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Abstract

Messenger RNA (mRNA) vaccines are a new alternative to conventional vaccines

with a prominent role in infectious disease control. These vaccines are produced in in

vitro transcription (IVT) reactions, catalyzed by RNA polymerase in cascade

reactions. To ensure an efficient and cost‐effective manufacturing process, essential

for a large‐scale production and effective vaccine supply chain, the IVT reaction

needs to be optimized. IVT is a complex reaction that contains a large number of

variables that can affect its outcome. Traditional optimization methods rely on

classic Design of Experiments methods, which are time‐consuming and can present

human bias or based on simplified assumptions. In this contribution, we propose the

use of Machine Learning approaches to perform a data‐driven optimization of an

mRNA IVT reaction. A Bayesian optimization method and model interpretability

techniques were used to automate experiment design, providing a feedback loop.

IVT reaction conditions were found under 60 optimization runs that produced

12 g · L−1 in solely 2 h. The results obtained outperform published industry standards

and data reported in literature in terms of both achievable reaction yield and

reduction of production time. Furthermore, this shows the potential of Bayesian

optimization as a cost‐effective optimization tool within (bio)chemical applications.
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1 | INTRODUCTION

Delivering vaccines in a short time is key to control disease

outbreaks, as recently shown during the Covid‐19 pandemic.

However, this is a demanding task, since traditional vaccine

manufacturing is complex, time‐consuming, and lacks the flexibility

required for a timely and global response (Hayman et al., 2021;

Hosangadi et al., 2020). During the Covid‐19 pandemic event,

messenger RNA (mRNA) technology allowed for the delivery of an

approved vaccine in a record‐breaking time of less than 1 year (Ball,
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2020). This success can be attributed to the inherent flexibility and

precision of mRNA vaccines, as the same vaccine backbone can be

used for multiple targets, and only the gene of interest is expressed.

Additionally, mRNA vaccines can be manufactured in a standardized

manner, allowing for the production of different vaccine targets with

the same platform (Rosa et al., 2021). Nonetheless, global demand

has peaked for COVID‐19 vaccines and manufacturers are struggling

with the supply chain (Wouters et al., 2021). Scaling up the

manufacturing process can be limited, as a result of constraints in

materials and equipment availability, and lack of knowledge of the

manufacturing process itself (Mishra et al., 2022). Enabling on‐

demand vaccine production requires an efficient and cost‐effective

manufacturing process that makes optimal use of existing resources.

mRNA vaccines are produced in a cell‐free system that in vitro

transcribes the desired DNA template into a mRNA molecule using a

RNA polymerase as catalyst and nucleoside triphosphates (NTPs) as

substrate. Other reaction components (e.g., magnesium, RNAse

inhibitors, and inorganic pyrophosphatase) are added to the reaction

medium, which is performed under controlled pH and temperature

conditions (Chamberlin, 1982; Geall et al., 2013). The reaction

delivers g LProduct Reaction Medium
−1, in a matter of hours, typically

2–5 g .L−1 (Bancel et al., 2016; Henderson et al., 2021; Wochner

et al., 2021). The fine balance between reaction components and

conditions will dictate the reaction outcome, that is, the quantity and

quality of mRNA produced. The large number of variables in an in

vitro transcription (IVT) reaction can constitute an optimization

challenge and a critical problem for Design of Experiment (DoE)

methods traditionally employed for reaction optimization (van de

Berg et al., 2021). These conventional DoE methodologies can

potentially introduce human bias in parameter factor selection and

often imply oversimplified assumptions about the parameter relation-

ships. Furthermore, typical DoE approaches can be time and cost

prohibitive (e.g., for reactions that require 12 parameters to be

evaluated with each parameter having 3 levels to be considered,

typically a full factorial design requires over 5 × 10  (3 )5 12 experi-

mental runs to be performed). Routinely, to reduce the number of

optimization runs, some variables are kept constant. These fixed

values frequently come from the operator's intuition or from data

insights from existing literature, often depicting similarly constrained

settings (Carlson & Carlson, 2005). Therefore, new methods are

necessary to overcome the traditional limitations of DoE approaches.

We therefore propose Bayesian optimization as a methodology that

allows for a scientist‐in‐the‐middle approach (Antunes et al., 2007),

where domain knowledge (e.g., parameter constraints) comple-

mented with model analysis/explanations are used to fine tune the

search, in this particular case, for optimal reaction conditions.

Bayesian optimization is an iterative global optimization method

suitable for optimization problems in which a maximization of a black‐

box objective function over a bounded set of variables is sought

(Jones et al., 1998; Močkus 1975). This method is suitable in

situations where experimental time and resources become prohibi-

tive to rapidly perform the optimizations. The method lends itself well

to where computational approaches can lead to better parameter

selection. Fundamentally, Bayesian optimization has two main

components: a surrogate model, and an acquisition function. The

surrogate model mimics the behavior of the unknown “expensive”

function being optimized, while being computationally “cheaper” to

evaluate. It provides a prior probability distribution over all possible

objective functions, representing the user confidence about the

function's properties such as amplitude and smoothness. The prior

distribution is updated with each new measurement to produce a

more accurate posterior distribution. The following point to be

evaluated is determined by the acquisition function, which is based

on the mean (μ) and standard deviation (σ ) of the surrogate model. As

an example, one can compute the maximum expected improvement

(EI) (Močkus, 1975) over the current best result. The confidence

intervals allows us to quantify model uncertainty and deciding when

to stop the optimization search. The experiment design challenge is

not unique to mRNA manufacturing, and IVT reactions in particular.

Design problems are pervasive in both scientific and industrial

settings. Bayesian optimization emerged has a powerful methodology

for varied design problems (Shahriari et al., 2016) in domains like

synthetic chemistry (Shields et al., 2021) or machine learning (Snoek

et al., 2012), among many others.

In this article, we present for the first time a set of Machine

Learning techniques to design, guide, and analyze experimental

processes. In particular, our approach based on Bayesian optimization

and explanation models is applied to the production of mRNA

molecules in cell‐free IVT reaction. The data‐driven method we used

allowed to achieve optimal mRNA production while dealing with a

large parameter space, whilst significantly reducing the number of

required experimental runs. Optimal IVT conditions were found in

solely 60 runs with a maximum of 12 g . L−1 total mRNA being

produced in approximately 2 h. The results obtained correspond to a

IVT yield increase of a factor of two in half of the time, outperforming

published industry standards and data reported in literature both in

terms of achievable reaction yield and reduction of production time.

These results reinforce the potential of Bayesian optimization to be

applied on the optimization of (bio)chemical reactions for industrial

applications.

2 | METHODS

2.1 | mRNA synthesis

2.1.1 | Template design

The mRNA template comprises the EGFP gene (GenBank Accession

#AAB02572.1) flanked by 5′‐ and 3′‐UTR. The 5′‐UTR contains the

T7 RNA polymerase promoter, an eukaryotic translation initiation

factor 4 G eIF4G binding site and a Kozak consensus sequence

(Tusup et al., 2019). Two β‐globin tandem repeats are used as a 3′‐

UTR, followed by a 120 bp poly‐A, segmented with a 6 bp spacer

(Trepotec et al., 2019). Two additional templates were constructed by

fusing the Covid‐19 Receptor Bind Domain (RDB) gene (GenBank
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Accession #YP_009724390.1) and the Scocas9 (Huang et al., 2015)

gene with the EGFP gene. All the templates are inserted in a puc57

vector with kanamycin resistance. Sequences used are found in

Supporting Information: Table S2.

2.1.2 | Template production

DNA template is obtained by polymerase chain reaction (PCR). The

reaction mixture contained 20 ng ml−1 of plasmid, 0.4 μM of

forward and reverse primers, 0.2 mM dNTP mix; 1× Reaction

buffer, 1× Stabilizer Solution, and 0.025 U μl−1 NZYProof DNA

Polymerase (NZYTech). Primer sequences are found in Supporting

Information: Table S3. The reaction is prepared to a final volume of

1000 μl and further split into single 20 μl reactions. The PCR

reaction is initiated by a denaturation step at 95°C for 3 min,

followed by 30 cycles of: (1) 30 s at 95°C; (2) annealing at 57.5°C

for 30 s; (3) extension at 72°C for 60 s per kbp. The final extension

is performed at 72°C for 60 s. The PCR product is purified and

concentrated 20 times using Sera‐Mag Select (Cytiva) following the

manufacturer instructions. Briefly, one volume of Sera‐Mag select

is added to the pooled PCR reactions. After incubation, the

supernatant is removed and the beads are washed two times with

85% v/v ethanol. The purified template is then eluted in water for

injection (WFI), and quantified by UV spectroscopy using Nano-

Drop (Thermo Fisher Scientific).

2.1.3 | IVT reactions

IVT reactions are performed using T7 P&L RNA polymerase HC (Jena

Biosciences). The purified PCR product is used as template, and natural

NTPs (New England Biolabs) are used as substrate. E. coli inorganic

pyrophosphatase (New England Biolabs) and RNase inhibitors (NZY-

Tech), are added to the reaction volume. The reaction medium also

contains magnesium acetate (heptahydrate) and magnesium chloride,

spermidine (Alfa‐Aesar), dithiothreitol (Sigma), 40mM Tris‐HCl (Fisher).

The final volume of 20μl was made up with WFI. Reactions were

carried out in a thermocycler (Biometra). Reaction parameters were

varied between set boundaries during optimization experiments

(Table 1). The obtained samples were quantified using reverse‐phase

high‐performance liquid chromatography (RP‐HPLC).

2.1.4 | mRNA purification

mRNA was purified using MEGAclear™ Transcription Clean‐Up Kit

(Thermo Fisher Scientific) following manufacturing instructions with

minor adjustments. Briefly, three 20 μl IVT reactions were pooled,

9 μl of TURBO™ DNase (Thermo Fisher Scientific), and 1 μl of 10×

TURBO™ DNase Buffer (Thermo Fisher Scientific) were added, and

the sample was incubated for 15min at 37°C. 350 μl of binding

buffer and 250 μl of absolute ethanol were added to the sample. The

sample was loaded into the spin filter and centrifuged at 15,000 g for

1min. The filter was washed and centrifuged in the previous

conditions twice. For elution, 50 μl of elution buffer were added to

the filter, incubated 5min at 65°C, and centrifuged at 15,000 g for

1min. Elution was performed twice. The 100 μl mRNA sample was

further concentrated by precipitating with 10 μl of 5M ammonium

acetate and 270 μl absolute ethanol at −20°C for 30min. The sample

was centrifuged at 15,000 g for 10min at 4°C. The obtained pellet

was washed with 100 μl 75% ethanol and centrifuged using the

previous conditions. The obtained pellet was let to dry and re‐

suspended in 20 μl of elution buffer. The mRNA was quantified using

Nanodrop 1 (Thermo Fisher Scientific) and the quality was evaluated

by RP‐HPLC.

2.1.5 | IVT kinetics

IVT kinetics was studied with the reaction conditions described in

Table 2 at volume of 65 μl. Reactions were carried out in a

thermocycler (Biometra) and 5 μl samples were taken in a course of

5 h. The IVT reaction was stopped by dilute the sample 8 times in 1×

pH 7 TAE buffer (100 mM Tris acetate, pH 7, 2.5 mM EDTA).

The obtained samples were evaluated by RP‐HPLC and gel

electrophoresis.

2.2 | Analytical methods

2.2.1 | mRNA quantification

mRNA was quantified using RP‐HPLC using the method adapted from

William Issa (2021). A 2.1 × 100 nm RP‐DNApac column and a guard

column (3 × 10 nm) (Thermo Fisher Scientific) were used in a HPLC

equipped with a column heater. Samples of 5μl diluted eight times in 1×

pH 7 TAE buffer (100mM Tris acetate, pH 7, 2.5 mM EDTA), were

injected in a pre‐equilibrated column withTAE buffer. The samples were

eluted using 1× TAE with 25% (v/v) acetonitrile. The run was performed

at 80°C, and the absorbance was monitored at 260 and 280 nm. The run

conditions are present in Supporting Information: Table S4. The peak

area corresponding to the elution of mRNA was considered for the

evaluation. Calibration curves were constructed using purified mRNA

samples with known concentrations in the range of 0.5–16 g · L−1.

Gel electrophoresis. Samples obtained from the IVT kinetic study

were analyzed by gel electrophoresis. A 2% (w/v) agarose (Thermo

Fisher Scientific) was prepared with 0.5× TBE buffer (Thermo

Fisher Scientific) containing 5.5 mM of magnesium chloride (Thermo

Fisher Scientific) and prestained with ethidium bromide (Thermo

Fisher Scientific). The gel was loaded with a 1 μL mRNA sample

diluted in 15 μL of WFI and 4 μL of 6× purple Loading Dye (New

England Biolabs), and 4 μl of NZYDNA ladder III (NZYTech). The

electrophoresis was performed at 100 V for 120min using 0.5× TBE

buffer, 5.5 mM MgCl2. The gels were scanned using an Axygen Gel

Documentation System (Axygen).
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2.3 | Bayesian optimization

2.3.1 | Latin hypercube sampling (LHS)

LHS (McKay et al., 2000) is used to generate a series of initial

experiments before the Bayesian optimization process is guided by

the surrogate model. An implementation is available in the scikit‐

optimize library (Head et al., 2020). LHS was used to sample an initial

set of 16 reaction conditions to guarantee that the initial batch of

reaction parameters do not overlap, and are sufficiently scattered

over the candidate domains. The subsequent experiments are guided

by the Bayesian optimization approach.

2.3.2 | Optimization cycle

Two sequential experiments were performed. Overall, 16 reaction

conditions were sampled and evaluated from an initial LHS design,

and used to initialize the Bayesian optimization cycle (Figure 1a).

After the surrogate model is initialized, three to five reaction

conditions are suggested by the Bayesian model, the outcome for

the IVT reactions for these conditions is evaluated and used to

update the model each time. The optimization cycle was continued

until no significant improvements in mRNA concentration were

observed for a total of 150 reactions.

2.3.3 | Gaussian process (GP)

A GP was chosen to be the surrogate model for the Bayesian

optimization process. A GP is a stochastic process such that any finite

subcollection of random variables has a multivariate Gaussian

distribution. A GP defines a prior distribution on functions

f X: →  and can be thought of as the generalization of a Gaussian

distribution over a finite vector space to a function space of finite

dimension. Just as a Gaussian distribution is fully specified by its

mean and covariance matrix, a GP is specified by a mean function

m x E f x( ) = [( ( )] and a positive definite covariance (kernel) function

k x x E f x μ x f x μ x( , ) = [( ( ) − ( ))( ( ) − ( )] . The chosen kernel greatly

impacts the resulting distribution on functions and can correspond

to strong assumptions about them (e.g., smoothness and differentia-

bility). The squared exponential kernel is often the default choice for

Gaussian process (GP) regression, but sample functions with this

covariance function are unrealistically smooth for most practical

optimization problems, as such, a Matérn 5/2 kernel Stein (1999) was

chosen to be the kernel function for the GP:

k x x
x x x x x x

( , ′) = 1 +
5 − ′

+
5( − ′)

3
exp −

5 − ′
,M

5∕2
2

2� � �
       

(1)

where � is a length‐scale parameter. Matérn 5/2 yields twice

differentiable sample functions, for example, like quasi‐Newton

methods, without requiring the smoothness of the squared expo-

nential. For the kernel hyperparameters (length scales, covariance

amplitude, observation noise, and constant mean) a point estimate of

these parameters was used by optimizing the marginal likelihood

under the GPs. For a broader introduction to GPs (see Mackay, 1997;

Rasmussen & Williams, 2005; Williams, 1997).

2.3.4 | Acquisition function

The acquisition function gives us the candidates for the next reaction

conditions to be evaluated on each optimization cycle. The EI acquisition

function (Močkus, 1975) is chosen for the Bayesian optimization process.

The EI criterion is computed as follows: Let f y y= max( , …, )n
max

(1) ( ) be

the current best function value. Let us model of uncertainty at y x( ) as a
normally distributed random variable Y with mean and standard

deviation given by the surrogate model. Weighing all the improvements,

the portion of the uncertainty density that extends beyond the current

fmax by the corresponding density values, will give the EI. Formally, the

improvement at a point x is given by the random variable

I f Y= min(0, + )max and it models the uncertainty about the objective

function value at x . The EI is the expected value:

E I x E f Y f y
f y

s

ϕ
f y

s

[ ( )] ≡ [min(0, + )] = ( + ˆ )Φ
+ ˆ

+
+ ˆ

,

max max
max

max

   (2)

where ŷ and s are the surrogate model prediction and its standard

error at x, Y is Normal(y sˆ, 2), and ϕ (.) andΦ (.) are the standard normal

density and distribution functions. Selecting values where x maxi-

mizes the EI acquisition function or from at random within a certain

distance from the maximum improvement gives a balance between

exploration and exploitation.

2.3.5 | SHAP (SHapley Additive exPlanations) of GP
estimator

SHAP (Lundberg & Lee, 2017) is a method based on the game

theory concept of optimal Shapley values that views any explana-

tions of a model's prediction as a model itself, an explanation

model. This method was used to evaluate the predictions of GP

estimator. Independent variable values are interpreted as players

in a coalition game from which Shapley values are computed. This

approach unifies other methods as additive feature attribution

methods, where an explanation model is a linear function of binary

variables:

∑g z ϕ ϕ z( ′) = +
j

M

j j0
=1

′
′

(3)

where z′ {0, 1}M∈ , M is the number of simplified input features, and

ϕ Ri ∈ . The explanation model attributes an effect ϕi to each feature,
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and summing the effects of all feature attributions approximates the

output f x( ) of the original model.

The exact computation of SHAP values is challenging (Lundberg

& Lee, 2017). To generate explanations for the GP predictions,

approximations are computed using a model‐agnostic permutation‐

based explanation model that uses the Shapley sampling values

method (Štrumbelj & Kononenko, 2013).

2.3.6 | Surrogate model comparison

The generalization error of Random Forests (RF) (Breiman, 2004) and

Gradient Boosting Machines (GBM) (Friedman, 2001) was compared

to the generalization error for the Gaussian Process used throughout

the experimental runs. Leave‐one‐out cross validation was performed

on the reaction data (150 configurations including replicated runs).

The surrogate model is trained on each data fold of size n− 1 and the

absolute prediction error is measured on the remaining data point.

Supporting Information: Figure S1 shows the distribution of errors for

GP, RF, and GBM.

3 | RESULTS

3.1 | IVT optimization workflow

Briefly, in an IVT reaction, a RNA polymerase uses a target DNA

template to synthesize the complementary RNA molecule using NTPs

as substrate. In this study, 12 reaction parameters were identified

that could potentially influence the reaction outcome: enzyme

activity (T7 RNA polymerase and inorganic phosphatase); the

concentration of RNase inhibitor, DNA template, NTPs, spermidine

and dithiothreitol (DTT); the type of cofactor (e.g., magnesium

acetate vs magnesium chloride) and their respective concentration;

reaction pH, temperature and reaction time (Table 1). The reaction

and process parameters are summarized in Table 1. The mRNA

concentration obtained in each experimental run suggested by the

model is fed into the Bayesian optimizer with the initial reaction

conditions randomized. In each imposed optimization cycle, the

model is updated and new experimental conditions are suggested

based on the model knowledge of the process, that is, the maximum

mRNA to be produced (Figure 1a). Specifically, the optimization loop

proceeds as follows:

1. A GP surrogate model is initialized with a covariance function,

specifically, Matérn 5/2 kernel.

2. The surrogate model is fed with a batch of random initial reaction

conditions taken from a latin hypercube sampling (LHS) design

(McKay et al., 2000).

3. The selected reaction conditions are experimentally performed

and the produced mRNA quantified.

4. The surrogate model is updated with the mRNA produced in each

of the reaction conditions evaluated to construct a posterior

distribution.

5. The EI acquisition function (Močkus, 1975) is computed based on

the surrogate model and its maximum value is used to suggest the

proceeding reaction configurations (Figure 1b).

5. Steps 3 and 4 are repeated until the selected convergence criteria

is met, this can be the maximum budget for the total number of

experiments is reached (maximum budget), and/or a number of

experimental runs are performed without statistically significant

improvement.

3.2 | Optimization analysis

The progress of the optimization procedure can be followed in

multiple ways. The exploration of the reaction parameter space can

be performed with the aid of a parallel coordinate plot (Figure 1c).

This plot provides an overview over the possible optimal reaction

parameter ranges across the entire optimization process. The best

reaction conditions are also evaluated over time, being used to

determine if significant progress is being made in the optimization

cycle. By analyzing the parallel coordinate plot for the entire

optimization experiment, it is possible to observe that the optimal

mRNA production is obtained when the concentration of magne-

sium acetate concentration is between 40 and 70 mM, the

concentration of NTPs is above 7 mM, spermidine concentration

is between 1 and 3 mM, the volumetric activity of the T7 RNA

polymerase (T7 RNAP) is between 6000 and 8000 U. ml−1, the

reaction temperature is between 37 and 45°C, and the initial pH is

TABLE 1 In vitro transcription (IVT) reaction parameters and
evaluation metric (see also Figure 1c)

Name Units Type Domain/range

Cofactor Cofactor
choice

Categorical MgAcetate,
MgCl2

Cofactor
concentration

mM Real number [0, 100]

DTT mM Real number [0, 10]

RNase inhibitor Uml−1 Integer [0, 2000]

NTPs mM Real number [1.0, 10.0]

DNA template nM Integer [10, 100]

Inorganic
pyrophosphatase

Uml−1 Integer [0, 10]

Spermidine mM Real number [0, 10]

T7 RNA polymerase Uml−1 Integer [1000, 50,000]

Temperature °C Integer [20,50]

Reaction time min Integer [10, 300]

pH — Real number [6.5,8]

Evaluation gmRNA L−1 Integer ⋯

Abbreviations: DTT, dithiothreitol; mRNA, messenger RNA; NTP,
nucleoside triphosphate.
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lower than 7.5. Reactions conditions that produced a maximum

amount of mRNA were found in the first 60 runs of the

optimization routine (Figure 1d). Several reaction conditions were

obtained that yielded more than 10 gmRNA · L−1.

To better understand the IVT reaction optimization, two

different mechanisms were used. First, the model predictions in

terms of expected mRNA IVT production and uncertainty bounda-

ries with the reaction empirical evaluations were compared. Second,

explanation models were built for the GP surrogate model

(Figure 1e,f). The SHAP (Lundberg & Lee, 2017) gives the overall

parameter importance regarding parameter impact in model

predictions. As the surrogate model is fed with increasing data,

and it converges to the unknown function (i.e., the IVT reaction

being modeled), the explanations become more informative about

the real impact of different reaction parameters on the amount of

mRNA being produced. The evaluation of the coordinate plot

combined with these mechanisms allowed to infer the impact of

particular parameter on surrogate model predictions. The pH has a

high impact (positive) on the reaction outcome, in particular

between 6.5 and 7.5. This is followed by the cofactor concentration

with optimal range set between 40 and 60mM. High inorganic

pyrophosphatase and DTT concentrations impact positively the

reaction. This is also observed for higher concentrations of DNA and

NTPS, above 40 nM and 7mM, respectively. T7 RNAP presence

impacts the model, but at lower enzyme volumetric activities,

between 6000 and 8000 U · mL−1, which will produce ultimately

(a)

(c)

(d) (e) (f)

(b)

F IGURE 1 Bayesian optimization of messenger RNA (mRNA) in vitro transcription (IVT) reaction. (a) Bayesian optimization workflow.
(b) One‐dimensional example of Bayesian optimization process using a Gaussian process surrogate model and corresponding acquisition
function, maximized to select the next set of parameters to be tested. The surrogate model is plotted as the posterior mean, with the shaded
region representing a posterior distribution uncertainty of 2σ units. (c) All parameter configurations for all the IVT experimental runs along with
their respective evaluation in mRNA concentration (g · L−1). (d) Convergence plot depicting the best evaluation throughout all the IVT
experimental runs, and convergence to the optimum. (e) Feature importance summary computed from the average SHapley Additive exPlanation
(SHAP) values (Lundberg & Lee, 2017) computed for the Gaussian Process regressor predictions across all IVT experimental data. (f) Impact of
feature value in model prediction value for the Gaussian Process regressor used as surrogate model in the Bayesian optimization process.
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more mRNA. Surprisingly, high spermidine concentration impact

negatively the model, and optimum values used should be in the

range of 1 and 3mM (Figure 1c,e,f).

3.3 | IVT kinetics

In the experiments performed, the reaction time was not explicitly

optimized. Nevertheless, the six best reactions conditions that

produced mRNA exceeding 10.7 g · L −1 (Table 2) were evaluated in

term of reaction profile. These reactions were compared with a

benchmark reaction conditions, corresponding to the reaction

parameters listed in the Moderna patent (Bancel et al., 2016), which

result in an expected mRNA production yield of 5 g · L−1.

To obtain the reaction profile, samples were taken over the

course of 5 h (Figure 2a). All the reactions found by the

optimization process outperformed the chosen baseline reaction,

producing at least 10 g  · LmRNA
−1 of mRNA. Although during the

optimization runs, reactions 1 and 4 produced the highest amount

of mRNA, ultimately reaction 5 achieved the highest yield in less

time as after 2 h (Supporting Information: Table S1), correspond-

ing to a final concentration of 10.65 ± 0.01 g  · LmRNA
−1, that is,

80% of the maximum mRNA produced (Figure 2b). The quality of

mRNA produced was also assessed by agarose gel electrophoresis

(Figure 2c) and HPLC analysis (Supporting Information:

Figure S3). After approx. 115 min no significant changes in mRNA

amount are detected, confirming that reaction performance

peaks at the 2 h mark. A second band is observed to increase

after 115 min that may correspond to reaction by‐products such

as double‐strand mRNA (dsmRNA) or aberrant mRNA. HPLC

analysis shows that at reaction completion the ratio

dsRNA/RNAtotal is 0.05 ± 0.003 mg · mg−1.

3.4 | IVT performance validation

To validate the optimized reaction performance, we compared the

mRNA production using different size templates. The templates

containing EGFP gene, the Covid‐19 Receptor Bind Domain fused to

EGFP (RDB_EGFP), and the Cas9 gene also fused to EGFP

(Cas9_EGFP), with 1195, 1864, and 5299 bp, respectively. The

differences between reaction profile (Figure 2d), and concentration

of total mRNA produced after 2 h (Figure 2e) were investigated.

Changing the size of the template does not have an impact on the

reaction outcome using the optimized conditions. All the evaluated

templates sizes produced over 10 g · L−1 of mRNA. However, with

larger templates the mRNA concentration tends to reduce from a

concentration of 9 .7 ± 0.29g L−1 (145 min of reaction time) to a

concentration of 7.1 ± 0.19 g · L−1 (end of reaction). In spite of this

reduction, 10 g  .  LmRNA
−1 is still produced within 2 h of reaction time.

3.5 | Optimal IVT production and comparison

The highest mRNA producing reaction condition was compared with

different reaction conditions reported in the literature and patents (Bancel

et al., 2016; Henderson et al., 2021; Wochner et al., 2021) (Figure 2f).

Within 2 h of reaction time, a total amount of 12g ·LmRNA
−1 was

obtained, outperforming the benchmark reaction by twofolds (Table 2).

4 | DISCUSSION

IVT reaction optimization has become increasingly important not only

due to the growing interest in using RNA molecules in a number of

diagnostic and therapeutic applications, but especially due to the rise

TABLE 2 mRNA production reaction
parameters and mRNA concentration for
highest production conditions after
Bayesian optimization (Reactions 1–6)
compared to the benchmark reaction
(Bancel et al., 2016) condition (Reaction 7)

Reaction 1 2 3 4 5 6 7

Cofactor C (mM) 60.00 48.46 41.79 59.87 49.28 40.00 40.00

DTT (mM) 7.09 3.85 5.57 9.85 5.27 3.99 5.00

RNase I (UmL−1) 829 1072 1217 986 1474 1045 1000

NTPs (mM) 8.57 8.81 9.89 8.50 7.75 9.29 7.50

DNA template (nM) 61 100 89 100 89 72 40

Ppase (UmL−1) 10 9 5 2 8 7 1

Spermidine (mM) 2.65 1.35 2.24 1.31 2.25 2.03 1.00

T7 RNAP (UmL−1) 7346 7320 6607 6166 7743 7748 7000

Temperature (°C) 43 39 44 40 44 44 37

Time (min) 263 98 120 148 121 279 240

pH 6.89 6.80 6.65 6.78 6.67 6.60 8.00

mRNA C (g · L−1) 12.61 10.76 11.76 12.27 12.18 11.52 7.64

±0.82 ±0.47 ±0.66 ±0.77 ±0.98 ±0.23 ±0.87

Abbreviations: DTT, dithiothreitol; mRNA, messenger RNA; NTP, nucleoside triphosphate.
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(a) (b)

(c) (d)

(e) (f)

F IGURE 2 Messenger RNA (mRNA) production analysis. (a) mRNA production profile of the six best runs obtained by Bayesian optimization
and the benchmark reaction 19 for a time course of 5 h. Error bars represent standard deviation obtained for each point. A second order
polynomial function was used as a trendline for visualization purposes. (b) Percentage of mRNA produced as a function of minutes of reaction
time considering 100% the highest mRNA concentration produced for each set of runs. Error bars represent standard deviation obtained for
each point. A second order polynomial function was used as a trendline for visualization purposes. (c) Agarose gel electrophoresis analysis of the
reaction mixture at the defined setpoints for the best production run (Run 5). (d) mRNA production profile for a time course of 5 h using the best
run parameters (Run 5), and templates with the different sizes (EGFP—1195 bp; RBD_EGFP—1864 bp) Cas9_EGFP—5299 bp). Error bars
represent standard deviation obtained for each point. A second order polynomial function was used as a trendline for visualization purposes.
(e) mRNA production using the parameters of the Run 5 and 2 h of reaction time with the three different size templates (EGFP, RBD_EGFP,
Cas9_EGFP). (f) mRNA production concentration (g ·LmRNA

−1) using EGFP template for the following runs: optimized—Run 5 and 2 h of reaction
time; Moderna, Inc. (Bancel et al., 2016) and Curevac N.V. (Wochner et al., 2021) patent conditions and literature conditions (Henderson
et al., 2021).
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of mRNA vaccine technology in recent years. However, existing

optimization experiments are focused on reaction modelling

(Breckenridge & Davis, 2000; Kern & Davis, 1997, 1999; Young

et al., 1997); or on DoE (Samnuan et al., 2021) methodologies.

Optimization methods only consider the exploration of small

parameter spaces and often assume that the relationships between

reaction parameters are given by pre‐established enzymatic dynamic

models. In this study, we demonstrate the effectiveness of the

Bayesian optimization methodology when applied to the production

of mRNA by IVT, a multicomponent reaction that depends on 12

different reaction parameters. Using this method, the maximum

amount of mRNA produced was found in only 60 experimental runs.

Interpretability techniques, in particular, explanation models based on

Shapley Values (Lundberg & Lee, 2017) for the Gaussian Process

surrogate model were also used. The combination of the obtained

results with the explanation models allowed to bridge these

explanations and/or interpretations with pre‐existing knowledge

about the IVT reaction being modeled optimized.

For any optimization problem, the most important metric to be

defined is the objective evaluation. In the case of the IVT reaction,

the goal is to maximize the quantity of mRNA produced for a specific

set of reaction parameters. To achieve this, mRNA concentration was

used as the surrogate metric. The initial set of 16 reactions to be

evaluated were sampled randomly using . Latin Hypercube Sampling

(LHS) (McKay et al., 2000). This is a type of stratified Monte Carlo

(MC) sampling where the range of each variable is partitioned into N

nonoverlapping intervals on the basis of equal probability size 1/N.

The number of partitions is equal to the number of required samples.

LHS guarantees that the initial parameter configurations do not

overlap and are sufficiently scattered over the target parameter

space. This is often important to guarantee that the model is seeded

with different regions of the target response surface. Nevertheless,

since sampling overlapping configurations is extremely unlikely with

12 parameters and there is a small number of initial experiments, this

sampling strategy is as good as random uniform.

Public data sets on IVT reactions for mRNA production are

currently non‐existent, making the estimation of the impact of the

different components that compose our Bayesian optimization

approach difficult. Therefore, a practical starting point is chosen

for the surrogate model, acquisition function, and hyperpara-

meters, namely: a GP surrogate model with a Matérn 5/2 kernel

and the EI acquisition function. These settings do not make

assumptions about the underlying structure of the target problem

while still being capable of tackling a wide range of domains.

Nevertheless, there are multiple sensible choices for surrogate

models besides a GP. A post‐hoc comparison of generalization

error between RF (Breiman, 2004), Gradient Boosting Machines

(GBM) (Friedman, 2001), and GP (Mackay, 1997) was performed

and found no significant differences between them in terms of

estimated generalization power (Supporting Information:

Figure S1). Techniques such as deep kernel learning (Wilson

et al., 2016) can be used to combine the structural properties of

deep learning architectures with the non‐parametric flexibility of

Gaussian Processes, allowing the creation of specialized kernels for

this (or similar) domains.

Finally, in terms of the optimization process, no reaction

conditions were found after 60 runs that could increase the total

mRNA concentration (Figure 1d). The proposed optimization only

considered the maximization of mRNA production as a goal. Multiple‐

objective optimization can be used in the future to obtain the Pareto

frontier of IVT reactions using multiple metrics. This would allow to

find sets of optimal trade‐offs, which can include minimizing reagent

concentrations, reaction time, reaction cost and dsRNA production,

while maximizing reaction yield.

By combining the interactive nature of the optimization cycle and

the insights gained from the explanation models, it was possible to

both validate the model predictions and and study the IVT reaction

itself. This allowed the construction of a more coherent view of the

dynamics of IVT reactions in general. IVT reactions employ a RNA

polymerase and a DNA template to generate RNA using the NTPs as

substrate and magnesium as a cofactor. T7 RNA polymerase (T7

RNAP) is a 98 kDa and single subunit enzyme that catalyzes RNA

synthesis of very long transcripts without auxiliary transcription

factors (Borkotoky et al., 2017; Borkotoky & Murali, 2018). Due to its

characteristics, T7 RNAP is widely used for the production of mRNA

by IVT. Parameters importance and their impact in the surrogate

model predictions combined with the information given by the

coordinate plot were compared with existing literature (Figure 1c,e,f).

The model predicted that pH, cofactor concentration, spermidine

concentration, and inorganic pyrophosphatase have the most impact

on the reaction outcome. These are followed by DTT concentration,

T7 RNAP activity, DNA concentration, NTPs concentration, and

reaction time (Figure 1e). The least impactful parameters predicted

include the reaction temperature, the type of co‐factor and the

RNase inhibitor concentration. The model predicts that a low pH

value significantly and positively impacts the mRNA production

(Figure 1e,f). Typically, IVT reactions are performed using higher pH

values, for example, 7.9 or 8 (Bancel et al., 2016; Henderson et al.,

2021). However, by exploring a wider range of pH, it was found that

values between 6.5 and 7.2 improve the transcription rate. These

results are in line with previous studies where an optimal transcrip-

tion rate is reported for values of pH between 7.0 and 7.5 (Kern &

Davis, 1997).

Magnesium also plays an important role in the IVT reaction since

it is required to bind T7 RNAP enzyme to the DNA template

(Gunderson et al., 1987). Additionally, magnesium‐NTP complexes

are used to form phosphodiester bonds with the RNA chain

(Breckenridge & Davis, 2000) where a pyrophosphate is released as

a by‐product. Depending on the concentration of Mg2+ present in the

reaction, free pyrophosphate can cross‐link with free Mg2+ and

precipitate due to the formation of long aggregates. The results

showed that the mRNA production rate is increased with concentra-

tions of magnesium acetate between 40 and 60mM. It is important

to maintain a high concentration of free Mg2+ to ensure that the

cofactor does not limit the reaction. An optimal range between 50

and 60mM was predicted in Breckenridge and Davis (2000).
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Additionally, the presence of counter ions can also inhibit mRNA

production. Through the optimization process it was also found that

magnesium acetate is preferred since it can be used in higher

concentrations than magnesium chloride. These findings are in line

with previous reported results (Kern & Davis, 1997; Samnuan

et al., 2021).

The pyrophosphate by‐product may inhibit IVT as it reduces the

free Mg2+. To avoid this, an inorganic pyrophosphatase (PPase) can be

used to catalyze the hydrolysis of pyrophosphate. This leads to the

formation of orthophosphate, releases Mg2+, and, ultimately, increases

mRNA production (Kern & Davis, 1997). The use of PPase in IVT is not

consensual as this enzyme potentially does not impact mRNA

production if the Mg2+ is present in sufficient concentration (Kern &

Davis, 1997, 1999). However, our findings show that higher concentra-

tions of PPase positively influence the mRNA production (Figure 1f).

This has been previously observed when PPase was used in volumetric

activities between 5 and 10UmL−1 (Frugier et al., 1994; Gosule &

Schellman, 1978). This positive influence can be particularly observed

when using high concentration of NTPs (Kern & Davis, 1999). We

hypothesize that PPase is important to maintain a threshold concentra-

tion of Mg2+ and hence sustain a high mRNA production rate.

Spermidine is an aliphatic polyamine with high affinity toward

nucleic acids that neutralizes negative charges, and consequently,

promotes condensation and aggregation of DNA (Gosule &

Schellman, 1978). In the IVT reaction, spermidine plays an important

role in the transcription initiation as it stabilizes the DNA‐enzyme

complex (Frugier et al., 1994). Its presence in IVT reaction is

fundamental as it can lead to an increase of up to 10 times when

using T7 RNAP as enzyme (Watanabe et al., 1983). Here we found

that spermidine can also have an inhibitory effect when present in

high concentrations. However, when used in concentrations between

1 and 3mM, it influences the mRNA production positively. These

results are in line with optimal conditions found in reported data

(Fuchs, 1976; Moussatché, 1985).

As previously described, there is a close relation between the

substrate concentration and the cofactor, as NTPs and Mg2+ form

complexes that are added to the nascent mRNA chains. NTPs

concentration must be high enough to promote the reaction.

However, the concentration increase beyond a certain value does

not have a significant influence on the reaction output (Breckenridge

& Davis, 2000). Our findings suggest that NTPs concentration above

7mM have a positive impact on mRNA production, and are

comparable with literature (Pokrovskaya & Gurevich, 1994).

We observed that the optimal T7 RNAP volumetric activity is

between 6000 and 8000U · mL−1, and that activities above this point

have a negative impact on the reaction yield. This shows that

increasing enzyme volumetric activity does not translate into higher

mRNA production due to possible diffusion limitation and solubility

challenges. Another important parameter is the template concentra-

tion. It should be high enough to guarantee that it is not the limiting

factor in the reaction itself. We observed that DNA concentrations

above 40 nM should be used to guarantee optimal production. DTT is

a reducing agent that plays an important role to maintain the

enzymes activities during the transcription. Reaction temperature,

although it does not seem to have an impact on the reaction, affects

the binding of the enzyme to the template promoter. To achieve total

binding (Oakley et al., 1975), temperatures of at least 37°C should be

used. Additionally, high temperature could also reduce the formation

of ds‐mRNA (Wu et al., 2020), a reaction by‐product that leads to a

decrease in vaccine efficiency when present in the final product

(Mishra et al., 2022). The model predicts that the optimal reaction

temperature in the system should be between 37°C and 44°C.

A larger and more coherent picture of the impact of reaction

parameters on IVT has emerged from the optimization results herein

presented. Multiple reaction conditions were found that lead to

mRNA concentrations higher than 10 g · L−1. In terms of production

rate, we observed that the reaction time can be reduced to 2 h.

Ultimately, we found a set of IVT reaction parameters able to

produce 12 gmRNA · L−1 (Figure 2f). This means a twofold increase in

half of time when compared with the reported literature. Addition-

ally, increasing template size did not have an impact on production

using the optimized conditions as all the templates evaluated

produced more than 10 gmRNA · L
−1 of mRNA (Figure 2e). Never-

theless, increasing the reaction time above two hours for longer DNA

templates is not beneficial as a decrease in mRNA concentration is

observed (Figure 2d). This can be explained by the formation of a

precipitate which could precipitate the mRNA already formed, and

consequently, to the generation of aberrant mRNA species.

Another important point is the quality of the mRNA produced.

This metric was not considered in the optimization evaluation

because it introduces a new criterion, transforming the problem into

a multi‐objective optimization scenario. While this is the natural

progression of the present work, a single objective setting allowed us

to validate all the components involved before considering trade‐off

decisions when searching for the optimal reaction conditions. The

presence of by‐products in the final product has a strong impact both

in mRNA translation efficiency within the patient cells and in the

immunostimulatory profile (Rosa et al., 2021). We have observed that

the dsmRNA is produced alongside the ssmRNA after a threshold

concentration is reached (Supporting Information: Figure S3). At

reaction completion, a maximum ratio of dsmRNA to total mRNA

(dsRNA/RNAtotal) obtained is 0.05 ± 0.003 mg · mg−1. Similar results

have been reported (Nelson et al., 2020). The mRNA quality

attributes can be further studies by a number of analytical techniques

such as electrophoresis, HPLC or ELISA (Poveda et al., 2019).

Additionally, mRNA structure and identity could be also analyzed

using circular dichroism (CD), RT‐PCR or next‐generation sequencing

(World Health Organization, 2020). Nonetheless, this was out of

scope for the present study.

5 | CONCLUSION

Overall, by using Bayesian optimization, we were able to increase the

mRNA IVT production twofold, up to 12 gmRNA · L
−1, in under two

hours when compared to published industry standards and data
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reported in literature. This optimization approach proved to be cost‐

effective, as it only required 60 reactions to achieve optimal

parameter combinations. Using Machine Learning techniques in

combination with the experimental observations and intuitions, were

the key to ultimately detect human error in the reaction preparation

and assess model improvement over time. This reveals the impor-

tance of interactivity and explainability in a scientist‐in‐the‐middle

approach to problems being solved with techniques from Machine

Learning. This allowed to better understand the IVT reaction

parameter's impact on the model increasing the existing know‐how

on IVT reactions to create in the future more efficient and flexible

processes. The results obtained can potentially increase the global

manufacturing capacity of mRNA vaccines. Additionally, these results

reinforce the potential of Bayesian optimization to be applied on the

optimization of (bio)chemical reactions for industrial applications.
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