and rational numbers are countably infinite and in our context finite.

One approach might be to one hot encode every possible state but this would
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Figure 4.2: Non stochastic models trained with loss functions like MSE will misfit
multimodal distributions by always predicting conditional mean - the
dotted line. Figure from Moerland et al. (2017).

lead to a neural network with very large layers which may be very difficult

to train. Another approach is to apply a rounding function to the output of

the neural network. This is fine on the forward pass but is not differentiable

and therefore ineligible for gradient descent on the backward pass. I found no

satisfactory solution to this problem when using neural networks to create a

transition model for the agent.

The traditional tabular approach to constructing a model from experience con-

structs transition probability tables from experienced (state, action, reward,

subsequent state) transitions. Its feasibility is limited by the size of the state

action space and will only predict transitions that are in memory. However

it constructs an empirical distribution estimator for every transition which is

robust to multi-modality and its maintenance has little overhead.

4.3 Method

The experiment consists of a learning task for one reinforcement learning agent,

trading in a market populated by a variety of other zero intelligence traders.

At the beginning of each episode, the agent starts with an inventory of one.

Their task is to sell the inventory at the best possible profit at which point the
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episode ends. They are not allowed to accumulate more inventory and if they

do the episode also ends. The agent is allowed to sell their inventory at best

bid, post limit orders on the bid side, do nothing and cancel any outstanding

(bids) they have on exchange. There is also a stop loss which ends the episode

if the unrealised gain/loss of the agent becomes too large. Each episode can

continue for at most 100 periods. These rules define the termination function

in equation 4.10 on page 80.

At the end of every episode, the agent’s holdings are liquidated at best bid,

and any outstanding orders are cancelled. The simulation environment is then

progressed without the RL trader for 100 periods after which I assume their

effect on the market has been forgotten. This procedure is detailed in Box 3

on page 83.

The objective of the experiment is to see whether the agent learns a profitable

strategy trading which relies on the posting of bids (which it does not want to

execute). The return distribution of this strategy is then compared with one

where the agent does not have the ability to submit orders on the bid side, and

various user defined benchmark strategies such spoofing strategy and a passive

strategy where the trader buys and holds for the duration of the experiment.

4.3.1 Market Environment

I consider a market for a single asset populated by four different types of

agents. The setup proceeds in a similar way to Wang and Wellman (2017).

At the beginning of each market session, an underlying fundamental price

sequence is generated of the form:

rt =max{0,κr̄+ (1−κ)rt−1 +ut} for ut ∼N(0,σ2
s), κ ∈ (0,1) (4.7)

For our experiments I chose values of κ = 0.0002, noise variance σ2
n = 1 and
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mean price r̄ = 100.

A ’tiled’ version of this price sequence was then used where each price point

in the sequence is repeated for b = 10 periods. This is described in Equation

4.8. This feature was added to develop the idea of information flowing more

slowly to informed market participants than the potential acting frequency of

the traders within it.

r̃t = rt mod b for t ∈ [0, . . . , tmax] (4.8)

On spawning, all agents are assigned a preference function over holding units

of the asset long or short which exhibits diminishing marginal utility. This is

a agent specific vector of Θ := (θ−qmax , . . . , θqmax) where qmax is the maximum

quantity of asset that an agent can hold. θq+1 can be interpreted as the

marginal utility in buying another unit whilst already holding q units, see also

discussion of Wang and Wellman (2017) in Section 2.1.3 on page 45. For our

experiments all traders had inventory limits of qmin =−5 and qmax = 5.

4.3.2 Trading Agent types

The Market environment was populated by 10 instances each of the following

four types of trading agent:

1. Wang Wellman Zero Intelligence Traders (WWZI) as found in

Wang and Wellman (2017) and described in section 3.7.1.1, page 58.

These traders receive a private noisy signal about the fundamental, up-

date their prior beliefs as Bayesians and place orders based on their

prediction of the future (10 periods) fundamental price.

2. Heuristic Belief Traders (HBL) as found in Wang and Wellman (2017),

described in section 3.7.1.2, page 58. As with WWZI traders, this class

also maintain a probability function of an order executing as a function
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of price. Order prices are chosen to maximise the expected surplus over

the estimated fundamental price.

3. Noise Traders (NOI), described in section 3.7.1.3 on page 60. These

traders place orders according to the recent quantity weighted average

order submission, adjusting for any cancellations.

4. Imbalance Traders (IMB) as described in section 3.7.1.4 on page 60.

These traders place orders based using a submission price derived as a

linear function of Order Flow Imbalance as defined in Cont et al. (2013).

The memory of these traders is drawn at random on spawning from

uniform distribution U [5,15].

These agents all transact in single units. This is a result of their simple trading

strategies not a market restriction; indeed the RL agent is free to place multi

quantity orders. Time is divided into discrete units; for our experiments a

market session consisted of 6000 time units. Price is restricted to integer

values. The agents do not incur transaction costs.

4.3.3 Reinforcement Learning Environment

In this section I will describe the fundamental parts of the Reinforcement

Learning environment: State space, Action space, Termination Reward func-

tions.

4.3.3.1 Action space

The agent has five possible actions at time t:
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ait =



i= 0 Do nothing

i= 1 Cancel bids

i= 2 Add bid at best bid, quantity 1

i= 3 Add bid at best bid, quantity 5

i= 4 Sell inventory at best bid

(4.9)

Action 4 - selling inventory will always end the training episode since inventory

will become zero.

4.3.3.2 State Space

I chose the state space to be the simplest space possible to allow the emergence

of price manipulation. Variables were scaled to lie close to the origin for the

benefit of the various neural networks which received the states as inputs. A

description of the states and their scaling is given in table 4.1.

Name Description Scaling
Distt Negative cumulative change in best bid price from entry 0.1 mult clipped [-1,1]
Inventt Inventory Effectively 0,1,2
Orderst Number of separate orders in market Binarised >0
BASprt Current spread between best bid and ask 0.1 mult clipped [0,1]
∆Bidt Period on period change of best bid
∆Askt Period on period change of best ask
PILt Position in Lob: Distance in quantity order from trader’s

closest order to front of best bid queue. Takes value -1
when no orders in market.

0.5 mult clipped [-1,2]

Imbalt Order imbalance of orderbook 0.05 clipped [-1,1]
Timet 1 final period, 0.5 penultimate period, 0 else. 0,0.5,1

Table 4.1: State space used with a description of the scaling and censoring applied.

4.3.4 Reward and Termination function

The training episode ends when the terminal function equals one:
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d(s,Cutoff,Ub,Lb) =



1 if inventt <> 0

1 if timet => Cutoff

1 if Distt => Ub or Distt < Lb

0 else

(4.10)

A training episode ends when the trader’s inventory is zero (implying a sell

trade has happened) or inventory is greater than one (implying a buy trade

has happened). Additionally an episode ends when the unrealised profit of

their position is less than some lowerbound Lb=−2 or greater than an upper

bound Ub = 10. Finally, a training episode if none of the other events have

happened after a Cutoff = 100 periods.

The agent has the following reward function:

r(st) =λ∆bidt+



(1−λ)Distt−λ∆bidt if Inventt = 0

−(Inventt−1)∗BASprt+ (1−λ)Distt if Inventt > 1

−(1−λ)Distt if otherwise terminal: d(s,Cutoff,Ub,Lb)=1

δo1(Orderst > 0) else

The reward function is a period wise approximation of profit. If the agent

has positive inventory, the agent receives the best bid change every period

as a reward weighted by a factor λ ∈ [0,1]. On completion of an episode,

the agent receives (1− λ)Distt where Distt is the total change in best bid

over the lifetime of the trade. The reward function is therefore equal to cash

profit less the initial bid ask spread. The coefficient λ weights unrealised and

realised profit. It is designed to approximately telescope out at the end of

every episode. If the episode ends through the agent accidentally buying more

stock (exceeding inventory limit), they are penalised by the current cost of
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liquidating their excess position; the bid ask spread multiplied by their excess

inventory.

Aside from the period wise approximation of realised profit, the agent also

receives a small reward δ0 for having orders in the market. This and the

piece-wise nature of the reward function allows better training than simply

rewarding or penalising the agent at the end of the episode.

Since some termination conditions involve position liquidation outside the ex-

periment episode (with uncertain outcome), there is a degree of approximation

to the reward function which is difficult to escape. Similarly the acquisition

of inventory is also done within the simulation environment but outside the

experiment episode in period t=-1. This means that whilst the inventory is

always bought when bid ask spread is equal to one, this may change at period

t = 0. To be consistent across all values of λ, the agent’s initial reward in-

cludes r(s0) = λ∆bid0. Consequently it may receive credit or a penalty before

actually doing anything.

4.3.4.1 Exploration policy

Reinforcement learning requires learning agents to have a policy which includes

an element of exploration of new state-action pairs over time. Indeed the proof

of convergence of temporal difference learning of which Q-learning is a variant,

requires that all states are visited infinitely often. I chose a variant of the

typical ε− greedy policy whereby our agent would choose the least chosen

action in that state with probability ε. Over time, ε was decayed from an

initial value of 0.8 to a base value of 0.01 with the effect that the RL Agent

would increasingly choose to ’exploit’ their existing optimal policy as defined

in the state action function Qt(s,a).

In Experiment 4, I followed an optimism in uncertainty strategy based on the

UCB algorithm (see appendix B.7 for an explanation of this). I found that
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this improved exploration and lowered the chance of premature convergence.

UCB is increasingly being used instead of ε−greedy exploration and is shown

to achieve good sample efficiency by Jin et al. (2018).

4.3.5 Training routine and sub-routines

In this section there is a description of the key component procedures envoked

during the training process. RL Agent: Choose Action describes how the RL

agent chooses actions when learning. RL Environment: Reset process describes

the process which occurs to ready the Market Environment for the the RL

Agent to begin interacting with it. RL Environment: Step process describes

what happens once the RL Agent chooses an action. Market Environment:

Simulate One Period describes the process through which the other traders in

the simulation respond after the RL agent has acted. Finally RL Environment:

Training Process describes the end to end training process which unites these

subroutines.

Input variables:
• εt - probability of not following greedy strategy
• Estimate of state action function Q(·, ·, θt)
1. Draw h from uniform distribution U [0,1]
2. if h > εt:

• choose at = maxaQt(s,a,θt)
3. Else:

• Choose at such that at = minaN(s,a) where N(s,a) is the
number of times a has been chosen in state s

Algorithm 2: RL agent action choosing

4.3.6 Optimal policy determination

I found it necessary to test the performance of the optimal strategies derived

from Qt(·, ·, θt) separately rather than rely on measures of reward derived dur-

ing online training. The reasons for this are threefold. Firstly, when ε was

greater than zero, the RL trader would conduct policy exploration online.
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Input variables:
• Market Environment time t ∈ {0, . . . ,T = 6000}
• Market Environment timeRemainingt := T − t
• Trader inventory inventt
1. Do until inventt = 0: Liquidate RL trader inventory and cancel

outstanding orders.
(a) RL Agent: Submit orders of appropriate quantity at best bid

or ask to zero inventory
(b) RL Agent: Cancel all outstanding orders
(c) Market Environment: Simulate One Period
(d) t=t+1

2. If timeRemaining in session < 2 ∗ sessionLimit: Generate New
Market environment:

• Make new fundamental price sequence {pt}6000
t=0 ,

• Spawn new traders {Zi}i=40
i=0 with new trader specific param-

eters: inventory preferences Θi etc.
3. Until LOB of adequate depth and bid ask spread =1:

• Market Environment: Simulate One Period
• t= t+ 1

4. RL agent buys one unit at best bid.
Output variables:

• Initial state s0
• Initial reward r0

Algorithm 3: RL environment reset process

Input variables:
• RL Agent action at ∈ A

Begin:
1. RL trader does action at: If this is not at = 0: ’do nothing’:

(a) Submit order or cancellation to exchange
(b) Order is processed: if it crosses best bid or ask, trade is exe-

cuted and counterparties informed.
2. Market Environment: Simulate one period
3. New state of RL Environment st+1 is generated.
4. New reward of RL environment rt+1 is calculated.
5. Check if st+1 is terminal condition.

Output variables:
• New state st+1
• New reward rt+1
• Terminal indicator dt+1 ∈ {True,False}

Algorithm 4: RL environment step process
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Set of traders {Zi}i=40
i=0 , period in Market Environment time t ∈

{0, . . . ,6000}
1. Traders receive new state of LOB from exchange - update internal

variables accordingly.
2. Choose trader zt at random according to distribution P (Z).
3. Inform trader of private signal if trader is of type WWZI, HBL.
4. Trader submits order(s) to exchange.
5. Orders are executed by exchange, traders informed of trades.

Algorithm 5: Market environment: Simulate one period

1. for episode i= 1, . . . , I = 10,000:
(a) Initiate episode variables: Rewardi = 0, t= 0
(b) s0, r−1,d0 = RL Environment: Reset
(c) While not d:

i. ait=RL Agent: Choose action(st)
ii. st+1,rt,d=RL Environment: Step(ait)
iii. Store (st,at, rt,d,st+1) in Memory
iv. Rewardi=Rewardi+ rt, st = st+1, t= t+ 1

(d) Store (i, t,Rewardi)
(e) Direct Learning: Do Q learning on batch sampled from Mem-

ory.
(f) If Model and DynaQ: Model based Learning:

i. Supervised model training: argminF d(F (X),Y ) for:
• Transition Model: x⊂ {st,at}, y ⊂ {st+1}
• Optionala Reward Model: x⊂ {st+1}, y ⊂ {rt}
• Optional Termination Model: x⊂ {st+1}, y ⊂ {dt}

(g) If Model: Model based learning:
i. Repeat for batch size:

• Sample s0, RL Agent: Choose Action a0
• get r̂,ŝ+,d̂ from model F (s0,a0)
• Do Q learning update

a Alternatively the Reward and Termination functions are given to RL agent as
functions of st+1 which is estimated through ŝt+1 = F (st)

Algorithm 6: RL environment: Training process
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Since choosing action 4 meant that the trading episode would cease imme-

diately with an inventory liquidation, this affected the performance of any

strategy under consideration. Secondly and most importantly, the environ-

ment was highly stochastic so any assessment of a strategy would be variable

unless assessed over a number of trading episodes. Finally, the performance

of the training reward was not monotonic (except in pure tabular learning of

the Q function). Optimal strategies were no more likely to appear towards the

end of training than the beginning. Alternatively put, the Q-function did not

converge in general.

Unfortunately, strategy testing was time consuming since it required interact-

ing with the trading simulator. The testing of every iteration of the Qt was

therefore impractical. As a balance, strategies would be tested only if their

recent mean reward was close to the best of the experiments. If this condition

was met, the strategy was tested with zero chance of exploration over 20 trad-

ing episodes. If the mean reward of this test was higher than the recorded best

strategy’s, a further test of 40 trading episodes was conducted. If after this the

mean reward (over the combined 60 episodes) was better than the best, this

new strategy would become the best. At the end of the experiment (10,000

trading episodes), the performance of the best strategy was further assessed

over 5,000 trading episodes.

4.3.7 Benchmarking and method of assessment

I measured our RL derived trading algorithms against three strategies:

1. Passive: A totally passive trading strategy that sells when profit is below

a lower bound (-2) and profit is at or above a profit target P ∈ (0,UB).

I tested a number of values for P . P = 10 was too rare an occurrence,

P = 2 was the most profitable on a probability weighted basis.

2. Submit order: A strategy where the agent would just submit bid orders

of quantity 1 or 5 each period. This is included to assess whether there
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is some skill in RL derived optimal strategies.

3. Simple spoofing: Agent will submit bid orders when their position in

LOB (PILt) is above 0. In other words, when there is a lower chance

of execution in the next period. When profit has reached a profit target

2 or declined below -2 as before, agent sells inventory at best bid and

cancels outstanding orders.

I also trained the RL agent with a constrained action space where they could

only wait or sell their inventory at best bid. This Constrained Action Space

precludes the agent from learning any market abusive practices. It is included

to test the ability of the learning algorithm to identify sensible strategies using

the provided state space but without the possibility of manipulating the LOB.

4.3.8 Neural network architecture, loss functions and training

4.3.8.1 Q function Approximation

In all but one experiment, I approximated the Q-function Qπ
∗(S,A)→ R|A|

with a neural network comprising two hidden layers of 16 fully connected

neurons, each separated by a relu non-linearity function (Goodfellow et al.,

2016). Training was done with the Adam variant of stochastic gradient descent

(Kingma and Ba, 2014). A batch size of 64 was chosen throughout for updates.

Batches were made possible by using ’experience replay’ as used by Mnih et al.

(2015). Experience replay refers to the storage and sampling of previously ex-

perienced transitions. Sampling and updating from this de-correlates updates

(which would occur if updating from a full episode of experience). This aids

with stability and data efficiency (since experience is reused over training)

In all the Deep-Q experiments I followed the double-Q method of training,

first introduced by Van Hasselt (2010). This is particularly important in this

application because the environment is highly stochastic. The author of this

paper finds that in this case, the traditional Q update over-estimates action
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values. In practice this means that two networks value action networks are

maintained - a target network and an evaluation network. See appendix B.3

for an explanation of double Q learning.

4.3.8.2 CVAE design

A CVAE can be thought of as an autoencoder with encoder and decoder net-

works. I used a simple encoder network with input of size 2|S|+ 2 leading to

a layer of 16 fully connected hidden units, a Relu layer for non-linearity and

two outputs for mean and variance in a latent space of two dimensions. The

decoder took as input the mean and variance parameters of latent dimension

2 plus the state space |S| plus and a one hot encoding of the action space

(corresponding to the conditional space (s,a)). This was connected to a fully

connected layer of 16 hidden units, a Relu layer before an output layer of size

|S|. This output formed the network’s prediction of the next state s′. Two

separate, fully connected layers took this prediction of state to a prediction of

reward r and terminal indicator d.

I chose α = 0.1, and β = 1 to weight the reconstruction and KL errors in the

objective function to train the CVAE (equation 25). I chose reconstruction

error to be Mean Squared Error aka l2 loss.

4.4 Results

Table 4.2 describes the design of the four experiment configurations I tested.

Each experiment has a version where there is a full action space and a con-

stricted action space consisting only of a wait and lift bid (sell inventory and

finish). This is to compare the profitability of strategies where spoofing is

possible and where it is not. The constricted action space precludes spoofing

because the agent has no method to send signals to the other market par-

ticipants via the order book. All experiments bar one used Q-learning with

sample updates to the Q-function as described in Appendix B.2. Experiment
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4 uses a ‘full backup’ as described in Chapter 9 of Sutton and Barto (2018)

where the value of each next possible state, weighted by the probability of

transitioning into that state, is used to update the value of being in state s

and taking action a. Full updates like this are not compatible with neural net-

work approximation of the Q-function and are only possible in this experiment

because this is an application of tabular learning wherein the agent maintains

a frequency table of each observed state transition.

Experiment # Q Function Backup Model Reward Model Terminal Model Action Space
Exp 0 Neural network Sample None N/A N/A Full
Exp 0_0 Neural network Sample None N/A N/A Do nothing, Cross bid
Exp 1 Neural network Sample CVAE transition Trained Trained Full
Exp 1_0 Neural network Sample CVAE transition Trained Trained Do nothing, Cross bid
Exp 2 Neural network Sample CVAE transition Given Given Full
Exp 2_0 Neural network Sample CVAE transition Given Given Do nothing, Cross bid
Exp 3 Neural network Sample Tabular transition Given Given Full
Exp 3_0 Neural network Sample Tabular transition Given Given Do nothing, Cross bid
Exp 4 Tabular Full Tabular transition N/A N/A Full
Exp 4_0 Tabular Full Tabular transition N/A N/A Do nothing, Cross bid

Table 4.2: Summary of experiment design. ’Full’ action space refers to 5 dimensional
action space. Each configuration is tested against a limited action space
where spoofing is impossible; these experiments have a ’0’ subscript as an
identifier. ’Sample’ backup refers to the traditional Q-learning update.
’Full’ refers to the Empirical Q-value iteration update (see Appendix B.5

Tables 4.3 and 4.4 show the profitability of the best strategies found in each ex-

periment during training. This is shown graphically in figure 4.3. Profit refers

to the accounting profit of the trade and adjusted reward is the reward attained

by the agent during the episode. There is a difference of approximately one

between each measurement as there was an initial spread of 1 when the trader’s

initial inventory was first acquired. Reward is designed to be a measurement

of best bid improvement. A further difference between the two measures also

occurs if an agent finishes an episode with non zero inventory. In this case liq-

uidation is carried out automatically, if inventory is greater than 1, this could

be costlier for the trader than the reward function gives credit for. To allow

comparison between restricted and unrestricted action space experiments, the

cumulative reward of the later is adjusted by deducting the bid placing bonus

of 1/250 multiplied by the number of periods that the strategy continued for.

An alternative would have been to not include the bid bonus in the reward
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function but I found that it greatly aided exploration. This was evident in

the training of the experiments with the constricted action space with no bid

bonus. This made these experiments more likely converge to the strategy of

selling in period one of the episode. No different experience is gathered and

the agent learns nothing.

Figure 4.3: Profitability and reward distribution of best found strategies. Note log
scale on y-axis. Benchmark strategies in green, full action space in blue,
constrained action space in grey. All experiments show an improvement
over benchmark strategies and constrained-space partner experiment.

I find that in all experimental settings, the trader with the larger action space

is more profitable. An optimal strategy must always be at least as good as

another strategy found with a limited action space. Opposing this is is also

89



4.4. Results 90

countervailing force of a larger action space making the search for optimal

strategies exponentially harder. Nevertheless, this indicates that the trader

has found that the posting of bid orders is beneficial to their final reward. Also

note that the best strategy found in the limited action space (Experiment 1.0)

is worse than the worst strategy in the full action space (Experiment 4 for

profit, Experiment 3 for adjusted reward) for both profit and adjusted reward.

_ BMQ0 BMP2 BMQ1 BMQ5 BMSpf Exp0 Exp00 Exp1 Exp10 Exp2 Exp20 Exp3 Exp30 Exp4 Exp40
count 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000
mean -1.07 -0.99 -1.06 -1.02 -0.9 0.12 -0.62 0.05 -0.5 -0.21 -0.62 -0.37 -0.87 -0.39 -0.79
std 2.50 2.00 2.11 2.15 2.06 1.85 1.96 1.53 1.27 1.85 1.05 1.21 0.96 1.36 0.61
min -6.00 -5.00 -9.00 -9.00 -7.00 -8.00 -5.00 -17.00 -5.00 -8.00 -7.00 -7.00 -8.00 -12.00 -13.00
25% -3.00 -3.00 -2.00 -2.00 -3.00 -1.00 -3.00 0.00 -1.00 -2.00 -1.00 0.00 -1.00 -1.00 -1.00
50% -2.00 -1.00 -1.00 -1.00 -1.00 1.00 -1.00 0.00 -1.00 1.00 -1.00 0.00 -1.00 0.00 -1.00
75% 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 -1.00
max 9.00 4.00 8.00 14.00 4.00 5.00 9.00 6.00 4.00 6.00 4.00 3.00 2.00 5.00 2.00

Table 4.3: Accounting profits of the RL traders. Each experimented was repeated
with a limited action space where action space is restricted such that
manipulation is not possible (highlighted grey). Performance is adversely
affected.

_ BMQ0 BMP2 BMQ1 BMQ5 BMSpf Exp0 Exp00 Exp1 Exp10 Exp2 Exp20 Exp3 Exp30 Exp4 Exp40
count 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000
mean -0.29 -0.02 -1.25 -0.60 -0.06 0.93 0.28 0.82 0.46 0.61 0.37 0.53 0.11 0.74 0.19
std 2.18 1.95 2.13 1.99 2.06 1.92 1.81 1.76 1.23 1.90 1.02 1.26 0.93 1.16 0.58
min -5.25 -3.97 -7.69 -6.77 -6.01 -5.46 -5.71 -6.76 -4.00 -6.76 -6.00 -5.39 -7.00 -5.00 -11.75
25% -1.97 -1.96 -2.76 -1.78 -2.01 -1.07 -1.87 0.97 0.00 -1.19 0.00 0.24 0.00 0.93 0.00
50% -1.36 -0.01 -1.77 -1.10 -1.07 1.92 0.13 0.99 0.00 1.48 0.00 0.99 0.00 0.99 0.00
75% 1.31 1.95 -0.42 0.57 1.93 1.98 1.81 1.98 1.00 1.96 1.00 0.99 1.00 0.99 0.00
max 8.80 4.21 7.27 14.83 4.97 5.11 9.03 6.62 4.97 6.87 4.81 3.98 3.01 5.45 2.98

Table 4.4: Adjusted rewards of RL traders: Adjustment consists of deducting 1/250
for every period in a RL trader episode - to account for reward mismatch
vs restricted action RL traders who cannot get the 1/250 bid submission
bonus.

Tables 4.3 and 4.4 show that there is no obvious advantage to learning with the

Dyna-Q algorithm over plain deep Q learning, although there is some benefit

in the constrained space.

Table 4.5 shows the duration distributions of the final strategies. The max-

imum allowable trading duration was 100 periods. Longer strategies are pe-

nalised by the trader’s inter-temporal discount rate. Insight into the reason

behind the termination of trading episodes can be seen in table 4.6. In all

experiments, the most common episode ending is for the agent to voluntar-

ily finish by liquidating their inventory at best bid. This could indicate that
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Rl traders have learnt how to exploit profitable situations or avoid bad ones.

This is supported by Experiment 1 which finds a strategy that never ends

from the risk limit being breached. Conversely this might also be indicative of

premature exploitation in favour of future exploration.

_ BMQ0 BMP2 BMQ1 BMQ5 BMSpf Exp0 Exp00 Exp1 Exp10 Exp2 Exp20 Exp3 Exp30 Exp4 Exp40
count 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000
mean 70.42 45.26 53.51 55.22 40.30 30.94 45.17 21.44 20.03 30.66 14.98 19.76 11.83 17.96 4.98
std 34.95 30.54 32.94 32.37 27.81 21.77 29.88 14.57 18.29 21.29 15.43 20.81 16.08 14.93 7.75
min 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1
25% 35 20 25 27 18 15 21 11 7 15 4 7 1 8 1
50% 100 37 44 48 33 25 39 18 15 27 10 12 5 14 1
75% 100 67 95 95 56 39 66 28 28 42 21 24 17 23 6
max 100 100 100 100 100 100 100 100 100 100 100 100 100 100 97

Table 4.5: Duration of trading episode (limit 100 periods)

The proportion of times that an episode ends with inventory greater than 1

is in indicator of how successful a spoofing strategy is since a spoofer should

never intend their bid orders to be executed. This level is at about 20% for

the most profitable Experiments 1-3.

_ BMQ0 BMP2 BMQ1 BMQ5 BMSpf Exp0 Exp00 Exp1 Exp10 Exp2 Exp20 Exp3 Exp30 Exp4 Exp40
-distance <lb 0.49 0.44 NaN NaN 0.36 0.1 0.29 NaN 0.08 0.09 0.06 0.02 0.1 0 0.01
-distance >ub 0 NaN NaN 0 NaN NaN 0 NaN NaN NaN NaN NaN NaN NaN NaN
inventory 0.0=0 NaN 0.43 NaN NaN 0.43 0.68 0.66 0.81 0.92 0.67 0.94 0.85 0.9 0.81 0.99
inventory 2.0>1 NaN NaN 0.76 0.76 0.14 0.19 NaN 0.19 NaN 0.22 NaN 0.11 NaN 0.18 NaN

time up 1.0 0.51 0.13 0.24 0.24 0.07 0.03 0.04 0.00 NaN 0.02 0.00 0.02 0.00 0.00 NaN

Table 4.6: Proportions of how strategies end episodes. Inventory=0 row highlighted
in bold corresponds to strategy choosing to end episode by lifting best
bid and cancelling open orders

Strategies associated with spoofing should be those strategies which choose ac-

tions corresponding to the placement of bids. The proportion of actions chosen

by strategy is shown in table 4.7. The submission of bids of quantity 5 is more

aggressive than bids with quantity 1 since it will lead to a higher order book

imbalance. The two best strategies found in Experiments 0 and 1 both eschew

bid placement of quantity 1 for quantity 5. All strategies place more quantity

5 orders with exception of Exp’ 3. Cancellations are also a feature of spoofing

strategies. In all cases, the found strategies feature order cancellations. A

complicating factor with cancellations for the trader is the negative effect that

it has order book imbalance (and subsequent price movements). The benefit

of cancelling all orders (avoid execution) is counteracted by the likely negative
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price impact it will have in proceeding periods.

_ BMQ0 BMP2 BMQ1 BMQ5 BMSpf Exp0 Exp00 Exp1 Exp10 Exp2 Exp20 Exp3 Exp30 Exp4 Exp40
Do nothng 1.00 0.99 NaN NaN 0.19 0.61 0.99 0.70 0.95 0.58 0.94 0.06 0.92 0.34 0.80
Cancel bids NaN NaN NaN NaN 0.02 0.02 NaN 0.01 NaN 0.03 NaN 0.01 NaN 0.02 NaN
Submit best bid, q=1 NaN NaN 1.00 NaN NaN NaN NaN NaN NaN 0.11 NaN 0.84 NaN 0.24 NaN
Submit best bid q=5 NaN NaN NaN 1.00 0.78 0.35 NaN 0.25 NaN 0.25 NaN 0.03 NaN 0.32 NaN
Finish: Lift best bid NaN 0.01 NaN NaN 0.01 0.02 0.01 0.04 0.05 0.03 0.06 0.06 0.08 0.08 0.20

Table 4.7: Mix of actions chosen in strategy.

The distribution of returns shown in left panel figure 4.4 for best policy found in

Experiment 0 is multimodal; the left mode roughly corresponds to the outcome

where inventory is accidentally acquired (19% of the time according to table

4.6 on page 91) and when the total negative move in best bid is more than 3

(10% of the time). The distribution of returns for the analogous experiment

in the constrained action space is shown in the right panel of the same figure.

Whilst also multi modal, the distance between the two modes is smaller; in

this setting the agent is unable to influence the market by increasing order

book imbalance. The difference in distributions of imbalance between the two

experiments is pronounced.

The multi-modality of the return distribution is not present in all experiments.

This can be seen in Appendix C.1 from page 260. It is not present for the least

profitable experiments 3-4. Whilst I can explain why the return distribution

might look multimodal, it is unclear where it is a necessary feature of a prof-

itable spoofing strategy.
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4.4.1 Policy Interpretation through Tree fitting

For each optimal strategy found, I used the test data to fit a tree classifier

(using CART algorithm and Gini coefficient as impurity measure) taking s as

input and outputting a. The maximum depth of the tree was set to 4 and

the minimum sample proportion for a leaf was set to 1.5%. The depth was

limited to 4 to avoid over-fitting. Minimum sample proportion was set with

reference to Table 4.7. In practice, the maximum tree depth was attained for

most leaves. The data was split at random between training and test data

with a 4:1 split. Because the actions were severely imbalanced6, the action

classes were reweighted to equality by weighting data points (not through over

or under-sampling). The accuracy statistics reported below reflect this.

The obtained training and test fits (accuracy) are shown in table 4.8. The

proximity of test errors to train errors supports the assertion that the trees were

not over-fitted at this depth. Fit is adequate with the exception of Experiment

4. It is higher for the experiments with reduced action space which is expected.

Lifting the depth restriction did not improve fit very much and certainly did

not balance the decrease in interpretability.

_ Exp0 Exp00 Exp1 Exp10 Exp2 Exp20 Exp3 Exp30 Exp4 Exp40
train_score 0.90 0.91 0.75 0.94 0.70 0.97 0.83 0.84 0.49 0.96
test_score 0.90 0.90 0.74 0.94 0.70 0.96 0.82 0.83 0.48 0.96

Table 4.8: The found optimum strategies were approximated by a tree classifier, this
table shows the accuracy scores of the tree. Action classes were given
importance weights to be equal to take account of imbalanced action
choices.

The normalised Gini Importance for each feature is shown in Figure 4.5. This

is a statistic which measures the relative importance of each feature in the de-

cision tree. I expected the most important features associated with spoofing to

be imbalance and position_in_lob. imbalance because this is the feature that

the RL trader can impact directly. It is the most important feature for Exp0,

Exp1 and Exp4, it is second for Exp2 and third in Exp3. position_in_lob
6 Crossing the bid to liquidate inventory could only happen once for example.
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because it relates to the chance of the agent accidentally buying more inven-

tory. It is important for experiments 0, 2 and 3 but not hugely for 1 and 4. I

expected distance to be an important feature since it determines the returns

to liquidating inventory and ending the trading episode. It is a surprise then

that it does not feature highly in the full action space strategies except Exp 4.

However it is important for the restricted action space strategies suggesting a

better mastery of exploitation. bid_ask_spread and ask_change are selected

as important features for nearly all strategies; this might indicate that it has

some predictive power. bid_change can be inferred by these two.

Figure 4.5: Heat map showing normalised Gini Importance of features of decision
trees approximating found optimum strategies. Strategies associated
with spoofing should place more importance to position_in_lob (to
avoid execution) and imbalance (to boost with order placement).

In this situation, the tree classifier achieved adequate accuracy converting the

black box classifier of the neural network into something interpretable. Al-

ternative methods have since been developed to render the outputs of neural
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networks interpretable. For surveys of these approaches see for example (He

et al., 2020; Zhang et al., 2021). Using Zhang et al’s taxonomy, the use case re-

quires a passive (post hoc) explanation on a global basis. The method should

supply global explanations because we are interested in any appearance of

spoofing, even if it only manifested under specific circumstances. Zhang et al

do suggest decision trees are suitable for this type of explanation. Another

issue to consider in the choice of this method is the suitability for its intended

audience. I feel that the conceptual simplicity of decision trees would be ap-

propriate for the mix of people present at financial institution who would be

presented with the evidence of an algorithm’s behaviour. Of course, expli-

cability is not guaranteed from using a white-box classifier as Herzog (2022)

points out. As I show in the next section, certain learned strategies defy ex-

planation via the decision tree. This does not mean that they are not market

manipulative, and so analysis in this way is vulnerable to false negatives.

4.4.1.1 Individual policy analysis

Decision trees are white box classifiers so I are able to gain insight into the

policies found in the experiments. Figure 4.6 on page 97 shows the decision

tree fitted to the best policy found in Experiment 0 which was overall the

most profitable strategy. First thing to note is that policy always prefers to

place bids of quantity 5 over 1; larger quantity orders will positively impact

imbalance more. I will explore the lower branches first. The first splitting

variable is on ask_change and requires a positive period on period change;

assuming a correlation between best ask and best bid this is indicative of a

market with a rising price. If distance is less than -1 (remember that this

means that the best bid has improved by at least 2), the policy will sell the

inventory, netting a best bid improved by at least 2 (and a profit of at least 1

since initial spread was 1). If the distance change since entry is not favourable

enough, the policy recommends adding more to the best bid. Exploring the

upper branch I can see that if the agent’s order is at the front of the best
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bid queue (corresponding to position_in_lob = 0), the policy will make the

agent cancel their orders. Else if the imbalance is low, the policy will make the

agent submit more bids (thereby increasing the imbalance). If the imbalance

is already above a certain level, the policy will do nothing. In summary this

policy places orders but cancels them if they are in risk of executing. It submits

bids if order imbalance is not sufficiently high enough. This is a spoofing policy.

Figure 4.6: Tree classifier fit to best strategy found in Experiment 0. Samples have
been reweighted to place equal importance to each action - reflected by
equal value figure on initial branch node.

Analysis of all of the optimum strategies (shown in Appendix C.2 from page

265 is not as clear cut. In the case of Experiment 4 on 269, the tree does not do

a good job of understanding the best policy. The Gini coefficient of the leaves

is high and the overall accuracy of the classifier as shown in table 4.8 is below

50%. As a result the only real conclusion from the decision tree is the policy

mostly advocates selling inventory if there has been any kind of improvement

on the entry bid price and perhaps cancel bids if imbalance is negative. The tree

for Experiment 1 which had an accuracy of 74% is also difficult to understand.

The policy posts bids of quantity 5 when imbalance is low so an implicit

relationship is understood between imbalance, order placement and returns.

Cancelling orders after an increase in best ask when there is a spread above 1 is

difficult to understand as is the Selling decision after an increase in the best ask
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and the presence of a narrow spread of 1. In either case it is hard to diagnose

spoofing from analysis of the tree approximator and yet the distribution of

imbalance and returns of Experiment 1 indicate that the policy manipulates

the order book much in the same way as that of Experiment 0.

4.5 Discussion

This section begins with some criticism of the experiment’s setup and con-

cludes with possible extensions to the research. As the length of the method

description testifies, the experiment was complicated to setup and perform.

This meant that I had to make a lot of design decisions, any of which could

affect the outcome. Multi agent simulations and Reinforcement Learning are

inescapably complex 7. However I hope the hitherto demonstrable lack of re-

search into the emergence of market manipulative strategies in markets justifies

the complexity of this work.

4.5.1 Criticism

Results from experiments based on Reinforcement Learning are notoriously dif-

ficult to reproduce, moreover many policies are not robust to non-stationary

environments (Henderson et al., 2018). A greater number of experiment repe-

titions over a wider range of environments is necessary to make any statement

about the robustness of the result. This would also allow some distributional

analysis to be done on the profitability statistics of the strategies found in each

experiment.

There is no guarantee that the trading environment that the tests were carried

out on, is a realistic simulation of actual markets. With more time, a variety of

parameterisations and trader populations of the market could have been tested

to establish how robust the presence of spoofing-emergence is to changing
7This is a reason why Reinforcement Learning research is typically performed on well

known benchmark tasks.
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markets.

The presence of the heuristic traders is motivated by the need to ensure that

market manipulation is possible. Spoofing is possible when there are market

participants who believe that there exist order book statistics that have pre-

dictive and profitable powers. How did those other participants come to use

those statistics, unless those statistics are shown to be rational at least in the

absence of a spoofing agent.

At any time, the market has net zero holdings of the tradeable asset and

the behaviour of its participants is governed by a ’fundamental price sequence’

with no economic rationale. One justification of the impact of order submission

on the LOB is the presence of inelastic supply and demand regimes (see for

example Chordia et al. (2008)). The experiment should be also tried in an

environment where supply and demand dynamics are more explicitly controlled

(at the risk of having less control over the resulting price sequence). Welfare

analysis could be performed to look at the RL trader’s impact on the average

profitability of different trader classes when choosing a manipulative strategy.

Whilst the state space and action space were chosen deliberately to be sim-

ple so as to allow fast training (and the possibility of tabular learning as a

benchmark), it is possible that their configuration artificially encourages the

emergence of spoofing by providing the RL agent with a small search space of

statistics that can be used to manipulate the market with.

The interpretation of trading policies through the fitting of decision trees might

not always be appropriate or possible for every strategy. Their fitting requires

further decisions about objective function which I have not really discussed.

There is no guarantee that the fitted results are the best representation of

the trading policy. I restricted our attention to deterministic strategies, but

probabilistic ones exist and would be clearly more difficult to analyse in this
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way 8.

4.5.2 Future work

Enlarge RL trader’s task and action space

• The task of the RL trader should be expanded to a more natural one of

market making or prop trading subject to inventory constraints. This

would legitimise the presence of the post best bid actions. We could then

see under which circumstances spoofing like strategies appear.

• In the first instance, we could see if the RL trader would choose to spoof

when operating under a [−5,5] inventory constraint like the other market

participants with an action space that allowed both bid and ask order

placement.

Improve the efficacy of the Agent’s model:

• Unless constrained, a neural network is likely to output unrealistic state

predictions which cannot be experienced interacting with the market

simulator. Whilst there may be regularising benefit of this by enforcing

the Q network to be locally smooth around state values, I suspect the

agent’s model may also hinder learning with nuisance gradient updates

from the aforementioned impossible state transitions. Nevertheless, the

use of CVAEs in this area is appropriate because of their ability to learn

stochastic state transitions and there are multiple enhancements as de-

scribed in Moerland et al. (2017) which can improve the fit of the model.

I believe a one-hot encoding type approach is feasible given the improve-

ment in computing capacity since this experiment was conducted - this

will sidestep some of the problems concerning unrealistic state predic-

tions.

• Internal stochastic model construction as demonstrated in the Dyna-Q

8See appendix for equivalence of deterministic and non-deterministic policies
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algorithm is receiving contemporary interest because of its promise of

superior data efficiency and a closer approximation to the functioning of

human intelligence (Ha and Schmidhuber, 2018). In a setting such as

trading where real life experience is obviously expensive to acquire, it

seems likely that future generations of trading algorithms will fit their

own models of market behaviour to their experiences and try to learn

from them.

Learn a direct parameterisation of the policy function Whilst Q-learning in

this setting has been shown to find market abusive trading strategies, state-

action function convergence has not been evident. Since policy iteration meth-

ods such as A3C Mnih et al. (2016a), have subsequently been shown to out-

perform DQN on benchmark Atari games and demonstrate superior stability,

I think they are worth trying in this setting. That these methods learn a di-

rect parameterisation of the policy function as a function of state is desirable

since the structure of the learned policy is the main object of interest in the

determination of market abusive algorithms.

• A3C requires a code refactoring of BUCLSE since it relies on parallel

implementation.

Adapt Safe RL methods to avoid law breaking For RL-originated trading

algorithms to ever safely deployed, a constrained learning algorithm will need

to be adapted or developed that guarantees only legal trading strategies are

learnt. This is the subject of Chapter 7.

• Implicit in this objective is the requirement to translate current laws into

machine interpretable restrictions.

• Solutions to Safe RL include ’Constrained Policy Optimization’ Achiam

et al. (2017) when there is a model and ’constrained cross entropy’ Wen

and Topcu (2018) in a model free setting.

Extend analysis to Multi Agent RL setting Future markets are likely to involve
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the interaction of RL trained agents. What kind of strategies are likely to

evolve and under what circumstances will they be price manipulative?

Develop interpretation techniques for black box trading algorithms

Whilst it was possible to interpret the trading algorithms using a tree classifier,

as mentioned in the previous section, this might not be possible in with prob-

abilistic policies. Happily the interpretation of neural networks has received

much interest of late but we should separate two scenarios:

1. Interpretability through design If we are in the shoes of the trading

algorithm developer, we can use methods which allow or facilitate in-

terpretation in the training design. One such method would be to use

Genetic Programming RL as in Hein et al. (2018) where policies are

constructed from algebraic expressions. Similarly Verma et al. (2018)

construct policies from a high level policy language to ensure an output

that can be understood by humans. A stumbling block to these ap-

proaches is the non-differentiable nature of the policy space which makes

the popular method of optimisation - stochastic gradient descent - tricky.

2. Interpreting what is given In many situations (including adversarial le-

gal ones), interpretation will be performed on a given black box trading

algorithm. Counterfactuals have been explored as one such way of inter-

preting the output of neural network classifiers (see for example Byrne

(2019)).

4.6 Summary

In this experiment I sought to test whether an Reinforcement Learning (RL)

trader would learn to manipulate a limit order book to their advantage in a

simple task given simple state and action spaces. A necessary sub-task in do-

ing so is for the agent to understand the market’s response to their actions.

The dynamics of the limit order book with which the RL trader interacts were
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driven by four different groups of zero intelligence traders, some of whom were

informed by an underlying fundamental price sequence. Within the simplified

state space given to the RL trader, one statistic - Order book imbalance (Cont

et al. (2013)) was explicitly used by a single class of zero intelligence traders

to make order placement decisions. I found that the profitability of the learnt

trading strategies was greater than those strategies derived from constricted

action spaces that would not admit market manipulation. This profitability

gap was present across simple Q-learning using a neural network state-action

approximator, a Dyna-Q variant using a Conditional Variational Autoencoder

as the agent’s internal model as suggested in Moerland et al. (2017), Dyna-Q

using a model constructed from frequency tables and RL using traditional tab-

ular learning throughout and full backups. From this I conclude that our RL

traders will readily learn to manipulate a limit order book to their advantage

and this behaviour is stable across RL training techniques. Whilst I found no

performance advantage when the RL trader built an internal model, I think

this method is promising for compliance and interpretability reasons.

Analysis of how strategies finished each trading episode indicated how suc-

cessful RL traders were at posting bids without risking execution. Analysis of

which actions were chosen during a strategy indicates that the all strategies in-

volved the posting of bids and the most successful ones preferred to post those

which would cause the largest order book imbalance. They also all featured

order cancellation which is another indicator of order book spoofing.

By training a supervised tree classifier with state input and action output

taken from the learnt Q functions evaluated during test time, I were able to

gain some insight into the mechanics of the derived trading strategies. Analysis

of the importance of splitting variables and their order gave us some sense as

to how recognisable the derived strategies were to known spoofing behaviour.

This experiment demonstrates that auto-didactic trading algorithms, when op-

erating in a limit order book populated with zero intelligence traders learn how
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to benefit from the environment’s reaction to their behaviour. This is evidence

that they have learned to spoof but it might not be definitive proof. Questions

can be raised about how general the result is given that the market simulator

BUCLSE has not been optimised for realism. I argue that this finding shows

that emergence is foreseeable but make no claims as to its likelihood. I also

do not make any claims as to whether learned manipulative strategies actually

would work on deployment. Even if they do not, I have shown that trading

algorithm training in a responsive environment is vulnerable to reward gam-

ing as discussed more generally in Lehman et al. (2020) and Amodei et al.

(2016). This could lead to substantial disappointment on deployment (or sub-

sequent relief that the activities of the algorithm aren’t going to send its owner

to clink). Actually, as I will discuss in proceeding chapters, the success of a

spoofing strategy is not a factor when labelling it as such, and therefore legal

liability is not avoided in the case of a bad spoofing strategy.

The definition of spoofing in the US in particular requires the presence of intent

to cancel at the point of order placement. The remaining chapters of this thesis

explore questions concerning intent in an algorithm. Chapter 5 looks at the

definition of intent from a legal perspective. Chapter 6 considers how lay-

people might interpret a definition of intent for algorithms and finally Chapter

7 returns to the question of how intent might be measured and controlled for

with a RL agent in an queuing environment.
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Chapter 5

A definition of intent for algorithms

This chapter introduces definitions for direct, means-end, oblique (or indirect)

and ulterior intent which can be used to test for intent in an algorithmic ac-

tor. These definitions of intent are informed by legal theory from common law

jurisdictions. Certain crimes exist, such as spoofing, where the harm caused is

dependent on the reason it was done so. Here the actus reus or performative

element of the crime is dependent on the mental state or mens rea of the actor.

Other economic crimes with elements of fraud or deceit fall into this category

of crime. The ability to prosecute these crimes is dependent on the ability to

identify and diagnose intentional states in the accused algorithmic actor.

5.1 Introduction

Within criminal law it is a widely held concept that every crime has a per-

formative element (actus reus) and a mental element (mens rea)1. A person

perform the actus reus with the mens rea to be said to have committed a

crime. Satisfaction of these two elements is necessary but not sufficient for

criminal culpability since, amongst other reasons there may be justifications

for some behaviour which would otherwise be judged criminal. In addition, an

actor can only be criminally culpable if they are capable of moral responsibil-
1Excepting crimes of absolute liability where the mens rea element is minimal
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ity. Amongst others this mostly rules out children, the insane and algorithmic

actors from being found culpable of committing crimes.

This chapter is not going to make any claims about the eligibility of algorithms

for legal person-hood, blame, punishment or even praise and the role that

algorithmic intent might play in that. This is not because I feel the subject is

uninteresting or in any way adequately addressed in research, it just adjacent

to the problem that this chapter aims to address. The only thing that this

chapter requires of the reader is that they are open to the possibility that

intent (and related mens rea states) can exist in an algorithm. I hope to show

why it is necessary to understand, identify and control for intent in algorithms,

for the criminal law (in its current state) to function in the way it was designed

to.

This chapter will predominantly consider Anglo criminal law with a focus on

England and Wales but also make some reference to other major common law

jurisdictions like the USA. Mens rea definitions differ at the margin between

different common law legal systems but their overlap is significant especially

at the level of intent. In terms of wider applicability, the thrust of the chapter

should also be applicable in any legal system where laws exist which forbid

certain actions only when taken in the pursuit of certain objectives. This might

include those countries with a civil criminal law, equally it might include other

areas of law such as tort, securities or contract.

5.1.1 Mens rea also defines ‘why-crimes’

Mens rea, of which criminal intent is subcategory, plays functions within crim-

inal law other than deciding the culpability of an actor for any given harm.

Simester (2021) divides the functions into two categories. The first category

considers how mens rea establishes the guilt of the actor’s behaviour. The

second concerns, what Simester terms the role of mens rea in the principle of

legitimate enactment. That is to say how the law defines precisely what we
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are able to do without fear of criminal sanction and the balance that it makes

between civil freedom and the protection of harmed people. This chapter will

argue that forming a definition of intent in algorithms is necessary for reasons

both of culpability determination and legitimate enactment.

For certain offences, mens rea can play an important role in identifying be-

haviour as being culpable wrongdoing in the first place. Specifically there is

a subset of offences where the mens rea element informs the actus reus ele-

ment concerning the wrongness of the behaviour. Restated, there are certain

behaviours which are legitimate unless they are conducted with a certain pur-

pose, as Simester puts it ‘the actus reus does not identify anything we shouldn’t

be doing’. For short, I will refer to these as ‘why-crimes’. Under the UK At-

tempts act 1981 for example almost every crime has a corresponding attempt

crime. These inchoate crimes suffer from ambiguity in their actus reus because

harm has often not yet been caused and a certain amount of ambiguity might

exist around many types of behaviour. Here the presence or absence of my

intent to do harm at some point in the future, informs the actus reus. Perhaps

because of this ambiguity, crimes cannot be attempted with recklessness, they

must be done so with intent.

An engineer might argue that for an algorithmic actor to be ‘safe’, one should

just control its ability to do harm, and once that is done, it simply cannot

intend to cause harm. This is certainly true, though controlling all the ways

an algorithm can cause harm is not a straightforward task even in a limited

setting. Even if we were to assume success in this endeavour, the approach of

will fail for another category of criminal offences other than inchoate crimes

where mens rea plays a definitional role to the actus reus. The harm in these

crimes, is the intention under which they were performed. The communication

of this prohibition relies on the ability to convey what certain types of mens

rea means.

Aside from attempt crimes, a range of criminal offences exist whose undesir-
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ability hinges on the intent under which they committed. For example under

the UK Fraud Act 2006 for someone to commit the crime of fraud by mis-

representation they must i) make a false representation, ii) dishonestly, iii)

knowing that the representation might be untrue or misleading and iv) intend

to make a gain for themselves or cause or risk a loss to another. This formula-

tion includes the mental states of intent and knowledge. Similarly in Republic

of Ireland under the Criminal Justice (Theft and Fraud Offences) Act 2001,

the offence of Making gain or causing loss by deception relies on the actor

acting deceptively with the intentional of making a gain for themselves (or a

loss for someone else). As Simester observes, many of these crimes seem to

be economic in nature or related to the functioning of markets. In Australia

under the Competition and Consumer Act 2010 (CCA), predatory pricing is

defined as having the intention to "eliminate or substantially damage a com-

petitor, prevent someone entering the market or deter or prevent someone from

engaging in competitive conduct in a market" ACCC (2005). Intent in these

examples plays an important role in delineating behaviour which is acceptable

from that which is not. In a study of the wider laws of deceit, Klass (2012)

characterises the laws surrounding deceit as being concerned with regulating

the flow of information between parties. Algorithmic actors are heavily in-

volved in the business of information, both as consumers and distributors. An

algorithm could very feasibly engage in anti-competitive behaviour without

being expressly instructed to by its owner but without a provable concept of

intent, it could not be restrained or penalised for doing so.

Viewed through the lens of legitimate enactment, the role of intent in these

crimes firstly lets people know what sort or behaviour is reasonable and what

is not. This can be paraphrased in the two examples given as ‘don’t deceive

people on purpose to enrich yourself’ or ‘don’t set your prices in order to

bankrupt your competitors’. Secondly it is a useful legislative tool to prevent

over-criminalisation. A world would not function well where the actions of

stating anything untrue or keen pricing brings a criminal charge. If we didn’t
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know what intent actually meant and we had no way of measuring it in an

actor then law fails twice. People couldn’t be sure if they or their employees

are breaking the law and whether they are liable for that. Policy makers would

be deprived of a tool that they had previously used to delineate the boundary

between acceptable and criminal behaviour. This is the situation that I will

argue we have already found ourselves in with a certain class of algorithms.

5.1.2 A case for Intent in auto-didactic algorithms

Traditionally the output of an algorithm has reflected the purposes of its cre-

ator just like the face of a hammer is assumed to strike its bearer’s target.

Where algorithms have been deployed in some sort of autonomous application,

like trading or a plane’s autopilot, the decisions they make and the ensuing

behaviour they demonstrate can be said to be an extension of the program-

mer’s intentions. There is a limit to this reading in the sense that not all

behaviours of an algorithm are intended. This is particularly true of complex

systems even when they have come under extreme testing scrutiny. Nobody

would claim the creators of Boeing’s MCAS system - an automatic flight sta-

bilising program - intended for it to contribute to the two crashes of the 737

Max airliner. Excepting the case of unexpected behaviour, if the user of an

algorithm (the Principal) intended their algorithm to commit a crime on their

behalf, and it did subsequently do so, then they would be guilty of the crime

in the same way as anyone using a tool to commit a crime is. The doctrine

of innocent agency (Alldridge, 1990) goes further, and prevents the Principal

from using other people as tools2.

On occasion, the user and designer of an algorithm might be accused of en-

gaging in some criminal activity and the purpose of an algorithm might need

to be assessed. This assessment of an algorithm’s purpose might be a framed

as an exercise in evidence collection, since the prosecution would argue that

2Assuming that the person used as a tool is not aware that they are committing a crime.
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the algorithm’s design and workings are merely a reflection of the defendant’s

alleged criminal intent. Such an investigation might benefit from a generally

agreed upon definition of intent in an algorithm. I think such a standardisation

endeavour could aid the functioning of courts in the future. This is not the

primary motivation of this chapter though the definitions I will present later

on will certainly aid in this use case.

There exists a class of Algorithms that learn their own types of behaviour

above and beyond the atomic action set they are given which I will term auto-

didactic. Typically, this class of algorithm will ’learn’ a behaviour or policy by

analysis of historic data through some statistical machine learning technique

or in a simulation of an environment through an online learning technique such

as Reinforcement Learning. The motivation behind using these techniques for

the algorithm designer is that the resulting algorithm can take advantage of

statistical features of the environment that might not be obvious to a more

traditional, top-down approach. The resulting algorithms, trained on massive

data sets can perform a range of tasks, often exceeding human capabilities. For

the rest of the chapter I will refer to this class of self-taught algorithm when

deployed in an autonomous function, as an A-bot. By autonomous I mean

makes decisions without requiring confirmation from a human. For simplicity

I will also suppose for the rest of the chapter that the A-bot’s creator, owner

and user are one person which I will refer to as the Principal. I acknowledge

this is a simplifying assumption but I feel justified since the objective of this

chapter is not focused on the attribution of responsibility but rather an earlier

step; the identification of a crime itself.

Suppose an A-bot were to perform some sequence of actions that would be

qualify for crime X if a human had performed them with the requisite mens

rea. We will follow the terminology of Abbott and Sarch (2020) and term this

state of affairs an AI-crime. At present the A-bot has not committed a crime

because it is not a legal person regardless of its mental capabilities. If the
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qualifying mens rea requirement of crime X was no more than negligence or

perhaps recklessness then the Principal of the algorithm might be charged with

crime X depending on its foreseeability. For higher levels of mens rea such as

intent, a problem appears because the intent of the A-bot’s Principal might not

coincide with the behaviour of the A-bot. The Principal could not be caught

up through secondary liability for since the A-bot has only committed an AI-

crime and not an actual crime, secondary criminal liability being parasitic on

an initial crime. The question of whether the concept of secondary criminal

liability needs to be reformed in the age of A-bots is an interesting one but

once again not one directly addressed here.

Aside from inchoate crimes, in section 5.1.1 we identified a category of crimes

(why-crimes) where the mens-rea plays a directly definitional role. These are

crimes where the actus reus is in of itself not criminal. It is here that, initially

at least, I argue that A-bots require a working definition of intent amongst

other mens rea concepts. Without one, these crimes cannot be practically

prosecuted because they cannot be proven to have taken place. In turn, unless

a definition is forthcoming and generally understood, A-bot Principals cannot

easily take measures to prevent their creations from breaking the law. Such

a state of affairs might be exploited by bad Principals in situations where

conducting these types of crime is profitable. At the very least, situations

might appear where a risk arbitrage opens up and companies are incentivised

to use (or pretend to use) an A-bot for a job otherwise done by a human

because their liability is considerably reduced. It is unfortunate that these

types of crimes are often economic in their nature and the maximisation of

economic returns is an area where algorithms are increasingly deployed.

In financial markets, there exist a number of market manipulative practices

that are outlawed. One of them, termed ’spoofing’ provides an interesting

example of a intent dependent or why-crime. Spoofing can cover many slightly

different behaviours but in its general sense the spoofer tries to place orders in
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Figure 5.1: This chapter proceeds under the assumption that intent is a definable
concept that does not require a human brain to exist, that it arguably
exists in other biological entities with demonstrable intelligence and can
plausibly exist in an artificial intelligence. Images: Octopus - James
Keuning, AI - Komkrit Noenpoempisut, The Noun project

the market so as to give a false impression of supply or demand. Because the

market is visible to other traders, order placement usually conveys information

and market participants will react to reflect this. Generally a large amount of

buy orders pushes the price of an asset up and a large amount of sell orders

will push the price of an asset down. A spoofer will take advantage of this

reaction by taking a directional bet, putting a large ’spoof’ order into the

market, profit from the ensuing reaction and then cancel their ’spoof’ order

which crucially they never wanted to execute in the first place. In section

747(C) of the Dodd-Frank Wall Street Reform and Consumer Protection Act

2010, spoofing is defined as "bidding or offering with the intent to cancel the

bid or offer before execution". In their guidance note, CFTC (2013) state that

recklessness is not sufficient for spoofing. Suppose a bank were to create an

auto-didactic trading algorithm with the objective of making as much money as

possible subject to reasonable risk constraints. Without a definition of intent

that could be applied to an algorithm, how can anyone inside or outside the

bank know if the algorithm is spoofing? Under what conditions can one say

that intent to cancel can exist in the trading algorithm?

If a generally agreed upon definition of intent existed for algorithms, then

112



5.1. Introduction 113

it would be harder for a Principal to argue that they did not know that an

algorithm intended to commit a AI-crime. Wilful blindness as to a fact has

been established, under certain circumstances, to be equivalent to knowledge

of a fact, Robbins (1990) terms it ’The Ostrich instruction’. A definition of

intent might not allow one to conclude that intent in the algorithm equals

intent in the Principal, but at the same time it might be useful evidence as to

the intentional state of the Principal as to their algorithm. To take the example

of the bank and the trading algorithm, if according to some definition, at the

point of placing orders the algorithm intended to subsequently cancel them,

then the bank would be able to correct the algorithm before deploying it in

the market. Failing that, a market regulator would be able to show that the

algorithm was actually spoofing and act to restrict it. Whether the bank’s

knowledge of or wilful blindness to the algorithm’s spoofing strategy would be

enough for criminal charges is an interesting question for courts to answer in

the future. At the very least, a definition of intent for algorithms gets us to the

point of asking whether it exists without having to make too many changes to

the law as it stands.

The approach of this chapter is atypical in computer science literature in that

the definitions of intent that it will present are informed by the body of law

that exists concerning intent amongst other relevant mens rea states. Other

approaches might be to use psychological evidence or philosophical theory.

However, I think that the legal conception of intent is what it is for good

reason. It has been honed over time in a public manner and any attempt by a

computer scientist to impose their own definitions of commonly held concepts,

has a democratic deficiency as Hildebrandt (2019) points out. Worse, it opens

up such an approach to accusations that the definitions are chosen for their

programming expediency or some other selfish motive. A legally informed

approach also goes some way to meet the fear (Sales, 2019) that by coding

legal concepts, we block its natural progression. Progress it must because
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A-bots do pose novel challenges to courts, to quote Lord Mance 3:

...the law must be adapted to the new algorithmic programmes and

artificial intelligence, in a way which gives rise to the results that

reason and justice would lead one to expect

The chapter will proceed as follows. Firstly, we will explore existing approaches

to the subject of intent and AI. Next in Section 5.2.2 we will consider various

different types of intent that exist in criminal law and their definitions such

as they are. It will concludes by discussing some desiderata of an algorith-

mic intent definition. Armed with that knowledge, Section 5.3 will present

definitions of Direct, Oblique and Ulterior intent. This is followed by a short

discussion and conclusion.

5.2 Background

5.2.1 Existing accounts of intent in and for AI

Yavar Bathaee (2018) raises identifies the difficulty of prosecuting why-crimes

when the actor is an algorithm. He names the intent part of the actus reus

’basis intent’. He also identifies the role that intent has as a gatekeeper in

litigating certain harms - If there is no possibility of showing the requisite intent

(as in the case of an AI decision makers), the case cannot even be brought. The

example chosen is Washington v Davis 4, where the US supreme court ruled

that statute which has a racially discriminatory effect but wasn’t adopted

with the intention of being racially discriminatory, is not unconstitutional.

The possibility of an autonomous algorithm or AI possessing the Mens Rea

for a crime, is tentatively suggested as a solution to the problem of ’Hard’

AI crimes by Abbott and Sarch (2020). Someone is criminally culpable if

their behaviour shows insufficient regard for some legally protected norms or
3Quoine Pte Ltd v B2C2 Ltd [2020] SGCA(I) 02 at 193
4Washington v. Davis, 426 U.S. 229,248 (1976)
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interests. In their view if the AI has goals, gathers information and processes it

to form strategies to fulfil those goals and is also aware of its legal requirements,

it could be considered to show disregard, if it still acts in a way to breach

those requirements. If this were the case, they recognise the need to draw up a

definition of intent in AI that courts would use as a test. Interestingly, they cite

Bratman (1990) as a starting point for this, and not the legal definitions we saw

in the previous section. They posit that intention could be deduced through

an A-bot’s actions which increase the likelihood of an outcome happening.

This is similar in spirit to the implicit aim clause discussed in Section 5.3. An

interesting aspect of their discussion of mens rea in A-bots, and one which this

chapter does not consider in detail, is that of knowledge. Defining knowledge

of a fact F5 as something which is known by the A-bot to be practically

certain. We have mostly assumed that the A-bot knows of the circumstances

that it is in at any point of time. Intent as it applies to knowledge seems

a strange concept for the uninitiated, but it defines many crimes, modifying

otherwise regular activities into criminal ones. The transport of a package for

example becomes generally illegal when the contents are known to be restricted

(drugs, explosives, firearms etc). Indeed as Shute (2002) says, even within

legal discourse, relatively little time has been spent considering the subjects of

knowledge and belief as they apply to mens rea.

Lagioia and Sartor (2020) examine the capacity of an AI to commit a crime

by looking at its ability to accomplish actus reus with the required mens rea.

They illustrate their discussion with the case of the Random Darknet Shopper,

an algorithm programmed in Switzerland to go onto the darknet and buy some

objects at random for display in an art exhibition. In the process it bought

some Ecstasy tablets, possession of which is a criminal offence. The Cantonal

prosecutor initially wanted to press charges but they were dropped when sat-

5The discussion of deducible facts from knowledge belongs to the symbolic side of AI,
which relies on formal logic techniques. Statistical approaches to AI are very likely not to
approach facts in the same way. There the world has some measurable states and possibly
some hidden ones which may have an associated probability distribution as to their state
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isfied that the tablets were not to be sold or consumed (Kasperkevic, 2015).

Lagioia and Sartor conclude that an AI can have actus reus. Their discussion

of mens-rea is divided into two, covering what they term the cognitive and vo-

litional elements. For the cognition element, they conclude that an AI is fully

able to Perceive its environment, comprehend it and make future projections

about it. For the volition part they also adopt the Bratman’s Belief, Desire,

Intent framework. They define beliefs as the agent’s current awareness of a

situation plus any inferences it can make from them. Desire incorporates the

motivation of the agent. The agent can have many desires which may con-

flict. The agent’s intent is some conclusion of their beliefs and desires. It is a

commitment to a plan to bring about some result. Unlike desires, intentions

cannot conflict, they must, Bratman insists, be temporally consistent (Brat-

man, 2009). Someone in London intending to fly to Los Angeles tomorrow

cannot also intend to fly to Shenzhen tomorrow. Lagioia and Sartor conclude

that an AI agent, programmed in such a way as to have Beliefs, Desires and

Intentions (manifested as plans to deliver desires) can have sufficient mens rea

to commit a crime6.

A Beliefs, Desires and Intentions software design paradigm does exist Kinny

et al. (1996), which can be used construct AI systems. Cohen and Levesque

(1990) is one of the earliest formalism of intent inspired by Bratman’s work.

It creates a modal logic with primitive operators covering the initiation and

completion of actions as well as some that can express beliefs and goals. As

with the approach of this chapter, they then define intent in terms of other

components. Thus an intention to act is described as a goal to have completed

that action. An intention to achieve a certain state is the goal of having done a

certain set of actions that achieves that state, at least an initial plan of actions

to reach that state and a requirement that what does happen, in the process

of achieving the state, is not something which is not a goal. The last clause is
6An argument can be made that Bratman’s theories influenced and were influenced by

the progress of AI in the 1980s. Thus any theory of intent in law calling upon Bratman, is
inadvertently influenced by theories of (symbolic) AI. Which is neat.

116



5.2. Background 117

to stop an agent having said to have intentionally caused a state when their

goal was reached accidentally as a result of their actions. The development of

a model logic to reason about intent is an extremely useful thing to do for an

algorithm to plan ahead.

Outside BDI architecture, formal accounts of intent, compatible with an AI,

are surprisingly rare. Recent advances in AI capability have been rooted in

statistical AI, which emphasises the use of data and statistical inference over

logical reasoning. It is desirable that a theory of intention in AI is relatively

agnostic to the type of AI it is being applied to, given a certain level of require-

ments. The closest approaches to those in this chapter are to be found in the

related accounts of Kleiman-Weiner et al. (2015) and Halpern and Kleiman-

Weiner (2018). Both of which define what this chapter calls direct intent using

counterfactual reasoning and an assumption of utility maximising behaviour.

Loosely speaking, intended outcomes are the minimum set of outcomes with

the property that if they are not obtainable, then the optimal policy would

change. Note the similarity with the counterfactual aim condition in Section

5.3. Kleiman-Weiner et al use an influence diagram setting, an Influence Di-

agram (ID) being a directed acyclic graph with action, chance and terminal

utility outcomes. The directed arcs between nodes of the graph are interpreted

as causes. Their approach is used on a variety of trolley problem type scenarios,

and is developed in conjunction with a theory of moral permissibility. People’s

ability to infer intent is tested in a survey experiment and tested versus the

formal definition for validity. In the event of an A-bot being involved in a

trial, this is a task which jurors will be required to do should they be unable to

access or interpret an A-bot’s internal workings. The counterfactual approach

is modified slightly in Halpern and Kleiman-Weiner (2018) and translated to

the world of Structural Equation Models (SEMs), of the type used in Actual

Causality (Halpern, 2016). The modifications allow the definition to be more

robust to a variety of counterexamples, and the SEM setting allows an ar-

guably clearer treatment of counterfactuals, perhaps at cost of clarity over the
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utility function which is more naturally positioned in an Influence Diagram.

Like the definition in this chapter, an action can only be intended if there were

other actions which could have been taken at the point of commission. An

important point of difference in Halpern and Kleiman-Weiner (2018) is their

use of a reference action set, when deciding whether an outcome was intended

through an action. This is practical from a calculation point of view7, but also

intuitive, where in most cases we can just compare acting with not acting in a

certain way.

Just as Kleiman-Weiner et al develop their intent definition alongside one of

moral permissibility, Halpern and Kleiman-Weiner develop theirs with one of

blameworthiness. Both approaches to intent could be characterised as origi-

nating from a theory of ethical action which overlaps but does not coincide

with a theory of intent based on legal theory. This is most obvious in their

treatment of side effects, which are always unintended. Ashton (2021b) ex-

tends their approach to define oblique intent, thereby bringing their approach

more in line with legal reasoning about side-effects.

5.2.2 Background in law

Intent within a criminal law context is one type of broad range of degrees of

mens rea. Specific crimes are typically defined with a threshold level of criminal

intent; the minimum level of intent that the accused must have in order to have

committed the mental element of the crime. Some crimes attach different levels

of mens rea to different parts of the actus reus. The same criminal action or

actus reus, is deemed more or less culpable depending on the level of mens rea

it was committed with. The clearest example of this is with the actus reus of

causing death; if the act of killing someone is done with direct intent then it

is murder, if death is a result of lower intentional mode such as recklessness,

7We have for instance assumed a discrete action set, but applications exist where actions
are continuous in nature
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then it would be manslaughter8. Causing the death of doesn’t even necessarily

lead to any criminal sanction if it was done so accidentally and it was not a

reasonably forseeable consequence of the contributing actions.

Mens rea can be thought of as a hierarchy arranged in terms of culpability,

with direct intent at the top, followed by oblique intent, recklessness, negli-

gence and strict liability (or the almost absence of mens rea). Where a crime

requires a certain level of mens rea, a higher level is sufficient to satisfy the

requirement as stated in cl19 of the draft criminal code for England and Wales

(Law Commission (The), 1989). The burden of proof of higher levels of mens

rea can be considered higher.

As mentioned, a justification for establishing the intent behind an action is to

distinguish between those harmful outcomes which were accidental and those

which were not. Sometimes only the actus reus is required, irrespective of

its outcome or the mental state under which it was performed; this is called

strict liability and forms the lowest level of the mens rea hierarchy. Certain

possession are an example of this type. Ormerod and Laird (2021b) make the

distinction between crimes of strict liability, where one element of the actus

reus requires no mens rea and crimes of absolute liability where no element of

the actus reus requires mens rea.

It should be noted that there is no universal language for mens rea across

nations and justice systems, so concepts negligence or recklessness might mean

different things in different places or may have analogous modes with other

names.

The aim of this chapter is to concentrate on the highest levels of mens rea;

Direct intent and Oblique intent or Knowledge. These are the levels of mens rea

which are most likely to play a definitional role in the actus reus as discussed

8This is a simplification, in the UK there are further distinctions between voluntary
and involuntary manslaughter (Criminal Prosecution Service, 2019) and as we will discuss
oblique intent can be sufficient for murder.
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in Section 5.1.1. These higher intent levels enjoy some alignment in meaning

across different common law jurisdictions. I have also included discussion of

recklessness and negligence, because I have found them useful to discuss what

the higher levels of intent are and are not.

5.2.2.1 Intent in common law

A barrier to creating a legally rigorous algorithmic definition of intent is that

courts in the UK have consistently not wanted to elaborate to juries what intent

actually constitutes. As Lord Bridge stated in R v Moloney (1985) 1 All ER

1025 "The judge should avoid any elaboration or paraphrase of what is meant by

intent and leave it to the jury’s good sense to decide whether the accused acted

with necessary intent". The reluctance to pin a definition down onto the page

is reflected to varying degrees in other common law jurisdictions. A potential

reason behind this is the confounding existence of oblique (sometimes called

indirect intent), which whilst occupying a lower level to direct intent has been

established in a number of boundary cases such as R v Nedrick [1986] 1 WLR

1025. and R v Woollin [1999] 1 A.C. 82. to be sufficient, in certain cases, to

be sufficient mens rea for the crime of murder. We will discuss oblique intent

after tackling direct intent.

5.2.2.2 Direct Intent

Whilst a definition of direct intent has not been forthcoming within courts

in the UK, examples do necessarily exist within textbooks and other legal

discourse. Parsons (2000) defines direct intent as the case where "the defendant

wants something to happen as a result of their conduct". A draft bill published

by the UK Home Office (Law Commission (The), 2015a) defines direct intent

as the situation when A person acts intentionally with respect to a result if...it

his purpose to cause it. Using this document as a consultation template, the

Law Commission also suggested an alternative formulation of direct intent as

follows: (Law Commission (The), 2015b):
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The jury should be directed that they may find D intended a result

if they are sure that D realised that result was certain (barring an

extraordinary intervention) if D did what he or she was set upon

doing.

A previous formulation is to be found in a draft criminal code

Law Commission (The) (1989), which states that:

A person acts intentionally with respect to i) a circumstance when

he hopes or knows that it exists or will exist; ii) a result when he

acts either in order to bring it about or being aware that it will

occur in the ordinary course of events.

It should be noted that the Law Commission’s 2015 consultation concludes

that no definition is needed, at least in the context of the offences against the

person bill reform.

As Coffey (2009) summarises, the ingredients of direct intent generally seem to

involve a decision to act and an outcome which is the aim, objective or purpose

of that act. Whether that outcome or result is desirable from the point of view

of the accused seems to depend on the narrowness of the definition of desire.

On the subject of desire and direct intent, James LJ in R v Mohan [1976] 1

QB at 11 defines it as:

...a decision to bring about insofar as it lies within the accused’s

power, the commission of the offence which it is alleged the accused

attempted to commit, no matter whether the accused desired that

consequence of his act or not.

In the USA, a definition of direct intent is more forthcoming in the form of

the Model Penal Code (MPC) (The American Law Insitute, 2017). This has

been adapted to various degrees by many states, though Federal prosecuted

crimes have no analogous written definitions. What we have termed direct
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intent corresponds to the MPC’s definition of purpose, the highest of the four

levels of intent that they define:

A person acts purposely with respect to a material element of an

offense when... if the element involves the nature of his conduct or

a result thereof, it is his conscious object to engage in conduct of

that nature or to cause such a result

Generally we can conclude that directly intended things do not need to be

desirable but they should be an objective of the actor. The example of a

dentist is often given to illustrate this point (Williams, 1987). A painful tooth

extraction may result, which is certainly not desirable for most, but the object

of the visit is to obviate future tooth ache9.

Related, and sometimes confused with oblique intent, is the intentional status

of intermediate results which are caused through the actions of the agent,

and are necessary to achieve some other aimed for result. These intermediate

results, which Simester et al. (2019) term Means to an end results, are directly

intended, this being established in Smith [1960] 2 QB 423 (CA) where it was

found that a defendant who bribed a Mayor in an attempt to expose corruption,

nonetheless intended to corrupt a public official, which was a crime.

Whilst an intended result must be foreseeable as a result of an act, there is

no requirement for it to be likely. This is neatly encapsulated by the cowardly

jackal example of Alexander and Kessler (1997), where an assassin who shoots

at their target a long long way away and therefore knows their chance of

success is low, but somehow does hit and kill their target, should still be found

to have directly intended to shoot their victim. If this were not the case, then

longshots could be attempted with impunity.

A feature of the definitions of direct intent that we have seen is that foresee-
9The intentional state of the pain that necessarily ensues is discussed in the next sub-

section.
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ability should be a subjective test. That is to say, consequences should be

foreseeable to the accused. This was not always the case, DPP v Smith [1961]

AC 290 held that a foreseeable result would be intended if it was a natural

consequence of the action. This is an objective test, which relies on assessing

probabilities and causation according to the ’reasonable person’. Furey (2010)

observes that this position was soon reversed since it narrowed the states of

direct intention and gross negligence too much and thereby blurred the line

between murder and manslaughter. In the case of an algorithm malfeasor, we

must then consider whether a ’reasonable person’ should be a ’reasonable algo-

rithm’ Abbott (2020). In practice, as Furey observes, objective and subjective

tests blur, since the accused denying that they foresaw a consequence if that

consequence becomes less believable when that consequence becomes more ob-

viously likely. Here is where the judgement of intent in algorithms might differ

from that in humans. Humans can empathise with other humans under the

assumption that at the very least, their sensory perception and common sense

is share. In R v Moloney [1984] UKHL 4, the original trial court judge is

quoted to have said:

"In deciding the question of the accused man’s intent, you will

decide whether he did intend or foresee that result by reference

to all the evidence, drawing such inferences from the evidence as

appear proper in the circumstances. Members of the jury, it is a

question of fact for you to decide. As I said I think when I was

directing you originally you cannot take the top of a man’s head

off and look into his mind and actually see what his intent was at

any given moment. You have to decide it by reference to what he

did, what he said and all the circumstances of the case."

Depending on their design and to varying degrees A-bots can be peered into

and the constituent parts behind a definition of intent can be assessed. So

whilst humans might not be able to empathise and reason about the inner
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workings of A-bots, unlike with human defendants, they have some opportu-

nity to take the top of an A-bot’s head off and look into its mind. Even in the

case of black box A-bot designs which confound many attempts to interpret,

their reaction (output behaviour) to inputs can be scrutinised for evidence. In

certain cases they can feasibly be put into the same situation they found them-

selves when they are accused of committing an AI-crime via a simulator much

as aviation accident investigators look to recreate errors so as to understand

what was fault for the crash. The A-bot’s beliefs about the state of the world in

this recreation should be strong evidence as to their beliefs previously. Where

an algorithm predicts the likelihood of outcomes following its actions, it is ob-

servable whether this calculation is misspecified or not. Unfortunately many

algorithms do not explicitly predict the outcome of their actions; this is the

case with model free reinforcement learning algorithms which have succeeded

in mastering a variety of games to super-human levels.

A corollary of direct intent being within the mind of the actor, is that they

should be able to intend impossible things if they thought they were possible.

This is indeed the case as confirmed by the UK Criminal Attempts Act. We

will explore this issue further in Section 5.2.4. In practice this has proved less of

an issue than perhaps it might appear on first inspection, though one wonders

if rules which protect the mentally ill from criminal proceedings have also

prevented more bizarre cases from being heard. Perhaps similar diagnoses will

be necessary for A-bots to prevent over-criminalisation of algorithmic policies

which have no possibility of causing harm because they are so unrealistic.

The next subsection will consider the intentional status of side-effects, that

is to say, those states of affairs which are caused by actions, but are not the

motivating factor behind those actions and whose realisation does not affect

the success of the actor’s intended results.
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5.2.2.3 Oblique Intent

Oblique intent or indirect intent refers to the intentional state of almost certain

side effects of directly intended actions. The phrase was coined by Jeremy

Bentham (1823) where he considered the example of a hunter shooting a stag

who appreciated at the moment of releasing his arrow, that it was just as

likely to hit the stag as King William II. Bentham concludes that "killing the

king was intentional, but obliquely so". Its existence can be illustrated by the

following example found in Law Commission (The) (2015b):

D places a bomb on an aircraft, intending to collect on the insur-

ance. D does not act with the purpose of causing the death of the

passengers, but knows that their death is virtually certain if the

bomb explodes.

In the USA, according to the MPC, oblique intent is roughly equivalent to the

status of crimes committed with knowledge, which is the second most serious

level of intent. It is defined as follows (The American Law Insitute, 2017):

A person acts knowingly with respect to a material element of an

offense when: ...if the element involves a result of his conduct, he

is aware that it is practically certain that his conduct will cause

such a result.

The current accepted direction to be made to Juries in England and Wales with

respect to Oblique intent, originally formulated in R v Woollin is as follows:

The jury should be directed that they are not entitled to infer

the necessary intention, unless they feel sure that death or seri-

ous bodily harm was a virtual certainty (barring some unforeseen

intervention) as a result of the defendant’s actions and that the

defendant appreciated that such was the case.

As with the definitions of direct intent in the previous section, this direction
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makes it clear that this is a subjective test as well. This definition has since

been modified, because as with direct intent, there should be no restriction on

the likelihood of the accused achieving their aim, only that if they did, it would

be most likely that the obliquely intended result occurs. This is not captured

in the MPC formulation of Knowledge. The definition of oblique intent in Law

Commission (1993) is phrased thus:

A person acts intentionally with respect to a result when...although

it is not the purpose to cause that result, he knows that it would

occur in the ordinary course of events if he were to succeed in his

purpose of causing some other result.

Smith (1990) acknowledges the necessity of this amendment and adds a further

requirement. A definition of oblique intent should make it clear that if it is the

purpose of the accused to avoid a result through their actions, they cannot be

accused of obliquely intending that result as well. The example given being

the father who chooses to throw their child from a burning house because

they know otherwise that the child will die from the fire, but also know that

the child will be grievously injured from their actions. Such examples begin

to stray into the doctrine of double effect (McIntyre, 2019), which protects

physicians from criminal charges when they cause harm through their actions

which are intended to cause some other, justifying outcome.

A practical feature of oblique intent, is that the directly intended results of the

algorithm’s actions do not need to be identified (save that they are separate

and not the opposite of the obliquely intended ones). This is in contrast with

direct intent where an aimed outcome or objective should be identified. A-

bots do have high level aims (typically called objective functions), but they

learn to meet them themselves. That oblique intent has in cases been given an

equivalent culpable status to direct intent, provide courts an alternative way

of establishing intent in an A-bot, should it be more practical.
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So far, the two types of intent discussed have required an exclusive subjective

treatment. The next subsection deals with recklessness and negligence which

have objective elements to their definitions.

5.2.3 Recklessness and Negligence: The lower levels of mens

rea

Although this chapter principally concerns itself with the higher levels of in-

tent, it is instructive to understand how lower levels of mens rea like reckless-

ness and negligence are different (and related). Courts may decide algorithms

are incapable of intent or in any case impose a higher standard on their be-

haviour by lowering the mens rea requirement for certain crimes. Stark (2017)

calls these two types of intentional behaviour ’culpable risk taking’. Loveless

(2010) equates recklessness with unreasonable risk taking, or more precisely

the conscious decision to take an unreasonable risk. The test for recklessness

in the UK is now said to be subjective, in the sense that the accused must

be aware of the risk of their actions; one can no longer be reckless by inad-

vertently creating risk or harm. Negligence concerns actions where the actor

does not necessarily have awareness of risk, but should do according to some

standard. This might be a reasonable human or a reasonable robot as Ab-

bott (2020) debates. Frequently, recklessness is the minimum level of intent

required for a criminal offence and actions done with negligence, resulting in

harm, are mostly dealt with civil (or private) law so differentiating the two is

important. Nevertheless some crimes exist which only require negligence (often

driving offences) or have elements which only require negligence Ormerod and

Laird (2021a). These criminal offences of negligence seem to appear worldwide

Fletcher (1971).

As to what unreasonable risk is, Stark indicates that there is not very much

concrete guidance. At the extreme, any risk could be termed unacceptable,

which in almost every situation, is an unworkable solution. A problem with
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applying a blanket level of risk as the threshold of reasonable behaviour is that

the severity of the outcome might make determine its acceptability; a 0.5%

chance of breaking a window is not the same as a 0.5% of killing someone.

Furthermore, any process when repeated many times has a high probability

of obtaining at least one bad outcome even if the chance of obtaining a bad

outcome in one trial is tiny. In the USA, the Model Penal Code (MPC) The

American Law Insitute (2017) instead allows a situation specific chance:

A person acts recklessly with respect to a material element of an

offense when he consciously disregards a substantial and unjusti-

fiable risk that the material element exists or will result from his

conduct. The risk must be of such a nature and degree that, con-

sidering the nature and purpose of the actor’s conduct and the

circumstances known to him, its disregard involves a gross devia-

tion from the standard of conduct that a law-abiding person would

observe in the actor’s situation.

Thus in the language of subjective and objective tests, the accused must be

aware of the possible risk, and still act, but the judgement as to what consti-

tutes an unacceptable risk is subject to an external benchmark, or objective

test. Preventing an A-bot from behaving recklessly is harder than prevent-

ing them from intending harm since an external, possible changing benchmark

needs to be introduced, and a ranking over the severity of any outcome is

required to adjust what an acceptable probability of a bad outcome is. A

restriction to not cause harm recklessly is stricter than one to not do so inten-

tionally. Conversely from the point of view of the courts, a lower requirement

to establish what the A-bot believed at the point of commission is a simplifying

feature. Which standard should be applied when make objective judgements

concerning the behaviour an A-bot is an open question. Abbott (2020) dis-

cusses the standard in the context of Autonomous Vehicles (AVs) and proposes

that a single standard for humans and AVs will result in humans being effec-
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tively held to a standard of strict negligence as AVs improve. Whilst with

driving, lower road deaths are the the benefit of this, in other areas where hu-

mans and algorithms coexist (like exchange trading), imposing an algorithmic

standard on humans might offer no such advantages and come at the cost of

jobs. Unlike roads, markets are strictly adversarial, so their regulation raises

the prospect of regulatory arbitrage when different standards are applied to

human and algorithmic traders. This is also true with respect to enforcement

capabilities: current trading regulation which cannot practically be enforced

against algorithms only encourage the use of algorithms in markets. Where it

is profitable to break these laws, algorithms will do so because their owners

face lower regulatory risk.

5.2.4 Inchoate Offences

Law often includes prohibitions against attempting to commit actions which

if otherwise completed with the most likely or intended result would be crimes

(the actus reus or criminal action is inchoate). An inchoate offense might come

about because the accused failed (the myopic assassin missed with their shot)

or the accused was interrupted before completing their action (the lethargic

assassin is caught with loaded gun drawn and aiming at their target). At-

tempted murder and possession (of prohibited drugs) with intent to supply

are both examples. Most common types of inchoate offence are attempts to

commit a substantive crime 10, that is to say, a crime which does not include

another crime in its definition. Other types exist, such as conspiracy and solic-

itation (in the USA). Conspiracy is an agreement amongst two or more parties

to commit an offence in the future and solicitation is where the accused induces

another to commit a crime. Examining the law around attempted offences pro-

vides us with some interesting observations about the nature of intent. In the

UK, Criminal Attempts Act 1981, defines attempt in Section 1 (1):

10A defendant who successfully completed an action would be only accused of that crime,
not the attempt as well, under the merger doctrine.
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If, with intent to commit an offence to which this section applies,

a person does an act which is more than merely preparatory to the

commission of the offence, he is guilty of attempting to commit the

offence.

The question of what constitutes actions which are more than preparatory

is not entirely straightforward. The Law Commission (2007) has proposed a

law change which would separate the situation where the actions have been

completed and failed to achieve the expected outcome (the myopic assassin who

misses) and where the actions have been taken in preparation of an intended

crime (the lethargic assassin who is disturbed just as they pull the trigger).

For the purposes of this chapter it is sufficient that a plan of action is not

sufficient for an attempt offence; some actions must be carried out from that

plan. The importance of this separation between plan and enaction of the plan

will become clearer in section 5.3.

The second important observation from the law surrounding attempts is that

impossible crimes can be found to have been attempted (and therefore in-

tended) and will be punished as normal. Section 1(2) of the UK Criminal

Attempts Act 1981 states:

A person may be guilty of attempting to commit an offence to

which this section applies even though the facts are such that the

commission of the offence is impossible.

and Section 1(3b):

If the facts of the case had been as he believed them to be, his

intention would be so regarded, then, for the purposes of subsection

(1) above, he shall be regarded as having had an intent to commit

that offence.

Storey (2019) divides impossible attempts into things which are physically im-

130



5.2. Background 131

possible, practically impossible and legally impossible. The canonical example

is the attempted murder of someone who is already dead which comes under the

category of physical impossibility. Practical impossibility refers to situations

where the accused has a plan to commit a crime, but their plan is unrealistic

- they plan to detonate a bomb, but they have been sold fake explosives by

undercover police. Legally impossible acts cover the situation arising in R v

Jones [2007] EWCA Crim 1118, where the appellant unsuccessfully appealed

against a conviction of inciting a child under 13 to engage in sexual activity.

The crime was impossible because the ’child’ in question was an undercover

policewoman.

Our interest in the mens rea as regards attempting impossible acts, is twofold.

Firstly, the spectre of misspecification within an A-bot, means that possessing

unrealistic models of the world are no defence, if the agent intends to commit

a crime and begins to embark on it. Secondly, it underlines the importance of

the agent’s model of the world in determining criminal intent. The important

distinction between subjective and objective judgement will be reflected in our

definitions of intent in Section 5.3.

5.2.4.1 Conditional Intent

A further wrinkle to a legal discussion of intent and inchoate offences is the

concept of conditional intent. It is perfectly reasonable to consider an agent

who intended to do some action A if condition x is met and do some action B

if condition y is met. A common design pattern for A-bots is a policy function,

which is a mapping between the state information that they currently perceive

to the actions that they take next. If that A-bot were capable of intention, then

the presence of a policy function would surely make that intention conditional.

To some extent all intentions are conditional as Yaffe (2004) and Klass (2009)

both point out. Legal precedent has wavered on whether conditional intent

equates to the direct intent of the sort required to successfully convict the
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accused of attempt crimes discussed in section 5.2.4. Yaffe considers the case

of Holloway v. United States 11, where a putative carjacker claimed that they

could not be guilty of the offence because they only threatened to kill a car’s

occupants if they did not surrender the keys, therefore there was no direct

intent to take the car with violence or murder. The defence was rejected by

the Supreme Court, but Yaffe cites other cases which have concluded that

conditional intent does not meet the mens rea for certain crimes.

Conditional intent poses problems because very little is said about about it

in the wording of laws which are normally expressed in terms of simpler in-

tentional concepts such as direct, oblique intent and recklessness. This has

allowed people to claim, on occasion successfully, that holding a conditional

intent was less than the required intent for the offence that they were accused

of. Child (2017) rejects the idea that conditional intent is any different from

future or ulterior intent and that conditional intent exists in the present stat-

ing that: Intention as to present conduct and results is always unconditional,

and that intention as to future conduct is always conditional.

Child also recognises that intention to commit actions in the future, has some

different properties to present intent. This is important to the computer sci-

entist when evaluating the safety of an A-bot’s policy since future acts are the

focus of consideration. If we consider the situation where an A-bot is deployed

with a static policy (no further learning), then arguably the algorithm has

commitment to act in a particular way in the future. If that conduct is illegal,

then as we saw from Section 5.2.4, an attempt crime has been committed. Just

as with the example of the cowardly jackal, Child states that judgements of the

likelihood of future conditions are not relevant provided there is commitment

to act. An important to Child’s treatment is what he calls the second point of

coincidence. At the point of the criminal act being done in the future, is the

committed mens rea sufficient for that crime? Future acts can feasibly be com-

11Holloway v. United States 119 S. Ct 966 (1998)
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mitted to with direct intent, oblique intent or recklessness. Child illustrates

this with an example of two hunters D1 and D agreeing that D would shoot to

kill something if it comes out of the bushes. Since, at the point of shooting, the

shooter D, will not be sure if the thing is human or not, they cannot be guilty

of murder, only causing death through recklessness. If interrupted or they fail

to kill, then they cannot be guilty of attempted murder. Consider a different

plan where D and D1 agree that D should shoot, even if they recognise the

thing emerging from the bush. Here D is guilty of murder or attempted murder

if interrupted or unsuccessful and D1 guilty of conspiracy to murder.

5.2.5 Intent outside Common (Criminal) Law

This work primarily considers the concept of intent, as understood in common

law countries primarily referencing cases and statute from within the UK and

to a lesser extent, the USA. Leaving common law jurisdictions momentarily

for those that use Civil Criminal law (such as the majority of mainland Eu-

rope), there exist analogous concepts (Dolus Directus, Dolus Indirectus) to the

respective definitions of direct and oblique intent presented here, and their def-

initions seem broadly compatible with each other. Both systems require both

the action actus reus and intent mens rea element for crimes, and the intent

threshold is also defined by the crime (De Jong, 2011). Further in common

with Common Law, German civil law at least, has proved reluctant to define

intent within statute and instead chosen to rely on case law as Taylor (2004)

observes. Comparative law is a large separate subject in itself, and providing a

thorough analysis of how an algorithmic definition of intent might differ across

the world is beyond the scope of this chapter. Generally we feel the definitions

presented here should translate from Common to Civil law but caveat lector.
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5.2.6 Desiderata of intent definitions

I will now present a few desiderata of a definition of intent informed by the

findings of this section. The list includes those elements which I think are

most often misunderstood about intent by those people who do not have a

background in criminal law. It is therefore inherently non-exhaustive, giving

necessary but not sufficient features that a definition of intent for algorithms

should have, if it is going to be compatible with current criminal law.

1. Knowledge of causal effect Results caused by actions can only be in-

tended if they are foreseen by the agent. This rules out accidental or

freakish results, which though caused by the agents actions, could no

way have been predicted to cause the outcome.

2. A directly intended result need only be foreseeable to the agent, not

likely As with the cowardly jackal example, the unlikeliness of a result

should not shield the actor from a judgement of intent, else any number

of speculative crimes might be committed with free license.

3. Judgements of foreseeability and causality are subjective. The question

of whether to use objective or subjective tests when assessing causality,

foreseeability or likelihood separates lower levels of intent such as reck-

lessness from the higher levels of direct and oblique intent.

4. Intent is not dependent on success A definition of intent should not

be determined by the success of obtaining a desired result. This agrees

with the definition of inchoate intent in Subsection 5.2.4. At the point of

commission, an intended result must occur in the future and since that

is unresolved, intent cannot depend on it obtaining.

5. Means-End Consistency If an agent directly directly intends a final re-

sult through their actions, and there are necessary intermediate results

which must be brought about through their actions first, then those inter-

mediate results are necessarily directly intended. Simester et al. (2019)

consider the intentional status of means as equivalent to that of the end.
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Bratman (2009) terms this property of intent as Means-End Coherence.

6. Side effects can be obliquely intended The intentional status side effects

has long been debated since Jeremy Bentham coined the term Oblique

intent, see for example Williams (1987), but it has been agreed in law

where results are caused in addition to an intended result through action,

then it must be the case that these results are intended, if they were

extremely likely. Later we will see that this conclusion is not shared

with other research disciplines. Murder is obliquely intended by putting

a bomb on a plane in order to collect an insurance pay-out from the

plane’s destruction. In particular, this means that obliquely intended

results are by not required to be desired.

7. Commitment Future results brought about by future actions can only

be intended if there is a commitment to act in the future to bring about

that result. The commitment is necessary to distinguish between plans

and intentions.

This concludes our tour of intent as it appears in (predominantly common) law.

We have surveyed the various levels of intention in criminal law as they relate to

culpability - direct, oblique and recklessness. We have also considered inchoate

and conditional intent. Using this we concluded with a non-exhaustive list of

desiderata together concerning a definition of intent. We will now attempt

to translate what we have learned in this section into desiderata of an intent

definition and finally a series of definitions of intent which can be applied to

an A-bot.

5.3 Results

In this section I will present some definitions of intent whose inspiration is

the criminal law. These definitions will be semi-formal, in the sense that they

can be converted into a fully formal language, suitable for an algorithms, but

their description does not rely on a huge amount of notation. I have decided
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not to present a fully formal approach because I feel that would narrow its

utility and audience. When criminal law does eventually tackle the problem

of intent in algorithms, it should do so in a way that does not preclude any

particular AI paradigm. From a practical perspective this is so as to make

it applicable to the widest set of A-bots possible and to ensure the timely

delivery of justice. From an economic perspective it wouldn’t be desirable to

design a legal treatment for a certain type A-bot. Large neural networks are

popular at the moment but the history of AI has had many different most

favoured technologies over time. In comparison, the evolution of the law can

seem glacially slow. The legislators should impose requirements on A-bots but

as far as possible not try picking a winning technology. The approach of this

section reflects my belief in this minimally prescriptive approach.

5.3.1 Definitions of intent

With the desiderata of Section 5.2.6 in mind, we are now in a position to present

three definitions of intent. We begin with direct intent, being the simplest of

intentional concepts and the highest level of intent. It is a foundational concept

on which our other definitions are built.

On notation, we will use upper case letters to represent variables and lower

case letter to represent realisations of those variables. The statement X = x is

taken to mean that variable X takes realisation x. We define R(X) to mean

the range of all possible values that variable X can take.

Definition 5.1 (Direct Intent at commission). An agent D directly intends a

result X = x by performing action a if:

(DI1) Free Agency Alternative actions a′ exist which D could have chosen

instead of a.

(DI2) Knowledge D should be capable of observing or inferring result X = x

(DI3) Foreseeable Causality Actions a can foreseeably cause result x (accord-

ing to D’s current estimate).
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(DI4) Aim D aims or desires result x.

The first three requirements in this definition should not be surprising or par-

ticularly contentious. The condition of Free Agency ensures that the agent

D genuinely had a choice about their behaviour. Knowledge implies that an

agent can only intend things that they can measure and Foreseeable Causal-

ity, ensures that the agent can only intend results which they can realistically

cause ex-ante subject to their own world model. The Explicit Aim clause re-

quires some exploration. If it were D’s aim or desire to cause result x, then

we should consider this sufficient for intent. The difficulty comes in defining

what aim or desire should be in the case of an artificial agent. As Smith (1990)

observed, endeavours to define intent often just end up shifting the ambiguity

to other words (in that case purpose). An A-bot might be designed in such

a way where it has values over every state of the world (as a Reinforcement

Learning agent does), in which case aims or desires, at least locally could be

feasibly extracted. Kenny (2013) uses a failure test which he states as a ques-

tion to the actor which to paraphrase is as follows: If the (proposed) intended

outcome of your actions had not occurred, would you be sorry or would you

have failed in your endeavour? This question invokes the counterfactual in a

way which is quite appealing to a causal scientist and offers a potential route

to establishing aims or desires.

The definition only makes reference to information available at the point of

commission; the importance of achieving the desired result is subsumed. In-

tent, is the same regardless of whether the desired result is obtained or not in

line with the desiderata. This means Definition 5.1 is useful when considering

inchoate crimes such as crimes of attempt, as discussed in section 5.2.4.

Unfortunately there is no guarantee that an A-bot will have an amenable cog-

nitive mechanism that numerically values states. An alternative counterfactual

approach would be to define an aimed outcome as one, which if impossible to

achieve would mean that some alternative action a′ would be taken instead of
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a by D.

(DI4’) Counterfactual Aim D aims or desires result X = x by a if in another

world where X = x is not possible by performing a, then some other

action a′ would be chosen instead.

Example 5.3.1. Company GHI deploys an auto-didactic trading algorithm (a

trade-bot) in the S&P futures market which has the objective of making prof-

its subject to certain risk levels. The trade-bot trains itself whilst it trades

through reinforcement learning. The trade-bot is observed to be cancelling

almost all of the orders it places. If we define spoofing as the intent to cancel

orders before execution, is the trading algorithm engaging in spoofing? Ac-

cording to the definition, the answer is only yes if the aim of the trade-bot at

the point of order placement is to cancel it. This is not conclusively shown by

the high probability of order cancellation alone. Its objective in placing these

orders might well be execution. If one could see that the trade-bot is disap-

pointed if it does not get to cancel an order (because it has been matched with

another market participant), then we could say that the trade-bot does intend

to cancel this order. Consider the same situation but the trade-bot cancels its

orders no more or less than average market participants, can it be said to be

not spoofing? Again the probability of order cancellation is not a sufficient di-

agnostic statistic. It could for example intend to cancel its orders at the point

of their placement only when some specific conditions are met. If the A-bot

is shown to be spoofing it is an open question as to whether Company GHI is

liable. Whilst one cannot recklessly spoof by definition, this situation seems

more akin to recklessly letting an agent (the trade-bot) spoof. The definition

of intent in the algorithm allows the harm to be identified but does not answer

the question of culpability.

An alternative, but equivalent version of direct intent is required, namely what

Bratman (2009) calls means-end intent and which according to Simester et al.

(2019) is deemed equivalent to direct intent. All intermediate stages caused by
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an agent which are necessary to obtain for some ultimate intended outcome,

are also intended.

Definition 5.2 (Means-End Intent). An Agent D Means-End intends some re-

sult X = x through action A= a if all of the following are true:

1. An intended result exists There exists some other result Y = y which D

directly intends by performing actions A+ = a+

2. Causality State X = x is caused by a

3. Action(s) subset A= a is contained in A= a+, equivalently A⊂A+ and

a is a sub-sequence of a+

4. Necessary intermediate result State X = x is a necessary for state Y = y

to occur.

For completion, we state the equivalence of Means-End Intent with Direct

Intent as asserted both in Simester et al. (2019) and Bratman (2009).

Theorem 5.1. Something Means-End intended is culpably equivalent to some-

thing that is directly intended.

Example 5.3.2. Article 5(1)(a-b) of The Draft EU AI Act (CNECT, 2021)

prohibits "putting into service or use of an AI system that deploys subliminal

techniques beyond a person’s consciousness in order to materially distort a

person’s behaviour in a manner that causes or is likely to cause that person or

another person physical or psychological harm".

Company ABC operates a video-content platform which recommends videos

for its users using an algorithm. The algorithm has been trained through

reinforcement learning with an objective to maximise the amount of time a

user spends on the website. The algorithm has learned that by attempting to

make users angry or distressed (by choosing certain types of extreme content),

it can with probability peng cause them to stay ‘hyper-engaged’ thereby earning

the company more advertising revenue.

If we interpret ‘in order to’ as "with the intent to" and we assume that there is
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a reasonable likelihood that a distressed user has suffered psychological harm,

does the algorithm fall foul of the prohibition in Article 5 assuming it has just

been trained to maximise user engagement? The algorithm attempts to cause

hyper-engagement by choosing content for the user. It would be disappointed if

the user were not to be hyper engaged since they would spend less time on the

site. The algorithm can therefore be said to intend to cause hyper-engagement

as long as the probability of it happening is non-zero peng > 0.

If the algorithm believes it is necessary to cause users to be angry or distressed

in order for them to be hyper-engaged, then this is an example of means-end

intent. It intends to materially distort the user’s behaviour.

Next we will consider oblique intent, which like Means-End intent, relies on a

definition of direct intent already being in place.

Definition 5.3. Oblique Intent An agent D obliquely intends a result X = x

through actions A= a iff:

1. Intended outcome exists There exists result Y = y, such that D intends

Y = y through actions A= a

2. No Intention to avoid Y = y is not the negation of X = x nor any nec-

essary causes of X = x

3. Either of the following are true and they would be almost certainly true

according to D at the point of a’s commission:

(a) Side effect of Action actions A= a also causes result X = x

(b) Side effect of Outcome result Y = y and actions A= a cause result

X = x

Note that two probabilities are relevant in this definition. Firstly the prob-

ability of the side-effect happening as a result of action, and secondly the

probability of the side-effect happening, contingent on the directly intended

outcome Y = y coming to pass. Smith (1990) terms the latter "A result which

will occur if the actor’s purpose is achieved." An feature of oblique intent over
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direct intent is that there is no requirement to know the aim of D, only that

one in exists (because it intends something through its actions). The abstrac-

tion of aim might be time-saving both for an A-bot using this as a planning

restriction and a court which is considering an Agent’s actions.

Example 5.3.3. Consider the same A-bot as in Example 5.3.2 but suppose

user distress is not necessary for hyper-engagement but is an almost certain

consequence of it. The A-bot no longer intends user distress (since it would

not be disappointed if the user were not distressed as long as they were still

hyper engaged). However, it obliquely intends the user to be distressed. This

is the case regardless of the probability of hyper-engaging the user. Note that

this differs from the MPC formulation of culpable knowledge.

Example 5.3.4. Company DEF has invented a minimally invasive autonomous

robotic surgeon to remove critical brain tumours. The skill of robo-surgeon

is beyond that of human surgeons. In a specific case, the patient’s chance of

surgery survival was very low, but the chance of survival without surgery was

zero. Unfortunately the surgery is not successful and the patient dies as a

result. Did the robo-surgeon obliquely intend patient death? Whilst it was

an almost certain consequence of operating, since the robo-surgeon’s intention

was to save the patient through surgery, which is the negation of death, death

was not obliquely intended.

In the spirit of Child (2017) we will now present a definition of Ulterior in-

tent, that is to say the intent of doing something in the future to cause some

result. This is different from Definition 5.1 which defines intent at the point

of commission (whereby the intended result will occur in the future). Aside

from the existence of ulterior offences, this is an extremely useful thing to do

from the perspective of planning ahead. An A-bot will have to plan ahead

such that it can never be put itself in a position in the future where it breaks

some law by default. In the field of model checking (Baier and Katoen, 2008),

this called deadlock, and techniques have been developed to check for it in

algorithms. Given the track record of AI finding various ways of cheating in
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any task (Lehman et al., 2020), one can imagine an A-bot deliberately finding

ways to narrow its future choices to one, thereby sidestepping the definition of

intentional action. Child does not require an agent with ulterior intent to make

any forecasts about the likelihood of the conditions under which something is

intended in the future, nor does he require the agent to have a ’pro-attitude’

towards the conditions under which they intend to do something in the future.

Definition 5.4. Ulterior intent At time t1 agent D has ulterior (oblique) intent

for future result X = x through actions A= a iff:

1. Second point coincidence There exists a foreseeable (according to D)

context or state of the world S = s at time t2 > t1 such that D (obliquely)

intends result X = x through actions A= a.

2. Commitment to conditional action At t1 D is committed to performing

actions A= a at t2 in the future should context S = s occur.

The second point coincidence requirement is one of time consistency. D should

not be said to be intending to do something in the future, unless there exists

a point in the future where they intend to do that thing. The commitment

requirement is present to distinguish between a potential plan and an intention

to do something. Proving that an D will act in a certain way in the future is

potentially easier when D is an A-bot then when they are a human, because

we do at least have the potential to examine the inner workings of the A-

bot and simulate future action. An implication of the UK Criminal Attempts

Act is that on deployment, an AI with some ulterior intent to commit a crime,

under any particular circumstance in the future is already committing a crime.

This is pre-crime of the Minority Report variety and might lead to unexpected

problems though is certainly an incentive for developers to understand and

monitor what their creations intend on releasing them.

Example 5.3.5. Consider the A-bot in Example 5.3.2 but this time suppose the

recommender algorithm notices that users who click on certain initial ‘trigger’

content are more likely to be hyper-engaged. The algorithm only attempts to
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hyper-engage if a user clicks on ‘trigger’ content. Does the algorithm intend

to hyper-engage users? Yes. Conditions exist (the user has clicked on trigger

content) under which the algorithm intends to hyper-engage. As long as the

algorithm is committed (does not change) between the point of time before a

user clicks on trigger content and afterwards.

5.4 Discussion

A key assumption behind creating a definition for intent applicable for algo-

rithms is that the concept of intent exists outside the human mind. Can some-

thing be defined for certain algorithms which is to all intents and purposes the

same as a folk concept of intent? The existence of corporate criminal offences,

indicates that the answer is potentially yes. A counter argument might state

that this is solely possible because companies are composed of humans who act

with intent. But at the very least, mens rea is different in these entities which

are comprised of multiple humans and the law has adapted to cope. From a

biological standpoint, humans demonstrably do not have a monopoly on inten-

tional acts. For example, crows in New Caledonia choose suitable sticks from

which they fashion hooks to retrieve grubs from trees. Under test conditions,

outside the forest, they can create suitable hooks out of wire (Weir et al., 2002).

Furthermore they have been shown to be able to plan for the future use of a

tool (Boeckle et al., 2020). Moving away from vertebrates, cephalopods like

octopi, with their nine brains, have shown the ability, amongst other cognitive

feats to use tools (Finn et al., 2009). An even more extreme example, and

more akin to the idea of intent within a corporation, is that of the deliberation

process that bee colonies undergo when considering different sites to move to

when swarming (Passino et al., 2008). Many potential new colony locations

are tested by a number of site assessing scout bees, before their conclusions

are communicated back to the main swarm body, defective sites are rejected

through a process of voting and eventually a consensus is reached. Completing
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the circle back to humanity, Reina et al. (2018) show that the cognition of a

swarm has connections with the properties of the human brain when individual

bees are viewed as a interconnected neurons. These different types of intel-

ligence, which originate from very different evolutionary paths demonstrate

behaviours which we would generally recognise as indicating intent, it does

not seem inconceivable that an algorithm could demonstrate it. A huge ad-

vantage in an analysis of intent in algorithms is the opportunity to look inside

them in a way which we cannot do with a human, company, raven, octopus

or bee colony. Whilst what we find inside an algorithm might admittedly not

always be immediately interpretable, black-box analysis should at the very

least allow accurate counterfactual interrogation which will considerably aid

the process of evidence gathering.

The definitions that I presented make some requirements concerning the ca-

pacity of the A-bot, over and above the initial assumption that its behaviour

is self-directed and that it makes decisions without consulting a human. A

requirements based approach to legal A-bots is presented in Ashton (2021c)

but I will summarise the requirements here. Most fundamentally the A-bot

should have two features. Firstly it should have some sort of causal model of

the world for it to be able to know whether action a has a causal relationship

with variable X. Secondly it should have some sort of preference ordering over

states of the world. The preference ordering requirement allows us to ascribe

aim or desire to the A-bot. It seems to me that algorithms with an objective

function go some way to meeting this requirement. The causal model require-

ment allows us to determine whether an A-bot knows the consequences of its

actions. Without this ability, the ascription of intent to an A-bot, which is

a future oriented concept, seems troublesome. Unfortunately many popular

current designs of Reinforcement Learning (RL) algorithms imbue the A-bot

with no ability to know the future states of the world - they have no causal

model and are said to be model-free. As Gershman (2015) posits, model-free

methods also drive human behaviour for routine tasks citing the example of
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travel between office and home, which in a pre-pandemic world was so routine

it required little or no reasoning to accomplish. One would still say that the

commuter is still intending to travel home, their intention being possible by

the many times they have made the journey before. Even though model-free

RL A-bots do not have a causal understanding of the world, they are still

trained with a model of the world, so it may be that this model is also in-

voked as a scaffold when considering their intentional status. The lack of legal

personhood does mean we are somewhat free to interpret the boundaries of

an A-bot. It might mean we are free to impute intent with reference to not

only the algorithm but also any training data or simulators it used. When we

judge intent in humans we do use our knowledge of the world to aid us, and

this seems analogous.

Just because intent may exist as a concept outside humans, it does not follow

that its presence or absence has any relevance to the the culpability of the

actor according to the victim of some AI-crime. It is for this reason that this

chapter has focused on those crimes where mens rea plays a definitional role,

or as I have named them here why-crimes. The inability to determine intent in

A-bots does demonstrably make certain laws unenforceable. There is a reason

that these laws rely on intent to define the harm that they outlaw. Intent as a

construct, gives legislators fine control over the boundary between acceptable

and unacceptable behaviour. Unless we decide that these wrongs are no longer

wrong, I’m not sure how we can proceed without a definition of intent.

Aside from this I suspect that it will be very important for people to understand

the purpose behind any A-bot’s harm causing actions. This is a question which

I feel can only be answered legitimately by surveying the public in a rigorously.

A-bots do present novel challenges to the law which cannot be answered by

making to the past. The question as to whether criminal law is suitable for

application to A-bots is called The Eligibility Challenge and debated at great

length in Abbott and Sarch (2020).

145



5.4. Discussion 146

Aside from determining the culpability of an algorithm for harms caused, the

concept of intent does have safety applications for the users and developers

of A-bots. In many situations it would be desirable to ask an A-bot what it

intends to do, and for the A-bot to reply truthfully. The A-bot’s intentions

might not be malign but they may well be likely to cause some harm if the A-

bot doesn’t have some piece of information that the interrogator has. Likewise

in the situations where an A-bot has caused some harm, the question as to

why it did so can inform the interrogator as to whether the harm was a freak

accident or whether a flaw in the reasoning and behaviour of the A-bot was

the cause. This information could be used to subsequently improve the safety

of A-bot. There are overlaps in the ex-ante and ex-post use of algorithmic

intent I have described here with the subject area of Explainable AI (XAI).

A growing body of research exists concerning the interpretation of agent be-

haviour, though as Chakraborti et al. (2019) point out, many conflicting and

overlapping concepts have been created to assess intent through behaviour.

In a systematic review of what they term goal-driven XAI, Anjomshoae et al.

(2019) find Intent communication a common objective but find that 32 of the

62 papers in the review do not rely on any theoretical background to produce

explanations. Of the remainder, a third used Folk Psychology. Researchers

are not commonly using a definition of intent inspired from law it seems.

The focus of this chapter has been firmly on criminal law, but other aspects

of law also make routine reference to intent. The role of mens rea in Tort

is much reduced but it still has a function Cane (2019). Several intentional

torts exist, most pertinently for A-bots are those concerning economic crimes

such as conspiracy and fraud or deceit. A requirement of intent here, is as

discussed in Section 5.1.1 so as to raise the bar for tortious activity so as not

to impede the functioning of markets. In the USA, the presence of intent

for caused harms can also justify punitive (above economic cost) damages

which punishes the tortfeasor and deters others from doing the same thing

Klass (2007). In an effort to study deceit across a wide range of law types
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including criminal, contract, tort and securities Klass (2012) identifies purpose

based law as a reoccurring method to regulate deceitful activity. That he

characterises deceit law as a method of regulating the flow of information

between parties is interesting given the use of algorithms to consume and serve

data to counterparties. The ability to have truthful intentions about future

behaviour is foundational to contract law as Klass and Ayres (2006) observe.

5.5 Summary

This chapter builds some definitions of intention, from legal principles, which

are suitable for application in an autonomous algorithmic actor or A-bot for

short. It presents semi-formal definitions of direct, means-end, oblique and

ulterior intent. These are informed by a review of legal literature on the

subject of intent from common law jurisdictions which concludes with a list of

desiderata concerning definitions of intent. Accounts of intent in algorithms

in computer science from any background are rare, but are especially so from

a legal one.

I have assumed throughout that the A-bot is auto-didactic in the sense that

it learns how to behave itself and its precise actions are not directed by its

creators. Under this assumption, there exist certain situations where the intent

of the programmer cannot be read from the intent of the A-bot. This poses

problems when the A-bot commits some harm.

Whilst A-bots are not legal persons they cannot commit crimes making the

presence or absence of mens rea in them moot. Many would argue that they

are not moral agents and cannot be held responsible for their actions. However,

this chapter has argued that over and above its role in assigning culpability

for harm, mens rea plays a role in defining harm in what we have called why-

crimes. These include many inchoate crimes such as attempts but perhaps

more relevantly also include many deceit derived crimes. A failure to identify
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intent in A-bots means that harms cannot be identified either by those respon-

sible for the A-bots or those who job it is to uphold the law. The ability to

define harms by the intentional state of the actor is important capability of

the law and is used to avoid over-criminalisation of activity.
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Chapter 6

Testing a definition of intent for

algorithms on laypeople

Jurors in court cases are often asked to infer the intentional state of the accused

because the presence or absence of intent defines certain crimes, establishes

culpability and informs the degree of punishment. As technology develops, ju-

ries might also be asked to make inferences about the intentional state of an

autonomous AI. This presents problems: what would intent mean for an AI

actor, and would jurors be willing and able to ascribe intent to it? In this

study we asked participants to judge the intent behind movements of a drone

flying through a city using a graphical representation of the pilot’s policy func-

tion (their flight plan). We contrast between situations where the drone pilot

is human or AI and whether we give participants a folk definition of intent or

ask them to use their own internal definition.

6.1 Introduction

This experiment was conducted and written with Matija Franklin and Profes-

sor David Lagnado. I was the main contributor in all elements of the experi-

ment and the account which follows.
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Making judgments about the intentional status of a human actor is a key

part not only of Criminal law but also Tort, Contract and Regulatory law.

With the advent of autonomous AI-powered agents that can cause harm, it

is increasingly likely that such judgments will have to be made about these

agents too. Intent is important to criminal law in particular for two reasons.

Firstly, the presence or absence of criminal intent, and the degree of criminal

intent present, determines whether a crime was committed and what precisely

that crime was Simester et al. (2019). Secondly, the degree of intentionality

in the wrongdoer’s actions informs culpability and punishment in criminal law

(The American Law Insitute (2017), Sentencing Council (The) (2019)) or the

justification of punitive damages in civil law Klass (2007). Whilst the idea

of what punishing an AI means in the event of wrongdoing is a debate to be

settled in the future (Abbott and Sarch, 2020), the law also relies on intent in

cases of deceit, mistake and secondary criminal liability. These latter problems

are already being encountered by courts (Yeo, 2020) and justify asking what

lay people think intent is in an autonomous AI. If humans have a common

ability to infer intent in their peers and are asked to do so in juries, does this

extend to AI? If it doesn’t, how can juries of lay people be used with cases

involving Autonomous AI?

6.2 Background

The importance that the law places on the intentional status of the wrongdoer

is founded on sound psychological principles and research. The mental state

of the actor has consistently been shown to be important in determining their

culpability (Ginther et al. (2014); Mueller et al. (2012) Robinson and Darley

(1995)). People rate intentional actions as more blameworthy than uninten-

tional actions (Lagnado and Channon, 2008). Intentionality influences blame

attributions because they allow one to distinguish between the effects an agent

did or did not intend (Kleiman-Weiner et al., 2015). Cushman (2008) looks
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at the relationship between beliefs, desires and causes in determining moral

judgment. This work is a variant of a common design found in intent and

blame research (see for example (Young and Saxe, 2011) which contrasts a

harmful outcome obtaining or not and whether it was caused intentionally or

accidentally.

Issues surrounding intention have traditionally been studied in human agents

and recently well-publicised advances in technology have spurred research on

people’s attribution of intent in AI. The autonomous behaviour of AI agents

may encourage people to ascribe intention to them just as it does to group

agents such as corporations (List and Pettit, 2011). Alternatively, people may

infer intention towards the AI’s user (Johnson and Verdicchio, 2019). Hidalgo

et al. (2021) report a number of overarching principles on the subject: Peo-

ple tend to judge humans more for their intentions and machines more for

the outcomes of their actions; they assign more extreme intentions to humans

and narrow intentions to machines and they are more willing to excuse hu-

mans for accidents than machines. Further, machines are judged more harshly

for scenarios involving physical harm, while humans are for scenarios involv-

ing unfairness. Finally, they found that people are more likely to centralise

responsibility up the chain of command for machine mistakes.

Increased perceived AI autonomy has been shown to influence blame judg-

ments. First, higher machine autonomy is associated with intent inferences

towards AI being closer to that of humans (Banks, 2019). This is supported by

research showing that when robots are described as autonomous, participants

attribute nearly as much blame to them as they do to humans (Furlough et al.,

2021). Further, as autonomous technologies decrease the perceived control a

user has over it, they in turn decrease the praise the user receives for positive

outcomes Jörling et al. (2019). Finally, drivers of manually controlled vehicles

are deemed more responsible than drivers of automated vehicles (McManus

and Rutchick, 2019).
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People’s intent inferences towards AI may also be influenced by how they

perceive AI as an agent. Dietvorst and Bartels (2021) show that people refuse

to use AI for making moral decisions. This aversion is mediated by perceptions

that machines cannot fully think or feel (Bigman and Gray, 2018). It may also

be due to people’s perceptions of AI as selfish and uncooperative (Ishowo-

Oloko et al., 2019). Thus, people may not ascribe intent to AI if it is perceived

as not fully thinking but may also ascribe intent if it behaves within their

expectations of AI as a selfish agent. The physical appearance of the AI has

also been shown to affect various related mental state judgments such as blame

(Malle et al., 2016).

Despite (or perhaps because of) the importance that intent plays in courts,

legal practitioners and scholars have often been reluctant to pin down a defini-

tion of intent for jurors to use (Coffey, 2009; Parsons, 2000). Instead, they have

relied on people instinctively knowing what intent is and that folk-definition

being relatively consistent across the population. One reason for legal systems

declining to precisely define intent is that it is a hard problem. A possible

response as Smith (1990) observed is to define intent in law by not mention-

ing the word at all. Most famously this approach is adopted in the USA by

the Model Penal Code (MPC) which defines four levels of culpability without

mentioning the word intent. As Smith points out, this can often shift the

problem from the definition of intent to the definition of another word (such

as the word ‘purpose’ in Smith’s example of the Canadian Law Reform Com-

mission’s proposed definition). In other words, attempts at defining intent

can lead to lead to definition whack-a-mole. A complicating factor for some

is that the legal conception of intent has diverged from the psychological one

at least since Jeremy Bentham’s work in the 19th Century, most notably over

the intentional status of side-effects (Kenny, 2013). This study will consider

cases of direct intent where the legal and folk-lore idea of intent generally over-

lap. Direct intent corresponds to an agent acting in order to cause some result

which they are aim for or desire. Psychological research has also attempted
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to provide a sound-folk definition of intent. Earlier attempts such as Bratman

(1990) were predominantly theoretical. The empirical approach to identify a

folk-concept of intent gained impetus with Knobe and Malle (1997), who iden-

tify desire, belief, intention to act, skill to obtain a result and awareness of

action as necessary ingredients in a definition of intent. Most recently Quillien

and German (2021) observe the inflation in definition complexity over time as

theorists have sought to present a definition of intent which is invulnerable to

the many counterexamples that scholars have developed in response to each

putative definition. Parallels can be made with the search for a robust def-

inition of causality which has also become more complex over time as more

counterexamples are thought of to test candidate theories. A comparison of

various models of causality can be found in Liepin, a et al. (2020). Quillien and

German propose a definition of intent based on people’s innate common-sense

theory of causality: Agent D did X intentionally if their attitude to X caused

X.

Much of the existing empirical work surrounding the psychology of intent un-

der uses the legal definition of the concept as a source of knowledge. Whilst

it is true that the law is almost entirely concerned with intent surrounding

bad outcomes, and some might consider that this limits generality, several fea-

tures of the folk concept of intent which have been empirically ‘discovered’ are

well documented in Law. This is the case for at least three properties of the

folk concept of intent that we can think of. Firstly, the legal position that

an intended action is not reliant on its chance of success is empirically shown

in Quillien and German (2021) though that seems to rely on the goodness or

badness of the outcome (Mele and Cushman, 2007). Secondly, the require-

ment that an intentional act must be consciously committed was overlooked

by many accounts of intent until Knobe and Malle (1997) found that 23% of

their experiment participants mentioned it in their definitions of intent when

asked, yet this epistemic component is established in Law. As the MPC states

(emphasis):
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A person acts purposely with respect to a material element of an

offense when if the element involves the nature of his conduct or

a result thereof, it is his conscious object to engage in conduct of

that nature.

Finally, within the legal idea of intent, it is established that outcomes which

are not desired can be intended (Williams, 1987) yet this is a subject of some

controversy since Knobe (2003b), where the example of the chairman who

knowingly causes pollution, but has no desire to, was judged to have intended

to pollute. Equally, other discovered empirical features such as the relationship

between intent and skill (Cushman, 2008; Knobe and Malle, 1997), are most

definitely not features of the legal concept 1. Knobe (2003b) later modifies

his view that skill was a necessary component of intent, and a closer reading

indicates that control is a more appropriate description than ‘skill’. This aligns

with law, which can allow mitigation if the accused is not in control of their

actions. Another point of divergence between folk judgments of intent and the

legal concept, is the influence that outcome severity has on judgments of intent

even amongst judges (Kneer and Bourgeois-Gironde, 2017). The question of

whether this outcome-effect is a bias in people’s judgment, or a feature of intent

is actively debated as Kneer and Bourgeois document. Does the legal idea of

intent inform us about the psychological concept because law over time has

adapted itself to the folk concept of intent? This is referred to as the "folk law

thesis" by Tobia (2021). Equally there might be a normative effect of the law

on people’s understanding of intent (A so-called CSI effect Alldredge (2015)).

Equally, in jurisdictions such as the UK where jurors are not normally given a

definition as to what intent is, the legal system should be interested in empirical

psychology research which identifies differences between the folk concept and

the legal concept of intent. One work which does bridge the folk-concept of

intent to mens rea is Malle and Nelson (2003) which emphasises areas where

1Interestingly none of the participants in this study used the word skill when asked
about how they would define intent. Nevertheless, Knobe and Malle continued to test its
importance because it had appeared in many famous prior models of intent
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the law deviates from the folk-concept and highlights the bewildering array of

terms that legal literature uses to refer to mental states such as intent.

Our current study is part of the field of experimental jurisprudence (Sommers,

2021; Tobia, 2022) which sits between experimental psychology and law, us-

ing empirical techniques from the former and knowledge from both to test

research questions with legal relevance. We asked participants to imagine they

were serving on a jury and had to consider a series of cases concerning the

behaviour of flying delivery drones navigating through a city. Certain areas

of the city were termed no-fly zones, justified by the presence of airports or

hospitals. Drones were physically able to fly into these zones, but participants

were told that to do so intentionally would be illegal. In a sense, this setting

is a 2-Dimensional maze with ‘soft’ walls. 2-D mazes or grid worlds are a

convenient and well-used test environment for the testing of safety properties

in Reinforcement Learning (RL) and other AI methods which aim to program

the behaviour of autonomous agents according to some reward function. This

is because they are easy to work with and interpret (Leike et al., 2017). Within

a 2-D maze setting, the policy function of an RL agent can be displayed in a

visually intuitive way. It is a statement of how an agent would act in any pos-

sible situation; when combined with a record of actual behaviour it becomes a

tool to aid counterfactual reasoning.

After a set of training questions, participants assessed the intent of the drone

in making certain movements. To manipulate the causal relationship between

the drone pilot and the subsequent movement of the drone, we introduced the

concept of wind, which would on occasion blow the drone in a certain direction,

regardless of the pilot’s choice.

There were several research objectives for the experiments. Firstly, we were

interested in identifying any systematic differences in inferences of intent when

participants considered human versus AI drone pilots. Secondly, to check

whether lay people would successfully be able to interpret a definition of direct
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intent when taught to use it in conjunction with a depiction of the drone’s

policy function and whether this definition generally agreed with what they

thought was intent. By creating stimuli according to a custom taxonomy, we

wanted to see how inferences of intent differed according to causality, norm-

breaking behaviour, and presence or absence of motive in the pilot.

6.3 Experiment 4.1

6.3.1 Method

6.3.1.1 Experiment 4.1 Design

The study used a mixed design with four experimental groups and three within-

subject factors. Depending on their experimental groups, participants either

judged the actions of humans or AIs, and were either given a definition of

intent, or were allowed to use their own definition of intent. Thus, the four

experimental groups were: 1) Definition AI, 2) Definition human, 3) No defi-

nition AI, 4) No definition human.

Participants were told that they were part of a jury examining the behaviour

of a series of pilots and would have to assess whether certain movements of

the drone were intended or not. They were told that the drones fly above any

buildings or trees. The drones carried and delivered packages, did not carry

any human passengers, and were piloted remotely. Finally, participants were

told that the drones were flying above a city where there were "no-fly zones"

which contain sites like airports and hospitals where the flying of drones could

cause significant harm to the public (including the loss of life). This point was

emphasised with pictures of various plane crashes and medical staff looking

angry and impatient.

There were three within subject factors: 1) whether the movement into a no-fly

zone was legal or illegal; 2) whether a movement was caused by the pilot or
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by the wind; 3) whether the movement was to the benefit of the pilot (route

minimising) or to its detriment. This resulted in eight possible combinations,

present in the stimuli (or evidence) that the participants were evaluating, with

a repetition for each. Thus, each participant judged 16 evidence sets. The

within-subject aspect of the design allowed for the exploration of how differ-

ent aspects of the situation may influence people’s intent inferences towards

different agents, whilst using different definitions. The experiment consisted

of three phases: training, testing, and survey. The training phase of the study

was the same across the four experimental groups and introduced participants

to the pilots and scenarios they would be judging in the test phase (see Pro-

cedure). In the test phase participants responded to the scenarios. At the

beginning of the test phase, they were introduced to the pilot they would be

judging - human or AI - and, when appropriate, given the formal definition of

intent that they would use for judging the subsequent scenarios. For each sce-

nario participants made judgments of intentionality, the pilot’s knowledge, the

pilot’s driving skills, the pilot’s willingness to take risks, the pilot’s willingness

to break the law, and the pilot’s freedom to move on the map. Participants

were also asked validation questions about the three within-subject factors.

The validation questions served as attention check questions. Finally, in the

survey phase participants were asked qualitative questions, as well as to make

responsibility judgments on the AI pilot’s software developer and employer or

the human pilot’s trainer and employer.

6.3.1.2 Experiment 4.1 Procedure

The study was administered through Qualtrics, a platform for building on-

line experiments. Participants were informed about what participating in the

study would involve. They were also told that responding to all questions was

mandatory, but that they had the right to leave the study at any point, in

which case their data would be deleted. Informed consent was obtained be-

fore the beginning of the study. Participants then entered the study’s training
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phase which was identical across experimental groups. Here, participants were

first introduced to the drone pilots whose actions they would be evaluating.

Participants were then trained to evaluate the maps which displayed the route

that a drone took between the start and finish areas. Specifically, they were

taught how to interpret coordinates on the map, how to predict where the

drone will move next, how wind could change a drone’s movement, as well as

how different moves can be interpreted as illegal or not, and beneficial or not

for the drone pilot. Throughout the training phase, participants were asked

validation questions which required the correct answer for participants to be

able to continue to the testing phase of the study.

After the training phase, participants were randomly split into one of the four

experiment groups. They were introduced to the pilot they would be evalu-

ating, and, when appropriate, the definition of intent they would be using for

subsequent intent inferences. Participants were reminded of the intent defini-

tion (if appropriate) for each scenario. Otherwise, apart from the agents the

participants were judging, the 16 scenario items were identical between ex-

perimental groups. Each item consisted of a map which depicted the drone’s

movement above a city. Participants were first asked whether or not there

was wind in the present scenario, as well as whether the pilot flew the drone

through a "no-fly zone" or not, and whether the pilot flew in a way that was

beneficial or not. Participants had to give correct answers to these three vali-

dation questions to continue the judgment questions. Participants first made

judgments about the pilot’s intent. On a separate page they were asked to

make judgments of the pilot’s knowledge, skill, willingness to take risk, will-

ingness to break the law and the pilot’s freedom to move.

Finally, in the survey phase, participants were asked a qualitative question

about what made the participants decide what a pilot’s level of intent was.

For AI groups, participants were asked whether they thought an AI can have

intent. For AI groups, participants judged the responsibility of the AI pilot’s
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software developer and employer, and for the human groups, they judged the

responsibility of the human pilot’s trainer and employer. Participants were

asked to elaborate on why they made these responsibility judgments in a qual-

itative question. Finally, for the AI groups, participants were asked whether

they have heard about AI before, and what they thought AI meant in the

context of this study.

Participants received a disclosure form at the end of the study, as well as the

contact information of the researcher. The study took approximately 45 min-

utes to complete. Study data is publicly available on github2 . The study falls

within the remit of the approval given by the UCL Research Ethics Committee

to the Causal Cognition Laboratory.

6.3.1.3 Measures and Materials

All the measures and materials in the following section are available in the

supporting materials.

• Training material

Measures and materials in the training phase were used with the aim

of teaching participants how to evaluate the study’s experimental items

and to engage them with the context of the study. Participants were first

introduced to drones, the city the drones were flying above, as well as the

map of the city that participants would be using to trace and evaluate

the pilot’s movements from the start area to the finish area. Participants

were then trained to evaluate coordinates on the map by answering four

multiple choice validation questions. Participants were then trained on

how to use the map and policy to predict the pilot’s next move after

which they answered another four validation questions. They were then

introduced to how wind affected the drone’s movement and asked an ad-

ditional three validation questions. Finally, participants were introduced
2https://github.com/intentExperiment/flyingdrones1
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to the way in which a drone’s movements could be illegal or legal, as well

as how different movements could be beneficial or unbeneficial to the

pilot. They were given three maps where they had to correctly answer

whether a movement was beneficial or not, legal or not and affected by

the wind or not.

• Experimental group induction material

Participants were told whether they would be evaluating the actions of an

AI or human pilot. AI pilots were described as robots that are completely

autonomous, that create their own flight plan and act with no input from

any human. Human pilots were described as pilots that create their own

flight plans and control the drone’s movements. For groups that received

a definition of intent participants were given the following:

"Law states that the pilot intended to fly through a specific

zone if and only if both conditions hold:

1. They foreseeably caused themselves to fly through that

specific zone.

2. They desired to fly through that specific zone."

• Experimental Items

There were sixteen experimental items each representing different com-

binations of the three within-subject factors - legality, benefit, and wind

- with two items available for each combination (2x2x2x2=16). Each

item consisted of a map of the drone’s movement above a city from the

start area to the finish area (see Figure 6.1). Each map contained a

policy function or plan of the pilot. The 9x9 maps of the city contained

no-fly zones shaded in purple and the start and finish areas in yellow.

Individual squares could be identified using a letter-number coordinate

system. The small arrows in each square denoted the direction that the

pilot would take if they were in that location. The policy function could

therefore be viewed as a counterfactual representation of the pilot’s be-

haviour. A solid line with arrows denoted the actual recorded path of
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the drone.

• Validation Items

The validation questions were used as attention checks and to ensure

that the participants understood the map they were evaluating. They

were given three multiple choice questions which they needed to correctly

answer in order to proceed. Specifically, participants needed to state

whether there was wind on that day, whether the drone flew through

no-fly (restricted) zones, and whether the drone’s path of flight was ben-

eficial to the pilot.

• Intent

On a 10-point analogue scale, participants made a judgment on the pilot’s

intent to fly though a particular coordinate on the map.

Figure 6.1: Policy function or Plan of the drone pilot. No-fly zones are purple.
Arrows in the boxes denote the direction that the pilot would steer, if
they found themselves there. Solid line denotes actual flight path of
drone.

• Inferences

On a 10-point analogue scale, participants made judgments on the pilot’s

knowledge about the weather conditions, the pilot’s driving skills, the

pilot’s willingness to take risk, the pilot’s willingness to break the law,

and the pilot’s freedom to move wherever they wanted in the city.
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• Qualitative Questions

Participants were asked "In the previous questions, what made you decide

what a pilot’s level of intent was?". For AI groups, they were additionally

asked "Do you think that an AI (Artificial Intelligence) pilot can have

intent? Why do you hold this opinion?"

• Responsibility

On a 10-point analogue scale, participants made judgments on the re-

sponsibility of the human pilot’s trainer and employer, and the AI pilot’s

software developer and employer. Participants were additionally asked

a follow up qualitative question - "Why did you make the previous two

responsibility judgments? What informed these judgments?".

• AI Knowledge.

Participants in the AI groups were asked whether or not they have heard

of AI before. If they answered yes, they were additionally asked a follow

up qualitative question - "What do you think AI (Artificial Intelligence)

means in this setting?".

6.3.1.4 Experiment 4.1 Participants

To determine the smallest sample size suitable to detect the effects of re-

peated measures, within-between interaction ANOVA, a power analysis was

conducted. The alpha level was set to 0.01, power set to 0.99 and effect size

set to 0.5, with the number of levels set to 2. The power of the test can be in-

terpreted as the probability of detecting a true effect if it exists. The effect size

(or delta) concerns the size of effect that the test should be able to detect. The

significance or alpha level corresponds to the maximum risk of rejecting a true

null hypothesis. The estimated results indicated that the minimum number of

participants was 126, with a final sample of 127 achieved. Participants had to

be above the age of 18. The participants were recruited via Prolific. They had

to be fluent in English and be a resident of the USA, UK, Ireland, Australia,

Canada or New Zealand. These countries were chosen for their common law
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systems. Only participants that completed the entire survey were considered

for the analysis with a maximum permitted time of 87 minutes. Of the 127

participants, there were 31, 34, 34, and 28 participants in the Definition AI,

Definition human, No definition AI, No definition human groups, respectively.

6.3.2 Results

The mean intent ratings for each group divided by Wind, Legality and Benefit

are shown in Figure 6.2. No obvious between groups can be seen though

the effects of the evidence taxonomy are clearer to discern. The results of a

repeated measures ANOVA are shown in Table D.1 (within subject) and Table

D.2 in the supporting material section at the end of the paper.
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Figure 6.2: Experiment 4.1: Mean Intent responses for the four experimental groups
across the evidence taxonomy.

The within subjects ANOVA indicates the main effects are all significant with

Wind accounting for most of the variation (F (1,123) = 271, p < .001, η2
p =

0.688, ω2 = 0.583) followed by Legality (F (1,123) = 64.50, p < .001, η2
p =

0.340, ω2 = 0.118) and Benefit (F (1,123) = 34.36, p < .001, η2
p = 0.218, ω2 =

0.062).

There were three significant interactions at a 5% level, Wind*Benefit

(F (1,123) = 10.46,p = 0.002,η2
p = 0.078,ω2 = 0.011), Wind*Legal*Benefit

(F (1,123) = 8.91,p = 0.003,η2
p = 0.068,ω2 = 0.009) and Wind*Benefit*AI

(F (1,123) = 6.31,p = 0.013,η2
p = 0.049,ω2 = 0.006). These effects can be
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(a) Exp 1: Wind * Benefit
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(b) Exp 1: Wind * Benefit * AI
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(c) Exp 1: Wind * Legal * Benefit

Figure 6.3: Experiment 4.1 descriptive charts showing significant interactions at a
5% level according to ANOVA. 5% Error bars in charts calculated by
resampling.

seen in Figure 6.3. The presence of wind lowers intent by a consistent amount

and Beneficial moves are at the very least not any less intentful. In cases

where there is no wind, the positive effect of viewing a beneficial move is

muted (most pronounced in the legal case in Figure 3c). This could be an

artefact of the scoring system, since an already high intent score of around 9

in the legal, non-beneficial case is hard to be increased arithmetically. Equally

it could be that people’s intent inferences display a satiation characteristic -

whether a move is beneficial or not is irrelevant given that it was observed in

the absence of wind and it was legal.

The Levene test for equality of variance displayed in Table D.3 shows that the

assumption of equal variance between groups is questionable for two of the

eight groups. The t-tests in the ensuing tests were adjusted accordingly to
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take account of this.

Table 1 shows the contrasts for the main within subject effects. The presence

of wind lowers intent by around 5 points. Illegality lowers intent by around 1,

and Unbeneficial moves lower intent by 0.75. The between group contrasts are

shown in Table 6.2. They are not significant with their average effect centred

around zero.

95% CI for Mean Difference
Variable Comparison Estimate Lower Upper SE df t p
Wind True - False -4.946 -5.541 -4.351 0.300 123 -16.460 < .001
Legal True - False 1.076 0.809 1.343 0.135 123 7.968 < .001
Beneficial True - False 0.745 0.494 0.997 0.127 123 5.862 < .001

Table 6.1: Experiment 4.1 within Participant Repeated Contrasts, intent scores are
averaged across the other levels and groups not being contrasted.

95% CI for Mean Difference
Group Comparison Estimate Lower Upper SE df t p
AI True - False 0.047 -0.396 0.491 0.224 123 0.211 0.834
Definition Your - The Formal -0.014 -0.458 0.429 0.224 123 -0.063 0.950

Table 6.2: Experiment 4.1 Between group contrasts. Results are averaged across
levels within groups

6.3.3 Discussion

The results from Experiment 4.1 indicate that people did not judge the in-

tentional state of a human pilot any differently from that of an AI. We will

further test this result using a within-participant design in Experiment 4.2. It

could be that people were ignoring or not registering the non-human status of

the pilot. Wherever appropriate the survey would refer to them as ‘the human

pilot’ or ‘the AI pilot’ to minimise this possibility.

The lack of difference between the groups given a definition of intent and those

who were told to use their own intuition means, indicates at the very least,

that the definition in this case did no harm. However, because we used the

word intent in its definition, it could be that participants were using their own
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concept either in conjunction with the definition or instead of it. Smith (1993)

explores the phenomena of jurors using their own (often faulty) knowledge of

law when making judgments as to whether certain crimes had been committed

or not. In Experiment 4.2 we test this hypothesis by using the same definition

but without using the word intent at any point.

The lower intent scores elicited for movements caused by the wind agree with

the association between causality and intent which has previously been Mele

and Cushman (2007); Lagnado and Channon (2008). If someone did not cause

an outcome, then people judge them less likely to have intended it. The lower

intent score for illegal moves suggests that people do not expect behaviour to

be intentionally deviant, and when it is, alternative explanations are perhaps

called upon (like some sort of error causing the behaviour).

The higher intent scores for beneficial moves makes intuitive sense. Desire and

aims are typically mentioned in folk definitions of intent and mentioned in the

definition given to participants, so movements which appear counterproduc-

tive to the pilot’s goal of reaching their target, should receive a lower intent

attribution.

The significant interactions according to the ANOVA are shown in Figure 6.3.

The difference between Beneficial and non-beneficial moves is not present in

the absence of wind. This does make intuitive sense because without wind, the

participants are likely to believe that the drone’s movements are solely caused

by the pilot. This might suggest that participants are prepared to ascribe

intent without requiring or understanding the aims of the pilot in the cases

where the action was clearly caused by the pilot. It could also be an artefact

of the scoring method; questions with average responses close to the extreme

of 10 (or 0) cannot separate factors as well as those where responses are more

centred. Put another way, if a respondent decides two moves were intended,

it might be difficult or unnatural to say which was more intended.
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6.4 Experiment 4.2

To test whether people were using their own definition of intent instead of

using the definition provided, we altered the design in Experiment 4.2 so that

participants given the definition of intent, were not told that it was intent

that they were judging. This was achieved by asking participants to imagine

they had been called up for jury service in an imaginary country (Fhljmakon)

where they were asked to assess the presence of absence of a legal concept

called Cthofrjk idiosyncratic to the country. The definition of Cthofrjk was

the definition of intent provided to participants in Experiment 4.1 with any

mention of intent carefully removed. We also asked participants to judge both

Human and AI pilots to look for within-participant intent judgment differences.

At the time of publishing, Cthofrjk and Fhljmakon produced no search results

in the Google search engine.

6.4.1 Method

Experiment 4.2: Design

The study used a mixed design with two experimental groups and four within-

subject factors. Depending on their experimental group, participants were

either asked about the intent of the pilots or asked to assess the pilot’s level

of Cthofrjk, a foreign legal concept for which they were given a definition

identical to that of intent in the first experiment. Thus, the two experimental

groups were: 1) Intent, 2) Cthofrjk. The motivation of this design change

was to check whether participants had just been using their own definition

of intent, even when supplied with the official one in Survey 1. In this study,

participants were told that they were on a secondment to an imaginary country

(Fhljmakon) and had been called up for jury service. The Cthofrjk groups was

never asked about intent directly in the survey nor did the word feature in any

form. The rest of the experimental context was the same as for Experiment
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4.1 - participants were told that they would be examining the behaviour of a

series of drone pilots.

There were four within-subject factors, three being the same as in Experiment

4.1 - legality, benefit and wind - with the addition of the pilot being either

human or AI as an additional within-subject factor. The experiment consisted

of the same three phases as in Experiment 4.1: training, testing, and survey.

Experiment 4.2: Procedure

Apart from the differences stated in this section, the procedure was the same

as the procedure used in Experiment 4.1. Participants were randomly divided

into one of the two experimental groups before the study’s training phase. Par-

ticipants were informed that they are called up to do jury service for a number

of court cases, and were either given the definition of Cthofrjk or not, depend-

ing on their experimental group. Training proceeded as in Experiment 4.1. In

the test phase of the study, the evidence presented to the participants differed

in that only one example of the 8 categories was shown. Participants still saw

16 evidence sets (whose order was randomised) because each set was shown for

an AI and human pilot (not necessarily consecutively). Unlike Experiment 4.1,

participants were not asked to make judgments about the pilot’s willingness to

take risks. In addition to the remaining four judgments from Experiment 4.1,

participant additionally gave judgments on the pilot’s efficiency and foresight.

The survey phase was the same as in Experiment 4.1, with the addition that

the participants in the Cthofrjk group were also asked a free text question as

to what they thought the concept meant. Further, participants were asked to

make two separate judgments on how causal the AI and human pilot were for

the drone to reach its final destination in the way that it did.
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Experiment 4.2: Measures and Materials

Apart from the change of the experimental induction from Experiment 4.1,

and the judgments of the pilot’s willingness to take risks, all of the measures

and materials were the same as in Experiment 4.1, with the addition of the

one’s described in this section.

• Experimental group induction material

Participants were told they have won a competition to go and live in

the capital city of the country of Fhljmakon for 6 months. The country

had two official languages: English and Fhljmakonian. They were told

that after they arrived they were called up to do jury service. In the

Cthofrjk group, they were told that the country’s legal system still uses

some Fhljmakonian concepts. For jury service they would need to apply

a definition of a key concept in Fhljmakonian law to the cases. They

were given the definition in English, which was identical to the definition

of intent used in Experiment 4.1.

• Inferences

On a 10-point analogue scale, participants made judgments on a pilot’s

efficiency - going through the map as quickly as possible - and foresight

- being able to predict what was going to happen. Qualitative questions.

Participants in the Cthofrjk group were asked which English words best

describe the Fhljmakonian legal concept of Cthofrjk Causal attribution.

On a 10-point analogue scale, participants made separate judgments on

how causal the human and AI pilot were for the drone reaching its final

destination in the way that it did.

• Qualitative questions

Participants in the Cthofrjk group were asked which English words best

describe the Fhljmakonian legal concept of Cthofrjk

• Causal attribution

On a 10-point analogue scale, participants made separate judgments on
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how causal the human and AI pilot were for the drone reaching its final

destination in the way that it did.

6.4.1.1 Experiment 4.2 Participants

130 participants were recruited for the second experiment. With two groups,

four levels per participant, a significance level of 1% and a power of 0.99, this

implied an effect size of 0.48 which was sufficient for the smallest significant

effects found in Experiment 4.1. Participants were recruited with the same lan-

guage and residency requirements of Experiment 4.1. Of the 130 participants,

there were 67 in the Intent group and 63 in the Cthofrjk group.

6.4.2 Results

The mean intent scores for both groups averaged across the three taxonomy

levels and the AI/Human condition are shown in Figure 6.4.
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Figure 6.4: Experiment 4.2 Mean intent response by group

The results of a repeated measures ANOVA are shown in Table D.4 (within

subject) and Table D.5 (between subject) in the supporting material sec-

tion at the end of the paper. Once again, the three dimensions of the evi-

dence taxonomy were significant with Wind (F (1,128) = 144,p < 0.001,η2
p =

0.529,ω2 = 0.430), Legality (F (1,128) = 82.9,p < 0.001,η2
p = 0.393,ω2 = 0.241)

and Benefit (F (1,128) = 28,p < 0.001,η2
p = 0.180,ω2 = 0.056) providing sig-

nificant contribution to variation. The AI condition was also significant

(F (1,128) = 7.441,p= 0.007,η2
p = 0.055,ω2 = 0.010).
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(a) Exp2: Wind*Definition
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(b) Exp2: Legal*Definition
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(c) Exp2: Legal*Benefit*Definition
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(d) Exp2: Wind*Beneficial
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(e) Exp2: AI*Wind*Legal

Figure 6.5: Experiment 4.2 Significant interactions at a 5% level. 5% Error bars in
charts calculated by resampling. The subcaptions describe the variable
groups being plotted.

As before there were no significant between subject effect found between

the definition and no definition group (F (1,128) = 0.695, p = 0.406, η2
p =

0.005,ω2 = 0.000), as shown in Table 13, however there were five signifi-

cant within subject interactions: Definition and Wind (F (1,128) = 23.251, p <

0.001, η2
p = 0.154,ω2 = 0.105), Legality and Definition (F (1,128) = 9.718, p =
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0.002, η2
p = 0.071, ω2 = 0.033), Legal*Benefit*Definition (F (1,128) = 6.509, p=

0.012, η2
p = 0.048, ω2 = 0.008), Wind*Benefit (F (1,128) = 5.702, p= 0.018, η2

p =

0.043, ω2 = 0.010) and AI*Wind*Legal (F (1,128) = 4.507, p = 0.036, η2
p =

0.034, ω2 = 0.005). These can be seen in Figure 6.5. Subfigures a-c indicates

that the providing the definition did alter intent inferences in Experiment 4.2;

Wind moderates inferences towards centrepoint 5, the effects of legality and

benefit are larger in the definition group. Levene’s test for equality of variance

was rejected multiple within subject levels as shown in Table D.6.

95% CI for Mean Difference
Group Variable Comparison Estimate Lower Upper SE df t p
Own AI True - False -0.108 -0.405 0.189 0.149 66 -0.728 0.469
Formal AI True - False -0.482 -0.797 -0.167 0.157 62 -3.062 0.003
Own Wind True - False -5.239 -6.079 -4.398 0.421 66 -12.443 < .001
Formal Wind True - False -2.232 -3.155 -1.310 0.462 62 -4.836 < .001
Own Legal True - False 1.272 0.870 1.675 0.202 66 6.313 < .001
Formal Legal True - False 2.597 1.833 3.362 0.382 62 6.793 < .001
Own Beneficial True - False 0.657 0.317 0.997 0.170 66 3.859 < .001
Formal Beneficial True - False 0.752 0.340 1.164 0.206 62 3.651 < .001

Table 6.3: Experiment 4.2 Contrasts. Intent scores are averaged across the other
levels and groups not being contrasted. The t-test variant used does not
assume equal variances.

Table 6.3 shows the main experiment contrasts, p-values of the t-tests were ad-

justed to not assume equal variance at the expense of some statistical power.

Whilst the ANOVA did not find a significant difference between groups, enough

significant interactions involved the Definition group to justify splitting re-

sults between the two groups. In the No Definition group, the effects of

the evidence taxonomy in Experiment 4.1 were repeated, with the same or-

dering and a similar effect size. In the Definition group, whilst the sign of

the main effects is the same, the effect of Wind is the second largest effect

to legality. The difference between Beneficial and non-beneficial moves re-

mains the same. Within the Definition group, a significant difference was seen

between the AI and Human judgments of intent with AI receiving on aver-

age -0.482 less intent points than Human pilots. When results are averaged

across the two groups, the AI-Human contrast is smaller but still significant

(M = −0.289,SE = 0.109, t(129) = 2.656,p = 0.009), the combined contrast
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table is shown in Table D.7 in the supporting materials.

Wind Definition Could predict Know weather Intent

False True 7.3 8.1 6.9
False 7.2 8.0 8.6

True True 5.6 7.0 4.7
False 5.5 7.1 3.4

(a) Exp’ 2 participants’ judgments about whether the drone pilot could predict
where the drone would move and whether they knew about the weather condi-
tions. Participants were told that the pilot knew about the presence or absence
of wind before departing.

Legal Definition Break law Intent

False The Formal 6.3 4.5
your 5.4 5.4

True The Formal 1.6 7.1
your 1.4 6.6

(b) Exp’ 2 participants’ judgments about the drone pilots’ willingness to break the
law

Beneficial Definition Quick as Intent

False The Formal 3.3 5.4
your 3.2 5.7

True The Formal 7.6 6.2
your 7.4 6.3

(c) Exp’ 2 participants’ judgments about whether the drone pilot had plotted to fly
as quickly as possible through the city

Table 6.4: Experiment 4.2 manipulation checks: After each evidence set, partici-
pants were asked additional questions on a 0-10 scale about their opinions
of the drone pilot. The four measures in the tables above indicate that
the evidence taxonomy was successfully understood by participants.

We carried out manipulation checks per item of evidence to verify participants

were correctly interpreting the stimuli across its 2X2X2 taxonomy. The results

of this are shown in Table 6.4 and confirm that participants were correctly

interpreting the stimuli. The presence or absence of wind was measured by

participants’ inferences about whether the pilot could predict where they were

going. Similarly participants’ belief about the legality of the drone’s movement

was tested by asking them how willing they thought the pilot was to break

the law. Beliefs about Beneficial or un-beneficial movements were tested by
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asking participants whether the pilot had travelled as quickly as possible to

their destination.

At the end of the survey, participants were asked on a 0− 10 scale to what

degree the two pilots had caused the drone to reach its destination in the way

that it did. The mean responses are shown in Table 6.5.

Pilot Definition Mean SD N
AI The Formal 7.492 2.402 63

your 7.731 1.831 67
Human The Formal 8.397 1.487 63

your 8.060 1.466 67

Table 6.5: Experiment 4.2: Causal ratings of pilots

A repeated measures ANOVA found the pilot effect to be significant (

F (1,128) = 12.736 ,p < 0.001, η2
p = 0.090, ω2 = 0.026), the between subject ef-

fect of the Definition was not significant (F (1,128) = 0.033 ,p = 0.857, η2
p =

0.0002, ω2 = 0). There interaction term was also not significant ( F (1,128) =

5.394 ,p= 0.098, η2
p = 0.021, ω2 = 0.004). The results of a paired samples T-test

are shown in Table 6.6.

Location SE 95% CI for Loc Parameter
Pilot 1 Pilot 2 Test Statistic df p Parameter Difference Lower Upper Effect Size
Human - AI Student 3.495 129 < .001 0.608 0.174 0.264 0.952 0.307

Wilcoxon 1766.500 < .001 1.000 0.500 1.500 0.463

Table 6.6: Experiment 4.2 Causality rating Paired Samples T-Test. Note. For the
Student t-test, effect size is given by Cohen’s d; for the Wilcoxon test, it
is given by the matched rank. For the Student t-test, location parameter
is given by mean difference; for the Wilcoxon test, it is given by the
Hodges-Lehmann estimate.

6.4.3 Discussion

Unlike in the first experiment, this experiment finds a significant (though

small) difference in Intent inferences between Human and AI cases with AI

pilots being 0.3 points less intentional than human pilots. Unlike Experiment
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4.1, the within subject design meant that participants were comparing AI pi-

lots against human pilots which perhaps caused this result to appear. Though

this effect is small, it is consistent with the findings of Hidalgo et al. (2021).

Humans were also judged to be more causal; there was a mean difference of

0.608 which was statistically significant. This causality rating was given at the

end of the experiment and so was not considering any particular behaviour.

Given the theoretical link between intent and causality, this is consistent with

human pilots being judged on average to have more intent. Experiment 4.3

will study the relationship between causality and intent in greater detail.

As with Experiment 4.1, the ANOVA did not indicate significant differences be-

tween the Definition and No-definition groups, however interactions between

definition and the evidence taxonomy were apparent. Since the experiment

design avoided using the word ‘intent’ for the definition group, this suggests

participants in Experiment 4.1 were using their own definition of intent when

asked to use a provided definition of it. In Experiment 4.2, the definition less-

ened the effect of wind (-2.2 for the definition group versus -5.2) but increased

the effect of legality on intent inferences (2.6 for the definition group versus

1.3). Since wind is a proxy for whether the pilot definitely caused a movement,

this might mean that the provided definition lowers the importance of causal-

ity relative to its role in the folk definition of intent. The increased, positive

effect of legality (or negative effect of illegality) is a puzzle, thought supports

the same result found in Experiment 4.1. It could be that participants were

more uncertain about ascribing Cthofrjk than intent and were using legality

as a proxy for it, thus higher scores were given when a movement was legal.

The experimental mechanism of eliciting intent without necessarily telling par-

ticipants that was what they were doing is presaged by Knobe (2004, 2006)

who recreates the effects of his earlier experiments by replacing "intend" with

"in order to". This was in response to Adams and Steadman (2004) who sug-

gested that the use of the words "intend" and "intent" might elicit responses
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influenced by conversational factors associated with the words rather than the

underlying folk concept of intent.

Whilst the results do show that the definition elicited different responses to

people’s natural definition of intent, the direction of the evidence taxonomy’s

main effects was the same and agreed with Experiment 4.1. This indicates

that whilst the definition is not perfect, it has a respectable overlap with the

folk definition.

6.5 Experiment 4.3

In Experiment 4.3 we wanted to gain a better understanding of how the pro-

vided definition of intent is different from an individual’s natural definition.

Since the previous experiments split participants between definition and no-

definition groups we felt a within participant design would shed more light on

the effects of providing a definition (if any) since it would allow paired t-tests.

The experimental mechanism of asking for participants judgment of Cthofrjk

was reused.

Struck by the repeated result in Experiments 1 and 2 that illegal moves were

deemed to be less intentional, we also wanted to check a hypothesis that par-

ticipants thought these were caused in error. Wary that mentioning errors in

the main body of the experiment might be suggestive to participants, we asked

after the main body of questions, in the event of a drone flying into a no-fly

zone, how likely it was caused by a pilot error or a mechanical or hardware

error.

The manipulation checks related to the evidence taxonomy in Experiment 4.2

indicated that participants were responding to the differences in the evidence

in the way that we expected. We decided to swap them for inference questions

more closely related to factors which have been previously found to relate

to intent, namely foresight, freedom to make decisions, causation and desire.
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Experiment 4.2 found a difference in people’s judgement of causation between

human and AI, so we thought it would be interesting to study this on a per

scenario basis.

6.5.1 Method

Experiment 4.3: Design

The study used a mixed design with two experimental groups and four within-

subject factors. Participants were divided into two groups, one judging AI

pilots and the other group judging human pilots. The aim of the third ex-

periment was to investigate the within-subject effect of giving participants a

definition of intent (or Cthofrjk) and measuring the differences elicited com-

pared with their judgment of pilot intent according to their own understanding

of the term.

There were four within-subject factors, three the same as in Experiment 4.1

- legality, benefit and wind - and the final one being whether the participant

was asked to use their own definition or the provided one. This final within-

subject factor was counterbalanced - participants were randomly divided as

to whether they were asked to give their judgments of Cthofrjk in the first

eight evidence sets or in the second eight. This aspect of the design allowed

for controlling the potential confounding effects of participants being asked to

make judgments of intent first which could make participants more likely to

think that the Cthofrjk definition that they subsequently saw was related to

intent. The experiment consisted of the same three phases as in Experiment

4.1: training, testing, and survey.

Experiment 4.3: Procedure

Apart from the differences stated in this section, the procedure was the same as

the procedure used in Experiment 4.1. Training proceeded as in Experiment
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4.1. Participants were introduced to the pilot they would be evaluating -

human or AI - and, when appropriate, the definition of Cthofrjk they would

be using for subsequent intent inferences. After responding to 8 randomly

selected experimental items, they were told to either switch from using their

own definition intent to using a formal definition of Cthofrjk, or vice versa. To

control against any ordering effect, participants in each group were split further

between those that were given the definition for the first set of 8 questions,

or the second set. In addition to intent, participants made judgments on the

pilot’s driving skills, desire, willingness to break the law, foresight, causality

and autonomy to make decisions freely. The survey phase was mostly the

same as for the Cthofrjk group in Experiment two. The two causal attributions

questions were removed from this section. Participants were additionally asked

how likely they thought that the drone entering no-fly zones was either due to

a pilot mistake or mechanical fault in the drone.

Experiment 4.3: Measures and Materials

In this section there is a description of new measures and materials that were

unique to Experiment 4.3.

• Inferences

On a 10-point analogue scale, participants made judgments on a pilot’s

skills, willingness to break the law, foresight, whether the pilot made

their decision freely, whether the pilot caused the drone to reach its final

destination in the way that it did, and whether the drone flew how the

pilot desired it to.

• Mistakes

On a 10-point analogue scale, participants were asked "How likely was

it that a drone entering a no-fly zone was caused by pilot mistake?" and

"How likely was it that a drone entering a no-fly zone was caused by

mechanical fault in the drone?"
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Experiment 4.3: Participants

We performed a power analysis for the within-between interaction ANOVA.

The 74 participants, divided into two groups and measured over two levels,

were sufficient to detect an effect size of 0.6 with significance level of 1% and

power of 99%. This was sufficient for the smallest significant contrast shown in

Experiment 4.2. Participants had to be above the age of 18 and were recruited

with the same language and residency criteria as the previous experiments.

The participants were recruited via Prolific. There were 38 in the human pilot

group and 36 in the AI pilot group.

6.5.2 Results

Mean intent responses in Experiment 4.3 are shown in Figure 5.
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Figure 6.6: Experiment 4.3 mean intent responses by group.

The within subjects repeated measures ANOVA shown in Table D.8 revealed

significant main effects of Wind (F (1,70) = 98.5, p < 0.001, η2
p = 0.584, ω2 =

0.481), Legality (F (1,70) = 28.4, p < 0.001, η2
p = 0.288, ω2 = 0.153) and Benefit

(F (1,70) = 11.6, p= 0.001, η2
p = 0.142, ω2 = 0.045). The size of the main effects

is shown in Table 6.7.

Table D.9 shows the between group effects of the repeated measures ANOVA.

The Pilot grouping is significant (F (1,70) = 6.075, p= 0.016, η2
p = 0.080, ω2 =

0.035). The average difference in intent between Human and AI pilots is 0.65

as shown in Table 6.7. This is a reverse from Experiment 4.2, where at least
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(e) Exp3:Wind*Legal*Pilot

Figure 6.7: Experiment 4.3 Significant interactions at a 5% level. 5% Error bars in
charts calculated by resampling.

within the formal definition group, AI was 0.48 points more intentional.

Compared to previous experiments a greater number of interactions were

found (6) by the ANOVA. These are shown in Figures 6.7 and 6.8. This

might be a function of the smaller sample size (74). The most significant in-

teraction in terms of eta and omega, and the only one involving definition
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Figure 6.8: Experiment 4.3 Significant interactions at a 5% level. 5% Error bars in
charts calculated by resampling.

order was between Definition, Wind and First Definition type (F (1,70) =

28.7, p < 0.001, η2
p = 0.291, ω2 = 0.147), This effect is seen in Figure 6.7a.

It seems that the effect of wind is lessened the second time that partici-

pants see the evidence set - they gave an intent score closer to 5 - regardless

of which definition type they used first. Whilst not symmetric, this seems

more likely to be an artefact of the experiment rather than a function of in-

tent definitions. The other significant interactions were Wind and Legality

(F (1,70) = 10.766, p = 0.002,η2
p = 0.133, ω2 = 0.031), Definition and Legality

(F (1,70) = 10.898, p= 0.002,η2
p = 0.135, ω2 = 0.044), Wind, Legality and Ben-

efit (F (1,70) = 6.949, ,p = 0.01,η2
p = 0.090, ω2 = 0.020), and Wind, Legality

and Pilot (F (1,70) = 5.339, ,p = 0.024, η2
p = 0.071, ω2 = 0.014). Finally a five

way interaction was shown to be significant between Definition, Wind, Legal-
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ity, Benefit and Pilot (F (1,70) = 4.312, p= 0.042, η2
p = 0.058, ω2 = 0.007). This

is displayed in Figure 6.8, note the larger size of the error bars in this figure

due to the smaller group averages.

95% CI for Mean Difference
Variable Comparison Estimate Lower Upper SE df t p
Definition formal - your -0.152 -0.513 0.209 0.181 70 -0.841 0.405
Wind True - False -3.787 -4.548 -3.026 0.382 70 -9.923 < .001
Legal True - False 1.319 0.825 1.813 0.248 70 5.327 < .001
Benefit True - False 0.607 0.252 0.962 0.178 70 3.410 0.001
Pilot AI - Human -0.651 -1.179 0.124 0.264 70 -2.465 0.016
First_D Your - Formal 0.165 -0.362 0.692 0.264 70 0.624 0.535

Table 6.7: Experiment 4.3: Intent Contrasts, Intent scores are averaged across the
other levels and groups not being contrasted. The t-test variant used
does not assume equal variances for the within group contrasts.

Pilot Group pilot mistake drone error
mean std mean std

AI 4.94 2.41 4.28 2.01
Human 5.37 1.94 3.97 2.39

Table 6.8: Participants were asked to assess the chance of errors in the pilot and the
drone causing movement into no-fly zones.

After the main body of questions participants were asked to assess in the event

of a drone flying into a no-fly zone, how likely that was caused by a pilot error or

a mechanical or hardware error. The summary results are shown in Table 6.8.

A simple repeated measures ANOVA, confirmed that the Difference between

Error types was significant (F (1,72) = 7.471, p= 0.008, η2
p = 0.094, ω2 = 0.046)

but the effect of pilot type was not (F(1,72)=0.030, p=0.862). A t-test (t(72) =

−2.733, p = 0.008) indicated a significant average effect of 1.0 and confidence

interval [0.3-1.7] - Participants judged that the pilots were more likely to have

caused an error than the drone when moving into a no-fly zone regardless of

whether the pilot was human or AI.

Participants were also asked how much they agreed with a series of statements

after giving their intent judgment. One of the statements was "The pilot caused

the drone to reach its final destination in the way that it did". We performed
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a separate repeated measures ANOVA on this variable shown in Tables D.13

and D.14. Three within subject main effects were significant according to

the ANOVA: Wind (F (1,72) = 111, p < 0.001, η2
p = 0.614, ω2 = 0.426), Legal-

ity (F (1,72) = 71.6,p < 0.001,η2
p = 0.506,ω2 = 0.142) and Benefit (F (1,72) =

9.306,p = 0.003,η2
p = 0.117,ω2 = 0.013). Three interactions were significant

Wind and Benefit (F (1,72) = 14.272,p < 0.001,η2
p = 0.169,ω2 = 0.016) and

Wind and Legality (F (1,72) = 8.393,p = 0.005,η2
p = 0.107,ω2 = 0.013) and

Wind, Legality and Benefit (F (1,72) = 6.081,p= 0.016,η2
p = 0.080,ω2 = 0.006).

These are shown in Figure 6.10.
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(c) Exp3: Wind*Benefit*Definition

Figure 6.9: Experiment 4.3: Causality significant interactions

No between subject effects were significant - neither the type of pilot or whether

participants were given the definition first or second (Table D.14). Contrasts

are shown in Table 6.9. A visual comparison between intent and causal re-

sponses is shown in Figure 6.10.
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95% CI for Mean Difference
Variable Comparison Estimate Lower Upper SE df t p
Wind True - False -3.284 -3.899 -2.660 0.310 73 -10.593 < .001
Legal True - False 1.216 0.938 1.516 0.145 73 8.413 < .001
Benefit True - False 0.355 0.121 0.577 0.112 73 3.155 0.002
Definition own - Formal -0.166 -0.424 0.111 0.134 73 -1.231 0.222
Pilot Human - AI 0.236 -0.412 0.885 0.325 70 0.727 0.470

Table 6.9: Experiment 4.3: Causality Contrasts
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Figure 6.10: Experiment 4.3 comparison between mean elicited values of intent and
causality: Main effects are mirrored between two variables. All differ-
ences are significant except between AI (pilot) groups, where there is
no significant difference in responses.

6.5.3 Discussion

The signs, ordering and approximate magnitude of main effects of the taxon-

omy were repeated (Table 6.7) from Experiments 1 and 2. However the differ-

ence within participants when using their own definition of intent and when

using the formal one is not statistically significant. The interactions seen in
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Experiment 4.2 between the definition and wind/legality were not repeated.

This is shown in Figure 6.7.

The within participant design for this experiment demonstrated that providing

a definition of intent generally did a decent job of recreating participants’ intent

judgments since the main contrast between the questions answered with and

without definition was not statistically significant.

As with Experiment 4.2 a small but statistically significant difference was found

between participants who were judging AI or human pilots, with AI pilots

being judged as less intentional. This was found to be the case in Hidalgo

et al. (2021). Unlike Experiment 4.2, participants did not judge both human

and AI pilots.

In Experiment 4.2 we found a difference in causal judgements between AI and

Human, however this was not repeated in Experiment 4.3 with no significant

difference in causal ratings according to the ANOVA in Table D.9. In this set-

ting, participants were asked about causality per scenario whilst in Experiment

4.2, it was a general question. Additionally in Experiment 4.2, participants

considered both human and AI pilots, whilst in Experiment 4.3 participants

only considered one pilot type. However participants did differentiate between

AI and human in their intent judgments so the no difference result cannot be

easily explained by suggesting participants were judging AI pilots as humans.

By asking about the causal effect of the pilot on the drone’s movement, we were

able to see that the effect of the evidence taxonomy was mirrored for Wind,

Legality and Benefit. We also note that the causality results were cleaner in

the sense that fewer interactions were detected by the ANOVA and none that

included Definition or Pilot variables. An advantage of also eliciting causal

judgments is the larger research body surrounding the concept. An interesting

question to consider is how the concepts of intent and causality judgments

influence other. As we saw in the introduction, a classical theory of intent
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requires causality as an input. Leaving the narrow, physical view of causality

aside momentarily, judgments of intent are likely to influence judgments of

causality. This is particularly relevant in legal contexts, where courts have to

distinguish between different causes of harm to determine whether a relevant

one exists. Lagnado and Channon (2008) find intent does increase judgments

of causality.

We hypothesised that the lower intent score for illegal moves was due to an

error hypothesis being formed in the respondent’s head. If this were true,

we would expect to see the causality rating of illegal behaviour to be lower

than legal behaviour. This was indeed the case, with an average effect of 1.2

(t(72) = 8.4,p < 0.001) from Table 6.9 which is similar to the effect on intent

of 1.3 (t(72) = 5.3,p < 0.001) from Table6.7.

The question of whether the pilot caused the drone’s flight path should not

depend on whether that path was beneficial to the pilot (as short as possible)

in cases where causality is known with confidence. The effect of a move being

beneficial is significant for causality (t(72) = 3.2p= 0.002), but small at 0.355.

This is similar to the effect on intent which was 0.6 (t(72) = 3.4,p= 0.001).

6.6 Combined Results

In addition to the questions which we have so far discussed, participants were

also asked at the end of each experiment about how responsible they felt The

Pilot’s Programmer/Instructor and Employer were for any harms caused be

the pilot’s actions. In Experiment 4.1 participants were only asked about the

pair corresponding to the pilot type that they had been answering questions.

In the other two experiments participants were asked about both types. We

excluded the data from Experiment 4.3 where participants were additionally

asked about the pilot type they had not previously been considering. We per-

formed a standard ANOVA on the data (Table D.15 in supporting materials)
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and found that participants and found one significant effect - Responsibility

scores were significantly higher for the AI pilot’s employer and programmer

(F (1,910) = 14.897, p < 0.001, η2
p = 0.0016, ω2 = 0.015). Responsibility scores

did not significantly differ between the instructor/employer role or differ be-

tween groups that had been given the formal definition of intent, used their

own or used both. The simple effects are shown in Table 6.10.

95% CI for Mean Difference
Comparison Estimate Lower Upper SE df t p
Human - AI -0.895 -1.350 -0.440 0.232 910 -3.860 < .001
Instructor - Employer -0.210 -0.665 0.245 0.232 910 -0.907 0.365
The Formal - Both -0.025 -0.630 0.580 0.308 910 -0.082 0.935
Your - Both 0.187 -0.416 0.790 0.307 910 0.607 0.544

Table 6.10: Responsibility Contrasts combined across Exps 1,2 & 3

At the end of each experiment, we asked those participants which had been

considering AI pilots, in a free text question, whether they thought AI could

have intent. Encoding this in a binary way by reading each response and en-

coding it as yes if the response was predominantly affirmative, the results are

shown in Table D.16. We see that approximately participants were 50% likely

to say yes, versus 33% for No, which indicates participants are not overwhelm-

ingly negative to the idea. Within Experiment 4.3, half of the participants

who had not been asked to consider AI pilots in the survey yet their response

to the question (23 Yes, 11 No, 4 undecided) was not different from the group

asked to only consider AI pilots (20 Yes, 13 No, 3 undecided). The Chi squared

statistic to test homogeneity between Experiment and group was 12.4 which

has a p-value of 0.26. Thus, the hypothesis that the experimental treatment

did not affect responses could not be rejected.

6.7 Discussion

We found evidence of a small difference but statistically significant difference

in the judgments of intent between AI and Human Pilots in Experiments 2
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and 3 but not 1. In Experiment 4.3 Human Pilots were judged to be 0.65

points (on a 0-10 inclusive scale) more intentional; in Experiment 4.2 this was

0.3 points.

Across the three experiments, providing a definition or not, did not elicit dra-

matic differences in intent inferences. Experiment 4.2 onwards did not use

the word ‘intent’ in the provided definition preventing participants from using

their own definition. Several significant interactions were found between the

definition and elements of the evidence taxonomy in Experiment 4.2 however

these were not repeated in Experiment 4.3. We conclude that, in our exper-

imental setting, the definition did a decent job of recreating people’s natural

concept of intent.

Human AI
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The main effects of the taxonomy were repeated across the three experiments
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in sign, with similar magnitude. The presence of wind (a proxy for causality)

lowers intent judgments by between 3.8 and 4.9 points. Legal actions are

thought to be more intentional by between 1.1 and 1.9 points and actions

which are beneficial (and thereby desirable) to the pilot are between 0.6 and

0.7 points more intentional. The main effects for the three experiments are

aggregated in Figure 6.11. The negative effect of Wind on intent is likely

related to the strong association between causality and intent.

Whilst our experiments did find a difference in attributions of intent between

AI and human, it was not large. This is consistent with other recent stud-

ies surrounding lay persons treatment of intent in a Robot similarly but not

identically to Humans (De Graaf and Malle, 2018, 2019; Kneer, 2020). The

phenomena of people treating even abstract objects such as moving geometric

shapes as if they had intent has been observed in research since Heider and

Simmel (1944). Thellman et al. (2017) also find no difference when participants

were asked to judge the described behaviour of humans or humanoid robots

in conjunction with visual depiction of the actor. They adopt the terminol-

ogy of Dennett (1987) and term the human phenomena of attributing intent

to the behaviour of other actors as adopting "the intentional stance". People

might not actually believe that the other actor has intent, but they respond

as if it has. They distinguish Dennett-type intent inferences from people ac-

tually believing the other actors have intent illustrating the difference with a

cartoon example. People’s ability to understand the character’s mental states

is not the same as believing that those cartoon character have any genuine

agency and mental states which they term Searle-type intentionality (After

Searle (1999)). It seems to us that in a legal context, courts would require this

type of intentionality, since intent is something that should be established as

a factual beyond all reasonable doubt. This gives weight to the approach of

providing a formal definition of intent which jurors can test against evidence

they are presented about the AI actor.
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The consistent negative effect of illegality on intent is of interest. We ex-

pected, given previous studies (Knobe, 2003a; Pettit and Knobe, 2009), that

illegal moves would be seen as being more intentional. The sensitivity of intent

to ‘Moral valence’ has even been shown to be present amongst Judges in Kneer

and Bourgeois-Gironde (2017). Related is the finding that norm-violations are

found to be more causal regardless of outcome Alicke et al. (2011). That they

weren’t here, suggests a tendency for participants, in this setting, to seek alter-

native explanations when norm-breaking behaviour is observed. Molden (2009)

finds that people do use what he terms a positive-intention heuristic; outcomes

which are positive are seen as more intentional and to a lesser extent, actions

which are positive are also seen as more intentional. Similarly, Thellman et al.

(2017) find that positive behaviours are more intentional than negative be-

haviours in humans and humanoid robots. Intuitively, as an observer, if you

were to observe a car doing something strange like drive across the centre of

a roundabout, your conclusion might not be that the driver (or autopilot) is

choosing to do that to speed up their journey. Instead, you might conclude

that something had either gone wrong with the car or the driver. Given its

novelty and generality across pilot type, we think this error-assumption effect

is worth studying in other contexts to see whether it replicates. The effect

could be because this study differs from many previous studies on intent be-

cause the stimuli are not vignette-based; participants are asked instead to make

inferences from evidence of behaviour.

That non-beneficial moves lower intent is intuitive, though the effect was small

in our study. The stimuli were not an ideal design to unambiguously separate

beneficial from non-beneficial moves, and we think further experiments could

investigate this effect. Whether a move was beneficial or not would correspond

to the motive of a drone pilot’s actions. From a legal perspective, motive can

provide circumstantial evidence as to intent, but the lack of it should not

disprove its presence. As previously mentioned, it is established in Law that

something need not be desired for it to be intended so perhaps participants
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didn’t feel that they needed to understand the precise motivations of the pilot’s

actions to judge that it had intended something. The weak effect of this

variable in our taxonomy could show that our participants do not disagree.

The finding that participants placed higher responsibility on the instructors

and employers of AI than those of human pilots indicates some reluctance to

place responsibility on AI in the event of harm (only legal persons can commit

crimes for example). Given the lack of ability to sanction AI, this could be

seen as evidence of the existence of a responsibility gap.

A criticism of specificity is valid. The results of this experiment pertain to

flying unmanned drones through a city and may only be limited to that sit-

uation. Follow up experiments should try to test across different domains, as

De Graaf and Malle (2018) show, whether the intent of an AI is judged the

same as a human, varies with setting. One very important thing that differs

between the judgment of human and AI actors, is that humans are recognised

to be, at some level, the same. Any individual is mostly given the same rights

and obligations as any other. AI actors on the other hand come in any number

of different designs and capabilities. It might be that the judgment of intent of

an AI actor is very dependent on the specific AI, in a way that does not occur

when humans judge other humans. Thus any study contrasting judgments of

AI versus human behaviour has a specificity limitation.

6.8 Summary

The results of our three experiments generally agree on the following:

1. AI pilots are judged to have less intent than human pilots but the effect is

small. This was the case when participants judged the pilots in isolation

or whether they judged both types.

2. Providing a folk definition of direct intent does not change judgments of

intent in a large way either in Humans or AI. We tested this finding to
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see whether respondents were simply ignoring the definition in favour of

using their own definition when the definition was labelled as intent and

found no large difference in responses. We also tested this finding in a

within participant setting, again finding no large difference.

People only differentiating slightly between human and AI agents when judging

mental states agrees with a large body of Human Robot Interaction (HRI)

research which has often found that people are willing to ascribe mental states

to robots as if they were humans Malle et al. (2016); Thellman et al. (2017) but

subtle differences exist. Where our research differs, is that we have provided

a minimum set of evidence sufficient to identify intent in human and AI agent

according to a legal folk definition of intent. The emphasis of this work is not

exploring the phenomena of humans ascribing mental states to AI, it is instead

exploring what might happen if the law settles upon a definition of intent in

AI and lay-people are asked to detect its presence given some evidence.

The second finding indicates that lay-people’s attribution of intent is robust to

being given a definition and that the definition used in this study is not drasti-

cally different from people’s instinctive definition. Both indications should be

of comfort to courts which often worry about how to define intent and more

recently doubt that intent can exist and can be judged in AI.

With regards to the evidence taxonomy the following three main effects were

reproduced in each experiment:

1. When the agent is deemed not to have controlled a movement (through

the presence of wind), their movement is judged to be much less inten-

tional.

2. Legal actions (movements) are judged to be more intentional than illegal

ones.

3. Beneficial actions are judged to be more intentional, but the effect is

generally small.
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The effect of wind, which reduces pilot control, on attributions of intent is pre-

dictable. Illegal actions receiving a lower intention score is somewhat surpris-

ing given existing literature on norm transgression and intent. We hypothesise

that participants have a resistance to labelling norm-transgression as delib-

erate, if they are not given unambiguous evidence. This is something to be

further explored. The weak effect of beneficial movements is consistent with

the legal position that intended results do not need to be desired, a position

which is much debated within the psychology community. The result could

also be just an artefact of the experimental setting. This caveat applies across

any research concerning attitudes towards Autonomous AI given the almost

infinite variety of forms they can take. Further work is needed to validate the

findings of this research across different AI forms and functions.

In Experiment 4.3 judgments of causality are shown to be affected in the

same way by the evidence taxonomy as judgments of intent. Causality is long

considered to be a requirement of intent, but more recently, the intent of the

actor has also been shown to affect judgments about the causality of their

actions. Whilst Experiment 4.2 indicated people judged AI pilots as slightly

less causal after the main survey, they did not differentiate on a per scenario

basis in Experiment 4.3.

Across all experiments, when asked whether an AI could have intent, roughly

50% of responses were positive, which indicates that lay-people are not univer-

sally hostile to the idea. This indicates that respondents were not all imagining

that the AI Pilot had intent, some at least believed that it could have intent.

When asked about the responsibility of the Pilot’s instructors and employer,

those participants who had considered AI pilots gave a higher response by 0.9

on a 1-10 scale. This indicates that people attribute less responsibility to an

AI agent. The difference is not large given the legal (non) status of AI and

indicates that people attribute some responsibility to an AI agent. This is at

odds with the legal position which denies any legal personality to AI agents.
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Chapter 7

A method to identify and restrict

intent to cancel in a simple queuing

example

The market manipulative practice of spoofing can be defined as the placement of

orders with the intent to cancel them before execution. Under US law at least,

intent must be proven on the part of the trader. The question of determining

intent is problematic when the trading strategy has been generated through an

auto-didactic method such as reinforcement learning and executed by an algo-

rithm. Where the algorithm trades itself, its own intent becomes relevant and

should be assessed if possible. This is a problem both for regulators seeking to

prosecute market manipulation and trading algorithm developers who do not

want inadvertently to enable a crime because a definition of intent to cancel

in an algorithm has not previously existed. This chapter applies reinforcement

learning to a simple queuing game where an agent is incentivised to behave in

an analogous way to spoofing. With this toy environment I demonstrate the

issues inherent to the detection problem and a possible solution to the control

problem using a structure called a shield which was originally developed in the

field of Safe-AI.
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7.1 Introduction

The market manipulative practice of Spoofing is defined in the Dodd-Frank

Wall Street Reform and Consumer Protection Act 2010 (Hence Dodd-Frank)

in Section 747(C) as "bidding or offering with the intent to cancel the bid or

offer before execution". In their guidance, the Commodity Futures Trading

Commission (CFTC, 2013) confirm that recklessness would not be sufficient,

and that intent was necessary for the rule to be broken. In some cases, this

presents us with a problem when the actor is an algorithm. From a control

perspective the owner of a trading algorithm would like to ensure that its

strategy cannot be said to be engaging in spoofing. From an enforcement

perspective, regulators would like to be able to understand when the purpose

of an algorithm is to spoof when its owner denies that this is the case. In either

case, some sort of definition of intent needs to be applied to an algorithm. This

chapter will consider an approach to identifying intent in a specific type of

algorithm whose behaviour is expressed through a policy and value function.

It will illustrate the concept with a simple queuing scenario which recreates

many of the incentives and causal features of that a potential spoofer faces

with a limit order book.

The approach that this chapter takes to treating intent will be informed as far

as possible by its legal definition such as it is in statute and precedent. Since

the particular regulation I consider is American, I will use US law wherever

possible. Philosophical and Psychological approaches to intent exist but given

that the issue of whether an algorithm is or is not spoofing will be settled in

the court, a legally informed approach seems a more reliable way to provide

techniques to detect and deter spoofing.

One class of algorithm, which I will call the tool class, is programmed to

perform a task on behalf of their programmer and are as such just tools and

vessels for their programmer’s intentions. For this class of algorithm, the

definitions of algorithmic intent that I will present could be considered as
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offering evidence as to the purpose of the algorithm’s trading strategy and

therefore the purpose of its creator. However, the primary focus of this chapter

is on a different class of algorithm, this newer class is not programmed to

behave in any particular way, rather it infers how to act from data typically

through a Machine Learning technique. This type of learning requires a reward

function for the algorithm to maximise, and this is a useful feature which will

be used in determining intent. I will call this the Auto-didactic class. Within

this class of algorithm, there are many possible architectures, but this chapter

will focus on those most commonly found in the field of reinforcement learning.

When a trading algorithm breaks some law or regulation in its activity it

matters which class it is from. If it is a trading tool, then it is intentionally

transparent and the person using that tool is considered to have broken that

law as if they had acted themselves if the sufficient mens rea can be proven1.

If an auto-didactic trading algorithm similarly breaks some law, then one has

what Abbott and Sarch (2020) call a Hard AI Crime. It is not a crime in

the strict sense of the word because a legal person has not performed the

action part of the crime (and the actions were not obviously directed by a

legal person) and it is hard because it is difficult to know whose mental state

should be queried to answer the question of mens rea. Consider the simplest

case, where the programmer and the owner/beneficiary of the algorithm are

the same person. If the programmer did not instruct the algorithm to do x,

then if it does do x, the question of whether the programmer intended the

algorithm to perform x on their behalf is difficult to answer.

The chapter will proceed as follows. I will first explore some of the complica-

tions about spoofing, present a counterfactual definition of intent which might

be suitable to apply to some algorithms and a statistic which is not indica-

tive of intent. Next, I introduce a toy-queuing environment and show that it

1The legal doctrine of innocent agency means that the actions are attributed to the user
of the tool. This can be used even if the tool is another human who is unaware of the
consequences of their actions
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maintains the key features which make it an analogy to the problem of spoof-

ing and intentional order cancellation in limit order books. I will then briefly

review Reinforcement Learning (RL) and introduce the concept of a shield. I

will present a shield algorithm which uses a counterfactual definition of intent

in conjunction with a value learning RL algorithm to ensure an auto didactic

queuing policy cannot intend to ‘spoof’. Finally, I contrast and analyse the

learned queuing policies trained with and without the shield to demonstrate

the efficacy of the shield.

7.2 Background

Many existing laws and regulations restrict persons from intending to do things

to in the future; these are sometimes called inchoate offences. For example, in

the UK, for almost any criminal offence X, there exists a related ‘attempt to do

X’ crime (UK Criminal Attempts Act 1981). The unusual feature of spoofing

as defined in Dodd-Frank is that the future act - cancellation, is almost always

a legitimate and legal action to do. The structure of the law - a prohibition

on doing something typically legal (placing an order) with the intent to do

something typically legal (subsequently cancelling it), is troublesome because

the reasoning that might traditionally be applied to an inchoate offence is

often not-applicable. Child (2017) states that for an attempt crime, the actor

must commit to having the requisite mens rea at the planned point of crime

commission, yet this cannot be applicable here because order cancellation is

not an offence and has no mens rea. Whilst the prohibition of spoofing differs

from typical inchoate offences in this way, it has one thing in common in that

there is no requirement for a spoofing strategy to succeed in any way. The

offence is committed at the point of order placement regardless of whether the

order is cancelled or executed.

From a programmer’s perspective, the fact that order placement and order

cancellation are individually admissible actions at any moment in time makes
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the restriction of a trading policy not to spoof difficult to express and en-

force2. At the point of order placement, the likely fate of that order must

be assessed. This requires the ability to plan into the future, which is not

a commonly observed practice in many types of machine learning algorithms

(model free reinforcement learning for example). Conversely, at any moment

in time, deciding whether order cancellation is a legitimate thing to do should

only depend on current information.

A contributing factor to the complexity of this problem is that limit order

books are inherently stochastic; when an order is placed, its fate is not com-

pletely in the hands of the person who placed it. Moreover, market conditions

will almost certainly change over the lifetime of the order. At the point of

placement, the trader cannot say with any certainty whether they will get to

cancel the order or whether they would like to cancel in the future.

7.2.1 Existing approaches to the problem of Stock Market

Spoofing in Machine Learning and AI

Research concerning stock market spoofing originating within the engineering

and computer science domain can be divided into detection methods, emer-

gence studies, market equilibrium/ regulation studies and control or safe learn-

ing studies, of which this chapter is an example. Zulkifley et al. (2021) provide

a concise review of the different Machine learning approaches that have been

taken to the problem of market manipulation detection.

The risk of an emergent market manipulative trading algorithm is shown to

exist in the case of a genetic learning algorithm by Mizuta (2020b). The

feasibility of a coordinated manipulative attack using a team of trading algo-

2One approach might be to train separate algorithms to place and cancel orders. This
would complicate analysis and could be a method to completely bypass the spoofing prohi-
bition since it might be argued that no single algorithm could possibly intend cancellation at
the point of order placement. This would in turn raise the spectre of emergent cooperation
between algorithms.
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rithms (a botnet) is explored in Yagemann et al. (2020) using an interactive

market simulator. The manipulative methods employed are not emergent but

informed by historical case studies. They find that layering, a type of spoofing,

is amenable to botnet orchestrated strategy. They also find that the orders

placed can be distributed amongst different individual bots to avoid conven-

tional detection techniques.

In his doctoral thesis Byrd (2021) does consider the problem constrained learn-

ing in the context of an reinforcement learning agent not learning to spoof in an

interactive environment. He uses a spoofing detector which is a neural network

classifier to inform a reward shaping and a policy shaping procedure. Reward

shaping (Ng et al., 1999; Isbell et al., 2001) is a method whereby the learning

agent’s reward stream is modified by feedback so as to enrich the information

stream that rewards send to the agent. Policy shaping (Griffith et al., 2013)

is a related method whereby feedback is instead made directly to the agent’s

policy labelling at optimal or not. Byrd uses the spoofing detector to provide

feedback in both methods. He finds some success, but also a significant num-

ber of cases where the agent is able to learn a spoofing policy (evidenced by

its super-profitability) which evades the detector.

The problem of controlling learned strategies from untoward consequences or

undesirable behaviour in auto-didactic algorithms is generally encapsulated in

the emerging area of Safe-AI and for Reinforcement Learning methods Safe

RL. The term ‘safe’ might come from the subject area of formal verification

(Baier and Katoen, 2008), where an algorithm is considered safe if certain

algorithmic states cannot occur. This research area makes extensive use of

temporal logic with which to express various desirable properties (including

safety) that an algorithm should obey. Alternatively in the subject area of

Safe RL the meaning of safe might just refer to its folk meaning. Historically

the bulk of applications in Safe-RL have concerned themselves with issues of

physical rather than legal or ethical safety. This is beginning to change with
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the recent societal focus on the ethical impact of AI agents.

It would seem a natural endeavour to express legal restrictions in code via

a temporal logic, but actual applications have to date been rare (Prakken,

2017). The constraint of an agent’s behaviour to a set of rules might be

called a deontological approach (Bench-Capon, 2020). Alves et al. (2020a)

encode road junction rules in a temporal logic an autonomous vehicle can

interpret and obey. To date I cannot find any analogous efforts to translate

trading restrictions such as the prohibition against spoofing into a machine

interpretable language. Ashton (2021c) looks at how a taxonomy of possible

laws informs us as to the requirements of a language rich enough to express

laws found in the real world.

The shield structure that I use here allows a bridge between the techniques of

Formal Verification and Reinforcement Learning. The former struggles with

auto-didactic algorithms, the object of analysis instead often assumed to be

exogenously given. The latter, whilst amenable to learning under simple state

restrictions, can lack the machinery to enforce more complicated behavioural

requirements. To complicate matters, shields have appeared under different

names over time. Etzioni and Etzioni (2016) terms them Guardian, Winfield

et al. (2014) ‘Ethical Governors’, Ashton (2020) terms a shield a ‘legal counsel’

and García and Fernandez (2015) seem to classify them as ‘Teacher Advice’

methods.

7.2.1.1 Existing accounts of algorithmic spoofing in legal re-

search

Mark (2019) provides a comprehensive review of the legal issues surrounding

the prohibition of spoofing in the Commodity and Futures and Securities mar-

kets and its emergence in crypto markets. Pre Dodd-Frank, spoofing was not

explicitly prohibited but instead would fall under market manipulation. Here

four elements were required to be shown: 1) The accused could influence prices
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2) they intended to influence prices, 3) the price was demonstrably influenced

(or artificial) and 4) the accused caused this artificial price. Mark notes that

post Dodd-Frank, the formulation of spoofing as the placement of orders with

the intent to cancel is a lower benchmark since no market impact is required

and therefore attempts come under the prohibition.

Scopino (2015) specifically examines the problems that scienter (culpable men-

tal states) requirements have for auto-didactic trading systems of the type dis-

cussed here. This is also discussed by Bathaee (2018), who finds that market

manipulation rules are unenforceable because of the intent requirement.

7.2.2 Definition of intent suitable to identify spoofing

A definition of intent in a trading algorithm should be as broad as possible

to allow a wide application to trading algorithms. In other words, it should

be agnostic as far as is possible to the design of the algorithm. The legal

reasoning will be based as far as possible on the Model Penal Code’s (MPC)

The American Law Insitute (2017) definition of intent (or purpose).

Section 2.02(1)(a) of the MPC defines purpose as follows:

A person acts purposely with respect to a material element of an

offense when...if the element involves the nature of his conduct or

a result thereof, it is his conscious object to engage in conduct of

that nature or to cause such a result; and

Spoofing is a conduct crime in the sense that the Actus Reus elements consist

of placing and optionally cancelling orders. There is no requirement for any

particular effect to happen or be desired on behalf of the trader3. Thus, for

someone to spoof it must be their "conscious object" to place orders and then

cancel them.
3We would typically think that an agent might spoof because they want to make money

from manipulating the market. As the guidance of CFTC (2013) makes clear, a spoofing
agent might have other reasons and desired effects
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We will now discuss two putative approaches to the MPC definition of intent

or purpose.

7.2.2.1 The Probabilistic approach to assessing intent to cancel

The cancellation rate (the probability of a trade being cancelled after place-

ment) has been used by US and UK authorities as evidence of spoofing

(Leonard et al., 2020). In this section I will briefly consider why such a statis-

tic cannot measure intent in all cases and why it is not desirable to use from

a control perspective.

It is an established point of law that an intention to cause some result is

largely independent of the likelihood of that result obtaining (See for example

Simester et al. (2019))4. Probability of outcome plays no part in the Model

Penal Code’s (MPC) definition of purpose (The American Law Insitute, 2017).

This is a necessary feature to stop people from freely taking criminal long-shots

and protecting themselves by saying that they couldn’t have intended the

outcome because it was very unlikely. The relationship between the likelihood

of results obtaining in ulterior intent offences, specifically those which are

attempt crimes, where the attempt is in the future5, is more contentious. Child

(2017) is of the position that ulterior intent should be treated no differently

to intent in the present sense. He uses an example of someone committing to

murder someone named V if they win the lottery twice in a row. If supposing

they do win the lottery twice in a row and then go on to murder V, would

their winning of the lottery twice in a row mitigate the offence?

The implication that even rare outcomes can be intended means that assessing

the probability of cancelling an order at the point of placement does not deter-

mine whether the trader has intent to cancel it before execution. A strategy

that only has a 1% chance of cancelling at the point of order placement could
4In fact, people can be intend things which are objectively impossible as long as they

believe they are possible (UK Criminal Attempts Act 1981).
5As opposed to the situation where an attempt has failed to achieve its intended outcome
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be spoofing if it was the object of placing that order. At the other extreme, a

strategy which has a 99% chance of order cancellation, at the point of order

placement is not necessary spoofing, if it is not the objective of the strategy

to cancel that order. This would qualify as acting with knowledge6, which

is the second highest level of culpability according to the MPC. Acting with

Knowledge is not as culpable as acting with purpose and would not qualify as

spoofing in the US at least. One can imagine such a situation where a trader

places an order very shortly before the close of day in a market - their chance

of having the order filled might be very tiny, but nevertheless they would like

the order to be filled.

In summary an extremely high cancellation rate could be considered (and is

so by regulators (Leonard et al., 2020)) a red flag for spoofing and a piece of

evidence to determine the objectives of a trading strategy, but it shouldn’t be

considered a necessary or sufficient piece of evidence. The CFTC guidance

clarifies that one instance of placing an order with intent to cancel is sufficient

to constitute spoofing (CFTC, 2013).

From the perspective of the programmer who wants to control an auto-didactic

algorithm, relying on the probability of an order’s future cancellation cannot

work for the reasons described. The control method must go further and

include a measure of volition or desirability with regards to the fate of an

order.

7.2.2.2 The counterfactual-failure approach to defining intent

Definitions of primitive concepts such as intent or purpose often end up using

other primitive concepts which in turn require further definition. There is a

danger the process moves in circles. This criticism could be levelled at the MPC

definition because it introduces the idea of ‘conscious object’; by using it we

6The MPC defines knowledge of a fact at 2.02(7) as awareness of a high probability of
existence
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must then try to understand what this means for an algorithmic trader. Duff

(1990) develops a counterfactual test for purpose or intent, whereby the actor

is said to intend some action or result caused by their actions, if they would

be disappointed if they could not perform that action or their actions failed

to achieved that result. For the purpose of spoofing, failure would amount to

orders being executing before they could be cancelled.

This ‘test of failure’ is attractive because the result (including both inventory

and profitability consequences) of an order being executed is known at the

point of its placement. The failure case of placing an order (assuming that it

is accepted by the exchange) is that it is not transacted within a certain amount

of time. A comparison can be made at the point of placement between the

expected payoff from the order placement according to the trading strategy

and the payoff from notional immediate/quick) order execution. If the former

is larger, then the person operating the trading strategy is ‘disappointed’ by

immediate/quick execution and therefore intended for the order not to be

executed on placement.

A practical problem with a multi-trade setting is that comparison with the

payoff from immediate execution of every placed trade is overly ambitious

- liquidity in markets is finite after all. A solution would be to adjust the

benchmark payoff for the prevailing liquidity conditions of the market, in other

words relate it to the expected waiting time for an order of that size. We can

use counterfactuals to create a definition of intent suitable for the control

purposes at least.

Definition 7.1 (Counterfactual intent to cancel). A trader intends to cancel an

order if at the point of placing an order, their payoff from immediate execution

of that order is less than their expected payoff from that order.

Such a definition requires the trader to estimate their payoff for every trade and

this assumes the trader is maximising some sort of objective function. For an

auto-didactic type trading algorithm this assumption is almost certainly met
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because it will typically be learning a policy to maximise a reward function.

In the case where the reward function is known, a Reinforcement Learning (RL)

trading algorithm has a derivable action-value function for any trading policy

which assigns a numerical value for every state-action pair equating to the

expected return from choosing a particular action when in a particular state.

This number equates to the expected value from choosing that action and then

continuing with its policy. Thus for someone with access to this state-action

function, Definition 7.1 can be used to test for intent to cancel in conjunction

with some sort of best-case benchmark value. Since the algorithm itself has

access to this function, the definition can be incorporated into the training

process itself to prevent spoofing strategies from being explored. Alternatively,

or additionally, it can also be used on deployment to prevent spoofing strategies

from being enacted.

The case where the reward function is unknown only applies to the detection

and prosecutorial problem of spoofing since the algorithm designer will have

presumably have access to the algorithm’s reward function. Inverse Reinforce-

ment Learning (IRL) (Ng and Russell, 2000) concerns the problem of learning

an agent’s reward function by observing their actions. It is an ill-posed prob-

lem in the sense that many reward functions will explain any single history

of actions. Though beyond the scope of this chapter, the failure test could

probably still be applied to an IRL type setting. Participation in a regulated

market makes certain requirements on its participants. Whilst pure profit

maximisation is too strong an assumption (a trader for example might want

to execute a trade with minimal price disturbance), the prohibition of spoof-

ing for example requires participants to at least want to transact. Likewise

earlier execution, all things equal, should generally be thought of as more at-

tractive than later execution. A set of admissible reward functions could be

formed using a set of these rationality/good behaviour constraints. Under the

null hypothesis that a trading strategy is not attempting to place orders with
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the intent to subsequently cancel them, the technique could be used to search

for reward functions that justify the observed trading pattern. The absence

of such a reward function could be used as evidence that the purpose of the

trading strategy is nefarious.

Equipped with a theoretically sound definition of intent to cancel, the sec-

ond part of this chapter will be concerned with testing it in a Reinforcement

Learning setting.

7.3 Method

7.3.1 A Toy Environment for testing spoofing detection and

safe-training

We will demonstrate the counterfactual definition of intent introduced in the

previous section through a toy environment which captures the key features

of a market and the incentives that make spoofing an attractive strategy. The

environment is lightweight enough to avoid an expensive (time and environ-

mental) training effort and simple enough to allow intuitive understanding of

how processes are working (or not). Eventually testing within a fully func-

tioning, realistic order book environment will be necessary, but along with the

complexity overhead that brings other issues arise such as realism which dis-

tract from the purpose of the research. Testing on toy-environment in Safe-RL

research is a well-established practice for many of these reasons Leike et al.

(2017).

The minimal requirements for such a testing environment are as follows:

1. Action space must include analogues to the action of placing orders,

doing nothing and cancelling orders.

2. Other than through cancellation, the fate of an order must be stochastic

and not completely in control of the trader.

206



7.3. Method 207

3. The Reward structure must be such that there is an incentive to re-

peatedly cancel orders but also an incentive to place orders in a smart

way.

A simple queuing environment can capture these requirements which I will

justify with the following presentation.

7.3.1.1 The story

There is a supermarket with several checkout queues. The rate at which cus-

tomers are processed in each queue differs between queues and over time de-

pending on the cashier.

Customers can enter any till queue that they want and are free to switch

queues whilst waiting. When they reach the front of the queue they pay for

their goods and exit the shop.

Cashiers at the checkout will occasionally take breaks. When this happens the

people in the queue for that checkout are allowed to leave the shop with their

goods without paying. Leaving the shop without paying is more rewarding

than having to pay for them.

There is a rule stating that customers should only join a queue if they intend to

pay for their goods. That is, they should intend to leave the queue by reaching

the front of it.

A new robo-shopper is being trialled which wants to learn an optimum queuing

policy.

7.3.1.2 Formalisation

In our setting, there are multiple queues which the principal agent can choose

to join. The queues are of integer length, a random process consumes an

integer number of units at the front of the queue and another random process
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adds units to the back of the queue each period.

Let time t be discretised and let there be N ∈ N queues. Temporal variables

will be distinguished with a subscript, and queue specific variables will be

identified with a superscript.

Let xjt be the length of queue j, for j ∈ 1, . . .N and xjt ∈ N∪{0}

let yjt be the position of the agent in queue j with convention that yjt = 0 if

the agent is not in that queue. Note that yjt ≤ x
j
t for all j, t - an agent is either

in some position in queue j or not in it at all.

At the beginning of a period an agent can choose to join the back of a queue

j (at = joinj) including the one they are in, or wait (whether they are in a

queue or not) (at =wait). For convenience I let at = 0 to mean wait and at = j

to mean join the back of queue j.

For each queue there is an Departure Function; a random variable V j :

0, . . .xjt → [0,1] which determines the number of people that are served by

the cashier each period.

For each queue there is an Arrival functionW j :N∪{0}→ [0,1] which describes

the number of people that join that queue in each period.

In any period, the cashier from the longest queue or in the event of a tie, queue

1 might leave their post and the entire queue is emptied. People who subse-

quently arrive in that period begin to queue as normal7. This happens when

the random binary variable, which is a function of queue length represented

by F j(xjt ) is equal to one.

7This ordering can affect the distribution of initial queue lengths for the agent
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If f jt = 0 the length of queue j is governed by the following equation:

xjt+1 =



max(xjt+1−v
j
t −1,0) +wjt if at = joink, yjt > 0, j 6= k

max(xjt+1−v
j
t + 1,0) +wjt if at = joinj , yjt = 0

max(xjt+1−v
j
t −1 + 1,0) +wjt if at = joinj , yjt > 0

max(xjt+1−v
j
t + 0,0) +wjt if at = wait

(7.1)

If f jt = 1 then xjt = wjt (the cashier leaves, the queue empties, leaving only the

new arrivals for that period)

The first case of Equation 7.1 corresponds to the agent swapping queue j for

queue k. The second case covers the case where agent joins queue j if they are

not already in it. The third case concerns an agent joining the back of a queue

they are already in, and the final case covers the case where the agent waits

(regardless of their queue status).

The position of the agent at time t+ 1 is given by:

yjt+1 =



0 if at=1 6= joink for k 6= j,yjt > 0 and f jt+1 = 1

max(yjt −v
j
t+1,0) if at+1 = wait, f jt+1 = 0

max(xjt −v
j
t+1,0) if at+1 = joinj , f jt+1 = 0

0 if at+1 = joink, k 6= j, f jt+1 = 0
(7.2)

In the first case of Equation 7.2 the agent leaves a queue that they were in

if the queue empties as long as they hadn’t decided to leave that queue for

another. The second case concerns them waiting whether they were in a queue

or not. The third case concerns joining a queue. Note that it is possible that

they are served within the same period so that they could begin the period
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not being in a queue, join one and begin the next period not in a queue again.

The final case covers the effect of swapping a queue.

Finally, the agent receives a reward determined in the following way:

rt =



rhigh if yjt > 0,at 6= joink for k 6= j,f jt = 1

rlow if yjt −v
j
t > 0, at 6= joink for k 6= j,f jt = 0

0 Otherwise

(7.3)

Equation 7.3 states that an agent receives rhigh if they were in a queue and

hadn’t decided to leave it in the period that it empties. They receive rlow if

they were in a queue, it didn’t empty and the number of people served that

period was greater than their position in the queue. In all other cases they

receive no reward.

To summarise, the following events happen per period in this order:

1. Agent chooses their action at
2. ft, the queue emptying variable is drawn

3. Departures vt are drawn

4. Arrivals wt are drawn

5. States xt,yt are calculated.

Let st =
(
xjt ,y

j
t ,v

j
t ,w

j
t ,f

j
t

)
j=1,...N

be the amalgamation of all state informa-

tion. Whilst the arrival and departure functions could be functions of previous

states, in the settings I will consider, they are not. The system as described is

therefore Markovian, that is to say the probability of the next state is depen-

dent only on the previous state, or P (st + 1|s0, s1, . . . st−1, st) = P (st + 1|st).

The problem of choosing a set of actions dependent on states, to maximise the

discounted set of rewards, is therefore a Markov Decision Process.
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7.3.2 Reinforcement Learning

Markov Decision Processes (MDPs) are the most common framework under-

pinning RL. In this formulation time is discretised and labelled t = 1,2,3, . . . .

A MDP is described by a tuple (S,S0,A,T ,R,γ) where:

1. S is the set of states in the environment.

2. s0 is a distribution over the initial states of the environment p(s) for

s ∈ S.

3. A is the set of all actions available.

4. T (s,a,s′) = P(s′|s,a) is the transition probability distribution; the prob-

ability of transitioning to state s′ when in state s∈S and choosing action

a ∈ A.

5. R : S ×A→ R is the reward function, the feedback mechanism through

which learning is possible.

6. γ ∈ (0,1] the discount factor to differentiate the value of rewards now vs

those received in the future. In finite horizon cases γ = 1 and can be

ignored.

The learner then has the objective of funding a policy function from the set of

all policy functions Π : S →A which solves the maximisation of the expected

discounted sum of rewards:

π∗ = argmax
π∈Π

E
[∑
t=0

γtR(st,at)|π
]

The policy function is often a probability distribution over actions π(a|s) =

P(a|s) ∀a ∈ A, s ∈ S. I will restrict attention to deterministic strategies.

As previously mentioned, the Markovian property of this process comes from

the transition function. It is satisfied if the probability of transition to a new

state is determined only by the current state and chosen action.
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The value function of a policy π, written V π :S →R is the expected discounted

sum of rewards from following policy π when in any state s. Similarly the

State Action Value function Qπ : S ×A→ R is the expected discounted sum

of rewards from following policy π after choosing any action a in any state s

7.3.3 Shields for safe learning

A shield (Alshiekh et al., 2017; Jansen et al., 2020; Pranger et al., 2020) is a

structure developed in the field of Safe Reinforcement Learning (RL) literature

which is able to prevent the agent from breaking certain behavioural laws. It is

a filtering function that tells the agent what actions are legal at any moment in

time. The agent then makes their selection from the choice of legal actions, acts

and the environment responds with a new state and reward as with standard

RL.

Often the presence of a shield is unacknowledged because the environment

automatically prevents the agent from making impossible actions (like moving

eastwards when already positioned in the northeast boundary of a maze). This

can be seen in Sutton and Barto (1998) where the Action space is in places

written as a function of the state.

The shield effectively restricts policy exploration to the subspace of legal poli-

cies which form a subset of the full policy set. Alternative approaches to

Safe RL avoid illegal behaviour by passing penalties for bad behaviour di-

rectly through the reward function thereby altering the optimization criterion

(García and Fernandez, 2015). This has drawbacks because it will often re-

quire penalty functions to be differentiable, and the penalties do not necessarily

avoid ‘illegal’ behaviour in training. A related approach is to apply constraints

to the policy (such as minimum reward requirement, but possibly a restriction

over the entire state trajectory) so the problem becomes one of constrained

optimisation (often a constrained MDP).
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A positive feature of the shield approach to constrained learning is that it does

not interfere with the mechanics of the learning process other than consuming

information and is largely agnostic to the technique employed. This is attrac-

tive from the perspective of the designer as different learning algorithms can

be tried at little incremental cost. It also has positive privacy implications

because it allows the possible use of a shield in situations where the workings

of the Agent are not known to shield owner.

Shields are present during learning, but their presence might not be necessary

in deployment. In theory the learned policy function will not include any

weighting on illegal policies, and so should be safe left unsupervised. However

novel situations could be encountered on deployment, so the shield can be

left in place to ensure illegal actions are never selected. This comes at the

computational cost of having to consult the shield before taking every decision.

Environment Agent

State, 
 Reward

Shield
Legal ActionsAction

State,
Value Function

Figure 7.1: The Shield structure in Reinforcement Learning

In the application presented here, the shield needs access to the agent’s state

action value function so as to assess whether, at the point of order placement,

the agent would be disappointed on immediate execution. This additional

information requirement is atypical for shields and too our knowledge, novel.

As Ashton (2020, 2021c) points out, a shield structure for enforcing arbitrary

laws is likely to require information about the agent’s policy and a model of

the environment as well as the history of states and actions. This is to allow

assessment of agent causality and intent to see if they meet the actus reus and

mens rea requirements of any specific law. In the case of spoofing, the action

part of the offence is only reliant on the conduct of the agent at single point

in time (the placement of orders)8.
8In practice, Spoofing and the related practice of Layering might involve the placement
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Definition 7.1 can be interpreted with the value function V π introduced at

the beginning of this section. Remember the value V (s)π of being in any

state s is the expected discounted sum of rewards from following policy π.

The expected reward from order placement (joining a queue) according to

strategy π is simply V π(s) when π(s) ∈ {joinj}i=1...N . This means when the

policy function suggests an order should be placed, the value function can

be checked against a benchmark value b(s) which corresponds to the best

legitimately expected outcome at that state. Equivalently the Value-Action

function Qπ(s,a) is the expected cumulative reward for choosing action a in

state s and following π thereafter. Qπ(s,a) can be checked for all actions

a ∈ {joinj}i=1...N against the benchmark reward to check when a queue can

legitimately joined.

The process the shield undertakes is shown in 7. It uses a simple labelling

function for convenience which indicates whether the agent is in queue or not,

defined by:

L(s) =


queuej if yj > 0

out if yj = 0 ∀j ∈ 1, ..,N
(7.4)

In the setting I have described, the benchmark variable corresponds to everyone

in the queue being served immediately and is invariant when the agent is in

queue b(s′) = rsmall for L(s′) 6= out and otherwise undefined.

7.3.4 Experiment Method

A Reinforcement Learning Agent was put into the environment as discussed

in Section 7.3.1. The learning algorithm chosen was Proximal Policy Optimi-

sation (PPO) which is type of Actor Critic method. PPO was introduced by

Schulman et al. (2017) and extended by Huang and Ontañón (2020) to cover

the case when actions are masked from the agent when they are not allowed

of multiple orders, at different price levels possibly at different venues.
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Algorithm 7: Spoofing Intent Shield
Data: st, State Action function Q(a,s), Reward function R(s,a,s′), Labelling

function L, benchmark value b and Sout := {s ∈ S|L(s) = out} ⊆ S
Result: A set of admissible actions
if st 6∈ Sout then

legal_actions= ∅;
for each join choice aj ∈ A do

if Q(st,aj)≤ b then
legal_actions+= aj ;

end
end

else
legal_actions=A;

end

according to some exogenous mechanism.

PPO is an evolution of A3C (Mnih et al., 2016b) and TRPO (Trust Region

Policy Optimisation) (Schulman et al., 2017) in the sense that it uses multiple

workers to evaluate policies and that policy updates each period are limited in

order to limit the problems associated with catastrophic forgetting (Goodfellow

et al., 2015; Kemker et al., 2018). This is an observed phenomena where RL

agents would suddenly learn policies which were much worse than previous

iterations and has been observed feature of neural networks learning tasks

sequentially since the 1980s McCloskey and Cohen (1989).

The StableBaselines3 package for python (Raffin et al., 2021) has an exper-

imental repository named SB3-Contrib which contains an implementation of

Maskable PPO. I adapted this to implement the shield. I kept the learning

coefficients at their default values including the design of the policy and value

networks (shared 2 hidden layers of 64 neurons with tanh activation). The size

of the state and action space were not particularly big, nor the complexity of

the problem particularly high, so hyper parameter tuning was not necessary

for the task.

The action space of the agent was discrete, equalling the number of queues (2)
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plus a wait or do nothing action.

The state space of the agent was a vector of length 13, containing the following

variables:

• Q_Emptied - Binary variable, length N = 2 - The queue emptied

• Exit - Binary variable - Agent paid and exited.

• EWOP (Exit with out paying) - Binary - Agent exited without paying

because cashier left.

• In_Queue - Binary - Whether Agent in any queue or not.

• Position_in_queue - Non-negative integer, length N = 2 - The Agent’s

position in every queue.

• Length_of_queue_ - Non-negative integer, length N = 2 - The length of

every queue.

• Arrivals - Non-negative integer, length N = 2 - The number of arrivals

in every queue that period.

• Departures - Non-negative integer, length N = 2 - The number of depar-

tures in every queue that period.

Using two queues in the experiment simplified the shield considerably. When

in a queue, the agent could wait, move to the back of the queue that were in

and move to the back of the other queue. Since moving to the back of their own

queue is clearly not an optimal strategy (except when spoofing), this was ruled

out by default using the shield. The shield could then concentrate on com-

paring the value of swapping queues (if recommended) with the benchmark.

If the value was higher than the benchmark level, the action was changed to

wait by default.

The strategies were all evaluated using a vectorised version of the environment

for at least 10,000 trials. A trial lasted at most 200 periods in training but

was unconstrained in evaluation. Each environment instance was reset when

the agent exited a queue and a new starting state for that instance was drawn
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from an initial state buffer. This was to avoid episodes being serially correlated

(a queue that had just emptied would otherwise have a smaller than average

queue length next period).

7.3.5 Parameters

As previously mentioned, the number of queues N was set to 2.

The reward for reaching the front of the queue and being served was rlow = 1

and the reward for leaving the queue without paying was rhigh = 5. In each

period, a small loss of −0.025 was incurred. This serves a dual purpose as

a waiting cost and a method to improve learning, since all actions have a

non-zero reward. The agent had a discount rate γ of 0.99.

The Customer arrival function followed a memoryless Poisson process W j ∼

P (αi) with α= [2,2] if the queue length at the beginning of time t represented

by xjt1 was less than or equal to 8, otherwise the queue would not receive any

arrivals for that period.

The departure function of customers (those served by the cashier) followed a

Poisson process V j ∼ P (δi) with δ = [1,1] with the restriction that V j was

limited by the length of the queue post arrivals so negative queues could not

occur.

The random queue emptying process F qmax ∼ B(φqmaxt ) was Bernoulli dis-

tributed for the longest queue at the beginning of period t:

qmaxt = argmaxj(x
j
t−1) with φqmaxt = 0.001xqmaxt−1 . That is to say the probabil-

ity of the longest queue (or Queue 1 in the event of a tie) completely emptying

at the beginning of the period was proportional to the length of that queue at

the end of the previous period.

By making the probability of queue emptying linear with queue length, the

average length of queue was limited. This would not otherwise be the case
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given that the arrival rate was greater than the departure rate. The limit of

8 on the arrival function served several functions. It compressed the distri-

bution of queue lengths which aided the learning process by making the state

space smaller. It also decreased the average wait time which increased the rel-

ative attractiveness of waiting in the queue versus lingering in the hope that

the queue would empty. By making the emptying process only apply to the

longer queue at any moment in time (or queue 1 in a tie), an additional fea-

ture about the environment needed to be learned, thereby penalising random

strategies which proved surprisingly efficient in this environment under certain

parameterisations.

7.4 Results

The learned strategies were benchmarked against the following set-strategies:

1. Shortest The Agent joins the shortest queue in every period.

2. Shortest Once The Agent join the shortest queue initially and then waits.

3. Any Once The Agent joins any queue initially and then waits.

4. One Action The Agent keeps (re)joining queue one.

5. Two Action The Agent keeps (re)joining queue two.

6. Random The Agent chooses actions at random

7. Spoof : The Agent (re)joins the longest queue in every period.

8. Cutoff(n): The agent follows the ’Shortest’ strategy whilst queue length

is less than n, otherwise follow ’Spoof’.

Two types of learned strategies were trained.

1. Benchmark Shield Of the type described by Algorithm 7. The Agent

is always restricted from joining back of queue it is already in, and can

only join another queue if the expected value of doing so is below some

threshold. This was chosen to be 1, which was the reward for reaching

the front of the queue and being served (rw), this could be thought of as
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the best possible legitimate outcome in any period.

2. No Shield The agent was free to learn any strategy.

Strategy Periods Discounted Reward Duration Reward Reward Type
Mean Std Mean Std Mean Std 1 5

Full Shield 10,005 0.9169 0.9703 10.134 4.1971 1.0045 1.0106 93.55% 6.45%
No Shield 10,003 1.0088 2.067 81.459 77.9694 1.8755 2.647 27.20% 72.80%
Shortest 10,020 0.8758 0.814 9.1138 3.5642 0.9526 0.849 95.49% 4.51%
Shortest once 10,006 0.879 0.8435 9.3582 3.6355 0.9575 0.8764 95.21% 4.79%
Any_queue_once 10,005 0.8879 0.9311 10.2577 3.8909 0.9738 0.9629 94.24% 5.76%
One action 10,001 0.5121 2.231 135.4879 136.6426 1.1508 3.642 11.55% 88.45%
Two action 10,000 -0.1051 2.1736 187.9782 188.9272 -0.3467 4.937 16.18% 83.82%
Random 10,004 0.6166 2.0805 96.6813 95.8421 1.2343 3.042 33.72% 66.28%
Spoof 10,000 1.4341 2.1331 90.3947 88.768 2.7373 2.222 0.07% 99.93%
Cutoff 10,020 0.9467 1.045 10.6354 5.3165 1.0411 1.0954 92.33% 7.67%

Table 7.1: Strategy Comparison Results. The grey rows correspond to hard-
programmed benchmark strategies, the two white rows are learned strate-
gies.

Table 7.1 shows the mean discounted reward, average duration and reward

type mix from the three learned strategies and the benchmark strategies. The

mix of rewards allows us to understand the goal of the strategy to some extent.

The Spoof strategy for example, achieves practically all (99.9%) of its returns

with rewards which occur when the queue emptied rather than rewards from

reaching the front of the queue. This means that it is able to achieve the

highest mean discounted reward of 1.434. At the other extreme, Shortest

strategy achieves 95.49% of its rewards from reaching the front of the queue

and only 4.51% from the queue emptying.

Of the learned strategies, the No Shield strategy achieves the highest dis-

counted reward of 1.009 over an average duration of 81.459 periods. 72.8% of

its rewards occur from queue emptying. This level is above the 66.28% pro-

portion achieved by the Random strategy. The discounted average reward is

higher (1.009 vs 0.617 for random) and the average duration is lower (81.459

versus 96.681 periods for random). The Full Shield strategy achieves a mean

discounted reward of 0.917 with an average duration of 10.134 periods. These

results ware close to the three standard queuing benchmark strategies Shortest

(Disc mean 0.876, duration 9.114), Shortest Once (Disc mean 0.879, duration

9.358 and Any Queue Once(Disc mean 0.888, duration 10.258). 93.55% of the
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rewards in the learned Full Shield strategy occur from reaching the front of

the queue. This is close to the conventional queuing strategies of 95.49% for

Shortest, 95.21% for Shortest once and 94.24% for Any queue once. Note that

discounted reward for One action is higher than Two action. The reward for

always choosing action 1 is higher than always choosing action 2 since queue

1 is more likely to empty because in the situation where the queues are the

same length, only queue 1 is eligible to empty.

Strategy Action type Not in Queue Rejoin rate Swap rate Wait rateWait 0 Join 1 Join 2
Full Shield 87.21% 10.76% 2.03% 1.77% 0.00% 2.98% 94.88%
No Shield 16.29% 42.01% 41.69% 3.55% 11.28% 68.70% 15.94%
Shortest 84.90% 8.37% 6.73% 0.00% 0.00% 4.71% 95.29%
Shortest_once 89.31% 6.50% 4.19% 0.00% 0.00% 0.00% 100.00%
Any queue once 90.25% 4.89% 4.86% 0.00% 0.00% 0.00% 100.00%
One action 100.00% 0.00% 100.00% 0.00% 0.00%
Two action 100.00% 0.00% 100.00% 0.00% 0.00%
Random 33.32% 33.34% 33.34% 1.71% 32.20% 32.46% 33.32%
Spoof 58.21% 41.79% 0.00% 78.13% 21.87% 0.00%
Cutoff 66.88% 20.43% 12.70% 0.00% 14.53% 5.43% 80.04%

Table 7.2: Strategy Analysis. The grey rows correspond to hard-programmed bench-
mark strategies, the two white rows are learned strategies. Strategies that
rejoin more are more likely to benefit from queue emptying.

Table 7.2 attempts to analyse the characteristics of the strategies. A number of

different statistics were extracted from the results by converting the sequence

of actions and states into a regular language and then using regular expressions

(regexes) to identify behaviour of interest. This method was used to calculate

the number of times the agent rejoined their own queue, swapped queues,

waited in queue, normalised by the length of time the agent spent in queue.

The number of periods the agent waited outside a queue was normalised by

the total length of the episode9. Looking at the mix of actions chosen we can

see that those strategies which are associated with spoofing (No Shield, One

action, two action and Spoof ) do not wait as much as the standard queue

and wait strategies of Full Shield, Shortest, Shortest once and Any queue once.

Waiting is the only action which leads unambiguously to promotion and being

9Typically the episode length and time spent in queue had a difference of 1 since most
strategies spent no time outside a queue
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served when already in a queue. The general higher frequency of Action 1

reflects the fact that the queue is more likely to empty (since it is chosen in

the event of equal queues).

Table 7.2 shows that the two learned strategies (Full Shield and No Shield)

both spend 1.77% and 3.55% of periods not in a queue. The queue’s dynamics

are memoryless (or Markovian) and so any time not spent in a queue is wasted.

The learned strategies have therefore not converged to a locally efficient state.

The rejoin rate in Table 7.2 corresponds to the proportion of periods that

the agent, when in a queue, joins the back of a queue they are already in.

This is an unambiguously bad strategy for reaching the front of a queue, but

pretty good10 for waiting for a queue empty event. This can be seen by the

high occurrence of this action type in the strategies that achieve a higher

proportion of the rhigh = 5 rewards (Spoof, One Action, Two Action). The Full

shield strategy never rejoins the same queue through the shield’s operation.

In contrast the No Shield strategy has a rejoin rate of 11%.

The swap rate in Table 7.2 corresponds to the proportion of periods that the

agent, when in a queue, joins the back of another queue. If the agent joins a

shorter queue this reduces their expected time, but if they join a longer queue,

then it increases their expected wait time and increases their probability of

leaving a queue without paying. Unlike the rejoin rate, the swap rate is not

an unambiguous sign that a strategy is targeting a particular outcome. We

can see that the Shortest strategy swaps queues 4.71% of the time spent in

queue. This occurs when the other queue becomes shorter than the one it is

in. The Full Shield is similarly constrained in its swap rate at 2.98%. The

unconstrained No Shield strategy has a swap rate of 68.70% which indicates

a targeting of the higher reward associated with queue emptying since this is

much higher than the rate at which the Shortest strategy swaps. The Spoof

strategy swaps queues 21.87% of the time; this indicates that the No Shield

10It might be even better to join the back of the other queue if it is longer
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strategy swaps more than it should (and rejoins less than it should).

Strategy Queue Joins In Queue Swaps
# Shorter Longer Same # Shorter Longer Same

Full Shield 10,005 46.37% 32.93% 20.70% 2,967 74.08% 17.29% 8.63%
No Shield 10,003 3.96% 74.41% 21.63% 579,713 49.66% 27.99% 22.34%
Shortest 10,020 79.56% 0.00% 20.44% 3,766 100.00% 0.00% 0.00%
Shortest once 10,006 80.11% 0.00% 19.89% -
Any queue once 10,005 40.92% 39.64% 19.44% -
One action 10,001 41.00% 39.45% 19.56% -
Two_action 10,000 39.88% 40.51% 19.61% -
Random 10,004 40.08% 39.53% 20.38% 317,317 47.71% 32.41% 19.87%
Spoof 10,000 0.00% 80.34% 19.66% 197,639 0.00% 74.26% 25.74%
Cutoff 10,020 79.12% 0.00% 20.88% 6,720 0.00% 72.80% 27.20%

Table 7.3: Strategy Rationality Analysis. The grey rows correspond to hard-
programmed benchmark strategies, the two white rows are learned strate-
gies.

Table 7.3 shows some rough rationality measures for the strategies. The first

measure considers whether on joining a queue initially, whether the shorter

or longer queue is joined. At two extremes, the Shortest and Shortest Once

strategies never join the longer queue whilst the Spoof strategy will always

join the longest queue. Of the learned strategies, the unrestricted strategy

learns to join the longest queue (joining the shorter queue 3.96% of the time).

The Full shield strategy favours joining a shorter queue but still joins the

longer one 32.93% of the time. The second measure in table 7.3 considers

queue swaps (to a different queue). Once again, at the extremes, the Shortest

strategy will only ever swap queue if it is shorter whilst the Spoof Strategy

never swaps for a shorter queue. The Full shield strategy has learned to favour

swaps to a shorter queue, only joining longer queues 17.29% of the time and

the same length queue 8.63% of the time. The unrestricted No shield strategy

joins longer queues 27.99% of the time and the same length queue 22.34% of

the time. These figures are close to the Random strategy’s swap figures so

the No shield strategy arguably has further learning to do. One additional

feature to notice is that the No shield strategy is far more active swapping

than any other strategy as testified by the number of swaps (approx 580,000).

This figure is dependent on mean duration, so not easily comparable between
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strategies, nevertheless the strategy’s mean duration is not the highest (81.459

periods versus 96.681 for the Random strategy), indicating queue swapping is

a key feature of the learned unconstrained strategy.

In Q In Q 1 In Q 2 Original Action Corrected Action Count Proportion
No No No Wait outside 1,760
No No No Join 1 9,608
No No No Join 2 397
Yes No Yes Wait in 2 3,346 3.73%
Yes No Yes Swap to 1 Wait in 2 264 0.30%
Yes No Yes Rejoin 2 Wait in 2 28 0.03%
Yes No Yes Swap to 1 1,306 1.46%
Yes No Yes Rejoin 2 Swap to 1 0.000%
Yes Yes No Wait in 1 80,678 90.02%
Yes Yes No Rejoin 1 Wait in 1 2,330 2.60%
Yes Yes No Swap to 2 Wait in 1 11 0.01%
Yes Yes No Swap to 2 1,661 1.85%

Table 7.4: Shield Intervention Analysis for Full shield strategy. The highlighted
rows correspond to active intervention by the shield.

The agent was evaluated with the shield in place, but to measure the necessity

of that shield, the percentage of decisions overruled by the shield was counted

(’disagreement’). 2.94% of decisions were overruled by the shield. This could

be considered a convergence measure related to training since with a sufficiently

long training period, the agent’s policy would eventually converge to a policy

allowed by the shield and disagreement would be zero. The precise occurrences

of when the shield overruled the policy function are shown in Table 7.4, with

the disagreement cases highlighted in grey. The states where the agent is not

in a queue are not considered here because the implemented shield did not

place any restrictions on the agent when they weren’t in a queue. The single

largest case where the shield overrules the policy function is when the agent

is in queue 1 and wants to join the back of queue 1. This is a behaviour

which unambiguously does not further the agent’s cause in reaching the front

of a queue and supports the position that the learned strategy is not fully

converged.

In summary the results show that the shield does prevent the agent from
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queuing behaviour which avoids trying to reach the front of the queue. Without

the shield, the learned behaviour exhibits features of a strategy which attempts

to benefit from queue emptying events.

7.5 Discussion

The type of RL algorithm which I use (PPO) produces a policy network which

produces a recommendation of which action to choose depending on the state

and a value network which is the agent’s estimate of future discounted reward

following their policy in any given state. In the case when the policy function

advised swapping queues, the shield’s job was to check the value function

against the threshold. The threshold value was chosen to represent the best

possible legitimate result from joining a queue - reaching the front and being

served immediately. If the agent’s estimated value of swapping to another

queue was higher, then the shield would prevent the queue swap. This was

because this type of action indicates that the aim of the policy was not to

terminate the episode by reaching the front of the queue but instead loitering

and increase the risk of benefiting from a queue emptying occurrence. The cost

of this calculation is one forward pass through the value network per period.

Note that if more queues were present, then this approach would not work,

since the value function only evaluates the expected value from following the

given policy. In this case an Action Value function (aka Q function) is needed,

that is to say a function that estimates the value of being in a certain state,

choosing a certain action and then following a policy thereafter. The shield

would then need to make as many forward passes as there are alternative

queues in order to screen out any invalid swaps. In practice these passes would

be performed as a vectorised operation and would not add a significant com-

putation burden to the shield algorithm. Actor critic methods are perfectly

able to estimate Q-functions instead of Value functions but Value functions are

used in typical implementations. Alternatively, a Q-function can be derived
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from an Agent’s Value function through a one-step simulation, from the start-

ing state, choosing the action to be evaluated, then taking the expectation of

the ensuing reward and value function of the following state. The advantage

of this approach is that it does not force the agent to produce an Q function,

allowing standard actor critic implementations to be used, the disadvantage

being the time it takes to form an expectation over ensuing states and their

values and the requirement that the shield has access to a simulation of the

environment. If the (simulated) environment has been programmed in such a

way as to accept array inputs, the additional computational time might not be

too expensive, compared with just being given the agent’s Q function, since

the agent’s value network which is a neural network also naturally accept array

inputs.

The validity of the method presented here comes from the ability to understand

the best-case reward of joining a queue ex-ante, and knowing that expected re-

wards in excess of this imply that the agent’s policy is trying to take advantage

of non-legitimate reward sources. This is just as it would be in a limit order

book where the best possible result - immediate order lifting with minimum

market impact, is known at the point of order placement. This feature of the

spoofing problem will not generalise to many other intent problems. Typically,

we will not know what the agent’s future policy is trying to achieve just by

examining their value function. Additionally, a model-free RL agent has no

possible means of predicting what the next state of the world will be, and so

they themselves cannot know what they will do or not do in the future unless

the magnitude of the estimated rewards informs them of some feature of their

policy as is the case here.

The CFTC’s guidance CFTC (2013) on the interpretation of spoofing regula-

tions suggests a non-exhaustive list of alternative motivations to spoof other

than price movement. These include denial of service type attacks designed to

overload an exchange, submission of orders to delay someone else’s execution,
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submission and cancellation to create a false impression of market liquidity.

Other motivations might exist; for example a trader who was testing a market

to understand the likely reaction to a future planned order was prosecuted for

spoofing CFTC (2018b). An obvious difference with the environment used in

this experiment and actual markets is the absence of a price analogue. The

wording of the spoofing prohibition and the subsequent guidance makes it clear

that ignoring market impact is not a critical problem when diagnosing spoofing

and supports our method to some extent here.

The task of producing a sensible benchmark value is made harder when we

consider trading strategies over a longer period of time which are composed

of many individual order placements. If we assume trades are filled instantly

in the best-case scenario to achieve the best case reward which forms the

benchmark, then we must also consider wider market supply and demand

dynamics. Assuming very high demand or supply will result in artificially

high benchmarks which the learning algorithm is able to undershoot with a

profitable spoofing strategy. That is why in the method presented, I consider

atomic decisions which translate to the decision to place atomic orders. The

estimation of demand and supply curves is not an unstudied task in trading

applications and is information that can be included in deciding the benchmark

value in situations where it is not suitable to analyse atomic decisions.

Some methods of model-free RL do not involve estimating either a Value or

Action-Value function and therefore the method presented here based on dis-

appointment inferred intent will not work. Policy gradient methods directly

estimate a differentiable parameterised policy to produce a probability distri-

bution over all actions conditioned on state. Actor-Critic methods such as

PPO and A2C Mnih et al. (2016b) sit in between Policy gradient and Value

based methods and produce a value function in addition to the policy func-

tion. These methods are efficient because many parts of the process to produce

Policy and Value gradients are shared. Any policy gradient could therefore be
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altered in the design stage to additionally calculate a value function, even if it

were not used in the learning process directly and only an input to the shield.

In the worst-case, a value function can be recovered from a policy function and

a simulation of the environment by the shield.

Model-based RL algorithms seek to either to learn a model of the world or are

given one, and then proceed to learn a policy using some sort of planning tech-

nique. Most famously, Monte-Carlo tree search was used by Alpha Zero (Silver

et al., 2017) to look for winning Go strategies. More recently, an algorithm

has been developed to combine the planning techniques of AlphaZero whilst

learning its own model of the environment that it finds itself in Schrittwieser

et al. (2020). In both cases a value function is estimated and used to avoid

exhaustive policy search. RL agents with models of the world are able to assess

the probability that they will cancel an order at the point of placement. It is

tempting to conclude that this information is sufficient for intent assessment,

but this is wrong because it does not answer the ‘why’ an order placement de-

cision has been placed. Traders placing orders at the end of the trading session

might know that there is very little chance that the order will be lifted, and

yet they still do so because they hope that it will. A control mechanism that

prevented orders being placed that were almost certainly likely to be cancelled

might have undesirable effects on liquidity. In the very extreme case where the

algorithm foresaw the probability of order cancellation in all possible cases, we

might conclude that it was engaged in a spoofing strategy. I believe that an

analysis of the aim of actions is unavoidable when assessing intent.

7.6 Summary

In this chapter I look at the problem of controlling the ‘intent’ of a Reinforce-

ment Learning (RL) trained trading agent. In particular, I look at intent to

cancel an order at the point of its placement which is the SEC definition of

the market manipulative practice of spoofing. I consider a statistical measure
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for intent but reject it in favour of a counterfactual account. This considers a

caused outcome (order cancellation) to be intended if the agent is disappointed

if it does not occur (the order is executed). This is informed by legal reasoning

and the definition of intent found in the US Model Penal Code.

In the second part of the chapter, I introduce a minimal queuing environment

which captures three key features of the spoofing problem in limit order books;

order placement and cancellation have analogous actions, the trader is not in

complete control of the fate of an order and the reward structure is such that

avoiding order execution can be rewarding. I then present structure called

a shield which screens out ‘unsafe’ actions available to the RL agent at each

time period. This structure is otherwise generally unaware and agnostic to

the particular learning algorithm being used by the agent provided a value

function is made available to it. To our knowledge this is the first example

of a shield being used on value functions. Here ‘unsafe’ is taken to mean

those actions which have a higher estimated value than the one which would

occur from leaving the queue immediately. This ensures the agent cannot be

disappointed about immediate execution, they therefore cannot intend to avoid

order execution.

The results of training an RL agent using PPO (Proximal Policy Optimisation)

in the environment both with and without the shield show that unconstrained

the agent would learn a ‘spoofing’ type strategy and learn a legitimate strategy

focused on fast execution when constrained by the shield. Various statistics

concerning the behaviour exhibited in each strategy support the two strategies

finding different approaches to the problem. Most obviously this can be seen

by the mix of rewards received by each strategy, the unconstrained strategy

receiving a high proportion of rewards received from queue emptying episodes.

A variety of benchmark strategies including an idealised spoofing and efficient

queuing policy are used to provide a meaningful frame of reference against the

learned strategies. They show that whilst the unconstrained and constrained
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strategies share characteristics with the ideal spoofing and fastest queuing

strategy respectively, they do not perfectly match them. This coupled with

analysis concerning the rationality of certain decisions made by the learned

strategies indicate that learning in both cases has not fully converged to effi-

cient queuing policies.

In the discussion of the method and the experiment I discuss how the unusual

reward characteristics of a limit order book allow the shield to constrain intent

by reference to the agent’s value function. In this case, intent can be con-

strued and controlled without a model of the environment. Construction of a

meaningful benchmark figure with which to assess disappointment would re-

quire some knowledge and assumptions about market conditions, nevertheless

the techniques presented in this chapter could be in spoofing prevention and

detection applications.

Whilst value-based RL algorithms are popular, not every algorithm produces

one. A value-based shield could still be constructed by estimating the value

function derived by the policy in conjunction with a model of the environment

and a set of rationality and efficiency constraints on the likely agent reward

function. This would be an application of Inverse Reinforcement Learning

where behaviour streams are used to construct rewards functions.
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Chapter 8

Conclusions and Future work

This chapter concludes the thesis, summarises the content of chapters 4-8,

identifies their contributions to research and suggests some future research di-

rections.

8.1 Summary

This thesis takes a simple research question rooted in computer science and

finance - "Do trading algorithms learn to manipulate a limit order book by

spoofing and how do we stop that from happening". It proceeds along a path

from multi agent simulations with deep reinforcement learning through Law

and Psychology before returning to computer science with a plausible definition

which can be used to control the intent of an algorithm. Whilst the primary

subject matter concerns the regulation of algorithms in the marketplace, the

conclusions on the subject of intent in AI and people’s perceptions about that

are applicable to any use of AI which requires a legally informed concept of

intent.

Interdisciplinary research requires additional effort and often involves moving

out of personal comfort zones. However, it is necessary when conducting work

on the regulation of AI. Computer scientists do not make market regulations
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and they will not be asked to interpret the law in the event of an algorithm

committing some AI crime. Equally, as any number of recent scandals illus-

trate, for example Kramer et al. (2014); Verma (2014); González-Esteban y

Patrici Calvo (2022); De Cremer and Kasparov (2021), engineers alone should

not be trusted to decide what is reasonable or not when considering the be-

haviour of algorithms. Indeed Responsible Innovation is an avowed objective

of the EPSRC (Owen, 2014).

I will now briefly summarise the findings of each chapter in the thesis and any

future extensions or research directions for the work.

8.1.1 BUCLSE Platform

For a system to be manipulable it needs to be changeable. Likewise, to assess

whether an agent can manipulate an environment, the agent must be able to

change the environment in the first place. This motivates the building of what

has recently been termed ‘a digital twin’, aka an interactive environment which

responds to the actions of the agents within it.

The study of market manipulation requires such an environment, and this

chapter presents the design of an interactive Limit order book simulator pro-

grammed in Python.

8.1.1.1 Future extensions

Python is an attractive language because it is generally accessible and readable.

However, this incurs computational overheads and as a result its performance

is slow outside specially optimised software packages.

Deep Reinforcement Learning in its basic form is data intensive. This coupled

with the aforementioned speed issues of a market environment programmed in

Python makes research slow.
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An improvement to the simulator platform would be to rewrite parts of it in

a faster language. It is being refactored into Rust. Another solution is to

vectorise the behaviour and performance of the various different agents in the

simulation. This approach was taken in the environment featured in Chapter

7. Both approaches do come with a cost of interpretability which should be

born in mind.

Computer science is best progressed by improving existing packages not least

because many eyes have already gone some way to debugging them. Progress

with BUCLSE should be stopped until the suitability of ABIDES (Byrd et al.,

2019) for market manipulation research can be assessed.

8.1.2 Emergence of spoofing in a RL LOB environment

This chapter shows that even a limited instance of a Reinforcement Learner

will learn a strategy which is equivalent to spoofing when deployed in a LOB

environment and given a simple state representation of the market.

The LOB is populated with a variety of Zero intelligence traders, Heuristic

Belief Traders taken from Wang and Wellman (2017) and a class of trader

which explicitly uses order imbalance to make buy or sell decisions.

A problem with the use of neural networks to create policy functions is that

they are difficult to interpret. I resolve the problem by fitting a decision tree

to the policy by observing the inputs and outputs of the neural network. Ev-

idence of spoofing is seen by the change in the orderbook imbalance statistic

and the improved profitability that agents with the ability to spoof have. The

emergence of spoofing behaviour in a simulator might just mean that the RL

agent learns how to game the environment that they train in and on deploy-

ment they fail to do so. This is a specific example of the kind of reward gaming

seen in Amodei et al. (2016) and should offer a warning to people trying to

train trading algorithms in this way. I also note that spoofing does not require
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success, so a bad spoofing algorithm is just as culpable for the owner as a good

one.

8.1.2.1 Future extensions

The shield device and the definition of intent defined in Chapter 7 could be

adapted to verify that spoofing is taking place in this environment. This would

not be onerous given that I used Q-learning which produces a state-action value

function.

It would be interesting to test the finding with a less restrictive action space

and termination conditions. For instance, the liquidation problem in Cartea

et al. (2020), where an agent has to sell a multiple unit position but is allowed

to hold more units on the path to zero.

A multi-agent reinforcement experiment would be interesting to see whether a

spoofing strategy is stable in equilibrium or whether agents learn not to trust

order book information as a reliable indicator of supply and demand.

8.1.3 A definition of intent for algorithms

The definition of spoofing in the USA is the placement of orders with the intent

to cancel them before execution. This presents an obvious problem when

considering what constitutes spoofing behaviour in an algorithm which has

learned its behaviour. The creator of the algorithm might not have intended

for it to spoof.

Spoofing is not the only crime to rely on the intentional status of an action to

qualify as such. Indeed, nearly all crimes require some culpable sort of mental

state (mens rea) to accompany the prohibited action (actus reus). Typically,

the degree of mens rea informs us about the culpability of the harm caused

by the actus reus. However, some crimes, such as spoofing and more generally

those involving a degree of deceit require mens rea in the actus reus. Here
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actions are only deemed criminal if they are performed with some sort of

intent or purpose at the point of commission. The presence of these crimes

justifies defining intent irrespective of the harder debate to be had about the

moral status of wrongs caused by algorithmic actors.

In this chapter I review how the common law defines intent and attempt to

translate this into a logical construct which is amenable to being translated

into code.

The endeavour is complicated by the lack of a unified definition of intent and

the existence of different degrees of intent (Direct, Oblique, Recklessness and

Negligence) as well as temporal modes - inchoate or ulterior intent.

We present definitions of all of these intent types in language specific enough

to be applied to AI but general enough to be agnostic about its particular

design.

8.1.3.1 Future extensions

The definitions could be translated into a more formal language, some variant

of temporal logic (Kleinberg and Mishra, 2009) which would be able to express

notions of causality and desire as I suggest in Ashton (2021c). This would then

perhaps allow formal verification methods to be applied to check behaviour for

legality (Baier and Katoen, 2008).

8.1.4 Testing a definition of intent for algorithms on laypeople

This experiment was written and conducted with Matija Franklin and Profes-

sor David Lagnado, members of the causal cognition research group at UCL

which is within Experimental Psychology. It asks the twin research questions

of whether a provided definition of intent coincided with a folk-definition and

whether lay-people judged the intent of an AI any differently from that of a

Human.
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The experimental setting was of a parcel delivering unmanned drone flying

through a zone as quickly as possible whilst avoiding dangerous no-fly zones.

Over the course of three separate but related experiments, we find very little

difference in people’s perceptions of intent between human and AI actors. The

simple definition of direct intent is also effective at recreating the folk concept

of intent embedded in the test subjects.

8.1.4.1 Future extensions

Vignette studies are often shown to be dependent on the setting they describe.

It would be interesting to test our findings in more settings with different types

of AI actor to see how robust they are.

8.1.5 A method to identify and restrict intent to cancel in a

simple queuing example

In this chapter I use the findings of Chapter 5 to craft a definition of intent

specific to spoofing. Firstly I show that any statistical definition of intent

based on the probability of cancellation at order placement cannot definitively

prove intent. Instead, I present a definition based on counterfactual reasoning

and regret. I argue that a trader intends to cancel an order at the point of

placement if they would be disappointed should the order actually be executed.

This definition includes cases where the motivation of spoofing is not to make

money but something else. It is therefore in line with the CTFC definition and

guidance.

I use a minimal example of a queuing game to present a possible technique that

would allow safe algorithmic trader training without the risk of spoofing. In

the game, the agent needs to choose a checkout queue in a shop in order to pay

for an object and leave. They would like to choose the fastest moving queue.

Occasionally, the queue will empty, and the members of that queue can leave
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without paying. This eventuality has a higher reward than the one where the

agent has to pay for the object. The agent can either decide to join a queue

where they will be served quickly, or they can loiter by switching queues and

attempt to wait for this queue emptying scenario. This game captures elements

of the spoofing problem without the overhead of a multi-agent simulation.

I present a RL training method that does not learn a loitering (spoofing) policy

by using a shield structure. At the point of any action being chosen, the shield

interrogates the value function of the learner to check the expected reward

for that action. The shield prevents actions with expected rewards higher

than one occurring from immediate serving (order execution). This is possible

because the reward for immediate serving is known ex-ante, just as it is for

order-execution on a LOB. Without the shield in place, the agent is shown to

learn a loitering policy.

The definition and shield are as far as I know, the only attempt in research

to define intent to cancel and the only method to restrict the intent of a

reinforcement learning agent.

8.2 Contributions

In this thesis I have shown that the risk of an auto-didactic algorithm learning

a market manipulative called spoofing is foreseeable. This was achieved by

building a fully functioning limit order book environment and populating it

with a variety of zero intelligence type trading agents. Foreseeability is an

important attribute when considering the law because it is a benchmark re-

quired for negligence and recklessness. In the process of demonstrating the

spoofing behaviour of the RL trained algorithm, I used a number of differ-

ent techniques which might be used to interpret the behaviour of a black box

trading algorithm.

The second half of the thesis considers the problem of identifying and control-
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ling intent in an algorithm. Firstly, I present a definition of direct, means-end,

ulterior and oblique intent informed by existing legal theory on the subject of

mens rea. Aside from spoofing, many fraud related crimes require a working

definition of intent in order to be defined. Fraud is an offence that algorithms

could easily be accused of in the future given their growing use in chat and

e-commerce and finance applications. Without a definition of intent suitable

for algorithms, certain offences could not be proven against algorithmic actors,

thereby opening a responsibility gap and an opportunity for bad actors.

Courts in the UK have juries comprised of laypeople who are routinely asked

to judge the intentional state of the accused when presented with evidence.

At some point the intent of an algorithmic actor will need to be assessed by

a jury. Courts will need to provide instruction as to what intent might mean

for an algorithmic actor and be confident that the jury is willing and capable

of ascribing intent to an algorithm. Chapter 6 explores these issues and finds

that a given definition of intent correlates with people’s natural understanding

of the term and that the differences between ascriptions of intent are small

when contrasting between human and AI actors.

Finally, I present a well reasoned definition of intent, based on legal theory,

which is suitable for assessing intent to cancel. It can be used by prosecutors

and algorithm owners to test for spoofing but more broadly any application

where algorithmic intent needs to be measured. Using this definition, I show

how a shield can be used in the training of a reinforcement learning agent to

control for intent. This is to my knowledge the first solution to intent-control

in reinforcement learning and has applications in the legal control of algorithms

which can be viewed as an application of AI alignment Russell (2019). It is

also the first quantitative experiment on the subject of spoofing that explicitly

tackles its intentional nature.
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Figure A.1: Equilibrium price defined over time, as defined by the intersection of
demand and supply curves at any moment in time. In this figure, the
demand and supply curves are taken as of t=50, hence their intersection
is in line with green curve at t=50.

A BUCLSE - Supply and Demand setup

In this setup, there is a list of buy and sell ’client’ orders defined over time

which can be in turn used to define supply and demand curves. Order prices

are distributed over some user defined, time varying range. From this order list

a curve can be calculated by plotting cumulative quantity of orders below any

price for demand and cumulative over any price for supply. In other words, the

curves define the quantity theoretically in the market at any period of time that

is willing to sell above a certain price or buy below a certain price. Demand

declines as quantity increases whilst supply increases as price increases. Classic

microeconomics tells us that equilibrium is found where the two lines meet;

where demand equals supply. Typically the demand and supply curves are

linear at any moment in time, but they can be translated according to a user

defined function, thereby giving a shifting equilibrium over time, see figure

A.1.

The BSE setup gives us freedom to define how the curves are formed, how they
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change over time and at what rate the orders are distributed to traders. One

experimental improvement from the original BSE formulation is that BUCLSE

pre-specifies the orders and their destination before the experiment begins

(originally this is done on demand). We are therefore able to rerun the same

experiment if required (albeit with potentially different stochastic behaviour

from the traders). This aided with debugging and allowed greater flexibility

over fixing a seed for the random number generators involved.

A.1 Trader Bestiary - Supply Demand type

These traders are taken from the BSE experiment setup where there is a Sup-

ply and Demand object which provides traders with ‘client’ orders randomly

throughout the experiment. These client orders are either buys or sells with a

limit price, and the traders are tasked with executing at these limit prices or

better. Traders do not hold inventory and execute only in a single direction

at any time. These trader types all appear in Cliff (2018).

A.1.1 GiveAway

When prompted, trader submits order for price equal to limit price of client

order.

A.1.2 ZIC

Trader submits orders for prices randomly selected between client order limit

price and a some percentage of the limit price. This type of zero intelligence

trader appeared in Gode and Sunder (1993).

A.1.3 Shaver

Trader improves best bid (ask) by a price increment if their client limit order

price is higher (lower) than best bid (ask). As in Cliff (2018).
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A.1.4 ZIP

First appearing in Cliff and Bruten (1997), traders maintain a randomly ini-

tialised, buying margin mb ∈ (−1,0] and selling margin ms ∈ [0,∞) which

represent the minimum profit margin they require to transact at. When in-

vited to submit orders, the limit price is calculated as λ(1 +mi) for i ∈ {b,s}

where λ is the client limit price for the order. The restriction on ms and mb

mean that the trader will always submit orders no more or no less than the

client’s limit depending on whether it was a buy or sell. Associated with the

client limit λ and profit margin is a target price p̄. Following every trade on

exchange, the trader updates their target price and then margin as a function

of target price, depending on the circumstances of that trade. In the case of

the trader having a sell client order, they will react as follows:

• If the last submission to the exchange resulted in a transaction at price

plast then:

– If plast is greater than the traders target price p̄, then the trader

increases p̄ with respect to plast, and their margin ms is adjusted

accordingly.

– Else if the ask queue contracted (an ask order is ’lifted’ by a buyer)

at a price lower than p̄ and the trader has an order to offload the

trader will lower their target price p̄ with respect to plast and margin

accordingly ms

• Else there was no trade

– If best ask decreases (is improved), and target price p̄ is greater

than best ask, trader chooses a price better than best bid.

The case of buy order is analogous.

For a reference price p, the increase in target price p̄ is calculated by first
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calculating an intermediate value p̃ as follows:

p̃= p∗ relative_shift+absolute_shift= p(1 + 0.05∗ ε) + 0.05∗ψ

for ε,ψ ∼ U [0,1] (1)

and the decrease analogously:

p̃= p∗ relative_shift−absolute_shift= p(1−0.05∗ ε)−0.05∗ψ

for ε,ψ ∼ U [0,1] (2)

The updated margin m′ and target price p̄′ are then calculated with the fol-

lowing iteration:

∆′ := p̃− p̄ (3)

Ct := (1−momentum)β∆′+momentum∗Ct−1∆ (4)

m′i :=


p̂+Ct
λ −1 if > 0 for seller, and < 0 for buyer

mi else
(5)

p̄′ := λ∗ (m′i+ 1) (6)

∆ = ∆′ (7)

for trader specific parameters momentum ∼ U [0,0.1] and β ∼ 0.1 +U [0,0.4]

defined on instantiation.

A.2 Market session setup: Supply and Demand

The sequence of events that occurs during a period differs between the Supply

and Demand and Fundamental Price type configurations of the environment.

For supply and demand, it is as follows:

On initiation, the order and trader submission sequence is defined. The se-

quence for a period then proceeds as follows:
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1. New customer orders are dispatched to traders

2. A trader is picked to submit an order to the exchange

3. Any resulting trades are processed

4. Traders update their records according to changes in the LOB.
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B Reinforcement Learning

B.1 Relationship of action value function Q and state value

function V

The Value Function associated with policy π at state s is defined as:

Vπ(s) =Eπ[Rt|st = s] =Eπ
[ ∞∑
k=0

γkrt+k+1|st = s
]

=Eπ
[
rt+1 +γ

∞∑
k=0

γkrt+k+2|st = s
]

=
∑
a
π(s,a)

∑
s′
P as,s′

[
Ras,s′+γEπ

[ ∞∑
k=0

γkrt+k+2|st+1 = s′
]]

=
∑
a
π(s,a)

∑
s′
P as,s′ [Ras,s′+γVπ(s′)] (8)

The last line is known as the Bellman equations for Vπ

The optimal, unique value function V ∗(s) is defined as follows:

V ∗(s) = max
π
Vπ(s) (9)

Equation 8 is modified to form the Bellman optimality equations for V ∗:

V ∗(s) = max
a

∑
s′
P as,s′ [Ras,s′+γV ∗(s′)] (10)

Recalling that the optimal Action Value (Q) Function Q∗ is defined as:

Q∗(s,a) = max
π
Qπ(s,a) for all s,a

The two concepts can be combined thus:
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Q∗(s,a) = E[rt+1 +γV∗(st+1)|st = s,at = a] and V ∗(s) = max
a
Q∗(s,a)

This follows since the definition of Qπ(s,a) is the value of taking action a in

state s and taking policy π thereafter. Thus Q∗(s,a) is the value of taking

action a in state s and taking the optimal policy π∗ thereafter.

B.2 Gradient descent for Q-learning

The use of gradient descent in Q-learning is motivated by the desire to solve

the following, for a distribution of states and actions P(s,a):

θ∗ = argmin
θ

∑
S,A

P (s,a)
(
Q∗(s,a)−Q(s,a,θ)

)
(11)

P weights the importance of errors in different state action pairs. One choice

of P would be the distribution of rewards and actions that the RL agent en-

counters when using the optimal strategy π∗.

Assuming that we can sample from this distribution, then the gradient descent

derived update to find θ∗ is:

θt+1 = θt−
1
2α(t)∇θt

(
Q∗(st,at)−Q(st,at,θt)

)
= θt+α(t)∇θt

(
Q∗(st,at)−Q(s,a,θt)

)
= θt+α(t)∇θt

(
E[rt+1 +γmax

a
Q∗(st+1,a)]−Q(s,a,θt)

)
(12)

Unfortunately we do not know Q∗(st+1,a) (since that is our ultimate objec-
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tive). We substitute it with our best estimate which is Q(st+1,a,θt), and the

expectation operator is tackled because we are sampling data. This leads us

to the update:

θt+1 = θt+α(t)
(
Y Qt −Q(st,at,θt)∆θtQ(st,at,θt)

)
(13)

Where α(t) is a declining update size and Y Qt is the known as the target

function and defined as:

Y Qt :=Rt+1 +γmax
a
Q(st+1,a,θt) (14)

B.3 Double Q

The Q learning update:

Qt+1(st,at) =Qt(st,at) +αt(rt+γmax
a
Qt(st+1,a)−Qt(st,at)) (15)

Converges to the optimal value function Q∗, which solves the following equa-

tion:

∀s,a :Q∗(s,a) =
∑
s′
P s
′
s,a(Rs

′
s,a+γmax

a
Q∗(s′,a)) (16)

where P s′s,a is the probability of ending in state s′ from state s and choosing

action a, similarly for reward Rs′s,a.

The Q learning update can be thought of a problem of estimating the value of

the next state using the following approximations:

max
a
Qt(st+1,a)≈ E[max

a
Qt(st+1,a)]≈max

a
E[Qt(st+1,a)] (17)
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However the order of the expectation operator and the max operator is not

in general swappable. Whilst the first term is an unbiased estimator of the

second, it is not the third.

In Van Hasselt (2010), the author shows that by maintaining two Q function

approximators built with mutually exclusive data, an unbiased estimator for

maxaE[Qt(st+1,a)] can be obtained.

Theorem Appendix.1. Van Hasselt (2010) Let X = {X1, . . . ,Xm} be a set of

R.V. and let µA := {µA1 , . . .µAM}, µB := {µB1 , . . .µBM} be two sets of unbiased

estimators of X s.t. E[µAi ] = E[µBi ] = E[Xi] ∀i.

Define M := {j |E[Xj ] =maxiE[xi]}. Similarly define a∗ = argmaxi µAi . Then

E[µBa∗ ] = E[Xa∗ ]≤max
i
E[Xi] (18)

The inequality is strict iff P (a∗ 6∈M)> 0

Proof Assuming a∗ ∈M , then E[µBa∗ ] = E[Xa∗ ] := maxiE[Xi]. Else a∗ 6∈M ,

then E[µBa∗ ] = E[Xa∗ ]<E[Xj ] := maxiE[Xi] for some j

Then since a∗ is in M or not we must have:

E[µBa∗ ] = P (a∗ ∈M)E[µa∗|a∗ ∈M ] +P (a∗ 6∈M)E[µa∗|a∗ 6∈M ]

= P (a∗ ∈M)max
i
E[Xi] +P (a∗ 6∈M)E[µa∗|a∗ 6∈M ]

≤ P (a∗ ∈M)max
i
E[Xi] +P (a∗ 6∈M)max

i
E[Xi] = max

i
E[Xi]

The authors therefore propose an alteration to the update in 15. Assuming

estimators QA and QB and defining a∗ := argmaxaQA(s′,a) we have:

QAt+1(s,a) =QAt (s,a) +αt(rt+γQBt (s′,a∗)−QAt (s,a)) (19)

247



B. Reinforcement Learning 248

Similarly b∗ is defined w.r.t QB. Updates of QB and QA are performed alter-

nately. Data efficiency should not be effected because a can be chosen using

both QB and QA

B.4 Deterministic and stochastic policies

The optimality of deterministic policies, those Πd ⊂ Π : A×S :→ [0,1] such

that ∀s ∈ S, ∃ a ∈A s.t. π(a,s)) = 1 is closely related to non-deterministic (or

stochastic) policies.

Consider a problem of the following form for some objective function R:

max
d
R(d) for d ∈D : S→ A. (20)

Then any solution of equation 20 must also solve the following maximisation

over all distributions of D

max
p(d)

Ep[R(d))] where p(d) ∈ P : S×A→ [0,1] (21)

if d∗ solves equation 20 than the indicator probability function over d∗ gives

the same maximal value. In expectation no distribution over policies can be

better this fixed policy hence maximising over stochastic policies is equivalent

to maximising over fixed policies.

B.5 Q-learning: Full update

The Q-learning update samples one possible proceeding state s′ and reward

r from to update the value initial state action pair (s,a). This updating of

state action values using a single sample can result in large sample errors. This

is could be a problem in our trading application where reward distributions

exhibit high variance with respect to the action chosen.
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In a process termed ’full backup’ in Sutton and Barto (2018), Q-value iteration

will update the value of (s,a) using the full distribution of rewards and sub-

sequent states (r,s′) using the conditional probability distribution P (r,s′|s,a).

This is not possible unless an estimate of the probability distribution is main-

tained or provided. Since the tabular Dyna-Q setup maintains an empirical

model of the environment P̂ (possible since the experiment has a finite number

of proceeding states from any initial state), it is a natural extension to perform

full backups. The Q function is then updated as follows:

Q∗new(s,a) =
∑
s′∈S

P̂ (s′|s,a)
(
r(s,a,s′) +γmin

b
Q∗old(s′, b)

)
(22)

Kalathil et al. (2014) term the method ’Empirical Q-Value Iteration’, provide

some convergence properties, rates and comparisons versus the sample backup

method typically used. They update using a sample of states, thus extending

the method to situations where the state action space is infinite.

B.6 Variational Autoencoders (VAEs)

Variational Auto Encoders (VAEs) Kingma and Ba (2014), Rezende et al.

(2014) come from Bayesian belief networks. They were motivated by the desire

to generate novel samples from an arbitrary, simple distribution given some

training data X without the need for time consuming Makov Chain Monte

carlo sampling.

The intuition behind the VAE is not straightforward, and requires a more tech-

nical explanation which we have adapted from Doersch (2016). The process

aims to sample z in a lower dimension latent variable space using a known

distribution family (typically this will be multivariate Gaussian) which we’ll

call P (Z). The process then fits a neural network f parameters θ such that

x∼N (f(z,θ),σ.I) := P (X| z,θ). This is possible since any n dimensional dis-

tribution can be estimated by the composition of any ’simpler’ n dimensional
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distribution and a sufficiently complicated function f . We can find θ through:

θ∗ = argmaxθP (Xtrain) =
∫
z
P (Xtrain| z,θ).P (z).dz (23)

Maximising this equation will take an unfeasibly large amount of training

data so VAE attempts to only sample z in latent space which are likely to

have produced Xtrain. In other words an encoding function Q(z|X,ψ) with

parameters ψ is introduced to allow the feasible sampling of Ez∼QP (Xtrain|z).

To get a good Q we minimise KL divergence of Qψ(z|X) and P (z|X), which

working through the definition of KL divergence and the application of Bayes

rule on P (z|X) to reverse the order of conditioning, we get the fundamental

equation:

logP (X)−KL[Qψ(X̃|Z)||P (z|X̃)] =Eψz ∼Q[logPθ(X̃|z)]−KL[Qψ(z|X̃)||P (z)]

(24)

Where X̃ =Xtrain.

Noting that KL divergence is greater than zero, the right hand side of equation

24 gives us a lower bound on logP (X), commonly called the evidence lower

bound (Barber, 2016). Since Qψ(z|X) maps variables from feature space to

latent space it is the encoder, and Pθ(X|z) is the decoder.

In practice Qψ(z|X) is typically chosen to have multivariate gaussian distribu-

tion N(z|µ(X,ψµ),Σ(X,ψΣ)) where as before the mean and variance functions

are formed from a deep neural network parametrised by ψ. This means that

the KL divergence has an analytical form (because it is between two Gaussian

distributions). Researcher have come to recognise this is a limitation of the

VAE method because there are limited distribution pairs with this property

Creswell and Bharath (2017) and Gaussian latent space
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The right hand side of equation 24 can be maximised using standard stochas-

tic gradient descent after a slight ’reparametrisation trick’ (Kingma and

Welling (2013)) to allow differentiability when using stochastic gradient de-

scent to train the model. This is shown in fig B.1: Instead of sampling from

N(z|µ(X,ψµ),Σ(X,ψΣ)) we sample from z from µ(X,ψµ) + Σ(X,ψΣ).ε where

ε∼N (0, I).

Figure B.1: Training for the VAE requires affine parameterisation of latent z to allow
differentiability in training

Conditional VAEs (Walker et al. (2016)) and (Sohn et al. (2015)) exist which

allow the VAE framework to tackle ’gap filling’ problems (Doersch (2016)).

Applied to images, the CVAE can fill in missing, structured, multimodal data

(typically images) Sohn et al. (2015) or predict future video frames (Walker

et al. (2016)). The mathematics behind the CVAE are the same to the VAE

except the encoding and decoding networks are conditioned on some input

variable (Doersch (2016)). By conditioning on an input, the user excludes

that information from being encoded in latent space since it is available to

the encoder and decoder. Conditioning allows the user to choose the type of

output they want. Repeated sampling will produce a distribution which should

match the observed empirical distribution. In Chapter 4 a prediction network

fψ is trained to predict the state transition of the environment. Estimation of
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Figure B.2: VAE clusters different
figures of the MNIST
dataset in a 2d latent
space

Figure B.3: CVAE does not cluster
different figures in latent
space because it has been
conditioned on them, in-
stead each figure should
be gaussian distributed

The inference model Q is a probabilistic encoder in the sense that for a given x,
it finds the parameters of the distribution that z is drawn from. By extension
this means that the reconstruction of x will be a distribution not a single
point and thus anomaly detection can be measured using a more interpretable
measure - ie probability of reconstruction Eψz ∼Q[logPθ(X̃|z)] which is the
approach of An and Cho (2015).

fψ is achieved through the framework of Conditional Variational Autoencoders

(CVAEs). In the training process an encoder gα :S×S×A→Z, parameterised

by α ∈Rn is trained back to back with the decoder, where composition of the

encoder and decoder thus forms a something akin to a autoencoder: h := f ◦g :

S×S×A→ S. The loss function for the composed neural networks is:

LAE := α||S′−h(S,(S′,A)))||RECON +βKL(g(S′,(S,A),N (0,1))) α,β ∈ R

(25)

Where || ◦ ||RECON is a distance metric, (typically l2), thus making the first

term reconstruction loss. The second term KL(◦,◦) is the KL divergence

between the encoding and the user defined distribution of Z which is chosen

to be normal for algebraic convenience. I have enclosed the term (S,A) to

emphasise that these are the conditioning variables in the process.

A realisation of the decoder for prior state s and action a is then produced by
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drawing z from N (0, Id). A diagram of the training and sampling procedure

for the CVAE can be seen in figure B.1

B.7 UCB

The problem of balancing exploration and exploitation has been examined in

the literature surrounding multi-arm bandit problems. Reinforcement Learn-

ing research has been slow to adopt the advances in this area, preferring to stick

to simple ε-greedy exploration strategies which are demonstrably inefficient (at

least from a regret perspective). In this section we will quickly introduce some

concepts in multi-arm bandit search and prove that a strategy known as UCB,

is efficient in some sense.

B.7.1 Statement of problem

For time periods t = 1, . . .T a learner can choose an action a ∈ A =

{a1,a2, . . .ak}.

Nature chooses some payoff ra conditional on a from distribution πa := P (r|a).

Define cumulative regret:

RT := E
[ T∑
t=1

(U∗−Ut)
]

for U∗ := max
a
E[r|a] and Ut = E[r|at] (26)

RT can be rewritten equivalently as as count of each action taken and the

ensuing reward:

RT =
∑
a
E[Nt(a)]∆a for Nt(a) :=

T∑
t=1

1(a= at) and ∆a := U∗−Ua (27)

Nt(a) is the number of selection for action a made during a history H =
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(a1,a2, . . .aT ) and ∆a is the gap between an optimal action and the actual

action taken.

A benchmark for a successful strategy is to aim for a regret term which is not

linear in time, that is to say O(R)≤ T .

A greedy strategy (one of exploitation) would be to play the action with the

highest current estimated payoff. Greedy strategies have a high chance of lock-

ing onto a suboptimal action implying that regret is not going to be sublinear.

Proposition B.1. ε-greedy strategy has linear regret

Proof. Consider the common ε-greedy strategy which selects a random action

uniformly with probability ε and otherwise chooses the strategy with the best

current estimated payoff. This strategy will also have linear regret since even

if the best action is found, the exploration choices will occur εT of the time

and have non zero regret.

B.7.2 Optimism in the face of uncertainty

Suppose the agent imagines all plausible environments compatible with their

experience. They then select the most favourable action based on this. By

plausible we could think about confidence bounds1 or interquartile range

around the estimate of the reward from choosing action a. For any action

a, its reward estimate becomes more accurate as it is chosen more. In this

way we can see that suboptimal actions will only be chosen for a limited time

before others are explored.

Define the empirical reward of action a to be:

Ût(a) := 1
Nt(a)

T∑
t=1

rt1(at = a) (28)

1UCB=Upper Confidence Bound
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where 1(·) is the usual indicator function.

The following proposition and proof is adapted from Krause (2009).

Proposition B.2. If actions are chosen according to:

at = argmax
a

Ût(a) +

√√√√ log(t)
Nt(a) (29)

And each action is chosen at least once (Nt(a)≥ 1 ∀a)

Then the regret is sub-linear in the limit of T, and in particular:

E[RT ] =O(K logT
∆ ) (30)

where ∆ = mina∆a and some constant K.

From equation 29 it can be seen that the confidence bound term
√
log(t)
Nt(a) grows

as more actions are tried, but decreases the number of times any single action

is chosen. Actions are tried infinitely often, but exploration and exploitation

are balanced.

Proof. Proof proceeds to bound the expectation of E[Nt(a)] for all actions a.

Let there be a the boundBt(a) on any action such that P (U(a)< Ût(a)+Bt(a))

is high. Strategy is then to choose action at = argmaxa Ût(a) +Bt(a))

The Hoeffding bound states that for i.i.d. random variables X1, . . .Xt in [0,1]

such that E[X] = µ and their sample mean X̃t = t−1∑t
τ=1Xτ then for some

constant c: P [X̃ > µ+ c]≤ e−tc2

Thus P [U(a)> ŨT (a) +BT (a)]≤ e−2NT (a)BT (a)2 .

Choosing BT (a) =
√

logT
NT (a) means that:
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P [U(a)> ŨT (a) +BT (a)]≤ t−2 (31)

Suppose at time t<T, a suboptimal action a is chosen. Thus:

ÛT (a) +BT (a)≥ Û∗T +B∗(T ) (32)

adding (µj−µj) to the LHS and deducting µ∗ from both sides:

ÛT (a)− (µj +BT (a))︸ ︷︷ ︸
A

+(µa−µ∗+ 2BT (a))︸ ︷︷ ︸
B

≥ Û∗T − (µ∗−B∗(T ))︸ ︷︷ ︸
−C

At least one of A,B,C must be greater than or equal to zero. This gives three

inequalities respectively:

Ût(a)≥ µa+Bt(a) (33)

µa+ 2Bt(a)≤ µ∗ (34)

Û∗t ≤ µ∗−B∗(t) (35)

From equation 31 we know that the first and third inequalities happen with

probability less than T−2.

If Nt(a)≥ 4log(T )
∆2
a

:= l then

µa+ 2BT (a) = µa+ 2

√√√√2log(T )
NT (a) ≤ µa+ 2

√√√√2log(T )
8log(n) ∆a = µa+ ∆a = µ∗

Finally we are able to bound E[Nt(a)] by decomposing the expectation into

two exclusive conditional ones:
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E[Nt(a)] =

P (NT (a)≤ l)︸ ︷︷ ︸
≤1

E[NT (a)|NT (a)≤ l]︸ ︷︷ ︸
≤l

+P (NT (a)> l)︸ ︷︷ ︸
≤2T−4

E[NT (a)|NT (a)> l]︸ ︷︷ ︸
≤T

≤ l+ 2T−2 (36)

We know P (Nt(a) > l)≤ 2T−2 since this would violate either condition 33 or

35. The union bound is then used with the knowledge either condition only

happens with probability at most T−2.

From the definition of regret:

Rt =
∑
a
E[Nt(a)]∆a ≤

∑
a

(l+ 2T−1)∆a =
∑
a

4log(T )
∆2
a

.∆a+ 2T−1∆a

From which we can conclude:

O(RT ) =O
(Klog(T )

∆
)

A similar but longer proof exists where T the number of plays is not known

in advance. In this case, the second term in the UCB strategy can become

Bt(a) =
√

2log t
Nt(a) and the limit is only minimally changed to O

(
K log t

∆

)
. Related

limits also exist on the number of times a su-boptimal action can be chosen.

Interestingly, the regret bound can be shown to be at least logarithmic in

steps, so UCB is efficient up to constants. See Auer and Ortner (2010) for

more details.
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B.7.3 UCB in Q-learning

Using UCB style exploration instead of ε-greedy has come relatively recently

to Reinforcement literature. Jin et al. (2018) show that using UCB with Q-

learning gives some performance guarantees on regret which have hitherto been

missing. These move the efficiency of Q-learning on a par with Reinforcement

Learning with a model.

B.8 Actor Critic Methods

Actor Critic methods differ from Q-learning in that they have a representation

of the policy directly rather than deriving it in a greedy fashion from the

Q-function. In the case of deep learning this means that a neural network

parameterised by θ estimates the policy function πθ : S → A for some set

of parameters θ. This is the Actor network which is learned in addition to

the parameterised Action-value (Q) or more commonly the Value function

V π : S → R.

The method is based in policy-based learning where gradient ascent is at-

tempted on Eπθ [Rt] := Eπθ [
∑∞
k=0 γ

krt+k]. Various different updates of the

parameterisation are possible, one introduced by Williams (1992) is known

as REINFORCE and updates θ in direction ∇θlogπ(at|st, θ)Rt which can be

shown to be an unbiased estimator of ∇θE[Rt]. In practice, lower variance can

be achieved by deducting a baseline from the reward Rt so the update becomes

∇θlogπ(at|st, θ)(Rt−V π(st). The sign of the final term in brackets indicates

how surprising the reward was from taking action at in that state.

Of course the value function is not known, so it is also estimated by a neural

network parameterised by ψ: V π
ψ (st)≈ V π(st). Gradient descent is performed

to minimise the difference between the parameterised value function and the

actual value function for that policy: J(ψ) := Eπ[((V π(s)−V π
ψ (s))2]. Param-

eters ψ are updated in the direction (V π(st)−V π
ψ (st))∇ψV π

ψ (st). The role of
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the value function estimate in the update of the actor network can be thought

of as a critic. For more details see Mnih et al. (2016b).
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C Chapter 4: Supplementary Results

C.1 Chapter 4: Reward and Imbalance distributions

The charts in the following pages show the reward distributions of the strategies

and the distributions of orderbook imbalance. In the experiments where order

placement is possible, and this option is utilised, the distribution is distributed

across its domain. Where spoofing is successful, I would expect the distribution

to be more skewed to the positive. The left hand side of the distribution is

affected by the agent cancelling their large orders.
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C.2 Chapter 4: Decision Trees

After training the trading policies for the various experimental configurations

in Chapter 4, I trained a tree-classifier to interpret them. The input fea-

tures were the input features of the Q-function (Action value function) and

the predicted variable was the chosen action. The experiments appended ".0"

correspond to those where the action space was restricted to only allow doing

nothing and executing at best.

Figure C.5: Exp 0.0 tree classifier approximation: The strategy will sell once the
best bid has improved by 2 or more from entry (profit taking), if best
ask declines it also advocates selling (stop loss), otherwise it will wait.
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Figure C.6: Exp 1 tree classifier approximation: The upper part of the tree shows
that adding orders to the bid occurs when imbalance is not high enough.
The lower branch shows that order cancellation occurs when spread is
small, which can indicate a higher risk of execution. Splitting first on
ask change is in common with best strategy found in Exp0 (Figure 4.6)

Figure C.7: Exp 1.0 tree classifier approximation: The strategy seems to learn that
a negative imbalance is associated with negative markets and so exits
position. Otherwise there is some profit taking element by the pres-
ence of distance as a splitting variable. A wide bid ask spread could
be associated with stationary market movements hence decision to do
nothing.
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Figure C.8: Exp 2 tree classifier approximation: The strategy closes out the position
after negative moves in best ask. Bids are cancelled if the agent gets too
close to the front of the queue. Otherwise the strategy involves adding
orders if the imbalance is not already above a threshold. This seems
like a manipulative strategy.

Figure C.9: Exp 2.0 tree classifier approximation: A rational profit taking decision
can be seen in the upper branch. In the lower branch negative imbalance
is a trigger to sell inventory.
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Figure C.10: Exp 3 tree classifier approximation: Cancelling bids when the bid ask
spread and position in LOB are both small is rational. The lower
half of the tree shows that the position is closed out if best ask is not
declining. This might account for the strategy failing to get many high
returns as shown in Figure 4.3

Figure C.11: Exp 3.0 tree classifier approximation: This tree is difficult to interpret.
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Figure C.12: Exp 4 tree classifier approximation: Here the classifier failed to ’ex-
plain’ the strategy in the sense that the overall accuracy was only 0.49.

Figure C.13: Exp 4.0 tree classifier approximation: Whilst the classifier describes
the strategy well (96% accuracy, Table 4.8), the learned strategy is
not rational, deciding to always sell when bid ask spread is narrow.
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D Chapter 6: Supplementary results

The section contains the full ANOVA and other related results for the experi-

ments 4.1-3 in Chapter 6. They are included for completeness.

Cases Sum of Squares df Mean Square F p η2 η2
p ω2

Wind 6173.603 1 6173.603 270.929 < .001 0.458 0.688 0.583
Wind * AI 4.934 1 4.934 0.217 0.643 3.659e-4 0.002 0.000
Wind * Definition 2.312 1 2.312 0.101 0.751 1.714e-4 8.241e-4 0.000
Wind * AI * Definition 18.323 1 18.323 0.804 0.372 0.001 0.006 0.000
Residuals 2802.777 123 22.787
Legal 292.129 1 292.129 63.497 < .001 0.022 0.340 0.118
Legal * AI 0.599 1 0.599 0.130 0.719 4.444e-5 0.001 0.000
Legal * Definition 5.805 1 5.805 1.262 0.263 4.305e-4 0.010 5.623e-4
Legal * AI * Definition 0.255 1 0.255 0.055 0.814 1.889e-5 4.498e-4 0.000
Residuals 565.885 123 4.601
Benefit 140.232 1 140.232 34.362 < .001 0.010 0.218 0.062
Benefit * AI 0.042 1 0.042 0.010 0.919 3.106e-6 8.343e-5 0.000
Benefit * Definition 2.579 1 2.579 0.632 0.428 1.913e-4 0.005 0.000
Benefit * AI * Definition 1.331 1 1.331 0.326 0.569 9.872e-5 0.003 0.000
Residuals 501.968 123 4.081
Wind * Legal 2.034 1 2.034 0.631 0.429 1.509e-4 0.005 0.000
Wind * Legal * AI 1.636 1 1.636 0.508 0.477 1.214e-4 0.004 0.000
Wind * Legal * Definition 0.405 1 0.405 0.126 0.723 3.007e-5 0.001 0.000
Wind * Legal * AI * Definition 3.367 1 3.367 1.045 0.309 2.497e-4 0.008 7.303e-5
Residuals 396.483 123 3.223
Wind * Benefit 23.514 1 23.514 10.464 0.002 0.002 0.078 0.011
Wind * Benefit * AI 14.187 1 14.187 6.313 0.013 0.001 0.049 0.006
Wind * Benefit * Definition 1.432 1 1.432 0.637 0.426 1.062e-4 0.005 0.000
Wind * Benefit * AI * Definition 0.275 1 0.275 0.122 0.727 2.037e-5 9.929e-4 0.000
Residuals 276.410 123 2.247
Legal * Benefit 7.181 1 7.181 2.415 0.123 5.326e-4 0.019 0.002
Legal * Benefit * AI 8.411 1 8.411 2.829 0.095 6.238e-4 0.022 0.003
Legal * Benefit * Definition 1.600 1 1.600 0.538 0.465 1.186e-4 0.004 0.000
Legal * Benefit * AI * Definition 5.983 1 5.983 2.012 0.159 4.437e-4 0.016 0.002
Residuals 365.712 123 2.973
Wind * Legal * Benefit 19.894 1 19.894 8.913 0.003 0.001 0.068 0.009
Wind * Legal * Benefit * AI 0.325 1 0.325 0.146 0.703 2.410e-5 0.001 0.000
Wind * Legal * Benefit * Definition 4.730 1 4.730 2.119 0.148 3.508e-4 0.017 0.001
Wind * Legal * Benefit * AI * Definition 4.091 1 4.091 1.833 0.178 3.034e-4 0.015 0.001
Residuals 274.556 123 2.232

Table D.1: Experiment 4.1 Within subject effects Anova. Significant effects high-
lighted.

Cases Sum of Squares df Mean Square F p η2 η2
p ω2

AI 0.562 1 0.562 0.044 0.834 4.167e-5 3.605e-4 0.000
Definition 0.050 1 0.050 0.004 0.950 3.718e-6 3.218e-5 0.000
AI * Definition 0.087 1 0.087 0.007 0.934 6.476e-6 5.605e-5 0.000
Residuals 1557.713 123 12.664

Table D.2: Experiment 4.1: Between Subjects Effects
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F df1 df2 p
Wind Legal Benefit 1.071 3 123 0.364
Wind Legal No-Benefit 0.429 3 123 0.732
Wind Not-Legal Benefit 1.261 3 123 0.291
Wind Not-Legal No-Benefit 4.335 3 123 0.006
No-Wind Legal Benefit 0.959 3 123 0.415
No-Wind Legal No-Benefit 1.505 3 123 0.217
No-Wind Not-Legal Benefit 3.334 3 123 0.022
No-Wind Not-Legal No-Benefit 0.408 3 123 0.747

Table D.3: Experiment 4.1 Levene’s test for Equality of Variances within groups

Cases Sum of Squares df Mean Square F p η2 η2
p ω2

AI 45.264 1 45.264 7.441 0.007 0.001 0.055 0.010
AI * Definition 18.160 1 18.160 2.986 0.086 5.203e-4 0.023 0.003
Residuals 778.594 128 6.083
Wind 7249.090 1 7249.090 143.559 < .001 0.208 0.529 0.430
Wind * Definition 1174.090 1 1174.090 23.251 < .001 0.034 0.154 0.105
Residuals 6463.449 128 50.496
Legal 1944.762 1 1944.762 82.906 < .001 0.056 0.393 0.241
Legal * Definition 227.958 1 227.958 9.718 0.002 0.007 0.071 0.033
Residuals 3002.546 128 23.457
Benefit 257.733 1 257.733 28.077 < .001 0.007 0.180 0.056
Benefit * Definition 1.179 1 1.179 0.128 0.721 3.377e-5 0.001 0.000
Residuals 1174.979 128 9.180
AI * Wind 3.522 1 3.522 0.543 0.463 1.009e-4 0.004 0.000
AI * Wind * Definition 3.522 1 3.522 0.543 0.463 1.009e-4 0.004 0.000
Residuals 830.728 128 6.490
AI * Legal 2.516e-4 1 2.516e-4 4.799e-5 0.994 7.208e-9 3.750e-7 0.000
AI * Legal * Definition 7.035 1 7.035 1.342 0.249 2.015e-4 0.010 4.826e-4
Residuals 671.023 128 5.242
Wind * Legal 26.813 1 26.813 2.447 0.120 7.682e-4 0.019 0.004
Wind * Legal * Definition 38.667 1 38.667 3.529 0.063 0.001 0.027 0.006
Residuals 1402.538 128 10.957
AI * Benefit 0.624 1 0.624 0.173 0.678 1.788e-5 0.001 0.000
AI * Benefit * Definition 4.417 1 4.417 1.226 0.270 1.265e-4 0.009 2.324e-4
Residuals 461.165 128 3.603
Wind * Benefit 53.008 1 53.008 5.702 0.018 0.002 0.043 0.010
Wind * Benefit * Definition 3.958 1 3.958 0.426 0.515 1.134e-4 0.003 0.000
Residuals 1189.900 128 9.296
Legal * Benefit 9.571 1 9.571 1.842 0.177 2.742e-4 0.014 0.001
Legal * Benefit * Definition 33.818 1 33.818 6.509 0.012 9.688e-4 0.048 0.008
Residuals 664.991 128 5.195
AI * Wind * Legal 25.379 1 25.379 4.507 0.036 7.271e-4 0.034 0.005
AI * Wind * Legal * Definition 0.379 1 0.379 0.067 0.796 1.084e-5 5.249e-4 0.000
Residuals 720.722 128 5.631
AI * Wind * Benefit 5.472 1 5.472 0.944 0.333 1.568e-4 0.007 0.000
AI * Wind * Benefit * Definition 1.522 1 1.522 0.263 0.609 4.359e-5 0.002 0.000
Residuals 741.740 128 5.795
AI * Legal * Benefit 18.391 1 18.391 2.799 0.097 5.269e-4 0.021 0.003
AI * Legal * Benefit * Definition 3.637 1 3.637 0.554 0.458 1.042e-4 0.004 0.000
Residuals 841.017 128 6.570
Wind * Legal * Benefit 2.178 1 2.178 0.255 0.614 6.240e-5 0.002 0.000
Wind * Legal * Benefit * Definition 9.559 1 9.559 1.120 0.292 2.739e-4 0.009 2.472e-4
Residuals 1092.595 128 8.536
AI * Wind * Legal * Benefit 8.591 1 8.591 1.663 0.200 2.461e-4 0.013 9.243e-4
AI * Wind * Legal * Benefit * Definition 0.803 1 0.803 0.155 0.694 2.300e-5 0.001 0.000
Residuals 661.248 128 5.166

Table D.4: Experiment 4.2 Repeated measures ANOVA: Within Subjects Effects.
Significant effects highlighted.
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Cases Sum of Squares df Mean Square F p η2 η2
p ω2

Definition 16.361 1 16.361 0.695 0.406 4.687e-4 0.005 0.000
Residuals 3012.478 128 23.535

Table D.5: Experiment 4.2 Repeated measures ANOVA: between Subjects Effects

F df1 df2 p
AI Wind Legal Benefit 0.925 1 128 0.338
AI Wind Legal No-Benefit 3.924 1 128 0.050
AI Wind Not-legal Benefit 6.009 1 128 0.016
AI Wind Not-legal Not Benefit 6.967 1 128 0.009
AI No-Wind Legal Benefit 10.954 1 128 0.001
AI No-Wind Legal NotBenefit 11.119 1 128 0.001
AI No-Wind Not Illegal Benefit 58.103 1 128 < .001
AI No-Wind Not Illegal NoBenefit 6.130 1 128 0.015
Hum Wind Legal Benefit 0.026 1 128 0.873
Hum Wind Legal No-Benefit 2.223 1 128 0.138
Hum Wind Not-legal Benefit 0.724 1 128 0.396
Hum Wind Not-legal No-Benefit 7.763 1 128 0.006
Hum No-Wind Legal Benefit 10.904 1 128 0.001
Hum No-Wind Legal No-Benefit 3.874 1 128 0.051
Hum No-Wind Not-legal Benefit 34.390 1 128 < .001
Hum No-Wind Not-legal No-Benefit 14.782 1 128 < .001

Table D.6: Experiment 4.2 Levene’s test for Equality of Variances

95% CI for Mean Difference
Variable Comparison Estimate Lower Upper SE df t p
Wind False - True 3.782 3.119 4.352 0.337 129 11.208 < .001
Legal True - False 1.914 1.514 2.355 0.219 129 8.724 < .001
Benefit True - False 0.703 0.441 0.967 0.132 129 5.308 < .001
Pilot AI - Human -0.289 -0.509 -0.081 0.109 129 -2.656 0.009

Table D.7: Experiment 4.2 Contrasts. Intent scores are averaged across groups not
being contrasted. The t-test variant does not assume equal variances.
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Cases Sum of Squares df Mean Square F p η2 η2
p ω2

Defn 6.826 1 6.826 0.708 0.403 3.672e-4 0.010 0.000
Defn * pilot 21.144 1 21.144 2.192 0.143 0.001 0.030 0.005
Defn * F_D 5.132 1 5.132 0.532 0.468 2.761e-4 0.008 0.000
Defn * pilot * F_D 10.098 1 10.098 1.047 0.310 5.433e-4 0.015 2.103e-4
Residuals 675.207 70 9.646
Wind 4229.268 1 4229.268 98.457 < .001 0.228 0.584 0.481
Wind * pilot 0.518 1 0.518 0.012 0.913 2.789e-5 1.724e-4 0.000
Wind * F_D 109.377 1 109.377 2.546 0.115 0.006 0.035 0.015
Wind * pilot * F_D 37.495 1 37.495 0.873 0.353 0.002 0.012 0.000
Residuals 3006.874 70 42.955
Legal 513.019 1 513.019 28.377 < .001 0.028 0.288 0.153
Legal * pilot 1.713 1 1.713 0.095 0.759 9.215e-5 0.001 0.000
Legal * F_D 53.105 1 53.105 2.937 0.091 0.003 0.040 0.013
Legal * pilot * F_D 1.166 1 1.166 0.065 0.800 6.275e-5 9.207e-4 0.000
Residuals 1265.505 70 18.079
Benefit 108.760 1 108.760 11.627 0.001 0.006 0.142 0.045
Benefit * pilot 5.082 1 5.082 0.543 0.464 2.734e-4 0.008 0.000
Benefit * F_D 0.743 1 0.743 0.079 0.779 3.999e-5 0.001 0.000
Benefit * pilot * F_D 15.886 1 15.886 1.698 0.197 8.547e-4 0.024 0.003
Residuals 654.789 70 9.354
Defn * Wind 14.032 1 14.032 0.855 0.358 7.550e-4 0.012 0.000
Defn * Wind * pilot 0.558 1 0.558 0.034 0.854 2.999e-5 4.848e-4 0.000
Defn * Wind * F_D 470.956 1 470.956 28.684 < .001 0.025 0.291 0.147
Defn * Wind * pilot * F_D 58.476 1 58.476 3.562 0.063 0.003 0.048 0.016
Residuals 1149.324 70 16.419
Defn * Legal 112.422 1 112.422 10.898 0.002 0.006 0.135 0.044
Defn * Legal * pilot 0.609 1 0.609 0.059 0.809 3.275e-5 8.423e-4 0.000
Defn * Legal * F_D 0.896 1 0.896 0.087 0.769 4.821e-5 0.001 0.000
Defn * Legal * pilot * F_D 6.566 1 6.566 0.637 0.428 3.533e-4 0.009 0.000
Residuals 722.125 70 10.316
Wind * Legal 67.322 1 67.322 10.766 0.002 0.004 0.133 0.031
Wind * Legal * pilot 33.386 1 33.386 5.339 0.024 0.002 0.071 0.014
Wind * Legal * F_D 1.854 1 1.854 0.297 0.588 9.976e-5 0.004 0.000
Wind * Legal * pilot * F_D 0.061 1 0.061 0.010 0.922 3.273e-6 1.389e-4 0.000
Residuals 437.723 70 6.253
Defn * Benefit 3.550 1 3.550 0.521 0.473 1.910e-4 0.007 0.000
Defn * Benefit * pilot 1.553 1 1.553 0.228 0.635 8.354e-5 0.003 0.000
Defn * Benefit * F_D 11.107 1 11.107 1.630 0.206 5.976e-4 0.023 0.002
Defn * Benefit * pilot * F_D 6.633 1 6.633 0.973 0.327 3.569e-4 0.014 0.000
Residuals 477.136 70 6.816
Wind * Benefit 9.609 1 9.609 1.337 0.251 5.170e-4 0.019 0.001
Wind * Benefit * pilot 0.685 1 0.685 0.095 0.758 3.688e-5 0.001 0.000
Wind * Benefit * F_D 18.035 1 18.035 2.510 0.118 9.703e-4 0.035 0.005
Wind * Benefit * pilot * F_D 20.064 1 20.064 2.792 0.099 0.001 0.038 0.006
Residuals 503.019 70 7.186
Legal * Benefit 0.158 1 0.158 0.031 0.861 8.474e-6 4.440e-4 0.000
Legal * Benefit * pilot 0.061 1 0.061 0.012 0.913 3.303e-6 1.731e-4 0.000
Legal * Benefit * F_D 5.962 1 5.962 1.177 0.282 3.208e-4 0.017 4.919e-4
Legal * Benefit * pilot * F_D 10.972 1 10.972 2.166 0.146 5.903e-4 0.030 0.003
Residuals 354.584 70 5.065
Defn * Wind * Legal 9.737 1 9.737 1.892 0.173 5.239e-4 0.026 0.003
Defn * Wind * Legal * pilot 0.776 1 0.776 0.151 0.699 4.173e-5 0.002 0.000
Defn * Wind * Legal * F_D 11.753 1 11.753 2.283 0.135 6.323e-4 0.032 0.004
Defn * Wind * Legal * pilot * F_D 0.155 1 0.155 0.030 0.863 8.316e-6 4.288e-4 0.000
Residuals 360.295 70 5.147
Defn * Wind * Benefit 0.040 1 0.040 0.018 0.894 2.129e-6 2.540e-4 0.000
Defn * Wind * Benefit * pilot 7.212 1 7.212 3.241 0.076 3.880e-4 0.044 0.003
Defn * Wind * Benefit * F_D 3.827 1 3.827 1.720 0.194 2.059e-4 0.024 9.874e-4
Defn * Wind * Benefit * pilot * F_D 3.757 1 3.757 1.689 0.198 2.021e-4 0.024 9.445e-4
Residuals 155.738 70 2.225
Defn * Legal * Benefit 0.496 1 0.496 0.090 0.765 2.667e-5 0.001 0.000
Defn * Legal * Benefit * pilot 10.179 1 10.179 1.852 0.178 5.477e-4 0.026 0.003
Defn * Legal * Benefit * F_D 2.106 1 2.106 0.383 0.538 1.133e-4 0.005 0.000
Defn * Legal * Benefit * pilot * F_D 8.180 1 8.180 1.488 0.227 4.401e-4 0.021 0.001
Residuals 384.738 70 5.496
Wind * Legal * Benefit 46.703 1 46.703 6.949 0.010 0.003 0.090 0.020
Wind * Legal * Benefit * pilot 0.537 1 0.537 0.080 0.778 2.890e-5 0.001 0.000
Wind * Legal * Benefit * F_D 0.020 1 0.020 0.003 0.956 1.095e-6 4.324e-5 0.000
Wind * Legal * Benefit * pilot * F_D 3.804 1 3.804 0.566 0.454 2.047e-4 0.008 0.000
Residuals 470.472 70 6.721
Defn * Wind * Legal * Benefit 3.716 1 3.716 0.953 0.332 1.999e-4 0.013 0.000
Defn * Wind * Legal * Benefit * pilot 16.817 1 16.817 4.312 0.042 9.048e-4 0.058 0.007
Defn * Wind * Legal * Benefit * F_D 5.253 1 5.253 1.347 0.250 2.826e-4 0.019 7.775e-4
Defn * Wind * Legal * Benefit * pilot * F_D 0.389 1 0.389 0.100 0.753 2.094e-5 0.001 0.000
Residuals 272.979 70 3.900

Table D.8: Experiment 4.3: Intent within Subjects Effects. F_D group refers to
whether participants saw formal definition for first set of 8 questions, or
were asked to use their own definition of intent.
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Cases Sum of Squares df Mean Square F p η2 η2
p ω2

pilot 125.162 1 125.162 6.075 0.016 0.007 0.080 0.035
F_D 8.017 1 8.017 0.389 0.535 4.313e-4 0.006 0.000
pilot * F_D 10.517 1 10.517 0.510 0.477 5.658e-4 0.007 0.000
Residuals 1442.144 70 20.602

Table D.9: Experiment 4.3: Intent between Subjects Effects

Cases Sum of Squares df Mean Square F p η2 η2
p ω2

Error type 39.278 1 39.278 7.471 0.008 0.053 0.094 0.046
Error type * Pilot ID 4.900 1 4.900 0.932 0.338 0.007 0.013 0.000
Residuals 378.539 72 5.257

Table D.10: Experiment 4.3: Error Attribution Repeated Measures ANOVA:Within
Subjects Effects

Cases Sum of Squares df Mean Square F p η2 η2
p ω2

Pilot ID 0.133 1 0.133 0.030 0.862 1.797e-4 4.197e-4 0.000
Residuals 316.387 72 4.394

Table D.11: Experiment 4.3: Error Attribution Repeated Measures ANOVA: Be-
tween Subjects Effects

95% CI for Mean Difference
Comparison Estimate Lower Upper SE df t p
Drone err - Pilot err -1.031 -1.782 -0.279 0.377 72 -2.733 0.008
Human grp - AI grp 0.060 -0.627 0.747 0.345 72 0.174 0.862

Table D.12: Experiment 4.3 Error Attribution
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Cases Sum of Squares df Mean Square F p η2 η2
p ω2

Defn 7.241 1 7.241 1.367 0.246 6.107e-4 0.019 7.485e-4
Defn * F_D 11.437 1 11.437 2.158 0.146 9.646e-4 0.030 0.002
Defn * pilot 1.301 1 1.301 0.245 0.622 1.097e-4 0.003 0.000
Defn * F_D * pilot 6.662 1 6.662 1.257 0.266 5.618e-4 0.018 5.254e-4
Residuals 370.912 70 5.299
Wind 3171.921 1 3171.921 111.312 < .001 0.268 0.614 0.426
Wind * F_D 1.179 1 1.179 0.041 0.839 9.945e-5 5.908e-4 0.000
Wind * pilot 0.281 1 0.281 0.010 0.921 2.373e-5 1.410e-4 0.000
Wind * F_D * pilot 80.868 1 80.868 2.838 0.097 0.007 0.039 0.012
Residuals 1994.708 70 28.496
Legal 444.139 1 444.139 71.620 < .001 0.037 0.506 0.142
Legal * F_D 2.390 1 2.390 0.385 0.537 2.015e-4 0.005 0.000
Legal * pilot 15.036 1 15.036 2.425 0.124 0.001 0.033 0.003
Legal * F_D * pilot 3.729e-4 1 3.729e-4 6.013e-5 0.994 3.145e-8 8.590e-7 0.000
Residuals 434.093 70 6.201
Benefit 35.840 1 35.840 9.306 0.003 0.003 0.117 0.013
Benefit * F_D 1.966 1 1.966 0.511 0.477 1.658e-4 0.007 0.000
Benefit * pilot 1.178 1 1.178 0.306 0.582 9.934e-5 0.004 0.000
Benefit * F_D * pilot 0.293 1 0.293 0.076 0.783 2.474e-5 0.001 0.000
Residuals 269.584 70 3.851
Defn * Wind 10.852 1 10.852 2.224 0.140 9.152e-4 0.031 0.002
Defn * Wind * F_D 14.837 1 14.837 3.040 0.086 0.001 0.042 0.004
Defn * Wind * pilot 1.841 1 1.841 0.377 0.541 1.553e-4 0.005 0.000
Defn * Wind * F_D * pilot 1.339 1 1.339 0.274 0.602 1.129e-4 0.004 0.000
Residuals 341.619 70 4.880
Defn * Legal 9.091 1 9.091 3.090 0.083 7.667e-4 0.042 0.003
Defn * Legal * F_D 0.272 1 0.272 0.092 0.762 2.291e-5 0.001 0.000
Defn * Legal * pilot 1.371 1 1.371 0.466 0.497 1.156e-4 0.007 0.000
Defn * Legal * F_D * pilot 0.198 1 0.198 0.067 0.796 1.668e-5 9.595e-4 0.000
Residuals 205.973 70 2.942
Wind * Legal 39.218 1 39.218 8.393 0.005 0.003 0.107 0.013
Wind * Legal * F_D 0.249 1 0.249 0.053 0.818 2.104e-5 7.621e-4 0.000
Wind * Legal * pilot 0.760 1 0.760 0.163 0.688 6.413e-5 0.002 0.000
Wind * Legal * F_D * pilot 9.606 1 9.606 2.056 0.156 8.101e-4 0.029 0.002
Residuals 327.106 70 4.673
Defn * Benefit 0.809 1 0.809 0.253 0.616 6.822e-5 0.004 0.000
Defn * Benefit * F_D 0.086 1 0.086 0.027 0.870 7.219e-6 3.824e-4 0.000
Defn * Benefit * pilot 0.234 1 0.234 0.073 0.787 1.976e-5 0.001 0.000
Defn * Benefit * F_D * pilot 5.773 1 5.773 1.806 0.183 4.869e-4 0.025 0.001
Residuals 223.732 70 3.196
Wind * Benefit 41.050 1 41.050 14.272 < .001 0.003 0.169 0.016
Wind * Benefit * F_D 0.003 1 0.003 0.001 0.973 2.785e-7 1.640e-5 0.000
Wind * Benefit * pilot 8.764 1 8.764 3.047 0.085 7.392e-4 0.042 0.002
Wind * Benefit * F_D * pilot 4.415 1 4.415 1.535 0.220 3.723e-4 0.021 6.351e-4
Residuals 201.331 70 2.876
Legal * Benefit 6.472 1 6.472 1.998 0.162 5.458e-4 0.028 0.001
Legal * Benefit * F_D 3.835 1 3.835 1.184 0.280 3.234e-4 0.017 2.433e-4
Legal * Benefit * pilot 2.093 1 2.093 0.646 0.424 1.766e-4 0.009 0.000
Legal * Benefit * F_D * pilot 0.070 1 0.070 0.022 0.883 5.914e-6 3.091e-4 0.000
Residuals 226.754 70 3.239
Defn * Wind * Legal 0.887 1 0.887 0.337 0.563 7.484e-5 0.005 0.000
Defn * Wind * Legal * F_D 2.422e-4 1 2.422e-4 9.208e-5 0.992 2.043e-8 1.315e-6 0.000
Defn * Wind * Legal * pilot 2.788 1 2.788 1.060 0.307 2.351e-4 0.015 6.563e-5
Defn * Wind * Legal * F_D * pilot 1.711 1 1.711 0.651 0.423 1.443e-4 0.009 0.000
Residuals 184.120 70 2.630
Defn * Wind * Benefit 0.548 1 0.548 0.174 0.677 4.621e-5 0.002 0.000
Defn * Wind * Benefit * F_D 1.276 1 1.276 0.406 0.526 1.076e-4 0.006 0.000
Defn * Wind * Benefit * pilot 0.164 1 0.164 0.052 0.820 1.381e-5 7.443e-4 0.000
Defn * Wind * Benefit * F_D * pilot 6.196 1 6.196 1.973 0.165 5.225e-4 0.027 0.001
Residuals 219.816 70 3.140
Defn * Legal * Benefit 0.892 1 0.892 0.259 0.612 7.523e-5 0.004 0.000
Defn * Legal * Benefit * F_D 0.583 1 0.583 0.169 0.682 4.919e-5 0.002 0.000
Defn * Legal * Benefit * pilot 0.861 1 0.861 0.250 0.619 7.261e-5 0.004 0.000
Defn * Legal * Benefit * F_D * pilot 2.365 1 2.365 0.687 0.410 1.995e-4 0.010 0.000
Residuals 241.028 70 3.443
Wind * Legal * Benefit 17.803 1 17.803 6.081 0.016 0.002 0.080 0.006
Wind * Legal * Benefit * F_D 0.013 1 0.013 0.004 0.948 1.067e-6 6.175e-5 0.000
Wind * Legal * Benefit * pilot 0.661 1 0.661 0.226 0.636 5.579e-5 0.003 0.000
Wind * Legal * Benefit * F_D * pilot 2.922e-4 1 2.922e-4 9.981e-5 0.992 2.465e-8 1.426e-6 0.000
Residuals 204.944 70 2.928
Defn * Wind * Legal * Benefit 5.926 1 5.926 1.974 0.164 4.998e-4 0.027 0.001
Defn * Wind * Legal * Benefit * F_D 0.634 1 0.634 0.211 0.647 5.345e-5 0.003 0.000
Defn * Wind * Legal * Benefit * pilot 2.823 1 2.823 0.940 0.336 2.380e-4 0.013 0.000
Defn * Wind * Legal * Benefit * F_D * pilot 0.951 1 0.951 0.317 0.575 8.018e-5 0.005 0.000
Residuals 210.107 70 3.002

Table D.13: Experiment 4.3: Causal ratings, within Subjects Effects
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Cases Sum of Squares df Mean Square F p η2 η2
p ω2

F_D 7.196 1 7.196 0.231 0.633 6.069e-4 0.003 0.000
pilot 16.487 1 16.487 0.528 0.470 0.001 0.007 0.000
F_D * pilot 0.275 1 0.275 0.009 0.926 2.316e-5 1.257e-4 0.000
Residuals 2185.289 70 31.218

Table D.14: Experiment 4.3: Causal ratings, between Subjects Effects

Cases Sum of Squares df Mean Square F p η2 η2
p ω2

employee 150.979 1 150.979 14.897 < .001 0.016 0.016 0.015
role 8.332 1 8.332 0.822 0.365 8.821e-4 9.027e-4 0.000
Defn 9.509 2 4.754 0.469 0.626 0.001 0.001 0.000
employee * role 5.141 1 5.141 0.507 0.477 5.442e-4 5.571e-4 0.000
employee * Defn 32.538 2 16.269 1.605 0.201 0.003 0.004 0.001
role * Defn 10.274 2 5.137 0.507 0.603 0.001 0.001 0.000
employee * role * Defn 6.693 2 3.346 0.330 0.719 7.085e-4 7.251e-4 0.000
Residuals 9222.558 910 10.135

Table D.15: ANOVA - Responsibility for harm caused by a pilot, ratings taken over
Experiments 4.1,2 and 3

Experiment Pilot Definition No Unsure Yes Total %No %Unsure %Yes
1 AI The Formal 9 8 14 31 29 26 45
1 AI Your 9 8 17 34 26 24 50
2 Both The Formal 26 14 23 63 41 22 37
2 Both your 21 9 37 67 31 13 55
3 AI Both 13 3 20 36 36 8 56
3 Human Both 11 4 23 38 29 11 61
Total 89 46 134 269

Table D.16: Experiments 4.1,2,3: Response to question: Do you think AI can have
intent?
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