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HOXA9 has the hallmarks of a biological
switch with implications in blood cancers

Laure Talarmain1, Matthew A. Clarke 2, David Shorthouse3,
Lilia Cabrera-Cosme4, David G. Kent 4, Jasmin Fisher 2 &
Benjamin A. Hall 3

Blood malignancies arise from the dysregulation of haematopoiesis. The type
of blood cell and the specific order of oncogenic events initiating abnormal
growth ultimately determine the cancer subtype and subsequent clinical
outcome. HOXA9 plays an important role in acute myeloid leukaemia (AML)
prognosis by promoting blood cell expansion and altering differentiation;
however, the function of HOXA9 in other blood malignancies is still unclear.
Here, we highlight the biological switch and prognosis marker properties of
HOXA9 in AML and chronic myeloproliferative neoplasms (MPN). First, we
establish the ability ofHOXA9 to stratify AMLpatientswithdistinct cellular and
clinical outcomes. Then, through the use of a computational networkmodel of
MPN, we show that the self-activation of HOXA9 and its relationship to JAK2
and TET2 can explain the branching progression of JAK2/TET2 mutant MPN
patients towards divergent clinical characteristics. Finally, we predict a con-
nection between the RUNX1 and MYB genes and a suppressive role for the
NOTCH pathway in MPN diseases.

Blood cancers are malignancies that can arise from any type of blood
cell and dramatically affect haematopoiesis. Myeloproliferative neo-
plasms (MPNs) are chronic diseases of the myeloid lineage char-
acterised by an excessive production of fully functional terminally
differentiated blood cells. These have been classified into three types:
polycythemia vera (PV), essential thrombocythemia (ET), and primary
myelofibrosis (PMF)1. Despite the relatively good prognosis of these
diseases,MPNpatients are athigh risk of thrombosis and candevelop a
blast phase MPN (MPN-BP)2; a subtype of the blood cancer acute
myeloid leukaemia (AML)withpoor survivaloutcomes3. The frequency
of MPN transformation to MPN-BP is highly related to the initial MPN
disease type4–6. Therefore, a better understanding of the molecular
events driving the different subtypes of MPNs is essential to help
diagnose patientswith higher riskof thrombosis andAMLprogression.

AML itself is an aggressive blood and bone marrow malignancy
defined by the uncontrolled growth of myeloid progenitor cells along

with a myeloid-lineage differentiation arrest7. As with MPN, there exist
different types of AML with a broad range of morphologic, cytogenic,
and immunologic features, all associated with diverse clinical
outcomes8. Despite their similarities, prognosis, symptoms, and
genetic alterations differ between AML and MPN. For example, JAK2
mutation is themain driver event ofMPNdiseases yet is rarely found in
de novoAML9. However,myeloid-lineage dysregulation occurs in both
MPN and AML, and alongside the ability of MPN to evolve to AML, this
may suggest that both diseases share commonbiologicalmechanisms.
The identification of these processes could help identify aberrant
genes and pathways involved in both AML and MPN to detect MPN
patients with higher risk of developing AML.

Better understanding of the patterns of genetic alterations in
cancer cells can be used for the classification of blood diseases and
predictionof progression intomore severe forms of the disease10. How
different combinations and orders of mutations lead to different
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subtypes of cancer remains amajor open question11,12. The importance
of mutation order has been demonstrated in MPN by Ortmann et al.13,
who show that two subpopulations of patients with MPN can be dis-
tinguished by the order of mutation acquisition between the TET2 and
JAK2 genes, and that these subpopulations have distinct clinical char-
acteristics. Further analyses of these cohorts show that patients with
JAK2mutatedbeforeTET2 are younger at presentation of the disease in
clinics, are more likely to present with PV, have a higher risk of
thrombosis, and respondbetter to JAK2 inhibitor ruxolitinib. However,
the molecular interplay between both mutations within cancer cells
and how their order rather than their combination triggers dissimilar
clinical characteristics have not been investigated.

Overexpression of a single homeobox gene, HOXA9, has been
reported as sufficient to quickly induce myeloproliferation, gradually
followed by AML progression after a period of time14. Homeobox
genes or HOX genes were first identified in the fruit fly Drosophila
melanogaster as essential regulators of early embryogenesis15 and are
thought to have a critical role in cancer development16. In the HOXA
family, HOXA9 is the most described gene in literature and its
expression was shown to be the single most highly correlating factor
(out of 6817 genes tested) for poorprognosis inAML17. The importance
of HOXA9 in AML has been widely explored; however, this has mainly
focused on specific AML subtypes such asMLL-rearranged leukaemia18

and NUP98-HOXA9 induced leukaemia19, while its role in other blood
malignancies such as MPN or other AML subtypes is poorly char-
acterised. Recently, the oncogenic property of HOXA9 has been asso-
ciated with its self-positive feedback loop inmyeloid precursor cells as
a result of its ability to bind its own promoter20. We hypothesise in this
work that, as a consequence of the underlying gene network, the
expression of HOXA9 could be used to stratify patients according to
risk with blood cancers affecting the myeloid lineage.

In this study, we define a switch as a molecule that has the ability
to self-sustain a positive feedback loop. Using public datasets from
AML patients and MPN studies, we show that bimodal HOXA9
expression identifies two distinct cohorts of patients/mice, reflecting
the gene acting as a binary switch in the cell. Firstly, HOXA9 bimodal
expression in AML is associated with clinical features, such as age and
WBC counts, but also patient classification into specific French-
American-British (FAB) or molecular subtypes. Secondly, we design a
computational networkmodel that offers amechanistic explanation of
the distinct clinical features of MPN progression in patients with dif-
ferent orders of JAK2 and TET2 mutations (Fig. 1). Using our compu-
tational model and experimental validation, we argue that HOXA9 is
downstream of JAK2 and TET2 and effectively stores their mutational
history. This “memory” property of HOXA9 is induced by the presence
of its self-activation, captured by a positive feedback loop in our

model. This results in a phenotypic switch in double mutant cells with
different mutation orders producing distinct subtypes of the disease.
Finally, the network model also predicts a suppressive role for the
NOTCH pathway in MPN and an interaction between RUNX1 andMYB.

Results
HOXA9 expression separates cohorts of AML patients with dis-
tinct clinical features
Ectopic expression of HOXA9 in AML has been widely demonstrated,
but few studies have investigated the biological attributes of this
transcription factor contributing to leukaemogenesis. Zhong et al.20

have shown that HOXA9 in cell lines can induce its own expression
through a positive feedback loop, which promotes a continuous dif-
ferentiation block and self-renewal leading to increase of hemato-
poietic stem cells and development of leukaemia. To validate HOXA9
self-activation and the oncogenic role in leukaemia in patients, we
studied its expression in untreated de novo AMLRNA sequencing data
from The Cancer Genome Atlas (TCGA)21. We find that HOXA9 has
bimodal expression in this data set (Fig. 2a). Whilst we find other HOX
genes to also have a bimodal expression, they are correlated or anti-
correlated with HOXA9 and to the best of our knowledge HOXA9 is
uniquely downstreamof both JAK2 andTET2.We furtherfind twoother
genes with bimodal expression, APP and IGSF10, which are not clearly
correlated to HOXA9 status. Correlation or anti-correlation with
HOXA9 confounds survival analysis, limiting our ability to analyse the
contribution of the second gene. We do, however, find within low or
high HOXA9 cohorts no significant survival differences with IGSF10,
and a survival difference between high/low APP expression within the
cohort with low APP expression. To explore the differences between
patients with different levels of HOXA9 expression and disregard
external factors that could cause this bimodality, we separated
patients into two cohorts, with 31 patients in the low expression peak,
and80patients in the high expressionpeak. A survival analyses of both
groups using Kaplan–Meier survival curves and the log-rank test con-
firmed that HOXA9 can be used as a marker of poor prognosis in AML
(p < 0.001, HazardRatio0.29 for lowexpression) (Fig. 2b) regardlessof
age (Fig. S3). This patient stratification based upon HOXA9 expression
is consistent with the reported positive feedback loop characteristic of
this gene and suggests that once activatedor inhibited, the genewould
maintain its expression level, leading to divergence in the disease
progression.

To investigate if the switch role property of HOXA9 impacts AML
subtypes, we looked at the distribution of FAB (named M0–M7) and
molecular classifications among the twoHOXA9 cohorts.We show that
different HOXA9 expression cohorts exclude specific FAB subtypes
(Fig. S4a). This suggests that HOXA9 expression is strongly coupled to
some FAB subtypes.

In light of these findings, we looked to characterise the common
features of HOXA9 expression cohorts. Cytogenic aberrations and
gene rearrangements are frequent in AML and are known to alter the
diseasemorphology aswell as the clinical features and prognosis21. We
found that HOXA9 expression separates patients with different mole-
cular classification (Fig. S4b). MLL-induced leukaemia has been linked
to high HOXA918, while M3 AML subtype is characterised by PML-RARα
translocation and lowHOXA9 in the literature22. LowHOXA9 expression
in AML with RUNX1-RUNXT1 and CBFB-MYH11 abnormalities, which
constitute the core binding factor (CBF) AML, has also been estab-
lished in literature23. Our findings confirm these observations and
further establish the correlation between high HOXA9 expression and
the M0 and M5 subtypes in addition to complex cytogenetics. Finally,
we searched for other clinical differences between cohorts, finding
that HOXA9 expression correlates with age, white blood cell count
(WBC) and blast percentage in the bone marrow (Fig. S4c). These
divergent characteristics between cohorts suggest that the observed
bimodality is not induced by external/sequencing factors.

JAK2

JAK2

TET2

TET2

HOXA9 HOXA9

HOXA9HOXA9

HOXA9

Increased erythroid cells
Increased thrombosis
Early detection

Increased CMPs
Ruloxitinib insensitive
Late detection

Fig. 1 | Temporalmutationorderhas clinical implications inmyeloproliferative
neoplasms.CMPs: commonmyeloid progenitors. Both of the genes JAK2 and TET2
are mutated in myeloproliferative neoplasms, but different orders of the mutation
can lead to distinct changes in the cell types that expand, drug sensitivity, and time
of presentation in the clinic.
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PML-RARα, RUNX1-RUNXT1 (AML1-ETO), or CBFB-MYH11 chromo-
somal abnormalities predict good prognosis in AML patients24,25. All
these aberrations are linked to low HOXA9 expression which also
exhibits good survival prognosis among patients compared to high
expression. To confirm that highHOXA9 is a marker of poor prognosis
independently of its associated molecular aberrations or FAB sub-
types, we studied survival outcomes within FAB classes. As M0, M3,
and M5 are exclusively in one cohort, we examined the survival of
patients within the M2 and M4 subtypes for high and low HOXA9
expression. Survival curves and log-rank tests within both subtypes
confirms that high HOXA9 is a marker of poor prognosis HOXA9
(Fig. S8 and S9). Overall our findings are consistent with HOXA9
becoming trapped in high- or low- expression states through self-
activation in AML diseases.

The JAK2/TET2/HOXA9motif can explain divergent disease
clinical outcomes in MPN
The identification of MPN patients at higher risk of developing AML
remains amajor clinical challenge. JAK2 is themost commonlymutated
gene in manyMPN patients, but different subtypes of the disease with
distinct clinical traits are observed26. In contrast, TET2 was only
recently identified in blood studies. First discovered inMPN in 2008by
Delhommeau et al.27, TET2mutation resulting in its loss of function has
been associated with diverse haematologic malignancies28. We have
shown thatHOXA9 can enable clinical stratification in AML, potentially
due to the presence of a positive feedback loop. Ortmann13 describes a
bifurcation amongMPNpatients that acquire JAK2 and TET2mutations
in different orders. This raises the questionwhetherHOXA9 expression
could also explain these divergent clinical symptoms and help stratify
MPN patients with low and high risk to develop AML.

To address this question, we constructed a computational net-
work model in a multistep process. In order to reproduce the
branching in MPN patients, the underlying network of gene interac-
tions must include genes that are sensitive to the mutation order29.
This requires that parts of the network act a switch, capable of storing
“memory”of previous events. This “memory”property canbe encoded
by a positive feedback loop acting on a gene that is downstream of
both mutated genes30. This hypothetical gene must additionally
respond differently to each of the mutations. That is to say, one

mutationmust activate the genewhilst the other reduces it, so that the
gene can maintain its change in activity after the occurrence of the
second mutation. The loop is necessary to induce this inheritable
change in the presence of constitutive reset processes such as protein
and RNA degradation.

We developed a computational model of this simple gene motif
with JAK2 and TET2 genes and a hypothetical gene target with a positive
feedback loop (Fig. 3a). TET2 and JAK2 have been indirectly and directly
linked to HOXA9 activity. STAT5 is a well-known downstream target of
JAK231, and it is also established that STAT5 and HOXA9 act as binding
partners in hematopoietic cells32. Furthermore, it was recently shown
that tyrosine phosphorylation ofHOXA9 is JAK2-dependent33 and seems
to increase the effect of HOXA9 on its downstream targets33. Regarding
the interaction of TET2 with HOXA9, Bocker et al. found significantly
reduced expression of HOXA genes when TET2 expression is lost34. In
particular HOXA9 expression in kidney is significantly decreased by
TET2 loss. HOXA9 is therefore activated by JAK2 and reduced by TET2
loss and possesses a self-positive feedback loop property20. Therefore,
the JAK2/TET2/HOXA9 motif shares all the required properties for
observing a clinical divergence in blood diseases.

Based on this JAK2/TET2/HOXA9 motif, we refined our computa-
tional model to reproduce the observed biological differences
between patients with different combinations of JAK2 and TET2
mutations (Supplementary Data). To do so, we extended our compu-
tational network with six phenotypes relevant to cancer development:
stem cell self-renewal, commonmyeloid progenitor (CMP) expansion,
granulocyte-monocyte progenitor (GMP) expansion, GMP differentia-
tion, erythroid differentiation and megakaryocyte-erythroid pro-
genitor (MEP) expansion (Fig. 3b). We further included important
hematopoietic markers in our computational model. We found that
additional interactions such as the activation ofMYB by RUNX1 are also
required to reproduce the correct biological features ofMPN (Table 1).
A detailed literature review and full description of how we built the
network model are available in Tables S1–3 and the Supplemental
Methods.

Finally, four fundamental cancer genotypes are defined: the wild-
type (nomutation), theTET2 singlemutant, the JAK2 singlemutant and
the double mutant (in either order) (Table 1). The wild-type model
illustrates haematopoiesis in its healthy state. The single mutants are
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definedusing the literature (see Supplementary Information). The final
genotype is the double mutant which can lead to one of two cancer
endpoints (fixpoint attractors that represent one of the two clinical
outcomes). Each fixpoint represents either TET2 first or JAK2 first
double mutants and are defined from results presented by Ortmann
et al.13. Our computational model as shown in Fig. 3b reproduces the

expected behaviours described in Table 1 and therefore the clinical
stratification observed in Ortmann et al.13. Themodel suggests that the
elevated differentiation observed in the JAK2 first double mutants13 is
induced by the increased expression of RUNX1, KLF1 andGATA1 as well
as the downregulation of MYC not found in TET2 first double mutant.
This gene expression difference between double mutants can partly
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explain the divergent clinical behaviours between the two groups of
patients, including the increased risk of thrombosis and the faster
diagnosis as a result of the abnormally high number of differentiated
cells in these patients.

The self-loop on HOXA9 plays a fundamental role in determining
model behaviour. To explore how it influences cell phenotypes, we
tested three different possible outcomes of removing it from the
model. Simply removing HOXA9 self-activation in our model results in
its stable overexpression in the double mutant genotype (Fig. S5), as
the impact of the JAK2 mutation overwhelms the effect of the TET2
mutation. However, the loss of this interaction could lead to more
complex outcomes. For example,HOXA9may be dependent on a basal
level of self-activation to act in the cell. To explore this, we also tested
the case where removal of the self-loop causes HOXA9 null activity
(Fig. S6) and stabilisation of the double mutant. Finally, the impact of
themutations could compensate for one another in the absence of the
self-loop, leading thedoublemutant to havewild-type activity levels. In
this situation, the model is unstable due to the interactions between
SPI1 and GATA1, though fewer variables are involved in the instability
(Fig. S7). We conclude generally that loss of HOXA9 self-activation
leads to the partial or total loss of bifurcation in the model and its
responsiveness to the order of mutations. This reinforces the impor-
tance of the self-positive feedback loop in determining cell phenotype
and the subsequent clinical separation of patientswith differing orders
of JAK2 and TET2 mutations.

MPN network predicts gene dynamics and interactions
The computationalmodel identifies gene dynamics as part of theMPN
disease progression. In the complete network model, HOXA9 requires
both JAK2 and TET2 expression to remain active (Table S3).

Upregulation of either JAK2 or HOXA9 results in the hyperactivation of
HOXA9 while TET2 loss causes inactivation. Wild-type activity is
maintained by the balance of these two genes. JAK2 activation muta-
tion and TET2 loss both drive the system into a committed state. JAK2
activation raises HOXA9 activity to a level at which it can maintain its
activity through control of its own expression. Subsequent loss ofTET2
does not impact its activity as this hyperactivation makes it indepen-
dent of TET2. Conversely, TET2 loss causes a loss ofHOXA9 expression
in the cell, rendering it insensitive to subsequent JAK2 activation. This
occurs asHOXA9 expression drops, preventing a subsequent response
to JAK2 activation due to low concentration of the protein in the cell.
Therefore, a possible explanation of the order dependence could be a
combination ofmutual dependencybetween JAK2 and TET2 to activate
HOXA9, combinedwith the positive feedback self-loop ofHOXA9 itself.

One key feature of TET2-first MPN patients is their reduced sen-
sitivity to Ruxolitinib, a JAK2 inhibitor drug13. Interestingly our com-
putational model suggests that after TET2 loss, RUNX1 expression is
unchanged by JAK2 activation mutation due to the “switching” prop-
erty exerted by HOXA9 self-loop (Fig. 3c). However, this gene is
affected by JAK2mutation in the context of TET2 wild-type expression
(Fig. S10). It follows that JAK2 inhibition is therefore inefficient for this
important hematopoietic regulator which could explain the reduced
effect of Ruxolitinib in TET2 first patients.

Whilst building single mutant phenotypes, we noticed a relation-
ship between JAK2 and GMP expansion is required to match the
increased number of myeloid progenitors observed in organisms with
a JAK2 mutation. To explore possible pathways downstream of JAK2
that could explain this link to myeloid diseases, we applied a machine
learning approach (XGBoost) to AML TCGA data as a relevant and
closely related blood cancer. We found that JAK2 is highly correlated
with the NOTCH pathway (Fig. 3d), which has been found to act as a
tumour suppressor in leukaemia due to the large expansion of GMP
cells after loss of NOTCH signalling35. From the SHAP scores (SHapley
Additive exPlanations, which are feature contribution measurements)
in the classification of NOTCH genes plotted in Fig. 3e, we identified
ITCH to be among the top 5 genes with the highest mean SHAP scores
in the NOTCH pathway and found a pathway linking JAK2 to ITCH from
a search of the literature. ITCH controls the degradation of NOTCH36

and is found to be induced by JNK137 from theMAPKpathwaywhich is a
well-known downstream pathway of JAK2/STAT538. We therefore sug-
gest that the JAK2 path to GMP expansion could beMAPK and NOTCH
pathway dependent.

Another interaction predicted by our network model is the inhi-
bition of MYB by RUNX1. The CMP are found to be differentially
expanded between JAK2 and TET2 first patients in Ortmann et al13. In
our initial model, we included an inhibition interaction between SPI1
and MYB, our CMP expansion marker, a connection which has been
observed experimentally39. This inhibition and the stable SPI1

Fig. 3 |HOXA9 determines cancer cell fates inMPN diseases with JAK2 andTET2
mutations. aMPN patients with JAK2/TET2 mutations showing different clinical
characteristics can be explained by a simple gene motif including a switching
property. The model starts from a healthy state on the left (wild-type) and
sequentially acquires mutations in JAK2 and TET2 genes. The first mutation
affects the gene target expression (middle networks) which remains stable when
the second mutation appears. The order in which mutations occur impacts on
the gene target expression but also the phenotypes, common myeloid pro-
genitor (CMP) expansion, and erythroid differentiation (networks on the right).
b The JAK2/TET2/HOXA9 molecular network is built with the BioModelAnalyzer
(BMA) tool and integrates six output phenotypes: stem cell (SC) self-renewal,
CMP expansion, granulocyte-monocyte progenitor (GMP) expansion, GMP dif-
ferentiation, erythroid differentiation, andmegakaryocyte-erythroid progenitor
(MEP) expansion. The bifurcation analysis identifies two stable states in the
double mutant with different phenotype values that fit the mutation order
characteristics observed in MPN patients with JAK2 and TET2 mutations.

c BioModelAnalyzer simulation shows that RUNX1 expression is unchanged by
JAK2 activation mutation following TET2 loss. d We select AML patients with
lowest (30) and highest (30) JAK2 expression for the purpose of classification.
Ranking of major cancer pathways determine the RTK-RAS pathway as the most
correlatd to JAK2. This pathway contains JAK2 and so this result is as expected.
The second pathway is NOTCH. The overall accuracy of the pathway is computed
with the Matthews Correlation Coefficient. Box plots represent interquartile
range and whiskers 1.5 × IQR. e We plot SHapley Additive exPlanations (SHAP)
mean score of each model for the NOTCH pathway to determine which genes of
the pathway have been important classifiers; that is, genes with an important
expression correlation with JAK2. f The heatmap of the NOTCH pathway and
HOXA family generated using MPN microarray datasets from43 validate NOTCH
expression in our model. HOXA heatmap confirms HOXA bimodality. “JAK2” and
“TET2” refer to the single mutant mouse models, “DM” the double mutant with
JAK2 mutated first and “WT” the wild-type (no mutation) genotype. Source data
are provided as a Source Data file.

Table 1 | Specification table for JAK2/TET2 BMA model

WT TET2 JAK2 TET2 first JAK2 first

Stem cell renewal 1 2 1 2 2

CMP expansion 1 2 1 2 1

GMP expansion 1 2 2 2 2

GMPdifferentiation 1 0 1 1 1

Erythroid
differentiation

1 0 2 1 2

MEP expansion 1 1 2 2 2

These specifications are established phenotypic features and are used to test model correct-
ness. In order from the left to the right columns, they are the wild-type state, the TET2 single
mutant, the JAK2 single mutant and finally the double mutants, which consists of a bifurcation
with two state attractors that represent the case where TET2 is mutated before JAK2 (TET2 first)
and the alternative case where JAK2 is mutated first. We determine phenotype values using
literature for the single mutants and Ortmann et al.13 for the double mutants. The value 1
represents the healthy state, 0 the lowered/inactive state, and 2 the overactive state.
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expression in the double mutant states prevented the known bifur-
cation in CMP expansion in double mutants. Further investigations
lead us to suggest that the bifurcation could be obtained by replacing
SPI1byRUNX1 forMYB inhibition, and this additional set of interactions
is supported by multiple studies. RUNX1 activates SPI1 and GATA1, and
both are found to be inhibitors of MYB39,40. Additionally, conditional
knockout ofRUNX1 inmice results in enhancedCMP frequencies41,42 All
together, these findings suggest that RUNX1 can be linked to CMP
expansion via MYB inhibition.

Validation of the role of NOTCH pathway, HOXA9 bimodality
and its link toprognosis, and the interactionof JAK2withHOXA9
through public datasets and experiments
To validate the predictions arising from our MPN computational
model, we compared our findings to public MPN data not used in the
model construction. Chen et al. compare MPN with different JAK2 and
TET2 mutational profiles using transcriptomic mouse data43. We
compared the gene expression of pathways/gene subsets to those we
have included in our model to determine if our model fits their data.
We first find that the NOTCH pathway behaves as predicted (Fig. 3f).
We also find that the trend in the expression of RUNX1,MYC, andMYB
support our model (Fig. S11–13 and Table S2). HOXA9 expression also
showed a “switching” behaviour in this mouse model, that is the first
JAK2 mutation has locked HOXA9 into a specific expression level and
the second mutation in the JAK2-first double mutant cohort does not
subsequently cause it to revert to wild-type. Confusingly however, low
expression of HOXA9 is associated with JAK2 mutations and high
expressionwithTET2mutations. To confirm this trend,weexamine the
expression of other HOX genes that are closely correlated to HOXA9
and find the same pattern.

Jeong et al.44 previously demonstrated the direct phosphorylation
of TET2 by JAK2 in a combination of in vitro human/murine hemato-
poietic cell lines with erythroid characteristics. Once phosphorylated
TET2 activates KLF1, an important positive regulator of
erythropoiesis45. In this context, loss ofTET2 implies reduced erythroid
differentiation which is in agreement with our model. In the same
study, the authors show in a murine cell line that JAK2 mutation leads
to HOXA9 upregulation. These findings are consistent with our
JAK2/TET2/HOXA9 motif but disagree with Chen’s microarray

experiments where HOXA9 expression is lowered in JAK2 single and
double mutants (Fig. 3f). Given the downstream genes follow the
expected expression, this raises the question of whether the activa-
tions in the originalmotif should be replacedbya pair of inhibitions, to
make the model consistent with Chen data. Whilst there exist possible
routes to connect TET2 and HOXA9 through an inhibition, we are
however unable to find evidence of inhibition of HOXA9 by JAK2. We
further note that as the Jeongdata arehumanderived, itmaybeamore
representative experimental model system. Future work using
experiments in human samples could resolve this discrepancy. Both
datasets however support the role ofHOXA9 as a binary switch inMPN.

In light of these observations, we sought to test the relationship
between JAK2 and HOXA9 through experimentation. Our model pre-
dicts thatmutation of JAK2would lead to activation ofHOXA9 through
STAT5. HOXA9 activity has been linked to cell viability18 and inhibition
of HOXA9 would be expected to lead to a reduction of the number of
colonies formed in a plating assay. We would therefore predict that
mutation of JAK2would increase colony formation relative towild-type
when HOXA9 is inhibited. Using wild-type and JAK2mutated stem and
progenitor cells, we knocked down HOXA9 and observed a reduction
in colony formation in wild-type cells. We do, however, see a slight
significant increase in colony formation in JAK2-mutant cells relative to
wild-typewhether or notHOXA9 is inhibited (q =0.0171). Thisfinding is
more consistent with our model, and the data set from Jeong et al.44,
where JAK2 activatesHOXA9. TET2 behaviour ismore complex,making
an unsignificant increase to viability in WT but apparently synergisti-
cally increasing survival when HOXA9 is inhibited (q =0.0032, Fig. 4a,
b). This suggests that colony formation is determined through com-
plex HOXA9 and TET2 interactions, necessitating further study.

Discussion
Out of 6817 genes tested HOXA9 is the single most highly correlating
factor for poor prognosis due to treatment failure in AML17. HOXA9
could be argued to influence clinical characteristics in a continuous
way, for example, if there was a broad unimodal distribution ofHOXA9
expression across patients and if HOXA9 expression correlated with
survival. Here we have demonstrated that instead it acts in AML as a
discrete switch rather than a spectrum. This impacts AML clinical
characteristics such as classification and survival. We further propose
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Fig. 4 | JAK2 activation of HOXA9 improves colony survival in response to
HOXA9 inhibition. a The ratios of colonies produced per sample are expressed as
Scrambled:shHOXA9 colony number ratio with means. b The normalised colony
count per sample and per condition with means and interquartile ranges of the
three replicates. Two-way ANOVA statistical tests using multiple comparisons with

FDR correction indicate a significant increase of colonies for TET2 mutant versus
WT cells with shHOXA9 ðq=0:0032Þ and JAK2mutant cells in both WT (q=0:0171)
and in shHOXA9 ðq=0:0171Þ contexts. Source data are provided as a Source
Data file.
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the prognosis marker role of the HOXA9 gene to another blood dis-
order, MPN. While HOXA9 loss and overexpression are detrimental for
normal cell development16, our model assumes an intermediate
activity for HOXA9 in the healthy state. We show that in MPN diseases
with JAK2/TET2mutations,HOXA9 high expression is found in the JAK2
first patients while TET2 first patients display lowerHOXA9 expression.
As JAK2 first patients have a higher risk of developing thrombosis
compared toTET2 first patients, and as thrombotic events are themain
causes of death in MPNs patients46, this further suggests a deleterious
influence of HOXA9 high expression on patient clinical outcomes in
another myeloid disease and emphasise the role ofHOXA9 as amarker
of poor prognosis in blood malignancies.

In addition to providing insights into the regulatory control of
cancer cell fate through HOXA9, our computational network model
recapitulates the disease symptoms using well-known hematopoietic
transcription factors. Further investigations of these genes could ben-
efit clinicians by designing new drugs or applying already existing
treatments to reduce symptoms and the risk of developing blast phase
MPN. In addition to the specific claims of the model, several other
clinical implications arise.Whilst JAK2 is themain drivermutation found
in all MPN patients, different diseases with distinct clinical traits can be
observed26. Until now, the source of this clinical diversity following JAK2
mutationwas unclear. Here, we demonstrate that patients who first had
a TET2mutation have a reduced number of erythroid cells as a result of
TET2 indirect downregulation of GATA1 and KLF1, which explains the
reduced number of PV diseases in TET2 first patients despite the pre-
sence of JAK2mutation13. While JAK2 dysregulationmay be the principal
driver of MPNs, other mutations shape the disease clinical type by
altering the normal development of distinct hematopoietic sub-
populations. Finally, wepredict the involvement of theNOTCHpathway
inMPNdiseases.NOTCHshowsbothoncogenic and tumour suppressor
roles in different tissues and in the hematopoietic system: NOTCH
favours cancer growth in T acute lymphoblastic leukaemia through its
MYC activation but is also found to augment the host immune response
against cancerby activationofM1macrophages47. The role ofNOTCH in
hematopoietic stem and progenitor cells is still an on-going debate,
however, it seems that a certain level ofNOTCH signalling is required to
protect individuals from haematological malignancies48. We suggest
that JAK2 increases GMP expansion through its inhibitory effect on
NOTCH via the MAPK pathway and ITCH and so predict a tumour
suppressor role for NOTCH in the GMP cell population.

In building these models, several choices were made that poten-
tially limit the further interpretation. Firstly, whilst all gene interactions
included in thismodel are derived from studies of blood, due to paucity
of information individual interactionsmay come fromeithermouse and
human studies. Secondly, the precise role of the self-loop on HOXA9
cannot be determined fromourmodel alone. In the doublemutant, the
loss of the self-loop can lead to either abrogation (Fig. S6), wild-type
(Fig. S7) or overexpression of HOXA9 as a result of JAK2 constitutive
activity (Fig. S5). This wild-type scenario in which JAK2 and TET2 muta-
tions balance outHOXA9 activity is able to respond to alternative orders
of mutations through interactions between SPI1 and GATA1 (Fig. S12),
albeit with phenotypes inconsistent with the disease13. Removing the
HOXA9 positive feedback loop in our model leads to its overexpression
and loss of the bifurcation in the double mutant, changing HOXA9
function in our model to obtain a wild-type expression restores the
bifurcation in these cells (Fig. S12). However, CMP expansion is stable in
both steady states which is not observed in patients with both
mutations13. Finally, ourmodel uses discrete values for gene expression
and genomic data for validation, and represents a population of blood
cells. Despite the historic successes of such approaches49modelling this
network with continuous methods could help validate the model and
give additional insights. Future work could also include using asyn-
chronous updates and modelling the decision-making processes of
individual cells, to better understand cancer fate commitment.

Our networkmodel suggests amechanism for understanding how
cancer fate can be determined through regulatory switches and
highlights several new areas for further studies. It also allows us to
identify potentially important discrepancies in experimental studies.

Methods
Our research complies with all relevant ethical regulations. Themouse
study was undertaken under UK Home Office Licence granted to Dr.
Kent (PEAD116C1) which was approved by the local AWERB committee
and UK Home Office.

Analysis and visualisation of public cancer datasets
AML patient data contains RNA sequencing information from 173
patients.Weused the logarithmicTranscripts PerMillion (log2TPM+1)
normalised data. Low expressed genes are excluded (defined as a gene
for which more than 50 samples have a TPM value <1). The R package
multimode50 was used to determine the significance of gene expres-
sion bimodality and themodetest command to reject unimodality with
the default ACR (Ameijeiras-Crujeiras-Rodríguez) method, a multi-
modality test combining the use of a critical bandwidth and an excess
mass statistic51, using a p value of 0.05. We used the R package
Survival52 to plot the survival curves and compute the p values of the
log-rank test.We plotted Sankey diagramswith the Plotly PythonOpen
Source Graphing library (available at https://plot.ly).

Differentially expressed genes in HOXA9 cohorts
We used a python script to separate patients between the two HOXA9
expression peaks found in the AML data from TCGA. In all, 40 patients
are found in the low peak (Fig. 2a), in which we remove the nine
patients with a null value for HOXA9 expression. We defined the high
peak as the 80 patients with an expression between 4 and 5.5 for
HOXA9. We found that subsequent analyses are robust to alternative
high peak thresholds (Fig. S1). We compute the absolute difference of
the mean expression of each gene between each cohort to find the
genes which aremost differentially expressed between the two groups
of patients.We subsequently ranked the genes from the highest to the
lowest absolute differenceand take the top30genes from this list. This
workflow was repeated using the fold change between cohorts. The
top 30 genes from this set predominantly included either genes in the
HOX family or genes with no determined role in haematopoiesis. This
finding coincides with subsequent analyses of HOXA9 cohorts using
the R package DESeq253 in which differentially expressed genes cannot
be classified into specific hematopoietic functions (Fig. S2).

Microarray data analysis
While 12 samples are described in the paper we used for the MPN
mouse transcriptomic data43, only 11 could be found in the public data,
with one wild-type sample missing in the microarray.

For analysis, from the set of all transcripts in the microarray, the
genes with a low detection p value (below 0.05) were filtered and
transformed with quantile normalisation. The ComplexHeatmap R
library was used to plot the heatmaps54.

XGBoost
XGBoost (eXtremeGradient Boosting) was used to rank different gene
pathways that have been well described in cancer to identify which
pathways and genes amongst these pathways have the highest corre-
lation with JAK2 and its expression level in the AMLpatients55. Thirteen
pathways were chosen through the literature (Table S4). A model is
trained and validated for each pathway. More details can be found in
the Supplementary Information.

Executable network model of MPN
Computational models of MPN cancer fate determination were con-
structed as a qualitative network (QN) in the BioModelAnalyzer56. This
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process is described in more detail in Supplemental methods, but
briefly QNs are constructed from reported gene interactions in the
wider literature, and refined by testing model behaviour against
reported phenotypes.

Experimental validation of JAK2/HOXA9 interaction
Full details are presented in Supplementary Methods. Briefly, all mice
are originally on a C57/Bl6 background with the TET2 mice originally
obtained via Prof. Anjana Rao (La Jolla, USA) and the JAK2 V617F mice
obtained via Prof. AnthonyGreen (Cambridge, UK). Haemopoetic stem
cellswere isolatedbyflowcytometry cell sorting and cultured (Fig. S14,
S15). For HOXA9 gene knockdown experiments, three biological
replicates were generated from each genotype for two different con-
ditions (noneffective scrambled control- and shHOXA9-transduced
cells). Colony forming assays were performed, with colonies char-
acterised and counted after 14 days. Normalised number of colonies
grown in each replicate was calculated per 100 colonies plated into
each well. Statistical analysis to determine statistically significant dif-
ferences was done through an unpaired Student’s t test (GraphPad
Prism, v 9.0.2).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The AML patient data were generated by TCGA and downloaded with
Firebrowse (RNAseq, [http://firebrowse.org/]). The AML clinical data
from TCGA was downloaded with cBioportal (www.cbioportal.com).
The microarray dataset reported in ref. 43 is available in the ArrayEx-
press repository at EuropeanMolecular Biology Laboratory–European
Bioinformatics Institute (http://www.ebi.ac.uk/arrayexpress/) and is
accessible through the ArrayExpress accession number E-MTAB-2986.
Raw colony count data are presented in the paper in full - images of
colonies are available in Fig. S16. Source data are provided with
this paper.

Code availability
Python and R scripts described in this section are available at ref. 57.
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