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Abstract

Positron Emission Tomography (PET) is a medical imaging technique that is used to pro-

vide functional information regarding physiological processes. Statistical PET reconstruc-

tion attempts to estimate the distribution of radiotracer in the body but this methodology

is generally computationally demanding because of the use of iterative algorithms. These

algorithms are often accelerated by the utilisation of data subsets, which may result in con-

vergence to a limit set rather than the unique solution. Methods exist to relax the update step

sizes of subset algorithms but they introduce additional heuristic parameters that may result

in extended reconstruction times. This work investigates novel methods to modify subset

algorithms to converge to the unique solution while maintaining the acceleration benefits of

subset methods.

This work begins with a study of an automatic method for increasing subset sizes,

called AutoSubsets. This algorithm measures the divergence between two distinct data

subset update directions and, if significant, the subset size is increased for future updates.

The algorithm is evaluated using both projection and list mode data. The algorithm’s use

of small initial subsets benefits early reconstruction but unfortunately, at later updates, the

subsets size increases too early, which impedes convergence rates.

The main part of this work investigates the application of stochastic variance reduction

optimisation algorithms to PET image reconstruction. These algorithms reduce variance

due to the use of subsets by incorporating previously computed subset gradients into the

update direction. The algorithms are adapted for the application to PET reconstruction.

This study evaluates the reconstruction performance of these algorithms when applied to

various 3D non-TOF PET simulated, phantom and patient data sets. The impact of a number

of algorithm parameters are explored, which includes: subset selection methodologies, the

number of subsets, step size methodologies and preconditioners. The results indicate that

these stochastic variance reduction algorithms demonstrate superior performance after only
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a few epochs when compared to a standard PET reconstruction algorithm.
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Impact Statement

Quantification of activity concentrations in PET imaging is essential for monitoring disease

progression and treatment effectiveness for a patient’s healthcare. Statistical image recon-

struction methods have been developed to increase accuracy and precision. However, they

suffer from long computation time. Currently commercially available algorithms accelerate

computation time by using data subsets, but sacrifice performance over speed.

The novel image reconstruction algorithms investigated in this thesis are proposed as

alternatives to standard clinical iterative PET image reconstruction algorithms. Our evalua-

tion demonstrated that the use of stochastic optimisation improves image convergence rates.

The proposed methods and their ability to quickly produce stabilised subset image recon-

struction sequences may lay the foundation for future research or commercial software at

national and international levels. If made available on clinical systems, they may enable

more accurate evaluation of disease progression or treatment.

Along with accelerating image reconstruction using these stochastic algorithms, a

number of additional software contributions were made to open source software. Primar-

ily contributions were made to the STIR library, which is an open source Multi-Platform

Object-Oriented framework for tomographic imaging that is used throughout academic in-

stitutions for medical imaging research purposes. Additionally, a pipeline was created to

link a Monte Carlo medical imaging simulation software package (GATE) to STIR. The

modifications to the STIR library and the development of this STIR-GATE-Connection

project will have an impact on international academic studies and enable future research

to productively perform accurate PET acquisition simulations for use in quantitative PET

research. This may allow for the advancement of novel PET scanner design and physical

model development.
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Chapter 1

Introduction

Positron Emission Tomography (PET) is a medical imaging modality that measures func-

tional and metabolic behaviour in-vivo and is commonly used in the staging of disease, and

increasingly for monitoring of therapy and drug development. A small amount of a radioac-

tive compound called a radiotracer is injected into a patient’s body and biological processes

distribute it throughout the body. The radioactive component decays into a positron that an-

nihilates with an ambient electron, which results in a pair of emitted anti-parallel photons.

The emitted photons can provide information regarding specific biochemical processes or

blood flows. This information is challenging to obtain from other imaging modalities.

In brief, a PET scanner measures coincidence photon pairs that can be used to estimate

the 3D radiotracer distribution for visualisation and quantification. However, this process

is complicated by low measurement sensitivity, limitations on injected activity due to dose

considerations and scan duration limitations. Statistical methods have been shown to gener-

ate desirable performance in the reconstruction of the tracer distribution due to their ability

to model physical effects, e.g. attenuation and scanner geometries as well as the stochas-

tic noise in the data. The earliest statistical approach was a Maximum-Likelihood (ML)

estimation of the distribution [Rockmore et al. 1976] that was later estimated using a Ex-

pectation Maximisation (EM) algorithm [L. A. Shepp et al. 1982]. Many modifications to

the ML method have been derived since, including Penalised Maximum-Likelihood (PML)

methods. These penalised methods employ some a priori information into the statistical

model. As an example, this information may encourage local smoothness over individual

tissue or organs with strong edges at their boundaries.
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1.1 Motivation

Iterative algorithms have become the standard reconstruction method used in clinical prac-

tice and remain a focus of academic research. These algorithms involve the cyclical appli-

cation of a forward projection of the estimated distribution, a comparison to the measured

data, and the backprojection of a correction that is used to update the estimate. However, this

process for a fully 3D statistical reconstruction is computationally demanding. Although

the power of computing systems is persistently increasing, PET image reconstruction will

continually face computational challenges due to the increasing number of detectors used,

particularly as dynamic PET reconstruction becomes more prevalent in clinical context.

Reconstruction acceleration is often achieved by the use of data subsets, which reduces

the computational cost at each iteration of the cycle by using only part of the measured data.

This results in an acceleration that is approximately linear in terms of the number of sub-

sets used during early algorithm updates but the convergence rate will begin to decline as

the estimate approaches the ML or Maximum a Posteriori (MAP) solution. Moreover, the

use of subsets often leads to non-convergence, sometimes cycling between different solu-

tions. Consequently, variations between subsequent images produced by these algorithms

are observed, which may have adverse effects in quantitative medical evaluation.

1.2 Thesis Objective

The primary aims of this research are to accelerate PML PET image reconstruction and

improve algorithm stability by limiting the impact of subset variance on the reconstruction

algorithms. To achieve these goals, adaptive subset size and stochastic variance reduction

optimisation algorithms are applied to PET reconstruction. Secondary supporting goals are

to explore the impact of subset selection methodologies on the performance of various algo-

rithms, to improve a pipeline between a Monte Carlo simulation software and PET recon-

struction software, and to contribute towards various improvements of the aforementioned

PET reconstruction software.

1.3 Thesis Overview

Chapter 2 includes a general background and overview of PET physics and PML subset im-

age reconstruction algorithms. Additionally, examples of the Stochastic Variance Reduction

(SVR) algorithms used in this thesis are described.

The AutoSubsets algorithm is presented in Chapter 3. This algorithm is designed to
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be initialised with small subsets that automatically increase in size throughout the iterative

process as two distinct subset update directions diverge. The algorithm is fully detailed

and its performance is compared to standard fixed subset algorithms using both projection

and list mode simulated data. However, the evaluation showed several limitations of the

AutoSubsets methodology.

In Chapter 4, three Stochastic Variance Reduction (SVR) methods are implemented

into a PET reconstruction framework. These algorithms are frequently applied in other

fields of optimisation, including machine learning, and this chapter studies their adaptation

to PET reconstruction, and compares their performance to standard subset PET algorithms

using simulated data, acquired phantom data and a patient data set. Additionally, the impact

of subset selection is investigated for PET image reconstruction.

Chapter 5 details the primary conclusions and achievements of this work along with

possible directions of future work related to this thesis. Furthermore, a list of current and

expected publications are provided.

Significant software development was involved in this Ph.D. project and is detailed in

the first two Appendices. Appendix A details the STIR-GATE-Connection project. The

project creates a research pipeline from Geant4 Application for Tomographic Emission

(GATE), medical imaging Monte Carlo simulation software, data to the tomographic imag-

ing software Software for Tomographic Image Reconstruction (STIR). This project was

developed to compute a number of data sets in this work and to support future research.

Appendix B highlights the major contributions to STIR.

Appendix C presents an analysis of introduction of biases in the stochastic variance

reduction algorithm framework. Finally, following the AutoSubsets algorithm research pre-

sented in Chapter 3, additional studies that modified this algorithm were conducted by an-

other student. These additional studies are described in Appendix D.



Chapter 2

Positron Emission Tomography and Iterative

Optimisation

This chapter introduces the basic physics of positron emission followed by a brief overview

of the measurement equipment used to acquire PET data. Subsequently, iterative optimi-

sation principles are introduced, examples of iterative PET reconstruction algorithms are

given and a discussion of various stochastic algorithms is presented.

2.1 Positron Emission Tomography

PET is an in-vivo non-invasive imaging modality used to observe functional and metabolic

processes [Kumar et al. 2010]. PET reconstructions provide spatial information regarding

the distribution density of a biological radiotracer. This information is used in medical

disease staging and monitoring [Anand et al. 2009]. A radiotracer is a chemical compound

where one or more of its atoms is a radionuclide. The radionuclides used in PET are positron

emitting particles. The most commonly used radiotracer is Fluorodeoxyglucose (18F-FDG)

(t1/2 = 109.8min). It behaves similarly to glucose and therefore may be used to study

glucose uptake in tissues. A commonly application of 18F-FDG PET scans is the detection

and quantification of lesions [Sah et al. 2017; Bollapragada et al. 2018]. Other radiotracer

molecules exist and are employed for various in-vivo studies of biological mechanisms. For

example, Rubidium-82 (t1/2 = 76.4s) is another radionuclide that is used as a reliable tool

for the diagnosis of coronary arterial disease and microvascular disease [Chilra et al. 2017].

Positron emission and its subsequent annihilation is a physical process that results in

the emission of two photons in (approximately) opposite directions. These photons may

be detected with sophisticated external equipment. After multiple positron annihilations, a

large data set of photon pair measurements is acquired. Using a variety of computational
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methods, this measured data is reconstructed into an estimation of the tracer distribution

that produced it. The physics of a positron emission and the resulting photon detection and

coincidence measurements are the focus of the following sections.

2.1.1 Positron Emission Physics

Positron (e+) emission typically occurs in ‘proton-rich’ radioisotopes, e.g., Carbon-11

[11C], Oxygen-15 [15O], and Fluorine-18 [18F]. A proton in a nucleus decays into a neutron,

positron e+, and electron neutrino (νe) [Bailey et al. 2014; Conti et al. 2016]. The proton’s

decay leads to a change of proton number in the nucleus, e.g. Fluorine-18 (t1/2 ≈ 110min)

[Allisy-Roberts et al. 2008, p. 136] decays into Oxygen-18:

18
9 F→18

8 O+ e++νe. (2.1)

The positron is emitted from the nucleus with some kinetic energy and travels a short dis-

tance. The majority of its kinetic energy is deposited to nearby matter via Coulomb interac-

tions as the positron travels [Bailey et al. 2014]. The average distance between emission and

annihilation is known as positron range. As the positron transfers the majority of its kinetic

energy, the likelihood of annihilation with an electron e− increases. Once the positron and

an electron annihilate, two 511 kilo-electron volt (keV) photons are emitted, which prop-

agate in approximately opposite directions. This process is detailed in Figure 2.1. Some

residual kinetic energy, associated with either the positron or electron prior to the annihila-

tion, is responsible for a small directional perturbation to the anti-parallel photon emission.

In general, photons traversing a material may be attenuated, i.e., absorbed or scat-

tered. The survival probability P of a photon travelling through a uniform medium without

absorption or scattering is given by

P = e−µL, (2.2)

where µ is the linear attenuation coefficient of the medium and L is the length traversed.

Photons are attenuated by either photoelectric absorption, Rayleigh scattering or Compton

scattering [Bailey et al. 2014]. The former results in the photons ceasing to exist and the en-

ergy is absorbed by electrons, however, this rarely occurs for high energy photons. Rayleigh

scattering is an elastic interaction as the photon loses essentially none of its energy but is

scattered over a small angle. Compton scattering involves the photons transferring some
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Figure 2.1: An illustration of positron-electron annihilation and the emission of a photon-pair in
opposite directions.

energy to the attenuating material and a change occurs to the photon’s direction of travel.

2.1.2 Photon Detection in PET

Clinical PET scanners are constructed from rings of photon detectors that are usually

stacked to form a cylinder. A positron emitting radioactive object of interest (e.g. a pa-

tient or phantom) is placed within the centre of the cylinder. Photons emitted from this

object are measured by the photon detectors of the scanner.

A scanner’s photon detectors are comprised of scintillating crystals and a photode-

tector, such as Photomultiplier Tubes (PMT) or Silicon Photomultiplier (SiPM) [Pan et al.

2019; Meikle et al. 2021]. Scintillating crystals fully or partially absorb high energy pho-

tons (i.e. approximately 511 keV) and exhibit luminescence, which is the production of

a cascade of many low energy photons. A photomultiplier tube is a photosensitive device

that converts low energy photons, typically around the visible energy range such as those

produced by the scintillating crystals, into a measurable electrical signal. Therefore, photon

detectors convert photons into an electrical signal where spatial, temporal, and energy in-

formation may be measured and recorded. SiPMs can improve on the timing resolution of

scanners and can also operate in a magnetic field that allows for usage in a Magnetic Reso-

nance Imaging (MRI) [Vos et al. 2017]. Thus, SiPMs have replaced PMTs in the majority

of current top-of-the-range commercial scanners PET systems.
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Figure 2.2: An illustration of different types of photon coincidence events. a) The detection of a
pair of photons from a common annihilation event. b) The detection of a pair of photons
but one photon has been scattered. c) A coincidence event corresponding to detection
of a photon pair from two different annihilations

A pair of gamma photons interacting with two different photon detectors within a short

period of time is recorded as a coincidence event by a PET scanner. For any given coinci-

dence event, one might assume that the two detected photons were emitted from a common

positron annihilation and were emitted in opposite directions. Thus, the annihilation is as-

sumed to have occurred along the straight line connecting the two detectors, known as a

LOR. In Figure 2.2, a) illustrates the measurement of two photons from a common annihi-

lation event and are therefore a true coincidence event. While this assumption provides a

good approximation, several physical factors may falsify this assumption, i.e., scattered and

random coincidence events.

As aforementioned in Section 2.1.1, photons scattered by an attenuating material will

travel along an altered path [Allisy-Roberts et al. 2008, p. 134-135]. Figure 2.2.b depicts

two photons detected within the coincidence window but one photon was scattered prior to

detection. These coincidence measurements are known as scattered events and the assigned

LOR will not accurately represent the path the two photons traversed. Likely, this LOR

will not overlay the photon emission location. However, photons may lose energy when

scattered. Some PET scanners may measure the incidence photon energy deposited into the

crystal and reject events that are outside a predetermined energy range.

The third type of coincidence measurement is a random coincidence. This type occurs

when two photons, which are emitted from different annihilation events, are designated as

a coincidence. Random (coincidence) events are illustrated by Figure 2.2.c [Allisy-Roberts
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et al. 2008, p. 134-135]. The resulting LOR will not overlay either of the emissions.

It is commonly assumed that a true coincidence LOR intersects with the site of the

positron emission. However, positron range makes it unlikely that the LOR will correctly

intercept the positron’s emission location. Furthermore, the non-colinearity, due to the small

angular deviation from the anti-parallel photon emission, may result in further misalignment

between the LOR and the true positron emission location [Iriarte et al. 2016].

The coincidence timing window is approximately 5 nano seconds (ns) in modern scan-

ners [Bettinardi et al. 2011]. However, in modern systems the timing resolution ∆t of a

scanner may be in the order of a few hundred pico seconds (ps). This allow for further

localisation along the LOR by measuring the difference between incident times of the two

photons at their respective detectors. The spatial uncertainty ∆L along the LOR is given by

∆L =
c∆t
2

, (2.3)

where c≈ 3×108 ms−1 is the speed of light in a vacuum and ∆t is the discrepancy between

the two measured photon detection times. This allows for Time-of-Flight (TOF) measure-

ments. This data is commonly used in commercial clinical PET.

2.1.3 Data Acquisition and Storage

Millions of coincidence events may be recorded during the course of a typical PET scan

with spatial, temporal and energy information measured for each photon-pair.

2.1.3.1 Projection Data

Traditionally, this measured data may be stored in sets of sinograms. Sinograms are 2D

matrices (Ns by Nθ ) used to represent the number of coincidence events measured between

various detector pairs [Bailey et al. 2014]. Each row of a sinogram corresponds to a set of

Nθ parallel LORs connecting detector pairs around a scanner’s ring [Allisy-Roberts et al.

2008, p. 135-136]. These parallel LORs/projection angles θ are often known as scanner

views and are evenly spaced over 180° for most cylindrical PET systems. The Ns columns

of a sinogram correspond to the off-centre distance s of the LORs [Allisy-Roberts et al.

2008, p. 135-136]. These are non-equidistant displacements that decrease towards the edges

of the Field-Of-View (FOV) due to the ring’s arc, which is taken into account during a

reconstruction [Bailey et al. 2014].

Modern PET scanners stack rings next to one another to form a cylinder of NR detector
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Figure 2.3: An illustration of a scanner view and the corresponding sinogram row. a) A set of
parallel LORs drawn inside a scanner. b) A 2D sinogram matrix and the highlighted
row corresponds to the set of parallel LORs shown in a).

rings, allowing for a variation of acquisition modalities. Historically, stacked ring systems

measured data in 2D slices with photon coincidence pairs measured by detectors in the same

ring. Septa were introduced between rings to shield out-of-plane photons from entering the

detectors and reduce the number of random coincidence events measured [Bailey et al.

2014].

Modern PET scanners collect data in 3D and do not incorporate the septa into their

design. This allows for inter-ring coincidence event measurements with a maximum ring

difference of NR−1 that results in a maximum of N2
R sinograms. Moreover, the number of

coincidence events recorded increases significantly [Bailey et al. 2014]. Although acquiring

coincidence measurements from oblique angles increases a scanner’s sensitivity and reduces

statistical noise in reconstructed images, it increases the coincidence scatter fraction [Allisy-

Roberts et al. 2008, p. 136]. However, highly oblique sinograms generally record fewer

counts because of solid angle effects and longer distances for photons to travel, increasing

the chance of attenuation.

In this work, this 3D data is referred to as projection data, these are collections of

sinograms at various oblique angles. Furthermore, TOF information may be encoded in an

extra dimension of the projection data set.

2.1.3.2 List Mode Data

List mode is an alternative data storage method whereby each coincidence event measured,

and its properties, are stored as a unique entry. As millions of events are measured in a
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typical PET scan, list mode files can become large and data compression is often required.

The exact data structure of a list mode data set can vary throughout the PET field. Example

file formats are ROOT data [Brun et al. 1997] and Hierarchical Data Format version 5

(HDF5) [Wadhwa et al. 2018; Wadhwa et al. 2021].

List mode data may be reconstructed directly or processed post-scan into a projection

data format for reconstruction [Efthimiou et al. 2019]. In this thesis, a list mode data set is

considered to be a set of coincidence events {el}Ne
l=1, where Ne is the number of events and

l is an index. Each event el encodes the LOR position along with other information, e.g.,

detection time, energy and TOF information. While both ROOT and HDF5 list mode PET

data are used in this thesis, list mode reconstruction is only conducted using ROOT data

sets, which are read by the STIR library [Thielemans et al. 2012]. See Section 2.3.4.4 for

more information regarding list mode reconstruction. HDF5 list mode data sets, acquired by

GE scanners, are used in this work but the data is converted into STIR compatible interfile

projection data for image reconstruction, see Sections 4.2.3 and 4.2.4.

2.2 Basis of Iterative Reconstruction

Iterative PET reconstruction attempts to obtain an estimate of the unknown tracer distribu-

tion xxx that best represents the measured data yyy [L. A. Shepp et al. 1982]. However, the

presence of noise complicates this estimation. Analytical methods, based on mathematical

inversion, exist to approximate the tracer distribution but they do not incorporate any model

of the noise [Bailey et al. 2014].

Iterative PET reconstruction methods rely on physical modelling factors to model noise

in the measured data [Bailey et al. 2014]. With the use of these models, iterative methods

typically supersede analytical methods with improved tracer distribution estimate spatial

resolutions and Signal-to-Noise Ratios (SNRs) while maintaining quantitative results [Iri-

arte et al. 2016]. However, these improvements come at the cost of significantly increased

computation requirements. Yet, with the advent of more powerful computers and the general

statistical improvements gained, iterative methods have become the primary reconstruction

methodology used in clinical practice. Reconstruction may still be slow for large data sets

and this thesis aims to address this issue.

In general, iterative algorithms cyclically compare the current estimate of the distri-

bution to the measured data and compute a quantitative update to the estimate [Erdoğdu

2019]. Ideally, this updated distribution better represents the measured data. Many varia-
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tions of this general concept exist, including some that: incorporate a priori information,

accelerate the reconstruction and/or use a better model of various physical processes. The

remainder of this section provides additional details of iterative methods. Specific focus is

given to current iterative PET reconstruction methods, regularisation, subsets and stochastic

optimisation algorithms.

2.2.1 The Forward Model

Iterative PET reconstruction is model-based and requires the application of a system model

AAA ∈ RNv×Nb
≥0 to map between distribution estimate space X ∈ RNv

≥0 and measured projection

data space Y ∈ RNb
≥0, with Nv and Nb representing the number of image voxels and num-

ber of projection data elements (bins) respectively [Qi et al. 2006]. Note, R≥0 denotes

non-negative real numbers. The system matrix AAA models the probability of an un-scattered

emission from the ith voxel of the unknown distribution being detected by the jth projection

data element. Therefore, the reconstruction problem may be approximately reduced to solv-

ing yyy = AAAxxx for xxx, where xxx ∈X and yyy ∈Y. PET measures the number of photon coincidence

events on a set of detectors, hence xxx, yyy and AAA are positive semi-definite.

The system matrix AAA may be designed to model physical properties of the PET system

in a number of stages, e.g. using the product of several matrices, given by

AAA = AAAdet.sens.AAAattenuationAAA f or.pro j.AAApositron, (2.4)

where: AAAdet.sens. models the intrinsic detector sensitivity, AAAattenuation is an attenuation model,

AAA f or.pro j. models the geometric forward projection factors associated with the PET scanner

and AAApositron models the positron range [Iriarte et al. 2016].

The presence of noise complicates this measured data model. Therefore, additional

data models are incorporated into the system model, i.e., expected scatter events sss ∈ Y and

expected random events rrr ∈Y, see Section 2.1.2. The affine forward model of the statistical

mean ȳyy(xxx) is given by

ȳyy(xxx) = E[yyy] = AAAxxx+ b̄bb, (2.5)

where b̄bb = s̄ss+ r̄rr are the expected background events [Fessler et al. 1999; Qi et al. 2006].

Each individual projection data element is computed as ȳ j(xxx) = AAA jxxx+ b̄ j.
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2.2.2 Likelihood Function

Iterative methods require a measure of performance to optimise, known as an objective

function Φ(xxx). The objective function provides a quantitative comparison between the mea-

sured data yyy and the expected data ȳyy(xxx). With no regularisation, the function is considered

optimised when yyy is best represented by ȳyy(xxx).

In Emission Tomography (ET), a Poisson model is employed, which allows for a mod-

elling of noise [Qi et al. 2006]. The Poisson model is given by

P(yyy|ȳyy(xxx)) = ∏
j∈J

e−ȳ j(xxx) ȳ j(xxx)y j

y j!
, (2.6)

where J represents all the measured data indices. This probability function is concave

with respect to xxx and the maximiser is known as the ML estimate. The natural logarithm of

Equation (2.6), dropping terms independent of xxx, leads to an expression of the log-likelihood

function of xxx given by

L(yyy|xxx) = ∑
j∈J

y j log(ȳ j(xxx))− ȳ j(xxx). (2.7)

As log is a monotonic function, the ML solution is also realised by maximising L(yyy|xxx).

The first and second partial derivatives of the log-likelihood function are given by

∇L(yyy|xxx)i =
∂L(yyy|xxx)

∂xi
= ∑

j∈J
a ji

(
y j

∑k a jkxk + b̄ j
−1

)
(2.8a)

∇
2L(yyy|xxx)i,l =

∂ 2L(yyy|xxx)
∂xi∂xl

= − ∑
j∈J

a jia jly j

(∑k a jkxk + b̄ j)2
. (2.8b)

Both equation (2.6) and equation (2.7) are concave functions for all xxx ∈ X as the second

derivative (Hessian) is negative semi-definite [Ahn et al. 2003; Qi et al. 2006]. Several PET

reconstruction algorithms attempt to optimise the objective function Φ(xxx) = L(yyy|xxx) to iden-

tify the ML solution, see Section 2.3. Modified log-likelihood functions may be required for

global concavity and convergence of some of the later discussed iterative algorithms [Ahn

et al. 2003].

2.2.3 Penalty Function

The previously discussed PET problem is ill-posed. This results in image noise amplifica-

tion and an estimated distribution that is not representative of the truth [Leahy et al. 2000].

An optimisation algorithm may be regularised with the addition of a weighted penalty term
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into the objective function to introduce a priori information and/or early stopping [Arridge

et al. 2019]. The former of these regularisation methods is the focus in this work and may

be used to reduce noise properties and/or incorporate some anatomical structure into the

distribution [Webster Stayman et al. 2000; Ehrhardt et al. 2016]. Additionally, other reg-

ularisation methods exist, such as the kernel reconstruction method and post-filtering but

these are not considered in this work [L. A. Shepp et al. 1982; Wang et al. 2015].

The objective function Φ(xxx) may be formulated as a weighted sum of the log-

likelihood function L(yyy|xxx) and a penalty function R(xxx), given by

Φ(xxx) = L(yyy|xxx)−βR(xxx), (2.9)

where β is a scaling factor between the likelihood term and penalty. Assuming convexity

of R(xxx), the optimiser of the objective is known as the MAP solution, which has some bias

from the ML solution.

Priors typically incorporate some a priori information. An intuitive example of such

information for PET image reconstruction is that the tracer uptake is approximately uniform

over a given tissue volume but abrupt changes may be found at the boundaries [Qi et al.

2006]. Therefore, penalty functions are often designed with two primary, yet conflicting,

objectives: noise suppression via local smoothing and retention of edge structures in the

image. These are local regularisation properties that are commonly enforced by comparing

a voxel to other voxels in its local neighbourhood N with some energy function ρ(xi,xl).

Hence, the regularisation term R(xxx) in Equation (2.9) is often given as

R(xxx) =
Nv

∑
i=1

∑
l∈Ni

κiκlwi,lρ(xi,xl), (2.10)

where Ni represents a neighbourhood of voxels about the ith voxel, κi and κl are spatially

variant scalar values for the ith and lth voxels and wi,l is the neighbourhood weighting be-

tween voxels i and l [Geman et al. 1984].

2.2.3.1 Spatially Variant Penalty Strengths

Selection of the aforementioned weighting variables wi, j can be constant or vary between

voxel indices. A spatially variable penalty strength, controlled by κi and κl , can reduces the

dependence of local perturbation on surrounding activity and location. An example of this
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is κ(xxx), which is given by

κ(xxx)≜

√
AAA⊤diag

[
yyy

ȳyy2(xxx)

]
AAA1, (2.11)

where κ ∈ X [Tsai et al. 2020]. i Intuitively, these weights encourage greater usage of the

prior when little measured data is available for the given voxel while discouraging its usage

when data is present. Furthermore, the usage of these spatially variant penalty strength

weights can improve convergence rates of regions of interest within data sets.

2.2.3.2 Example Potential Functions

The Quadratic Penalty (QP) is popular potential function, given by

ρQP(xi,xl) =
(xi− xl)

2

2
. (2.12)

This potential reduces image noise by smoothing local regions but also reduces spatial res-

olution [Somayajula et al. 2005].

Total Variation (TV) is a regularisation function used in optimisation that acts on the

gradient of xxx [Rudin et al. 1992; Ehrhardt et al. 2019]. The TV penalty given by

ρTV(xi,xl) = |xi− xl|, (2.13)

and is commonly used in denoising images and the neighbourhood is only comprised of

voxels adjacent to the ith. However, the TV penalty is non-differentiable and non-smooth.

Optimisation using this penalty requires proximal operators [Parikh et al. 2014] or modifi-

cation to smooth the function, e.g. the Huber penalty [Nikolova et al. 2001], given by

ρH(xi,xl) =


(xi−xl)

2

2 if |xi− xl| ≤ υ

υ |xi− xl|−υ2/2, otherwise,
(2.14)

for some υ > 0.

Log-cosh is another penalty that has been previously used in PET PML reconstruction

iUtilities to compute both this κ and an alternative lower cost approximation were added to the STIR library
as part of this work, see Section B.
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[Green 1990]. The penalty, given by

ρLC(xi,xl) = υ
2 logcosh

(
xi− xl

υ

)
, (2.15)

acts similarly to the Huber function with the trade-off between linear (edge-preservation)

and quadratic (smoothing) controlled by their respective υ > 0 values.

Relative Difference Penalty (RDP)ii is given by

ρRDP(xi,xl) =
(xi− xl)

2

(xi + xl)+υ |xi− xl|+ ε
, (2.16)

where υ ≥ 0 is used to control edge preservation and ε ≥ 0 [Ahn et al. 2015; Nuyts et

al. 2002]. The preservation of strong edges improves quantification while also providing

visually appealing images [Asma et al. 2012a; Asma et al. 2012b]. The RDP is implemented

into the Q.Clear reconstruction algorithm deployed by General Electric on its recent PET

scanners [Ross 2014].

The ε > 0 term is a modification to the RDP and is included in this work because of

the function’s non-smooth behaviour when either xi = 0 and xl → 0, or xl = 0 and xi→ 0.

The selection of ε is heuristic but, if small enough, its impact on the estimated distribution

is negligible.

Many of the presented energy functions can be written as ρ(|xi− x j|), except for the

RDP. This makes the RDP incompatible with many surrogate algorithms that are discussed

later in this text.

2.2.4 Objective Function Properties

The objective functions in this thesis are a composite of the concave log-likelihood data

fit and convex regularisation, given by Equation (2.9). As a result a unique solution x̂xx ∈ X

exists, given some assumptions regarding ȳyy> 0 if yyy> 0. The function is also lower bounded

by xi ≥ 0 because xxx ∈X. A theoretical upper bound U =U(yyy) ∈ (0,∞) is described by Ahn

et al. 2003 that allows for the solution to exist in a bounded set B. Additional modifications

were proposed for the log-likelihood function, given by Equation (2.7), that allows for the

handling of instances when ȳ j = 0 and y j > 0 for some j iii. However, this only occurs when

b̄ j = 0 and AAA jxxx = 0, which is not realistic for PET reconstruction [Qi et al. 2006].

iiDuring this work, both the Logcosh prior and RDP were added to STIR, including function-gradient con-
sistency tests, see Appendix B

iiiThe adopted convention is that 0 log(0) = 0 and log(0) =−∞
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With these modification to the log-likelihood, Φ(xxx) is Lipschitz continuous on B if

there exists some L> 0, which satisfies

∥Φ(xxx)−Φ(xxx†)∥
∥xxx− xxx†∥

≤ L, ∀xxx, xxx† ∈ B. (2.17)

Φ(xxx) is differentiable over B, the derivatives are bounded and ∇Φ(xxx) is Lipschitz continuous

[Ahn et al. 2003].

2.3 Optimisation

This section describes methods of objective function optimisation and is divided into sub-

sections of update direction, step size, and subsets methods via the splitting of the objective

function.

2.3.1 General Objective Function Optimisation

Maximisation of an objective function Φ(xxx) may be written as

x̂xx = argmax
xxx∈X

Φ(xxx). (2.18)

A global maximiser x̂xx satisfies

Φ(x̂xx)≥Φ(xxx), ∀xxx ∈ X. (2.19)

If the objective function is strictly concave, then there is a unique global maximiser [No-

cedal et al. 2006]. If Φ(xxx) is twice continuously differentiable, the functions gradient ∇Φ(xxx)

and Hessian ∇2Φ(xxx) may be evaluated [Nocedal et al. 2006]. The second-order Taylor ex-

pansion of the objective function is given by

Φ(xxx+ ppp)≈Φ(xxx)+ pppT
∇Φ(xxx)+

1
2

pppT
∇

2
Φ(xxx)ppp, (2.20)

where ppp ∈ Rn is some small perturbation to xxx. Ignoring any constraints, a local max-

imiser is a stationary point, i.e. ∇Φ(x̂xx) = 000 [Nocedal et al. 2006]. In a system con-

strained to non-negative space, like in the PET problem, the maximiser must satisfy the
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Karush–Kuhn–Tucker (KKT) conditions [Erdoğdu 2019], given by

∇Φ(x̂xx)i = 0, if x̂xxi > 0 (2.21a)

∇Φ(x̂xx)i ≤0, if x̂xxi = 0. (2.21b)

These conditions imply that it is possible for ∥∇Φ(x̂xx)∥2 > 0 but voxels are at the boundary.

Iterative optimisation algorithms generate a sequence of iterates {xxxk}K
k=0 from some

initial guess xxx0 [Erdoğdu 2019]. A sequence of estimates that increase the value of Φ(xxx) at

each update is sought but not always guaranteed. An algorithm may be terminated after a

sufficient increase of Φ has been achieved or x̂xx has been closely approximated, e.g., after K

iterates.

2.3.2 Ascent Direction of Differentiable Concave Functions

Generally, sequential iterates are generated by

xxxk+1 = xxxk +αk pppk, (2.22)

where αk is a step size and ppp is a search direction or vector. This vector is said to be an

ascent direction of Φ(xxx) if there exists some δ > 0 that satisfies

Φ(xxx+α ppp)≥Φ(xxx), ∀α ∈ (0,δ ). (2.23)

For any differentiable concave function, an ascent direction satisfies

∇Φ(xxx)T ppp
|∇Φ(xxx)∥2∥ppp∥2

= cos(θ)> 0, if∥∇Φ(xxx)∥2 > 0, (2.24)

where θ ∈ [0,π], and ∥ · ∥2 is the l2-norm [Nocedal et al. 2006]. Thus, the simplest method

to determine a suitable ascent direction is steepest gradient ascent, where pppk = ∇Φ(xxxk), or

its normalised form pppk = ∇Φ(xxxk)/|∇Φ(xxxk)| [Bailey et al. 2014].

One complication of Poisson model gradient ascent PET algorithms is the requirement

for xxx ∈ X, defined in Section 2.2.1. Therefore, a non-negativity constraint my be required

for iterative algorithms, which may be practically enforced after each update as a projection

operator Pxxx≥0[·] that projects from RNv → X. Thus the constrained gradient ascent equation
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is given by

xxxk+1 = Pxxx≥0[xxxk +αk pppk]. (2.25)

2.3.2.1 Preconditioning

The performance of steepest gradient ascent is limited by the shape and scaling of Φ(xxx). A

function is poorly scaled if a perturbation to xxx in a direction results in a larger change in

the value of Φ than a perturbation in an alternative direction [Nocedal et al. 2006]. Steep-

est gradient ascent optimisation of the log-likelihood function is highly sensitive to poorly

scaled objectives and small αk values are required for convergence.

A diagonal positive definite preconditioner may be used to re-scale the optimisation

problem by weighting the parameters so perturbations in all directions lead to similar

changes in Φ(xxx). This results in the option to use larger αk values. A preconditioned

steepest ascent update equation may be written as

xxxk+1 = xxxk +αkDDD(xxxk)∇Φ(xxxk), (2.26)

where DDD(xxxk) is a preconditioning matrix, which may be parameterised by xxxk. Generally,

this matrix is positive definite because of the requirement to maintain an ascent direction,

i.e., pppk = DDD(xxxk)∇Φ(xxxk) satisfying Equation (2.24).

An example of a preconditioner used in iterative PET reconstruction is the diagonal EM

preconditioner. This preconditioner is attained from the Maximum-Likelihood Expectation

Maximisation (MLEM) algorithm and is given by

DDDEMoriginal(xxx) = diag
{

xxx

AAA⊤1

}
, (2.27)

where the division is element-wise, AAA⊤1 is the back projection of a uniform vector of ones

and diag{·} is an operator that converts a vector into a diagonal array [L. A. Shepp et al.

1982; Ahn et al. 2003]. The MLEM update formula is given by

xxxk+1 = xxxk +αk
xxxk

AAA⊤1
∇L(yyy|xxxk), (2.28)

where αk = 1, the EM preconditioner DDDEMoriginal(xxxk) is used and Φ(xxxk) = L(yyy|xxxk) (i.e., β =

0) [Lewitt et al. 1986]. A property of the MLEM algorithm is that it naturally constrains xxx∈

X. While the MLEM algorithm guarantees convergence to the ML solution, it is practically
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slow and requires significant computation to do so [Qi et al. 2006]. Furthermore, the ML

solution of a PET reconstruction generally exhibits high noise properties and the resulting

images are often not clinically desirable.

As a consequence of the non-negativity constraint, voxels may have value 0 and thus

the original EM preconditioner does not allow for any future change, regardless of the value

of ∇Φ(xxx)i. A simple modification that ensures the aforementioned diagonal EM precondi-

tioner is positive definite is given by

DDDEM(xxx) = diag
{

xxx+δ

AAA⊤111

}
, (2.29)

where δ is a small positive vector. For convenience, this modified EM preconditioner shall

be referred to as DDDEM(xxxk) throughout its usage in this work. This modification does not

have the same convergence proof for MLEM but the impact of the additional δ is expected

to be negligible if δ is small enoughiv.

Another preconditioner that has been used in PET reconstruction relates to the Sepa-

rable Paraboloidal Surrogate (SPS) algorithm, somewhat described in Section 2.3.2.2. This

preconditioner takes the form

DDDSPSmod(xxxinit) = diag
{

AAA⊤diag
{

yyy
(AAAxxxinit + b̄bb)2

}
AAA1+β∇

2R(xxxinit)1
}−1

, (2.30)

which is the row-sum of the Hessian of the objective at an early image estimate xxxinit and

∇2R(xxx) is the second derivative of the penalty function [Ahn et al. 2003; Tsai et al. 2016;

Tsai et al. 2018] This preconditioner can be precomputed but requires three (two forward

and one backward) projection operations. Additionally, algorithm performance will vary

with the selection of xxxinit. A lower computational cost version also exists, given by

DDDSPS = diag
{

AAA⊤diag
{

1
yyy+1

}
AAA1

}−1

, (2.31)

but the division by yyy makes this preconditioner sensitive to low count measured data. Both

these preconditioners are related to the κ(xxx) computation in Equation (2.11) but with the

ivAlternative methodologies forgo this EM preconditioner modification and instead project of voxels xi ≤ 0
to a small positive value δ value [Ahn et al. 2003]. However, this requires special handling of step sizes and is
not considered in this work.
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additional regularisation term.

2.3.2.2 Surrogate Methods

Thus far, the presented methodologies have highlighted ascent direction computations using

preconditioned gradient ascent class algorithms. “Functional substitution”, “optimisation

transfer” or “surrogate methods” are an alternative to gradient ascent. These algorithms

monotonically increase the objective function, accommodate the non-negativity constraint

and ensure convergence to x̂xx [Fessler et al. 1999; Qi et al. 2006]. Generally, these algorithms

construct a paraboloidal surrogate function of the objective function at each iteration from

the current xxxk. This surrogate function lies below the objective function for xxx ∈ X. This

function, which may be quadratic (e.g. Paraboloidal Surrogate (PS) [Fessler et al. 1999]),

is easily maximised to determine the next iteration xxxk+1. Surrogate algorithms can optimise

a regularised objective function but the penalty function requires an analytical surrogate

[De Pierro 1995]. Of the penalty functions presented in Section 2.2.3, the QP and log-cosh

penalty functions have known surrogate functionsv.

The aforementioned MLEM algorithm was originally derived as a surrogate method

[Lange et al. 1984; L. A. Shepp et al. 1982; Qi et al. 2006]. The PS method is a quadratic

surrogate algorithm that provides a local functional approximation of the objective function

about xxxk, which allows convergence of penalised objective functions [Fessler et al. 1999].

An analysis of global convergence of such methods using convex penalty functions for PET

reconstruction has been presented [Ahn et al. 2003]. A primary limitation of surrogate

methods is their slow convergence to the solution if the surrogate does not represent the

function well.

2.3.2.3 Second Order Optimisation

A method for determining an improved ascent direction is Newton’s method, which is de-

rived from the second order Taylor expansion approximation, given by Equation (2.20).

Assuming the strictly concavity of Φ, the Newton ascent direction is obtained by identify-

ing the stationary point of the Taylor expansion [Nocedal et al. 2006]. The ascent direction

vA parabolic surrogate function for the log-cosh penalty function was added to STIR as part of this work,
see Section B.
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is thus given by

0 = ∇Φ(xxx)+∇
2
Φppp (2.32a)

ppp = − (∇2
Φ)−1

∇Φ(xxx) (2.32b)

and the Newton update by

xxxk+1 = xxxk +αk(∇
2
Φk)

−1
∇Φ(xxxk). (2.33)

Newton’s method generally accelerates convergence compared to standard first order

gradient ascent [Nocedal et al. 2006]. This Newton ascent equation may be considered a

method of preconditioned gradient ascent, due to the application of an operator upon ∇Φ(xxx)

that results in better conditioned update steps. This preconditioner is non-diagonal and is

positive definite. Experimental evidence demonstrates that Newton’s method performs best

with αk ≈ 1 for a quadratic problem [Erdoğdu 2019].

In the instance of high-dimensional problems, the inversion, computation, and even

storage of ∇2Φ may be impractical. Quasi-Newton methods address this problem by not

directly utilising the Hessian (or its inverse) but making an approximation of (∇2Φ)−1

[Erdoğdu 2019].

Limited Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [Byrd et al. 1995]

is a Quasi-Newton optimisation algorithm that has been applied to the PET reconstruction

problem [Tsai et al. 2018]. Curvature information from a small number of previous updates

is stored and ∇Φ(xxx) is modified (preconditioned) by a series of linear operations. In the

aforementioned PET application, the authors used a modification of this algorithm, named

L-BFGS-B, to enforce non-negative boundary constraints on xxx [Zhu et al. 1997]. In an

attempt to better condition the initial updates of the optimisation problem, an additional

modification to the algorithm (L-BFGS-B-PC) was made by preconditioning the gradient

steps used to update the Hessian with either Equation 2.30 or 2.31, see Section 2.3.2.1. The

practical performance of the L-BFGS-B-PC algorithm, especially during early updates, was

significantly improved compared to L-BFGS-B. However, in both of these algorithms, to

ensure the xxxk+1 remains in a feasible region and Φ(xxxk+1) ≥ Φ(xxxk), an in-exact line search

was employed, see Section 2.3.3.3. Line searches increase the number of objective function

evaluations required. This can significantly slow reconstruction rates.
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2.3.3 Step Size

Once an optimisation method has identified a search direction, the magnitude of the step to

be applied at each update needs to be determined. If a step size is too small, many updates

may be required to make sufficient progress. Alternatively, step sizes that are too large may

result in a non-convergent algorithm. This section presents a variety of methods that may

be used to determine step sizes at each update of Equation (2.22).

2.3.3.1 Fixed Step Size

The simplest step size selection method is the use of a constant scalar α and set αk = α

at each update. Some methods, such as Newton and MLEM, may reliably converge with a

fixed step size α = 1 [Nocedal et al. 2006; Qi et al. 2006]. However, these are the exception

to the majority of cases.

In gradient ascent optimisation of a concave problem, convergence using a fixed step

size is only guaranteedvi if αk = α ≤ 1/2L, where L is the global Lipschitz value of a Lips-

chitz continuous function [Nesterov 2004; Nocedal et al. 2006]. Thus, gradient ascent opti-

misation, given by Equation (2.22), of the log-likelihood function is either non-convergent

because α > αL, or slow because α < αL is small. The preconditioning discussed in Sec-

tion 2.3.2.1 can significantly assist in reducing the impact of this by better scaling the ob-

jective function.

2.3.3.2 Relaxation Sequence

A second step size method that may allow for gradient ascent algorithms to converge is to

use a sequence of relaxing step sizes, where αk > αk+1 ≥ 0 ∀k ∈ (0,∞) [Nesterov 2004; Qi

et al. 2006]. Such a sequence does not require the computation of L and for this reason it

is commonly used in many optimisation applications [Qi et al. 2006; Defazio et al. 2014].

While conditional on the exact optimisation algorithm, the step size sequences are generally

required to satisfy two conditions, given by

∞

∑
k=0

α
2
k < ∞, (2.34a)

∞

∑
k=0

αk = ∞. (2.34b)

viAlthough convergence to an optimal solution of a convex problem is only guaranteed if αk = α ≤ 1/2L,
convergence may occur using larger step sizes, e.g. Φ(x) =−x2, gradient ascent with α < 2/L will converge.
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An example of such a relaxation sequence is given by

αk =
α0

ηk+1
, (2.35)

where α0 is an initial step size and η the relaxation coefficient [Browne et al. 1996]. How-

ever, practical convergence rates of relaxed gradient methods are highly sensitive to these

two heuristic relaxation parameters and suboptimal optimisation may be observed if poorly

selected [Qi et al. 2006].

2.3.3.3 Inexact Line Search Methods

The two previous step size selection methodologies either require the computation of L for

convergence or are applied without respect to the data with parameters that require tuning

via trial and error. Inexact line search methods are another step size selection method and

were briefly mentioned in Section 2.3.2.3. These methods select a step size αk > 0 that guar-

antees Φ(xxx+αk pppk)>Φ(xxx), assuming pppk is an ascent direction that satisfies Equation (2.24)

[Erdoğdu 2019]. Line searches attempt to find αk that maximises a 1D sub-optimisation

problem, given by

α̂k = argmax
αk≥0

(Φ(xxxk +αk pppk)) , (2.36)

where, due to the concavity of Φ, the optimum α̂k is the unique global maximiservii [No-

cedal et al. 2006].

The optimisation of this problem may be performed iteratively by inexact line search

algorithms [Nocedal et al. 2006]. One example of an inexact line search algorithm is to

incrementally decrease αk from an initial value until the Wolfe Conditions are met. The

Wolfe Conditions are given by

Φ(xxxk +α pppk)≤ Φ(xxx)+λ1α∇Φ(xxxk)
⊤pppk (2.37a)∥∥∥∇Φ(xxxk +α pppk)

⊤pppk

∥∥∥
2
≤ λ2

∥∥∥∇Φ(xxxk)
⊤pppk

∥∥∥
2
, (2.37b)

where λ1 ∈ (0,1) and λ2 ∈ (λ1,1) [Nocedal et al. 2006]. Example values of these param-

eters are λ1 = 10−4 and λ2 = 0.9. Equation (2.37a) is known as the Armijo condition and

it enforces a sufficient decrease in the objective function value. The curvature condition

viiDue to floating/double point precision issues when computing Φ(xxx), the function may appear to be not
concave. STIR’s computation of L(yyy|xxx) was modified from float to double point precision to minimise the
impact of numerical precision issues when computing line searches, see Appendix B
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is given by Equation (2.37b) and it ensures the next gradient, at xxxk +α pppk, is sufficiently

orthogonal to the current ∇Φ(xxxk).

The primary limitation of inexact line searches is the significant computation required

to ensure that Equation (2.37a) and Equation (2.37b) are satisfied. Many line search it-

erations may be required before an acceptable α̂k is identified. This can involve numerous

objective function evaluations that are computationally expensive and can significantly slow

optimisation algorithms.

2.3.4 Subsets

The computation of an objective function Φ(xxx) = ΦJ (xxx) and its first and second order

derivatives may be computationally expensive for a large data-set J . If the objective func-

tion is a sum of separable sub-objective functions Φ j(xxx), e.g., Equation (2.7), ΦS(xxx) may

be evaluated, where S ⊂ J . Assuming the computational cost of evaluating Φ j(xxx) ∀ j ∈ J

is constant, the computational cost of evaluating ΦS(xxx) is |J |/|S| times less than the eval-

uation of ΦJ (xxx). This may also be true for first derivative/gradient evaluations. Therefore,

use of subsets in an optimisation algorithm can substantially accelerate reconstruction algo-

rithms.

Consider the log-likelihood function presented in Equation (2.7). Standard PET subset

methods divide J into a set of M subsets, i.e., {Sm}M
m=1, where m is a subset index. The

log-likelihood function may be evaluated for a subset Sm of the data as

LSm(yyy|xxx) = ∑
j∈Sm

L j(yyy|xxx) = ∑
j∈Sm

y j log(ȳ j(xxx))− ȳ j(xxx). (2.38)

All data is contained within this set of subsets, i.e.,

M⋃
m=1

Sm = J , (2.39)

and the subsets are constrained to be disjoint, i.e.,

Sm∩Sn = /0,∀m ̸= n. (2.40)

This allows for the log-likelihood to be written as the sum of subset objective functions,

given by

L(yyy|xxx) =
M

∑
m=1

LSm(yyy|xxx). (2.41)
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The first derivative of L(yyy|xxx) may be written as ∇L(yyy|xxx)=∑ j∈J ∇L j(yyy|xxx) and therefore

subset gradients may be written in same manner as the function, given by

∇Lm(yyy|xxx) = ∇LSm(yyy|xxx) = ∑
j∈Sm

∇L j(yyy|xxx) = ∑
j∈Sm

AAA⊤j

(
y j

AAA jxxx+ b̄ j
−1

)
, (2.42)

where ∇Lm(yyy|xxx) = ∇LSm(yyy|xxx) is used to simplify the notation. Consequently, the number

of projection operations (AAA j and AAA⊤j ) is directly related to the size of Sm.

Sub-objective functions of an objective function with regularisation can be formulated

in numerous ways. The formulation used in this thesis includes a fraction of the penalty

term into each sub-objective function, i.e.,

ΦJ (xxx) = ∑
j∈Sm

(
LSm(yyy|xxx)+

β

M
R(xxx)

)
. (2.43)

It is assumed that the computational cost of evaluating R(xxx) and ∇R(xxx) is negligible with

respect to computing LSm(yyy|xxx) and ∇LSm(yyy|xxx) and so repeated evaluations are possible.

However, alternatives exist, i.e., the penalty term may be treated as an additional subset that

can be selected at an algorithm iteration [Ehrhardt et al. 2019].

Consider the optimisation problem where each of the subset objective functions Φm(xxx)

are constructed from concave functions, e.g. Φm(xxx) = Lm(yyy|xxx). Each Φm(xxx) will have its

own unique solution x̂xxm. In certain instances, it is possible that x̂xxm will be equal for all m

but this consistency is rarely realised due to variance between subset data. Therefore, a

degree of variance is generally found between the subset solutions. Additionally, the more

varied the subset data, the larger the expected variance between the x̂xxm solutions. Increasing

M results in smaller |Sm| for these PET methods and therefore the variance between x̂xxm

solutions is expected to be greater.

Subset optimisation algorithms generally select a single subset at each update mk,

based on a selection function. This function may cycle through an ordered sequence with

respect to k (as discussed in this section) or, if using a stochastic sampling method, return a

random variable index (Section 2.3.5) [Bertsekas 2011]. The general constrained precondi-

tioned subset gradient update is given by

xxxk+1 = Pxxx≥0 [xxxk +αkDDDmk(xxx)∇Φmk(xxxk)] , (2.44)
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where the preconditioner DDDmk(xxx) may be parameterised by the subset selection mk.

Many works in PET literature refer to an algorithm update as a “sub-iteration” and M

updates as an “iteration”. This naming convention is not used in this thesis. A single ap-

plication of Equation (2.44) (or a comparable equation) is referred to as an (image) update

or iteration. Similarly, an epoch is defined as M subset updates or, more generally, equiva-

lent to the projection computational cost of evaluating ∇L(yyy|xxx) for a given data set. Note,

the penalty computation is not considered in the definition of an epoch because it is gener-

ally observed that the computation of the penalty function and its gradient is significantly

cheaper than the projection operations AAA and AAA⊤ due to the size of yyy being much greater

than xxx.

The linear acceleration of a subset algorithm is only realised during early updates when

far from the solution [Hudson et al. 1994; Qi et al. 2006; Ruder 2016]. During these early

updates, ∇Φm(xxx) is approximately parallel to ∇Φ(xxx). When xxx approaches the space of

the solution set {x̂xxm}M
m , the directions of ∇Φm(xxx) for different m’s begin to diverge from

one another. This may lead to deceleration of the convergence rate. Furthermore, these

updates are not guaranteed to satisfy Equation (2.24). As a result, subset algorithms are

generally non-convergent when implemented with a constant step size α > 0. Cyclical

subset selection sequence algorithms are often observed to enter a limit cycle, with cycle

“size” proportional to α [Byrne 1998; Hudson et al. 1994; Qi et al. 2006]. A stochastic

subset selection sequences, implemented with α , have no such guarantees [Ruder 2016].

Different step size generation sequences may be used to achieve convergence, such as

step size relaxation (Section 2.3.3.2) or inexact line searches (Section 2.3.3.3). However,

there are practical issues with line search methods as they generally require multiple evalu-

ations of Φ(xxx) and/or Φm(xxx). These evaluations are expensive, which consequently negates

the purpose of the reduced computational cost of subset algorithms. Step size relaxation

sequences, applied to subset algorithms, can ensure convergence to a single solution. Such

a sequence reduces the size of the limit set to zero and the sequence of estimates converges

to a single estimate as k→ ∞. Stochastic subset sampling methods will also converge with

step size relaxation [Ruder 2016]. However, algorithm convergence rates will depend on

the heuristic selection of α0 and η in Equation (2.35).

Examples of iterative subset PET reconstruction algorithms are: Ordered-Subsets Ex-

pectation Maximisation (OSEM) (Section 2.3.4.1), Row Action ML Algorithm (RAMLA)
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(Section 2.3.4.2) and BSREM (Section 2.3.4.3).

2.3.4.1 OSEM

Hudson et al. 1994 proposed a subset modification to the MLEM algorithm, Equation (2.28),

known as OSEM. The OSEM update equation is given by

xxxk+1 = xxxk +αkDmk(xxxk)∇Lmk(yyy|xxxk), (2.45)

where αk = 1 and Dmk(xxx) =
xxxk

AAA⊤mk
1
. OSEM’s preconditioner is a subset dependant modifi-

cation of the EM preconditioner, given by Equation (2.27), that may be precomputed at

algorithm initialisation.

The OSEM algorithm constructs subsets of regularly spaced scanner projection angles,

which correspond to a set of equally spaced rows across all sinograms in the projection

data, see Section 2.1.2 [Hudson et al. 1994]. Generally, this implies that |Sm| = |J |/M.

This subset construction criteria was suggested to balance the subsets to minimise variance

in the probability of each voxel being detected by different subsets [Hudson et al. 1994;

Qi et al. 2006]. In practice, balanced subsets are rarely realised because of non-symmetric

attenuation and non-uniformity in detector sensitivities [Qi et al. 2006].

In an attempt to compensate for unbalanced subsets, it is recommended that sequen-

tially selected subsets are as dissimilar as possible from those recently applied [Herman et

al. 1993; Hudson et al. 1994]. A cyclical subset selection sequence was suggested and se-

quential subsets should be selected to correspond to a direction of maximum variability from

previously applied subsets in the sequence [Hudson et al. 1994]. An example of an M = 8

subset case would lead to the cyclical application of the sequenceviii {1,5,3,7,2,6,4,8}

[Herman et al. 1993]. The aforementioned construction of balanced subsets and the subset

selection method are two practical steps taken in an attempt to reduce the variance between

∇Φm(xxx) when xxxk approaches the limit set. This methodology is referred to as Ordered-

Subsets (OS) for the remainder of this work and is generally implemented in all projection

data iterative PET subset algorithms, including the following RAMLA and BSREM exam-

ples.

As aforementioned, subset algorithms may converge to a single estimate when step

sizes are relaxed. However, relaxed-OSEM does not converge to the ML solution because

viiiThis sequence is not perfect because the subset selected following m = 8 is m = 1. These subsets may be
considered similar to one another.



2.3. Optimisation 46

of DDDmk(xxxk)’s dependency on mk [Browne et al. 1996; Qi et al. 2006]. Instead, OSEM is

commonly implemented with αk = 1 with early stopping and post image reconstruction

smoothing [Qi et al. 2006]. This implementation of OSEM, like its MLEM parent given by

Equation (2.28), constrains xxx to non-negative space.

2.3.4.2 RAMLA

A convergent iterative PET reconstruction algorithm for ML estimation (using a relaxed

step size) is RAMLA [Browne et al. 1996], given by

xxxk+1 = xxxk +αkxxxk∇Lmk(yyy|xxxk). (2.46)

The primary discrepancy between RAMLA and OSEM is RAMLA’s preconditioner is

subset invariant and only scales the gradient by the previous estimate, i.e., DDD(xxxk) = xxxk.

RAMLA’s convergence to the ML solution is only guaranteed when step sizes are relaxed

after each cyclical epoch.

2.3.4.3 BSREM

RAMLA was extended into a PML framework, known as BSREM, which allows for the

inclusion of non-zero regularisation in Φ(xxx) [De Pierro et al. 2001]. The BSREM update

formula is given by

xxxk+1 = Pxxx≥0 [xxxk +αkD(xxxk)∇Φmk(xxxk)] , (2.47)

where Pxxx≥0[·] projects the negative elements of xxx to zero, D(xxxk) is the orginal EM precon-

ditioner given by Equation (2.27) and M scales such that updates direction magnitudes of

various numbers of subset configurations are approximately equal. Similar to RAMLA,

BSREM includes a subset invariant preconditioner but reintroduces the division by a tomo-

graphic “sensitivity” term.

Global convergence of this algorithm requires some assumptions regarding the posi-

tivity and boundedness of Φ(xxx) [Ahn et al. 2003]. Hence, the projection operation and step

size relaxation is required because of the inclusion of the prior. Additionally, modifications

to the log-likelihood function are necessary. These include the lower bound changes dis-

cussed in Section 2.3.3.1 and an upper bound U on xxx. However, this U value is only required

for the theoretical convergence and, in practice, it can be very large.
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2.3.4.4 List Mode Reconstruction

Only projection based reconstruction algorithms have been considered thus far. However,

as aforementioned in Section 2.1.3, PET data can be stored in list mode formats. Recon-

struction of this list mode data is possible using the aforementioned algorithms with the

modified list mode likelihood gradient computation equation, given by

∇LLM
Sm

(Λ|xxx) = ∑
e∈Sm

AAA⊤j(e)

(
1

ȳ j(e)(xxx)

)
−AAA⊤1, (2.48)

where Λ is the measured list mode event data, e ∈ Sm is the coincidence event e in the

mm list mode data subset and j(e) is a function that ascertains the LOR index of event e

[Barrett et al. 1997; Parra et al. 1998]. Note, if M = 1, S1 = {el}Ne
l=1, otherwise, consider

the following subset methodology for list mode data.

Subset construction of list mode data can be performed in a number of ways. One

method might be to bin events into sets of various projection angles, this is equivalent to the

OS methodology for projection data. However, an alternative methodology is considered

in this thesis. The Ne events are divided into M blocks of events based on their acquisition

time. Each of these blocks is referred to as a subset and a constraint might be enforced

that requires each subset to be of (approximately) equal size. This list mode subset con-

struction methodology is comparable to the one-pass list mode reconstruction algorithm’s

method [Reader et al. 2002]. That list mode reconstruction algorithm indicated that, with a

reasonable number of subsets, only a single pass through the data is required for a suitable

reconstruction of the PET data.

2.3.5 Stochastic Methods

Stochastic methods also rely on the separability of the objective function, similar to Sec-

tion 2.3.4. Stochastic sampling involves assigning finite probability to the selection of each

data sample or subset.

These algorithms have seen great success in machine learning training - optimisation

problems that may involve millions of individual training sets with significant redundancies

between various examples [Roux et al. 2012; Ruder 2016]. In machine learning, a single

data pair (sample) may be used as a sample at each iterative update. This results in frequent,

but highly varied, updates that can cause significant fluctuations in objective function value

and parameter estimations [Roux et al. 2012; Ruder 2016]. To reduce update variance,
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subsets of data may be constructed to contain more than a single sample, i.e., batches or

subsets. This allows for the usage of parallelism (present in most modern computer archi-

tectures) when computing update directions from a set of samples, which may accelerate

computation [Schmidt et al. 2017].

Two types of stochastic algorithms are presented in this subsection: stochastic gradient

ascent and stochastic variance reduction algorithms. However, many additional stochastic

algorithms exist, some of which are discussed in Section 4.6.8.

2.3.5.1 Stochastic Gradient Ascent

Stochastic Gradient Ascent (SGA) is the simplest stochastic method and is a stochas-

tic/subset modification to Equation (2.22) [Roux et al. 2012]. At each update k, an update

direction pppmk
(xxx) = ∇Φmk(xxx) is computed. The SGA update formula is therefore given by

xxxk+1 = xxxk +αk∇Φmk(xxx), (2.49)

where mk is selected by a stochastic subset selection function. Sampling mk from a uniform

distribution yields an unbiased estimate of the full gradient, i.e.,

E[M∇Φm(xxx)|xxx] =
M

∑
m=1

∇Φm(xxx) = ∇Φ(xxx), (2.50)

where the expectation is taken with respect to m, where the expected value of a random

variable with a finite number of outcomes is a weighted average of all possible outcomes

[Roux et al. 2012].

The convergence rate of this algorithm is at least as fast as full gradient methods when

not close to the solution, due to the low cost of updates [Bottou et al. 2004]. However, this

slows as the xxxk approaches x̂xx. Using a relaxing step size sequence, which satisfies Equa-

tion (2.34), Stochastic Gradient Ascent (SGA) has been shown to converge to a solution

[Bottou et al. 2018].

One may consider the application of a preconditioned-SGA algorithm in PET recon-

struction to be analogous to OSEM, RAMLA, or BSREM, but with a stochastic subset

selection at each update. This concept is explored in Chapter 4 where performance compar-

isons between stochastic subset and OS sampling schemes are made.
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2.3.5.2 Stochastic Variance Reduction Algorithms

The variance between subset data induces variance between update directions for different

m selections. This impedes convergence rates of subset/stochastic algorithms as xxxk ap-

proaches x̂xx [Roux et al. 2012]. A novel class of stochastic variance reduction techniques has

been proposed to combat this by approximating ∇Φ(xxxk) with a low computational cost gra-

dient estimate ∇̃k,m(xxx). This estimate is expected to have reduced variance, with respect to

the selection of m, compared to ∇Φm(xxxk) [Gower et al. 2020]. Generally, ∇̃k,mk(xxxk) is com-

puted from a set G of M previously evaluated subset gradients (usually stored in computer

memory), i.e., G = {gggm}M
m=1, where gggm ∈ RNv .

Three SVR algorithms are investigated in this work: Stochastic Average Gradient

(SAG), SAGA and Stochastic Variance Reduction Gradient (SVRG). Many other algorithms

exist in this class, some of which are discussed in Section 5.3.3. Under certain convexity

assumptions, SVR methods converge linearly in expectation. Compare this to traditional

subset algorithms, e.g., Equation (2.44), which demonstrate sub-linear convergence [Gower

et al. 2020]. The SVR algorithms are more complex than the SGA method. The generalised

form of the update direction is given by

pk = ∇̃k,mk(xxxk) = ξ

(
∇Φmk(xxxk)−gggmk

)
+

M

∑
µ=1

gggµ , (2.51)

where ξ is a scalar value and different algorithms may implement various valuesix. The

SAGA and SVRG algorithms set ξ = M, which results in an unbiased estimator of the

gradient, i.e., ∇Φ(xxxk) = E[∇̃k,mk(xxxk)] [Gower et al. 2020; Driggs et al. 2020b]. The SAG

algorithm is a biased estimator because ξ = 1 [Roux et al. 2012]. This is further detailed in

Appendix C.

Additionally, SAG and SAGA differ from SVRG in the methodology for updating the

gggm terms. For SAG and SAGA, after ∇Φmk(xxxk) is computed (see Equation (2.51)) and xxxk+1

updated, the mth entry of G is updated to ∇Φmk(xxxk):

gggµ =


∇Φmk(xxxk) if µ = mk,

gggk,µ otherwise.
, ∀µ. (2.52)

ixNote, the formulation of (2.51) is subtly different to the original works of Johnson et al. 2013 and Defazio
et al. 2014. This is because the objective function in the said works are formulated as Φ(xxx) = 1

M ∑
M
m=1 Φm(xxx).

Instead, this work uses Φ(xxx) = ∑
M
m=1 Φm(xxx), see Equation (2.41).
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Thus, SAG and SAGA maintain a record of the most recently computed subset gradient for

each subset. Pseudo-code for the SAG and SAGA algorithms is given by Algorithm 1, with

ξ = 1 and ξ = M respectively.

SVRG implements a different method for updating the entries of G. After a period of

γM updates, an anchor image x̃xx is re-set and all gggm = ∇Φm(x̃xx), ∀ m ∈M. This periodic

computation is equivalent to the computation of the full gradient (i.e., an epoch). However,

only a single image update is applied. This allows for the evaluation of the objective func-

tion at x̃xx without additional projection operations. This is likely a unique property of this

class of subset algorithm. For convex optimisation problems γ = 2 is heuristically suggested

[Johnson et al. 2013]. The SVRG pseudo-code is given in Algorithm 2.

Algorithm 1: SAG/SAGA Algorithm
Input : xxx0 ∈ RNv , Φ(xxx), M, K, ξ and {αk > 0}K

k=0
Output: xxxK

1 Store gggm = 0, ∀m ∈ {1,2, ...,M}
2 for k = 0,1, . . . ,K do
3 Choose mk uniformly in {1,2, . . . ,M}

4 Compute ∇Φmk(xxxk)

5 ∇̃k,mk(xxxk)← ξ
(
∇Φmk(xxxk)−gggmk

)
+∑

M
µ=1 gggµ

6 Store gggmk
← ∇Φmk(xxxk)

7 xxxk+1← xxxk +αk∇̃k,mk(xxxk) # Update step
8 end

2.4 Desirable Properties of PET Reconstruction Algorithms
This chapter has described PET physics and technology basics, statistical modelling for

PET and general properties of gradient ascent-type optimisation algorithms. This section

provides a summary of practical requirements and suggestions for iterative PET reconstruc-

tion algorithms in clinical practice.

The primary application of PET image reconstruction is the diagnosis and staging of

disease in various medical fields, e.g. Oncology, Cardiology, and Neurology [Durie et al.

2002; Fiechter et al. 2012; Wolk et al. 2012]. A result of this medical application is the de-

sire for reduced patient scan durations and fast but reliable image reconstruction algorithms.

This will allow for greater patient throughput and a more widespread and potentially im-

proved quality of care. Clinical practice also often aims to reduce the delivered (injected)

radioactive dose to minimise the risk to patients [Caribé et al. 2019].
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Algorithm 2: SVRG Algorithm
Input : xxx0 ∈ RNv , Φ(xxx), M, K, {αk > 0}K

k=0 and γ > 0
Output: xxxK

1 for k = 0,1, . . . ,K do
2 if k mod γM ≡ 0 then

3 x̃xx← xxxk
4 for m ∈ {1, . . . ,M} do
5 Compute ∇Φm(x̃xx)
6 Store gggm← ∇Φm(x̃xx)
7 end

8 ∇̃SVRG
k,mk

(xxxk)← ∑
M
m=1 gggm

9 else
10 Choose mk uniformly in {1,2, . . . ,M}
11 Compute ∇Φmk(xxxk)

12 ∇̃SVRG
k,mk

(xxxk)←M
(
∇Φmk(xxxk)−gggmk

)
+∑

M
µ=1 gggµ

13 end

14 xxxk+1← xxxk +αk∇̃SVRG
k,mk

(xxxk) # Update step
15 end

While shorter duration PET scans and reduced injected dose are beneficial for clini-

cal throughput and patient care, the acquired PET data contains fewer counts and a lower

SNR [Caribé et al. 2019]. In addition, compound PET image reconstruction applications,

e.g., motion correction and kinetics modelling, may further reduce SNR by dividing ac-

quired PET data sets into several bins [Nehmeh et al. 2002; Gallezot et al. 2019]. In recent

years, with the implementation of the Q.Clear reconstruction algorithm, clinical practice

has been embracing PML image reconstruction [Ahn et al. 2015; Ross 2014; Howard et al.

2017]. Q.Clear utilises the RDP, along with post-smoothing, to increase contrast recov-

ery and organ uniformity over a range of PET tracers [Lantos et al. 2015]. With suitable

hyper-parameter selection, PML optimisation algorithms can achieve improved image qual-

ity compared to conventional OSEM with post-smoothing or Filtered Back Projection (FBP)

reconstructions [Teoh et al. 2015].

As discussed in Section 2.3.4, faster reconstructions may be achieved with the use of

subsets but this is complicated by limit cycle behaviour. Reconstruction algorithms may be

terminated after only a few epochs because of reconstruction duration limits or as a form of

regularisation. This is common for OSEM, but is not desirable for PML algorithms as early

termination may result in greater quantification errors. However, clinical throughput limits
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available computation time per reconstruction. Therefore, even with a convergent subset

algorithm, e.g., BSREM, convergence may not be achieved in practice.

The aforementioned factors motivate the use of convergent, fast and penalised iterative

reconstruction algorithms. Reconstructed images realised after a minimal number of epochs

should be both visually appealing and quantitatively accurate for clinical reporting.



Chapter 3

AutoSubsets

Iterative PET reconstruction is often accelerated with the use of subset algorithms, as afore-

mentioned in Section 2.3.4. RAMLA and BSREM are examples of convergent subset algo-

rithms due to the implementation of a relaxing step size sequence and their subset indepen-

dent preconditioners. However, the practical performance of these algorithms is sensitive to

the heuristic relaxation parameters.

In this chapter, another form of relaxation is investigated. This method involves the

automatic increase of the size of subsets used throughout a reconstruction after initialisa-

tion with small subsets. The aim of this method is to realise significant initial algorithm

acceleration and reduce limit cycle behaviour at later updates. The method is designed to

automatically detect when subset size should be increased at each algorithm update. The

algorithm is named AutoSubsets and is applied to three PET data sets: two projection data

and one list mode. This method is an extension of an algorithm presented in Thielemans

et al. 2015 and a fraction of this work has been previously presented in Twyman et al. 2019.

3.1 Introduction

The optimisation of smooth, convex and data separable objective functions, given by Equa-

tion (2.41), is considered in this chapter. As previously discussed in section 2.3.4, fixed step

size subset algorithms realise fast initial convergence rates but do not converge to a station-

ary point. Instead, the solutions become bound within some closed limit set with non-zero

size. Relaxing step size sequences ensure convergence to a single solution by reducing the

size of the limit set to zero as k→ ∞.

An alternative method to ensure a sequence converges would be to run a number of up-

dates using a non-convergent subset algorithm before switching to a non-subset convergent

algorithm [Ahn et al. 2003]. This method takes advantage of the fast initial convergence
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rates of subset algorithms. This transition may be gradual, beginning with many subsets

and reducing the number throughout a reconstruction at predetermined update numbers.

An example of this methodology would be to perform a number of OSEM epochsi before

switching to MLEM. The determination regarding when to make these transitions is usually

heuristic and therefore likely sub-optimal.

Subset size at each algorithm update k is denoted by nk. Given the union and disjoint

restrictions on subset construction in general PET algorithms, given by Equation (2.39) and

Equation (2.40) respectively, reducing the number of subsets increases nk. Using fewer but

larger subsets generally results in improved subset balance but more computational effort is

required to evaluate ∇Φm(xxx).

An algorithm that increases nk based on the divergence between two subset update di-

rections was previously proposed by Thielemans et al. 2015. This divergence measurement

was motivated by intuition. As a subset algorithm approaches the limit set, the two subset

search directions pppk,m begin to diverge from one another. After this divergence measure-

ment, the two pppk,m vectors are combined into a single search direction and xxxk+1 is com-

puted. If a divergence threshold is met, the algorithm increases nk+1, otherwise it remains

the same. As the algorithm progresses, nk is incrementally increased until the two subsets

contain all the data, i.e., nk = |J |/2, as the subsets are constrained to be disjoint and satis-

fying Equation (2.40). This adaptive subset size methodology was designed so that it could

be applied to any subset algorithm and example reconstructions using OSEM and OSSPS

were provided in Thielemans et al. 2015.

While a useful proof of concept, this subset methodology remained largely unexplored

with only investigation into non-PML objective function reconstructions using OSEM and

OSSPS [Thielemans et al. 2015]. As the ML solution is generally noisy, convergence is un-

desirable. Furthermore, the numerical experiments only illustrated algorithm performance

using a simulated 2D Shepp-Logan phantom [L A Shepp et al. 1974] using 120 scanner

views. Additionally, traditional OS subset construction was considered, as described in

Section 2.3.4.1. The algorithm was initialised with a subset size of n0 = 2 projection angles

and was limited to increase nk+1 to factors of half the number of projection angles.

This chapter presents the AutoSubsets (AS) algorithm. AS is a modified version of

this aforementioned adaptive algorithm and is evaluated using data from simulated 3D PET

iAn epoch is defined as equivalent projection computation as computing ∇L(xxx), see Section 2.3.4
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scans using PML objective functions. Additionally, AS modifies how subsets are handled

and investigates two subset selection methods based on projection angles and one based on

temporal/event-by-event list mode data.

3.2 Algorithm Methodology

The AS algorithm is a modification of standard subset iterative reconstruction algorithms.

Standard methods compute a single gradient direction at each update, using a single subset

of the data, and subsets are predefined at algorithm initialisation. AS differs from these

methods. At each update k, AS samples the data set twice. Two subsets, Sk,1 and Sk,2,

are constructed with size nk < |J |/2 by a subset selection function, denoted Γ. Subset

construction methods are further discussed in section 3.2.1. Two update directions, pppSk,1

and pppSk,2
, are computed from xxxk using the respective subsets. The divergence between these

two vectors is computed using the Cosine Similarity Index (CSI) Sc(pppSk,1
, pppSk,2

), given by

Sc = Sc(pppSk,1
, pppSk,2

) =
pppSk,1
· pppSk,2

∥pppSk,1
∥2∥pppSk,2

∥2
, (3.1)

where (·) is the dot product of two vectors. For any update, if Sc(pppSk,1
, pppSk,2

)< T , where T

is a heuristic lower threshold value, the subset size is increasedii nk+1 = τnk, where τ > 1

is also heuristic. The maximum size of the subsets nmax is limited to nmax := |J |/2, which

would result in half the data in each subset.

The determination of pppSk,1
and pppSk,2

will depend on the reconstruction algorithm tem-

plate being implemented. At this time, various diagonally-preconditioned gradient as-

cent algorithms, given by Equation (2.44), are considered for the AS algorithm. Hence,

pppSk,m
= DDDSk,m(xxxk)∇ΦSk,m(xxxk) ∀m ∈ {1,2}.

To compute the updated image, AS combines the update directions for each subset

sample. Note that this implies that the update is computed with a subset of size 2nk. To

account for any preconditioner subset dependence, the iteration’s update direction pppk is

computed as

pppk =
(
DDDSk,1(xxxk)+DDDSk,2(xxxk)

)(
∇ΦSk,1(xxxk)+∇ΦSk,2(xxxk)

)
. (3.2)

This combination is appropriate for many PET algorithms where DDDSk,1(xxxk) and DDDSk,2(xxxk)

iiAs subset size |S| is an integer, nk+1 = max(τnk,nk +1) to ensure subset size is increased when Sc < T .



3.2. Algorithm Methodology 56

are parallel, e.g., BSREM and RAMLA.

Full pseudo-code for the AS algorithm is given by Algorithm 3.

Algorithm 3: AutoSubsets Algorithm

Input : xxx0 ∈ RNv , Φ, DDD Γ, n0, nmax, T , K, τ > 1, {αk > 0}K
k=0

Output: xxxK

1 for k = 0,1, . . . ,K do
2 # Construct two equally sized subsets of size nk
3 Sk,1, Sk,2← Γ(2nk,2nmax)

4 # Compute two update directions from Sk,1 and Sk,2
5 Compute ∇ΦSk,1(xxxk) and ∇ΦSk,2(xxxk)

6 pppSk,1
← DDDSk,1(xxxk)∇ΦSk,1(xxxk)

7 pppSk,2
← DDDSk,2(xxxk)∇ΦSk,2(xxxk)

8 # Cosine check
9 if Sc(pppSk,1

, pppSk,2
)< T then

10 nk+1←min(max(τnk,nk +1), nmax)
11 else
12 nk+1← nk
13 end

14 # Combine subset update directions into a single update direction
15 pppk←

(
DDDSk,1(xxxk)+DDDSk,2(xxxk)

)(
∇ΦSk,1(xxxk)+∇ΦSk,2(xxxk)

)
16 # Update step
17 xxxk+1← Pxxx≥0 [xxxk +αk pppk]

18 end

3.2.1 Subset Construction

Alternative subset construction methodologies to OS are considered for AutoSubsets. The

OS methodology, described in Section 2.3.4.1, bins regularly spaced projection angles into

subsets in an attempt to balance the subsets [Hudson et al. 1994]. However, this method-

ology is limited to creating subsets based on projection angles but also requires an equal

number of the Nθ projection angles to be binned into each of the M subsets to maintain

balance. Hence, M is limited to a factor of Nθ . Furthermore, the order that the subsets

are selected at each update is suggested to be cyclical and subsequent selected subset data

should be as orthogonal as possible to the subset data recently applied in previous algorithm

iterations [Herman et al. 1993].

Implementing an OS construction/selection methodology to the AS algorithm would

enforce restrictions on possible subset sizes and the subset construction would be limited

to projection angle binning. Furthermore, OS’s subset selection may become non-trivial
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in order to avoid introducing bias into the cosine measurements of Equation (3.1). If

two similar subset indices were selected with similar data (e.g., m1 = 1 and m2 = 2 when

M = 24), the Sc values would likely be greater than those computed using dissimilar sub-

set indices and dataiii. Additionally, maintaining subset balance is not a strict requirement

for the AS algorithm. This is because the algorithm aims for nk −−−→
k→∞

nmax and, assuming

nmax := |J |/2, the algorithm will tend towards full data updates (i.e., Sk,1∪Sk,2 −−−→
k→∞

J ),

given the Sk,1 ∩Sk,2 = /0 condition of Equation (2.40) is enforced. As long as the algo-

rithm achieves these full data updates, subset balance is not necessarily required in subset

construction because balance is eventually achieved.

The following sections will describe three Γ subset selection functions used in the

AutoSubsets algorithm. Two functions are used for geometric projection angle subset con-

struction, RB and Golden Ratio Subsets (GRS) sampling respectively. A third function is

used for list mode event based sampling.

3.2.1.1 Geometric Sampling

The number of discrete PET scanner projection angles Nθ is a property of a scanner’s de-

sign, see Section 2.1.3. Similar to Equation (2.41), the full set of data samples J may be

divided into a set of Nθ subsets (Θ = {θµ}Nθ

µ=1), where each subset corresponds to a discrete

projection angle. In this chapter, each θµ may be refered to as a “sample” (set) of the data

and sequential θµ samples correspond to sequential rows of the sinograms in the projection

data. A subset size of nk = 1 corresponds to a set |{θµ}|= 1, where µ ∈ {1, ...,Nθ}.

Random Batches (RB) subset construction function ΓRB
Θ

(2nk,2nmax) generates a tem-

porary single new subset from Θ by uniform random selection without replacement. This

temporary subset has a size of 2nk. The function equally divides the elements of this large

subset between Sk,1 and Sk,2. Thus, Sk,1 and Sk,2 are equal size disjoint subsets and, if

nk = nmax, Sk,1∪Sk,2 = J .

Golden Ratio Subsets (GRS) sampling is commonly used in MRI to perform dynamic

radial k-space sampling [Feng et al. 2014; Winkelmann et al. 2007]. Yet, GRS sampling

was originally implemented for PET image reconstruction [Kohler 2004]. In dynamic MRI

nearly uniform sampling of the k-space distribution is required for an unknown acquisition

period; GRS radial sampling can be used to achieve this [Feng et al. 2014].

iiiIt is worth noting that this is the motivation for why OS algorithms were designed to select sequential
subsets that are as orthogonal as possible to the subsets recently applied. The algorithms attempt to update xxxk
with “new” data at each iteration.
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The golden ratio is computed as

γGR =

√
5−1
2

≈ 0.618, (3.3)

The GRS subset selection function ΓGRS
Θ

is detailed by Algorithm 4. The algorithm utilises

an internal variable γc, which is maintained in memory by the function. This is required

because successive calls of ΓGRS
Θ

should result in varied subset content. The function returns

two equally sized disjoint subsets. Note, members of a set must be distinct from one another

and therefore line 9 of Algorithm 4 will only increase the size of |S| if θµ ̸∈ S .

Algorithm 4: Golden Ratio Subsets Function ΓGRS
Θ

Input : nmax,Θ
Output: (A1,A2)

1 Assert |Θ| ≥ nmax ≥ 1

2 Initialise γGR =
√

5−1
2

3 Initialise S =A1 =A2 = /0
4 Maintain γc in memory or initialise as γc = 0

5 #Determine S
6 while |S|< nmax do
7 γc = γc + γGR mod 1
8 µ = roundup(|Θ| · γc)
9 S = S ∪{θµ}

10 end

11 # Divide S into A1 and A2
12 for i = 1, . . . ,N do
13 # Si indicates the ith index of S
14 if i mod 2 = 1 then
15 A1 =A1∪{Si}
16 else
17 A2 =A2∪{Si}
18 end
19 end
20 return (A1,A2)

3.2.1.2 List Mode Event Sampling

The application of the AS reconstruction algorithm to list mode data is also investigated in

this work, see Sections 2.1.3.2 and 2.3.4.4. List mode data sets typically contain a large

number of individual Ne coincidence events. List mode reconstruction can be performed by

taking a set of events from the list mode data and computing an update direction from this
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set.

List mode coincidence events are recorded in chronological detection order. Tracer

kinetics and radioactive decay modelling were not included in the simulated acquisition

in this work. This allows for the list mode data to be split into equally sized “samples”

by dividing into equal length time frames. In this study, these samples typically contain

10,000+ coincidence events.

Most list mode reconstruction algorithms begin at the start of the list mode data and

nk samples are used to compute the update direction and the next iteration selects the next

nk samples. Once the end of the file is reached, reading of the list mode file is reset to the

beginning. The AS algorithm uses a similar methodology but with two subsets per update.

The Sk,1 subset is populated from the first nk samples from the previous marked position,

followed by Sk,2.

3.3 Experimental Setup

This section describes the experimental setup used to assess AutoSubsets algorithm perfor-

mance. This includes methods of acquiring simulated phantom data, practicalities of AS

algorithm implementation and the metrics used to assess reconstruction performance.

3.3.1 Phantom and Acquisition

A cylindrical phantom of radius 98mm was generated using STIR tools [Thielemans et al.

2012]. The cylinder was designed to have intermediate levels of activity and attenuation

values comparable to water. Four smaller cylinders with a radius of 26mm were added

with various activity levels to the larger cylinder. Two of the inserted cylinders contained

higher activity than the main cylinder, with ratio 4:2, and the other two cylinders contained

lower activity, with ratio 1:2. These ratios were taken with respect to the main body of

the cylindrical phantom. Additionally, two of these inserts, one hot and the other cold, were

assigned an attenuation double that of the main cylinder. The arrangement of these cylinders

was to inhibit rotational symmetry in the axial plane. Transaxial slices of both the activity

and the attenuation for this phantom are shown in Figure 3.1. This is a modification of the

phantom used in Tsai et al. 2016.

Two scanner geometries were used to simulate a PET acquisition of this phantom. The

first geometry utilised Nθ = 280 and NR = 2 rings. This geometry was used to assess general

applicability of the AS algorithm on a smaller data set, which allowed for faster image
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(a) Activity (b) Attenuation(cm−1)

Figure 3.1: Transaxial slices of the simulated cylindrical phantom with cylindrical inserts of various
activity levels.

reconstruction. This data set is referred to as the “toy” data. The acquisition of the toy data

was simulated using STIR projectors. Random coincidence events were also simulated,

with a 6:1 true-to-background ratio, as low level Poisson noise using STIR functionality.

The second scanner geometry was a model of the GE Discovery 690 PET/CT (D690),

with Nθ = 288 (576 detectors) and NR = 24 [Bettinardi et al. 2011]. A 120 second data

acquisition of the phantom in this scanner was simulated using GATE and the STIR-GATE-

Connection , see Appendix A. GATE is a Monte Carlo simulation software designed to

accurately model high energy physics interactions for medical physics applications [Jan et

al. 2011]. The list mode data output by GATE was both retained for list mode reconstruction

and re-binned into projection data using STIR tools for view based reconstruction analysis,

see Appendix A.2. Normalisation, attenuation correction and random and scattered co-

incidence events were modelled using STIR tools, see Appendix A.3. Approximately 53

million coincidence events were recorded. This data set was significantly noisier than the

toy data set.

3.3.2 Algorithm Implementation

As aforementioned, the ML solution is undesirable due to the ill-posedness of the PET

problem. Introducing regularisation can significantly improve reconstructed image quality.

A PML objective function, with the RDP, was used to assess the AS algorithms applica-

bility to PET reconstruction. The preconditioners implemented into the AS algorithm were

DDDSk,1(xxxk) =
|J |
|Sk,1|DDDEM(xxxk) and DDDSk,2(xxxk) =

|J |
|Sk,2|DDDEM(xxxk), where DDDEM(xxxk) is given by Equa-

tion (2.29). The direction of this diagonal positive preconditioner is subset independent but
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the magnitude is scaled proportionally to the subset’s size.

The AS algorithm was compared to BSREM reconstructions using various subsets.

Typically, BSREM is implemented with a relaxing step size sequence αk, e.g., Equa-

tion (2.35). However, this may result in difficulties when comparing algorithm perfor-

mances. Firstly, the step size relaxation parameter selections are heuristic and different

selections of α0 and η will result in various performance characteristics. Secondly, αk is

update number dependant. To compare algorithms using step size relaxation, step sizes

should be equal after similar computational effort to confirm the performance relates to the

algorithm rather than heuristically selected parameters. After k = M updates, BSREM’s

computational cost is equivalent to one epoch. Compare this to AS where the computa-

tional cost associated with computing k = M updates may not be equivalent to one epoch

due to nk varying. Therefore, for simplicity in algorithm analysis, all reconstructions were

implemented with a constant αk.

3.3.3 Reconstruction Performance Analysis

To assess the performance of the AS algorithm, several quantitative measurement metrics

were employed at every algorithm iteration k. An image domain assessment was conducted

using a distance measure between the kth update and the converged MAP estimate x̂xx. This

∆ function is given by

∆(xxxk, x̂xx) =
∥xxxk− x̂xx∥
∥x̂xx∥

, (3.4)

where ∥ · ∥ is the l2 norm. The converged image x̂xx was computed with a single subset

modified-EM preconditioned gradient ascent algorithm using an in-exact line search to se-

lect optimal αk values, see Section 2.3.3.3. Once the algorithm reached a region of numer-

ical instability at iteration k = K, it was terminated and x̂xx = xxxK . A transaxial slice of x̂xx for

the toy and the D690 data sets are shown in Figure 3.2. Additionally, some reconstructions

were evaluated with objective function value measurements, computed using all the data.

Finally, Regions Of Interest (ROIs) were drawn over the cylindrical inserts and voxel mean

and standard deviations values were computed for algorithm iterates.

3.4 Results

This section presents a number of AS algorithm metrics and reconstruction performance

results.
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(a) MAP Solution of Toy Data Set (b) MAP Solution of GE Discovery 690 Data Set

Figure 3.2: Transaxial slices of the MAP estimates of (a) the toy scanner data set (2.39,2.39,3.27
mm/voxel) and (b) the GE Discovery 690 PET/CT data set (2.13,2.13,3.27 mm/voxel).

3.4.1 Initial Evaluation

This section assesses the preliminary performance of the AS algorithm and makes compar-

isons between the two projection angle based sampling methods. All reconstructions were

performed using the toy data set, which may be considered to have low noise and complex-

ity. Measurements of the Sc(pppSk,1
, pppSk,2

), given by Equation (3.1), were recorded throughout

the reconstructions and algorithm performance was measured using the ∆ metric, given by

Equation (3.4).

An initial comparison is made between the RB and GRS algorithm performances in this

subsection. For this comparison, step size was reduced from the default α = 1 to α = 0.1

to slow down the reconstruction performance for algorithm evaluation and the two subset

independent preconditioners discussed in Section 3.3.2 were implemented. The threshold

value for the Sc measure was heuristically set to T = 0 = cos(90°) and the subset size

multiplicative factor τ = 1.2.

3.4.1.1 Cosine Similarity and Subset Sizes

The RB sampling cosine angle values Sc exhibited significant fluctuations between sequen-

tial updates throughout the algorithm iterates and quickly converged to full data (280 pro-

jection angles) updates, as shown by Figure 3.3a. In comparison, the GRS sampling method

displayed a gradual reduction in Sc values during the first few updates. This steady reduc-

tion occurred until the Sc value fell below T = 0.0 and nk+1 was increased. The subsequent

iterate measured an increased Sc value. The GRS Sc values continued to be less noisy than
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(a) Random Batches Sampling

(b) Golden Ratio Subset Sampling

(c) ∆ Value Plot

Figure 3.3: A comparison between two AS reconstructions: (a) RB sampling and (b) using GRS
sampling for the toy data set with α = 0.1, τ = 1.2 and T = 0. The CSI measurements
between the two AutoSubsets’ subset update directions, given by Equation (3.1), and
the number of samples (projection angles) used at each update are compared. (c) Com-
pares the two AS reconstruction sequences performances using the ln(∆) convergence
measurement metric, given by Equation (3.4), over the number of epochs.
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Figure 3.4: A plot comparing the ln(∆) metric performance of a GRS sampling AS reconstruction
with different OS reconstructions. AS reconstruction parameters are τ = 1.2 and T = 0.
All algorithms utilise α = 0.1. The number preceding “subsets” in the legend entries
indicates the number of subsets used during the reconstruction.

RB’s measurements. In addition, the GRS nk values increased slower but did eventually

reach full data updates after k = 275.

3.4.1.2 Reconstruction Performance

To assess algorithm performance, every image estimate of the two aforementioned recon-

struction sequences was evaluated using the ∆ metric, given by Equation (3.4). This metric

is plotted in Figure 3.3c against the number of processed data epochs, a scale that may

be considered proportional to computational cost. These results demonstrated that GRS

sampling reconstruction was capable of converging closer to the solution from very early

iterations. The RB sampling reconstruction maximised the subset sizes within 75 updates

(approximately 10 epochs), whereas the GRS sampling took advantage of the acceleration

achieved via the use of smaller subsets for 275 updates (approximately 40 epochs). This

inferior performance of AS using RB sampling was observed to be typical for other data

sets (results not shown). Therefore, only AS results using the GRS sampling are considered

for the remainder of this chapter.

3.4.1.3 Comparison with Fixed Subset Size Reconstructions

Reconstruction performance comparisons between the GRS AS algorithm and various

BSREM reconstructions using M ∈ {10,20,40,70} subsets, with the OS sampling method-
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Figure 3.5: A plot illustrating the CSI measurements and number of samples (projection angles)
used at each update of an AS reconstruction with GRS sampling using the D690 projec-
tion data. The AS algorithm utilised τ = 1.2 and T = 0 and α = 1

ology, are shown in Figure 3.4. The performance of AS was comparable to that of the 40

and 70 OS reconstructions during the first few epochs and was significantly accelerated

compared to M = 10 and M = 20 OS reconstructions. However, as the AS reconstruction

incorporated larger subsets into its updates, this acceleration was reduced. Hence, for this

data set, the OS methods continued to enjoy faster objective function value convergence

rates.

3.4.2 GE Discovery 690 Projection Data

The CSI and projection angle usage for a GRS AS reconstruction of the GE Discovery 690

projection data is shown in Figure 3.5. The AS algorithm was implemented with τ = 1.2

and T = 0 and all reconstructions utilised α = 1.

During initial updates, the Sc performance was similar to that shown in Figure 3.3b.

However, after k≈ 70 until k≈ 175, the Sc values varied between 0.1 and 0.3. For this long

period of updates, each subset contained 8 projection angles (i.e., 16 projection angles per

update and equivalent to M = 18 subsets in standard OS methodologies). After this 100+

updates, the Sc < T for a number of updates and nk increased to nmax in only a few updates.

The objective function value was computed after each AS algorithm update and per-

formance is compared to BSREM algorithms with various numbers of subsets in Figure 3.6.
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Figure 3.6: A plot comparing the objective function value performance of the GRS subset sampling
AS reconstruction with different OS subset size reconstructions for the GE Discovery
690 projection data-set. AS algorithm parameters are the same as those used for Fig-
ure 3.5. The number preceding ”OS” in the figure legend indicates the number of subsets
used for each reconstruction.

As this was a maximisation problem, the greater the objective function value, the better the

estimate fit the measured data. Similar to Section 3.4.1, the AS reconstruction initially ac-

celerated the reconstruction and was comparable to the 18 and 36 OS reconstructions and

significantly outperformed the 4 and 8 OS reconstructions for several epochs. The objec-

tive function plateaued after a number of epochs and, after achieving full data updates, was

overtaken by the 8 OS reconstruction.

3.4.3 List Mode Reconstruction

The D690 list mode data-set contained 120 million coincidence events. Rather than treat

a single event as a list mode sample, a single sample contained approximately 14,000 list

mode events. The list mode AS reconstruction was initialised with n0 = 1 while nmax =

4320. The same α = 1, T = 0.0 and τ = 1.2 were implemented.

The Sc values and number of samples used at each iteration of a GRS AS reconstruction

are plotted in Figure 3.7. The reconstruction duration of this study was limited to 6 epochs.

This was due to a technical limitation where reconstructing an epoch of list mode data was

significantly slower than an epoch of projection data in STIR. Note that the AS algorithm

did not increase to full data updates within the presented 6 epochs.
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Figure 3.7: A plot illustrating the (a) CSI measurements between AutoSubsets’s update directions
and (b) number of list mode data samples used at each update of the algorithm. The
algorithm configuration used α = 1, T = 0 and τ = 1.2 and each sample corresponds to
approximately 14,000 coincidence events.

The metrics plotted in Figure 3.7 differ from the metrics plotted for the projection

data in Figures 3.3b and 3.5. The initial Sc values were significantly slower in their decline

towards T = 0.0 and the first instance of Sc < T occurred at k≈ 45. Rather than a significant

increase in Sc value after nk was increased, the list mode Sc value only slightly increased

to 0 < Sc < 0.05. Instead, over the following iterations, the Sc values remained slightly

above T and occasionally nk increased in size as Sc < T . At later iterations, the increases in

nk appeared to occur in frequent succession before a period of updates with no subset size

increase.

The objective function values of list mode AS algorithm reconstruction performance is

compared to fixed subset size list mode reconstructions in Figure 3.8. The AS algorithm’s

use of significantly smaller subset sizes granted the algorithm superior performance during

early updates. However, after less than half an epoch, the algorithm’s objective function

values were outperformed by the M = 480 fixed subset reconstruction.

Additional analysis, shown in Figure 3.9, illustrates the mean and standard deviations

of the voxels in the top cylindrical insert ROI. This analysis was not included in the projec-

tion data results. The AS reconstruction ROI mean voxel value almost converged within a

fraction of an epoch. Similar performance was noted for the fixed subset size reconstruc-
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Figure 3.8: A plot comparing the objective function value performance of a list mode AS recon-
struction with various fixed subset size reconstructions. The list mode AS reconstruc-
tion is initialised with approximately 13,000 coincidence events in each subset. The
number preceding OS in the legend indicates the number of subsets used during the re-
construction.

tions (except M = 30 subsets). This type of behaviour has been previously observed for list

mode data reconstructions in Reader et al. 2002. This mean value converged faster when

more subsets were utilised. The ROI’s voxel standard deviations continuously increased for

all fixed subset size reconstructions and a greater number of subsets resulted in increased

voxel standard deviation. Yet, the AS reconstruction standard deviation peaked after a small

fraction of an epoch before declining in value.

3.5 Discussion
The AS reconstruction algorithm was designed to automatically increase subset size when

the direction of two updates, computed using two separate subsets of the data, diverged. In

Section 3.4, the AS algorithm was applied to three data sets, two projection data sets and one

list mode. Measurements of the algorithms CSI and number of projection angle or sample

usage were plotted to assess the methodology. Additionally, reconstruction performance

was compared to BSREM.

3.5.1 Subset Sampling Methodology

In Section 3.4.1, the AS algorithm was applied to the toy data set using two subset sampling

methodologies: RB and GRS. The results of this study indicated that the GRS sampling
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(a) Mean.

(b) Standard Deviation.

Figure 3.9: A plot comparing voxel mean and standard deviations values of the top, high activity,
cylinder insert of the phantom (Figure 3.1) over three epochs of the list mode recon-
struction using AS and five fixed subset size reconstructions. Sub-figure (a) plots mean
voxel values in the ROI while (b) plots the voxel value standard deviation.
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method for projection data outperformed the RB sampling method. The Sc measurements

were observed to vary significantly between updates with both sampling methods but more-

so with RB sampling. Consequently, this may have resulted in the algorithm increasing

to full data updates relatively early in the reconstruction, which slowed convergence rates.

Similar results were replicated for the D690 projection data set but are not shown in this

thesis for clarity.

To explain this poor reconstruction performance associated with RB sampling, con-

sider the subset construction methodologies. Subsets constructed using RB sampling are

likely to be more unbalanced than those constructed using OS. This statement is supported

by the conclusions of a later conducted study, presented in Section 4.3.1 and discussed in

Section 4.4. As aforementioned in section 3.2.1, Sc(pppSk,1
, pppSk,2

) comparisons between two

similar subsets will likely result in a higher Sc value than those selected from dissimilar

subsets. Hence, the Sc measurements are influenced by the subset selection methodology

and this may explain the highly varied Sc values reported in Figure 3.3a.

The GRS sampling method was implemented into the AS algorithm as an attempt to

construct balanced subsets based on an arbitrary subset size (nk). The measured Sc values

demonstrated a steadier decline during early updates, compared with the RB AS reconstruc-

tion, as shown in Figure 3.3a. As a consequence, the first Sc < T measurement occurred

at a later iteration k. Assuming much of the AS algorithm discrepancies in Figures 3.3a

and 3.3b are related to their subset selection methodologies, it appears the GRS resulted in

improved algorithm performance due to the reduced variations in Sc value measurements.

3.5.2 Premature Increase of Subset Size

As a result of the aforementioned GRS AS reconstruction reduced sensitivity to subset

selection methodology, the algorithm was able to increase nk less frequently. This allowed

for the use of smaller subsets for a greater number of iterations, which appeared to translate

into improved algorithm performance in Figure 3.3c and Figure 3.6.

In comparison to the AS algorithm, the 40 and 70 OS reconstructions plotted in Fig-

ure 3.4 tend towards an asymptote in approximately 20 epochs. Similar reconstruction

performance was observed for the D690 projection data set in Figure 3.6 as the M = 18 and

M = 36 reconstructions objective function values plateaued after approximately 2.5 epochs.

In both of these figures, the AS reconstruction performed comparably to these reconstruc-

tions during the early epochs. However, the AS algorithm increasing subset size may have
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resulted in poorer later metric performances.

Some iterations where the AS algorithm increased the subset sizes are visible on the

plotted AS metrics in the form of non-smoothness in the plot, which resulted in a shallower

plot. This metric behaviour indicates an abrupt decrease in convergence rate that was caused

by an increase of nk at a sub-optimal iteration. Without this increased subset size, it can be

assumed that the next algorithm iteration would have measured an improved metric value.

Hence, the algorithm increased nk too early. Therefore, either the T = 0.0 threshold is

too high or the Sc(pppSk,1
, pppSk,2

) metric is not effective at indicating the optimal iterations to

increase subset size.

3.5.3 List Mode AutoSubsets Reconstruction

The list mode reconstruction objective function values plotted in Figure 3.8 demonstrates

the potential of list mode reconstruction. Both the AS algorithm and the large M subset

reconstructions achieve objective function values after 0.2 epochs that are comparable to

reconstruction performance after 1 epoch of projection based subsets in Figure 3.6. Hence,

with the results of Figure 3.9a, the list mode reconstructions using a large number of sub-

sets demonstrated excellent performance within a list mode data epochiv. This is likely a

consequence of the large redundancy between various event data. During the list mode re-

construction, subsets of samples are expected to represent varied, but unbiased, estimates

of the full data. Compare this to projection data where subsets are divided by physical

projection angles. These projection angle subset construction methodologies may introduce

some bias and almost certainly increase the variance between subset data, which will reduce

balance.

The list mode Sc values plotted over algorithm iterations, shown in Figure 3.7, were

less noisy than those observed for the projection data in Figure 3.5. Besides some larger

variations in Sc values during early epochs, the Sc measurements slowly declined towards

values just above T = 0.0. However, the Sc < T = 0.0 condition was not met until k ≈ 45.

This was likely a consequence of the low variance between the list mode subsets. The

increase in subset size occurred much slower for the list mode reconstruction, despite the

subsets being relatively small with respect to the full data.

As aforementioned in Section 3.4.3, while the list mode AS reconstruction does not op-

timise the objective function as fast as the fixed subset size methods, it does approximately

ivThe definitions of list mode and projection data epochs differ and computational cost comparisons between
the data processing are hard to evaluate.
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converge in mean ROI value. In comparison, Figure 3.9b plots the stardard deviation voxel

values in the ROI. This metric was used to measure voxel noise in the ROI, which was as-

sumed to be a smooth region. For all fixed subset size algorithms, these standard deviation

measures increased in value throughout the reconstructions. Yet, after an initial increase in

voxel value standard deviation during updates with small nk values, the AS reconstruction’s

standard deviation decreased. Therefore, the AS algorithm appeared to suppress noise be-

cause of the use of larger subsets at later epochs. Hence, although the M = 480 subset

reconstruction was quick at optimising the objective function in three epochs, the noise in

the reconstructed image continued to increase, whereas the AS reconstruction limited this.

3.5.4 Limitations

This chapter presented a preliminary study of the AutoSubsets algorithm. A number of the

limitations of this study are discussed in this sub-section.

3.5.4.1 Cosine Metric

The AS algorithm utilises the Sc(pppSk,1
, pppSk,2

) measurement to quantify how similar subset

update directions are to one another and when subset size should be increased to maintain

similarity between subset data. However, the AS algorithm appeared to increase subset size

too early for both projection data sets. The use of a lower T value could assist in delaying

the increase in subset size but, as this is currently a heuristic parameter, reconstruction

performance might be sensitive to the value selected. Furthermore, the optimal T value may

be data dependant or dependant on a number of algorithm factors, i.e., αk, the relationship

between nk and nmax and ΓΘ.

3.5.4.2 Experimental Limitations

As this was a preliminary study of the AS algorithm, a number of parameters were selected

heuristically. By extension, a number of other reconstruction parameters were kept constant

through the reconstructions, including the preconditioner, step sizes and penalty strengths.

Varying any of these algorithm configuration parameters may lead to alternative algorithm

results. Additionally, the simulated cylindrical reconstruction object was not a complex

phantom. Although two distinct acquisitions were simulated, little is understood from the

presented results regarding how data noise and scanner configuration might impact the algo-

rithms performance. Finally, a limited selection of post-processing metrics were employed

to assess the performance of this algorithm.
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3.5.4.3 Fixed Step Size

In Section 3.1 it was stated that algorithm convergence may be achieved by iterating with

a fast non-convergent algorithm for a number of epochs before switching to a convergent

algorithm. The example given was OSEM and MLEM. However, because of the use of

the prior in the objective function in this chapter’s numerical studies, the presented AS

algorithm was not guaranteed to converge with αk = 1. Alternative methods, such as step

size relaxation, should be employed to guarantee convergence.

3.5.5 Follow-Up Study

A follow up study was conducted by another student as part of an MSc research project that

built on the work presented in this chapter [Zeng 2021]. The author of this thesis held a

supervisory role for that project. A brief discussion of that study is presented in Appendix

D.

3.6 Conclusion
In this chapter the AutoSubsets reconstruction algorithm was presented. This algorithm

measures the divergence between two subset update directions in order to automatically

adapt their size for future updates. AS accelerated all initial reconstructions by allowing

the use of small subsets before automatically increasing subset sizes. The image estimate

sequences were found to be reasonable and comparable to the MAP solution, yet at later

stages, the convergence of the algorithm was sub-optimal when compared to fixed subset

size reconstructions.

This method was evaluated using two simulated projection data sets and a simulated list

mode data set. Two projection based subset sampling methods were investigated throughout

this work, and the Golden Ratio Subset sampling was found to be superior to the Random

Batches sampling. Comparatively, the AS algorithm took advantage of the large list mode

data-set, accelerating initial reconstruction before increasing subset size and suppressing

image noise at later updates.



Chapter 4

Stochastic Gradient Algorithms

4.1 Introduction

Generally, current clinical PET reconstruction algorithms use deterministic Ordered Sub-

sets (OS) algorithms in a preconditioned gradient-ascent/surrogate framework, see Sec-

tions 2.3.2.1 and 2.3.2.2. Notable example algorithms are OSEM and BSREM, see Sec-

tion 2.3.4.1 and Section 2.3.4.3 respectively. These are fast and reliable algorithms during

early epochs, an attribute that encouraged their wide acceptance. However, fast conver-

gence is not always realised at later epochs because of limit cycle behaviour and relaxation

parameters.

An alternative subset methodology is the use of randomly selected or constructed

subsets. In addition, a number of novel stochastic algorithms have been developed that

boast faster convergence rates at later epochs. One example stochastic algorithm that has

demonstrated excellent reconstruction behaviour for PET image reconstruction is Stochastic

Primal-Dual Hybrid Gradient (SPDHG), as discussed in Section 4.6.8.5 [Chambolle et al.

2018; Ehrhardt et al. 2019].

This chapter evaluates the application of a novel class of Stochastic Variance Reduction

(SVR) gradient methods to the iterative PET reconstruction problem. Three algorithms of

this class are considered: SAG [Roux et al. 2012], SAGA [Defazio et al. 2014] and SVRG

[Johnson et al. 2013]. However, as the PET problem is ill-posed, direct application of SAG,

SAGA and SVRG (given by Algorithms 1 and 2) would require small step sizes or the

algorithms may be non-convergent. Additionally, these SVR algorithms are unconstrained,

allowing 0> xi ∈ xxx. The update step in the aforementioned algorithms is modified to include
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preconditioning D(xxx) and a non-negativity constraint Pxxx≥0[·], given by

xxxk+1 = Pxxx≥0[xxxk +αkD(xxx)∇̃k,mk ]. (4.1)

The resulting equation closely resembles Equation (2.44). For simplicity, these precon-

ditioned and non-negative constrained algorithms shall be refereed to with their original

abbreviations (SAG, SAGA and SVRGi) throughout this thesis.

In this chapter, a comparison between deterministic and stochastic subset sampling is

conducted in Section 4.3 for both a preconditioned subset gradient algorithm and the SVR

algorithms. The results of this investigation are discussed in Section 4.4. Following this

study, the performance of the aforementioned SVR algorithms is assessed with various PET

data sets in Section 4.5. Numerical experiments are conducted to determine the impact

of algorithm configuration by applying various numbers of subsets, preconditioners, step

size methodologies and “warm-starting”. These results are discussed in Section 4.6. Note,

unlike Chapter 3, only projection angle based subsets are considered in this chapter. The

following section details the data sets used throughout this chapter.

4.2 PET Data Sets

A number of PET data sets are investigated to assess the applicability of SVR algorithms

for PET reconstruction. These data sets are described in the following sub-sections.

4.2.1 Small XCAT Data

For preliminary studies, an XCAT thorax phantom [Segars et al. 2010] scan was simulated

using STIR [Thielemans et al. 2012]. The scanner utilised 280 projection angles and two

rings using STIR. Poisson noise was added and scattered events were simulated in the mea-

sured data. The respective data corrections were included within the forward model and, to

further suppress noise in the images while encouraging edges, the RDP, see Section 2.2.3,

was used to penalise the objective function [Nuyts et al. 2002]. The penalty strength β was

hand-tuned for a qualitatively appealing converged solution x̂xx, which was computed using

the L-BFGS-B-PC reconstruction algorithm, see Section 2.3.2.3 [Tsai et al. 2018].

During preliminary studies of the variance reduction algorithms applied to PET recon-

struction (results not shown), significant performance improvements were observed during

early epochs if the algorithms were initialised from an image with relatively correct scale

iNote, SVRG’s full gradient re-computation parameter is fixed at γ = 2 throughout this work.
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and structure of the reconstruction object. For this reason, all reconstructions in this chapter

were initialised from an image computed using a single epoch of OSEM, denoted as xxxOSEM.

For this data set, xxxOSEM was computed using M = 20 subsets.

4.2.2 XCAT GATE Simulation Data

The second class of data sets were acquired by numerical GATE simulations [Jan et al.

2011] modelling the acquisition of the GE Discovery 690 scanner [Bettinardi et al. 2011].

This was conducted with STIR-GATE-Connection , see Appendix A. The photon emission

simulation was performed using back-to-back 511 keV photon emissions from a voxelised

XCAT thorax phantom [Segars et al. 2010] with activity concentrations representative of an
18F-FDG study (see emission and attenuation distributions in Figure 4.1a and Figure 4.1b,

respectively). Cardiac and respiratory motion, along with radioactive decay, were not mod-

elled for experiment simplicity. A 1 cm diameter, 1 cm long, cylindrical hot “lesion”, with

2.6:1 lesion to lung contrast, was inserted into the lung of the XCAT emission.

Multiple Region of Interest (ROI) volumes were drawn for image quality analysis.

ROIs were drawn around the aforementioned inserted lung lesion and over a large portion

of the interior of the liver. Additionally, an ROI was drawn outside of the thorax, where no

activity is expected.

To explore the sensitivity of the SVR algorithms to data noise levels, the list mode file

was sub-sampled by event random rejection. Three distinct projection data sets containing

50, 250 and 1200 million coincidence events were acquired. A true-to-background ratio of

0.93:1 was maintained across the three data sets, where background is defined as random

plus scattered events. This resulted in data sets with low (50 million events) to high (1200

million events) SNR, which were re-binned into projection data with 288 projection angles.

The resulting projection data was span 1 with a maximum ring difference of 45.

As discussed in Section 2.2.1, normalisation factors are required for an accurate system

model. The normalisation factors were computed by a comparison between forward projec-

tions in STIR and GATE of a cylindrical phantom the size of the Discovery 690’s field of

view. These factors, as well as attenuation correction factors, randoms and scatter models,

were computed for each data set using STIR-GATE-Connection tools, see Appendix A.3

for more details.

An initial epoch of OSEM using M = 24 subsets was performed for each data set result-

ing in xxxOSEM. This initial image for the 50 million event data set is depicted by Figure 4.1c.
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(a) Photon Emission Distribution (b) Attenuation Distribution

(c) OSEM Reconstruction (1 epoch with 24 subsets) (d) Converged Solution

Figure 4.1: Transaxial slices of various distributions for the 50 million event simulated XCAT data
set. (a) Emission and (b) attenuation (cm−1) consisted of (141,141,47) voxels of size
(3,3,3.27) mm. Reconstructed images (c) and (d) contained (251,251,47) voxels of
size (2.13,2.13,3.27) mm.

The spatially variant penalty strength κ(xxxOSEM) was computed for each of the three data

sets using Equation (2.11). The RDP was used as the prior throughout these studies with

the edge preservation parameter ν = 2. The penalty strengths for each of the data sets were

determined based on qualitative assessment and had values β50M = 0.008, β250M = 0.04 and

β1200M = 0.2. The linear relationship was maintained between these β values based on the

number of events in each data set. This was to maintain spatial resolution [Tsai et al. 2020].

Unlike the small XCAT data of Section 4.2.1, the converged solution x̂xx was obtained by

reconstructing the data using Equation (2.51) with SVRG and the modified-EM precondi-

tioner, given by Equation (2.29). The reconstruction algorithm’s step size αk was reduced if

Φ(xxxk)< Φ(xxx(k−γM)) when measured periodically at each epoch. An initial step size α0 = 1
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was selected and if the inequality was not satisfied, αk+1 = αk, otherwise, αk+1 = ναk,

where ν = 0.9 was selected heuristically. The algorithm was terminated and x̂xx = xxxk when

the estimate satisfied the Karush-Kuhn-Tucker conditions (within numerical precision), see

Equation (2.21) [Nocedal et al. 2006]. For the 50 million event data, this algorithm ter-

mination occurred after more than 50,000 epochs with M = 24 and a final αk ≈ 1e− 9,

which resulted in updates that were numerically unstable with floating point computations.

The reconstructions computing x̂xx for the 250 and 1200 million event XCAT data sets per-

formed similarly. This methodology was faster at computing x̂xx for 3D data than a line

search preconditioned gradient ascent algorithm (see Section 2.3.3.3), and the line search in

L-BFGS-B-PC was found to be sensitive to numerical instability when close to x̂xx.

4.2.3 Patient Data

A 150 second 18F-FDG static patient scan was acquired on a 5 ring GE Discovery MI (272

projection angles) [Pan et al. 2019] and 143 million events were recorded. The acquired

list mode data was processed into projection data and non-TOF statistical data models were

computed with GE’s Duetto Toolbox and converted into a STIR compatible interfile format.

The patient was part of a prospective study, approved by the ethical committee (BASEC-Nr

2018-01012), investigating whole body dynamic PET. The patient gave informed consent

for further use of their data. The data described here represents a fraction of the full dynamic

scan. This static scan was acquired at a later time in the full scan duration to minimise the

impact of PET tracer kinetics. No modelling or correction of motion is applied to this data.

The patient was diagnosed with a bronchial carcinoma and a hilar lymph node metas-

tasis in the left upper lobe of the lung. The bronchial carcinoma is shown in Figure 4.2.

A (20× 26× 20) mm3 ellipsoidal ROI was drawn over the bronchial carcinoma so the en-

tire carcinoma is contained within the ROI. Additionally, (12× 15× 16) mm3 ellipsoidal

ROI was drawn over the hilar lymph node metastasis with the same criteria. Finally, a

(50× 60× 60) mm3 ellipsoidal ROI was drawn within the patient’s liver with a minimum

10mm distance maintained from the organ’s boundary. Liver 18F-FDG uptake region was

expected to be high but uniform allowing for measures of noise to be made [Ahn et al. 2015].

Furthermore, as the injected dose was known, Standardised Uptake Value peak (SUVpeak)

and SUV values can be computed [Boellaard et al. 2015].

Similar to Section 4.2.2, κ(xxxOSEM) was computed and β selected based on qualitative

reconstructed image assessment. An epoch of OSEM, with M = 17, was used to com-
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pute xxxOSEM. The converged solution x̂xx was computed using the same methodology as Sec-

tion 4.2.2.

(a) OSEM (1 epoch with 17 subsets)

(b) Converged Solution

Figure 4.2: Coronal slices in kBq/mL units of the patient data set reconstruction with a bronchial
carcinoma in the left lung upper lobe. Reconstructed images consist of (323,323,89)
voxels of size (2.21,2.21,2.76) mm.

4.2.4 NEMA Phantom

NEMA phantom reconstructions are a benchmark of many works due to their wide adoption

throughout the clinical environment. In this work, a Germanium NEMA phantom, with a

4:1 spheres to background ratio, was scanned in a GE Discovery 710 PET/CT to realise

120 million coincidence events. The measured list mode data was processed into non-TOF

projection data and statistical data models were computed similarly to the aforementioned

patient data. A CT was concurrently acquired for attenuation correction. ROIs were drawn

around each of the six spheres to assess reconstruction performance.

Similar to Section 4.2.2, κ(xxxOSEM) was computed and β selected based on qualitative

reconstructed image assessment. An epoch of OSEM, with M = 24, was used to compute
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(a) OSEM (b) Converged

Figure 4.3: Transaxial slices of NEMA reconstructions. (a) OSEM reconstruction, performed with
24 subsets, and (b) converged image reconstruction. Reconstructed images contained
(337,337,47) voxels of size (2.13,2.13,3.27) mm in kBq/mL.

xxxOSEM, which is shown in Figure 4.3a. The converged solution x̂xx was computed using the

same methodology as Section 4.2.2.

4.3 Subset Selection Methodology Investigation

This section introduces two stochastic subset methodologies for PET image reconstruction

with the aim of exploring the impact subset selection has on reconstruction performance.

For multiple algorithms, performance using these methods is compared to the OS method,

as described in Section 2.3.4 and Herman et al. 1993. Four algorithms were investigated:

a preconditioned gradient ascent and preconditioned SAG, SAGA and SVRG. This study

solely utilises the “small XCAT data”, described in Section 4.2.1 and the SVR algorithms

are initialised from xxxOSEM. These results were published in Twyman et al. 2021a.

The first stochastic subset sequence methodology, denoted as “Stochastic Subsets”,

uses the same subset construction method as OS. However, at each iteration k of the re-

construction algorithm, a subset index is selected at random from a uniform probability

distribution. The second stochastic subset methodology is “Randomised Batches” (RB),

introduced in Section 3.2.1.1. In this method, a number of projection angles are selected at

random (without replacement) and added to a subset. A subset gradient is computed from

this set of random projection angles and, at each update, a new subset is selected from all

scanner projection angles. This does not enforce disjoint subsets between each update.

To assess the performance of the subset methodologies, the ∆ distance metric was
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reused, see Equation (3.4). However, may plots are given as ∆% = 100% ·∆. Furthermore,

to isolate the impact of subset selection from other variables, such as variations in the pre-

conditioner, a constant step size of αk = 1 was employed along with a constant DDDEM(xxxOSEM)

preconditioner, given by Equation (2.29). This preconditioner is “anchored” at xxxOSEM.

4.3.1 Subset Gradient Ascent

(a) 14 Subsets

(b) 40 Subsets

Figure 4.4: Global convergence performance, measured with the ∆% metric, of DDDEM(xxxOSEM) pre-
conditioned subset gradient ascent reconstructions using the OS and stochastic subsets
methodologies, with (a) 14 subsets and (b) 40 subsets.

The constrained (preconditioned) subset gradient ascent update equation is given by
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Equation (2.44) and reconstruction performance of the subset selection methodologies is

shown in Figure 4.4. The randomised batches reconstructions are not included in either of

these sub-figures as the measured ∆% metric values indicated significantly poorer perfor-

mance and seldom were ∆% measurements less than 20.

Reconstruction performance using M = 14 subsets with various subset methods is

shown in Figure 4.4a. The OS method exhibited slightly improved performance compared

to the stochastic subsets method. However, this improvement was only realised after ap-

proximately 15 epochs where the impact of the randomly selected subsets began to affect

the ∆% performance.

Reconstructions using an increased number of subsets (M = 40) is shown in Fig-

ure 4.4b. Both OS and stochastic subsets demonstrated an improved initial convergence

rate during the first few epochs when compared to the M = 14 reconstructions. Yet, the

stochastic subsets method exhibited larger fluctuations in ∆% values and generally per-

formed poorer than the OS method after approximately 3 epochs.

4.3.2 Variance Reduction Methods

The (preconditioned) variance reduction algorithm update step, given by Equation (4.1),

utilised the same αk = 1 and DDDEM(xxxOSEM) preconditioner as above. These algorithms are

capable of utilising more subsets than the subset gradient ascent algorithms, as discussed in

Section 4.5.3, and therefore utilise M = 70 subsets. For convenience, regardless of subset

methodology, SAG, SAGA and SVRG shall be referred to as such.

The ∆% metric performance of SAG, shown in Figure 4.5a, indicates that the stochastic

subsets method optimised the reconstruction problem at a faster rate than Random Batches

and with fewer inter-update variations. During the first four epochs, the OS method out-

performed both of the stochastic methods. After this point, the algorithm demonstrated

divergent behaviour as the ∆% values increased rapidly.

For the various SAGA reconstructions, depicted in Figure 4.5b, the OS method outper-

formed the two stochastic methods, both of which exhibited significant fluctuations during

the first 6 epochs. After this, reconstruction performance became comparable and all plots

converged within 1∆%.

The subset selection variations of SVRG are shown in Figure 4.5c and all three

methods reduced the ∆% metric quickly and consistently. The OS method reconstruction

marginally outperformed both of the stochastic methods during early iterations. At later
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iterations, all three methods performed equally as the reconstructions approached conver-

gence.

4.4 Discussion of Subset Selection Methodology

The impact of three subset methodologies was assessed for four reconstruction algorithms

in Section 4.3. These subset methods were Ordered Subsets (OS), Stochastic Subsets and

Random Batches and reconstruction performance was measured over multiple epochs using

the ∆% metric. This section discusses the impact of these results.

(a) SAG

(b) SAGA
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(c) SVRG

Figure 4.5: Global convergence performance, measured with the ∆% metric, of DDDEM(xxxOSEM) pre-
conditioned (a) SAG, (b) SAGA and (c) SVRG reconstructions using the OS and
stochastic subsets methodologies, with M = 70 subsets.

4.4.1 Stochastic Gradient Ascent

The first study, see Section 4.3.1, applied these subset selection methods to a subset gradi-

ent ascent algorithm where it was observed that the OS method outperformed the stochastic

subsets method in Figure 4.4. Algorithm performance using stochastic subsets appeared to

worsen when a greater number of subsets was used. The randomised batches reconstruc-

tions were not included in either of the plots in Figure 4.4 for clarity because a ∆% value

greater than 20 was generally observed. Thus, this evidence indicates that subset gradi-

ent ascent algorithms perform better with a non-stochastic subset sequence. It should be

noted, stochastic algorithms are random and there may exist a subset selection sequence

{mk}K
k=1 that allows a reconstruction algorithm to converge faster and closer to the solution

than the OS method. Additionally, subset gradient ascent algorithms appear to benefit from

structured subsets, which almost certainly relates to balanced subsets.

4.4.2 Variance Reduction Algorithms

The SAGA and SVRG reconstructions in Figure 4.5b and Figure 4.5c were able to con-

verge within 1∆% in the first 20 epochs. The OS method applied to these algorithms led

to faster convergence during early iterations than the reconstructions using either stochastic

method. As the algorithms approached convergence, the two stochastic methods exhibited
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either comparable or superior performance to OS. Therefore, one might consider a hybrid

subset method configuration whereby the OS method is used during the first few epochs

before switching to a stochastic subset selection methodology. However, this suggestion is

heuristic and would require additional study as implementation would likely be data and

application specific.

The randomised batches method was consistently outperformed by the stochastic sub-

sets method until later epochs. Moreover, implementation of this subset methodology is

complex for the variance reduction algorithms because every projection angle required its

own gggθ entry, where θ is the index of each of the 280 projection angles. In some instances,

this may become expensive in computer memory. Hence, this subset methodology was not

further considered this section (Section 4.3).

The primary outlier result of this study was the OS SAG reconstruction in Figure 4.5a

that appeared to diverge after a few epochs. The use of a step-size that is too large might

explain this behaviour. OS SAG (or deterministic cyclical subset selection SAG) is equiv-

alent to an algorithm known as Incremental Aggregated Gradient (IAG) [Blatt et al. 2007].

The IAG algorithm is not as robust as SAG because it requires much smaller step sizes in

order to converge [Schmidt et al. 2017]. It may be that OS SAG, with a reduced step size,

might demonstrate non-divergent behaviour but this would likely significantly decelerate

reconstruction.

4.4.3 Limitations

This study had several limitations, including limited experimental configurations, i.e., the

use of a single reconstruction object and noise level, a fixed step size αk = 1 with a fixed

preconditioner DDDEM(xxxOSEM) and a basic simulated PET data acquisition.

An additional limitation of this study is that repeat stochastic reconstructions will re-

sult in different reconstruction sequences {xxxk}K
k=0, which may lead to different results. The

deterministic OS reconstructions do not suffer from this uncertainty. The stochastic re-

construction performance presented in Section 4.3 demonstrated the general behaviour ob-

served during algorithm development. However, to verify these findings, multiple stochastic

realisations should be considered for each algorithm configuration.

Finally, only the ∆ metric was considered to evaluate algorithm performance. This

requires the computation of x̂xx, which is fairly computationally demanding for this small

XCAT data set. The determination of x̂xx for larger PET data sets may require tremendous
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computational effort.

4.4.4 Conclusions

The stochastic subset selection methods applied to subset gradient ascent of the PET data

did not perform as well as the OS methodology. However, the variance reduction algorithms

did not appear as sensitive to subset selection, except the OS SAG reconstruction. Although

algorithm performance of OS SAGA and OS SVRG appeared promising and comparable

to the stochastic subset method, the application of OS to the variance reduction algorithms

was not continued in future studies after this section. This was partially because the OS

versions of these algorithms do not enjoy the same convergence proof (i.e., in expectation)

as stochastic subset selection methods. However, this study was able to isolate the impact

of various subset selection methods to some degree and the conclusions should generally

translate to fully 3D PET data reconstructions and other algorithm configurations.

4.5 Applying Stochastic Variance Reduction Algorithms to PET

Reconstruction

Section 4.3 and Section 4.4 provided a preliminary demonstration of the SAG, SAGA and

SVRG algorithms applied to PET image reconstruction. This section will explore the vari-

ous configurable parameters of the SAGA and SVRG algorithms and study their efficacy for

PET image reconstruction. Additionally, comparisons are made between these algorithms

and BSREM. The SAG algorithm is not evaluated in this section because of poor perfor-

mance in the previous section. It was generally observed to be outperformed by the SAGA

and SVRG algorithms in similar configurations throughout this study (results not shown).

This may be related to the algorithm’s gradient estimator bias, see Appendix C.

This section builds on Sections 4.3 and 4.4, as well as published works (i.e., Twyman

et al. 2020 and Twyman et al. 2021a). Section 4.5.1 provides an in-depth discussion of the

application of the variance reduction algorithms to PET, with particular focus on the step

sizes and preconditioning modifications to the SAGA and SVRG algorithms. Section 4.5.2

details the experimental configuration used in this section, including the various ROI met-

rics employed and the use of multiple stochastic realisations to assess expected algorithm

performance. Sections 4.5.3 to 4.5.5 present a number of numerical studies that investi-

gated the impact of the number of subsets, preconditioners and step sizes. These studies

were used to identify a generally well performing algorithm configuration. The impact
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of prepopulating the SAGA gradients in memory is investigated in Section 4.5.6 and Sec-

tion 4.5.7 demonstrates the impact of noise levels on SAGA’s and SVRG’s reconstruction

performance. Finally, Section 4.5.8 demonstrates algorithm reconstruction performance

applied to the patient data set and NEMA phantom scan data, which are described in Sec-

tion 4.2.3 and Section 4.2.4 respectively.

4.5.1 Application to PET Image Reconstruction

SAGA and SVRG will converge, almost surely, to the PML solution x̂xx, provided the step

size α is upper bounded by a constant αL ∝ 1/L, see Section 2.3.3.1 and Section 2.3.5.2. It

is assumed that L existsii [Kereta et al. 2021, Theorem 4.1]. However, there are challenges

in determining L, which is parameterised by the largest eigenvalue of the system matrix and

the measured data [Arridge et al. 2019]. The system matrix cannot be predetermined for a

given scanner because of the inclusion of an attenuation model AAAattenuation in Equation (2.4).

Thus, L will vary between reconstruction objects (i.e., clinical patients or phantoms).

In line with Section 4.3, preconditioned SVR algorithms are considered in this section

to improve the ill-posedness of the reconstruction problem. Algorithm convergence proofs

remain valid if the preconditioner is fixed and positive-definite [Kereta et al. 2021]. This is

because preconditioning can be considered a scaling of the problem and system matrix [Tsai

et al. 2018]. Ideally, this decreases L to a preconditioned value to LD, thereby increasing

αL to αLD and allowing the SVR algorithms to converge with larger constant step sizes.

However, it remains a challenge to compute αLD . In this section, variations of the modified

EM preconditioner DDDEM(xxx), given by Equation (2.29), are evaluated.

The SVR reconstructions in Figure 4.5 were able to approach x̂xx within 1 ∆% with

the use of the constant strictly positive and diagonal preconditioner DDDEM(xxxOSEM) and αk =

1. Yet, convergence is not guaranteed for such an algorithm configuration because it is

not known if αk = 1 < αLD . Therefore, in this section, diminishing step size sequences

are investigated in tandem with preconditioning. The relaxation methodology used in this

chapter is a modification of Equation (2.35), given by

αk =
α0

η

M k+1
. (4.2)

iiA modified likelihood function is required if b̄ j = 0 for any j [Kereta et al. 2021]. However, for any realistic
PET reconstruction (like those included in this work) b̄ j > 0 ∀ j. The proof also requires ∇Φm to be bounded
on B ≜ {0≤ xxx≤U} (where U is an upper bound [Ahn et al. 2003, Appendix A]) and Φm(xxx) to be concave and
smooth over this bounded region.
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This modification is used to allow for comparable step size magnitudes at similar epochs

of algorithms with different numbers of subsets. Building on the convergence proof in Ahn

et al. 2003, III.B for diagonally scaled incremental gradient methods, e.g., Equation (2.44),

it is expected that the aforementioned almost sure convergence remains valid for relaxed

step size sequences and a constant preconditioner. However, a complete proof of this is still

unavailable. Nevertheless, the following experiments confirm the numerical convergence,

within a reasonable tolerance, if step size parameters are suitably selected.

The DDDEM(xxxk) preconditioner is reused in the following numerical experiments. Yet,

it is unknown if the convergence proof for the SVR algorithms with this variable precon-

ditioner is valid. Unlike BSREM and diagonally scaled incremental gradient methods, the

SVR algorithms retain information in memory regarding previous updates in the reconstruc-

tion sequence, i.e., the gggm variables. As aforementioned, preconditioning may be considered

a scaling of the objective function. Thus, variations in this scaling of the objective function

between updates may generate issues for the SVR algorithms. That being said, Figure 4.5

and the following numerical results indicate variable preconditioners may demonstrate good

reconstruction performance and converge.

4.5.2 Experimental Configuration

XCAT GATE simulation data sets (Section 4.2.2), a NEMA phantom scan (Section 4.2.4)

and a static patient acquisition (Section 4.2.3) were used to assess algorithm performance

via a number of metrics. Previous studies in this thesis focused on global image convergence

by measuring ∆ and objective function values. This section transitions into investigating

local convergence properties of various objects of interest using ROI values. ROI percentage

error is given by

ROI Percentage Errork = 100% ·
Ωr

k− Ω̂r

Ω̂r
, (4.3)

where Ωr
k and Ω̂r indicate the mean, or standard deviation, of the voxel values in the ROI of

xxxk and x̂xx (converged solution) respectively, for the region r. In addition, the objective value

Φ(xxx) was computed after every epoch of the reconstructions.

Repeated stochastic reconstructions will result in different reconstruction sequences

{xxxk}K
k=0 that may lead to different xxxK estimates. The deterministic subset algorithms do

not suffer from this uncertainty. Therefore, a number of stochastic realisations SR are per-

formed for each algorithm configuration. At each algorithm update, the mean and standard

deviation of the metric values were computed.
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As an alternative to mean and standard deviations, the general convergence perfor-

mance of these algorithms was also assessed using a percentage NRMSE (NRMSE%) met-

ric at each update k, given by

NRMSE%k = 100% ·

√
1

SR
∑

SR
s (Ωk,s− Ω̂)2

Ω̂
, (4.4)

where s indexes the SR stochastic reconstruction realisations.

All reconstructions in the following results were computed from an initial xxxOSEM re-

construction. This is included in the computational cost for relevant figures with updates be-

ginning from epoch 1. However, the cost of computing κ(xxxOSEM), given by Equation (2.11),

is not included as it is considered an optional objective function modification and should not

impact reconstruction performance like warm starting from xxxOSEM does.

4.5.3 Number of Subsets

Standard PET subset algorithms (e.g., BSREM) are accelerated but may demonstrate limit

cycle behaviour. An example of this behaviour may be observed in Figure 4.4 and in the

BSREM reconstructions in Figure 4.6a, even with step size relaxation. Although the re-

construction sequences get close, they rely on αk → 0 to converge. Additionally, the re-

constructions shown in Figure 4.6a were selected from an array of M and η reconstruction

configurations with the aim to demonstrate optimal performance in the figure for recon-

structions with various M values. Not all results are shown. From this heuristic selection, it

can be concluded that reconstructions using more subsets require a greater η value.

SVRG reconstructions using various numbers of subsets, the DDDEM(xxxk) preconditioner

and no step size relaxation, are shown in Figure 4.6c. The usage of fewer subsets resulted

in slower convergence of the mean ROI performance but the stochastic realisation standard

deviations were greatly reduced. The mean values for each of the configurations converged

to 0% lung lesion error with respect to the converged solution x̂xx and the stochastic standard

deviation also converged to approximately 0% at later epochs. SAGA reconstructions ex-

hibited similar behaviour to SVRG in Figure 4.6b, albeit with larger stochastic realisation

deviations at early epochs.

Based on these results, the remaining experiments in this chapter investigated SAGA

and SVRG with 72 subsets (or a similar number, depending on the scanner) as a reasonable

trade-off between convergence rate and stochastic variation.
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4.5.4 Preconditioners

In Section 4.5.3, the SVR algorithms were implemented with the non-constant diagonal

preconditioner DDDEM(xxxk). As discussed in Section 4.5.1, convergence of SAGA and SVRG

using such a preconditioner is unknown. Yet, it is apparent that SAGA and SVRG can

perform well during the first 20 epochs, as is evident by Figures 4.6b and 4.6c. Therefore, a

hybrid methodology was devised to allow the preconditioner to vary for a number of epochs

before “anchoring” the xxx input at a later epoch. Once anchored, the preconditioner becomes

(a) BSREM

(b) SAGA

Figure 4.6: (Page 1/2)
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(c) SVRG

Figure 4.6: (Page 2/2) The mean lung lesion percentage error of (a) BSREM, (b) SAGA and (c)
SVRG reconstructions using various numbers of subsets. The implemented precondi-
tioner was DDD(xxxk). 15 stochastic realisations were used to compute the mean and the
shaded region indicates the stochastic realisation standard deviation at each update.
BSREM is shown with various η values, which were chosen to demonstrate strong
metric performance, but were not optimised. The stochastic algorithms utilised no step
size relaxation (η = 0). The 96 subset SAGA profile is not included for figure clarity.

constant, diagonal and positive definite, which allows for algorithm convergence with a

suitable step size [Kereta et al. 2021].

The impact of this anchoring after various periods of computation is investigated in

Figure 4.7. For this study, a constant step size αk = 1 was implemented, i.e. η = 0.

Four different preconditioners were considered: DDDEM(xxxOSEM), DDDEM(xxx5M), DDDEM(xxx10M) and

DDDEM(xxxk). The two hybrid methods, DDDEM(xxx5M) and DDDEM(xxx10M), vary as xxxk for 5 and 10

epochs respectively. After the indicated computational period, i.e., 5 and 10 epochs, xxx5M

and xxx10M are set to a constant input. This constant value is the last iterate xxxk before the

5th and 10th epoch. This has the effect of “anchoring” the preconditioner after a period of

computation using a variable preconditioner.

Figure 4.7 plots the NRMSE% performance of these preconditioned SAGA and SVRG

reconstructions and compares to a BSREM algorithm. During the first 5 epochs, all SVR

reconstructions performed comparably by demonstrating a gradual decline on the logarith-

mic scale. For both SAGA and SVRG, the DDDEM(xxxOSEM) preconditioned reconstructions

did not converge to the solution but instead the NRMSE% values converged to an error of
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(a) SAGA

(b) SVRG

Figure 4.7: The lung lesion percentage NRMSE values of 15 stochastic realisations with precon-
ditioners anchored throughout. (a) SAGA and (b) SVRG reconstructions are plotted
separately. The BSREM ROI NRMSE percentage value was computed for a single
deterministic realisation with Equation (4.4) and vertical axis are identical and logarith-
mic.

approximately 1. In comparison, the DDDEM(xxx5M), DDDEM(xxx10M) and DDDEM(xxxk) preconditioned

reconstructions all appeared comparable for the entire 20 epoch reconstruction performance

shown. The configurations using SVRG, plotted in Figure 4.7b, appeared to converge closer

to the solution than their comparable SAGA configurations.

To investigate why DDDEM(xxxOSEM) with η = 0 reconstructions failed to converge, ROI

values of a region outside of the thorax were computed, which are plotted in Figure 4.8.
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Figure 4.8: Mean image background region values of 50 million event XCAT data reconstructions
using SAGA and SVRG across 15 stochastic realisations. Algorithm configurations
utilise combinations of the DDDEM(xxxOSEM) and DDDEM(xxx5M) preconditioners and relaxation
parameters η = 0.0 and η = 0.4.

The voxels in this region did not converge to zero when αk = 1 and the preconditioner

DDDEM(xxxOSEM) was implemented. Instead, the voxels in this region retained a positive bias.

It is assumed this bias exists for all voxels outside of the object, not only those in this ROI.

Allowing the preconditioner to vary as xxxk until 5 or 10 epochs permitted the background

region to converge to zero. In addition, preconditioning with DDDEM(xxxOSEM) and relaxing

αk with η = 0.4 > 0 reduced the impact of the bias in this region over the course of the

reconstruction. The impact of various αk methodologies is further explored in Figure 4.9.

Preconditioners may be considered spatially variant step sizes and the SVR algorithms

require αk < αLD to converge. The preconditioned objective function DDDEM(xxxOSEM)Φ(xxx)

likely resulted in the non-convergence observed in Figure 4.7 because of the sub-optimal

preconditioner. This preconditioned system may not have maximised αLD , such that αLD >

αk = 1, as well as DDDEM(xxx5M)Φ(xxx), DDDEM(xxx10M)Φ(xxx) or DDDEM(xxxk)Φ(xxx).

4.5.5 Step Sizes

Figure 4.9 demonstrates SAGA and SVRG reconstruction performance when implemented

with step size relaxation. The poorly performing DDDEM(xxxOSEM) preconditioner was used

to highlight the impact of relaxation. Similar to the DDDEM(xxxOSEM) reconstructions in Fig-

ure 4.8, the reconstructions with no relaxation (η = 0) were non-convergent to x̂xx within the

20 epochs shown. Yet, reconstructions with η > 0 appeared to allow the lung lesion ROI
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(a) SAGA

(b) SVRG

Figure 4.9: The XCAT 50 million event data set mean lung lesion percentage error of (a) SAGA and
(b) SVRG reconstructions using various step size relaxation factors η ∈ {0, 0.4, 1.5},
72 subsets and the DDDEM(xxxOSEM) preconditioner. 15 stochastic realisations were used to
compute the mean and the shaded region indicates the stochastic realisation standard
deviation at each update.

values to converge to the correct value, although the rate of convergence was impeded when

η = 1.5. The overall trends of step size relaxation are similar to those observed for BSREM

in Figure 4.6a although the SVR algorithms appear less susceptible to subset selection as

the stochastic realisation standard deviations are small.
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Figure 4.10: The lung lesion percentage error of the 50 million event XCAT data set reconstruc-
tions using SAGA with and without prepopulating the gradients in memory. This pre-
populating corresponds to an initial epoch of computing gggm = ∇Φm(xxxinit), ∀m before
updates are performed. Without warm starting initialises gggm = 0, ∀m. Algorithm con-
figurations use the DDDEM(xxx5M) preconditioner with M = 72 subsets and η = 0.0.

4.5.6 Prepopulating SAGA Gradients

In Figures 4.6b and 4.9a, initial epochs of SAGA reconstructions exhibit large variations

between stochastic realisations. A suggestion by Schmidt et al. 2017 indicates that pre-

populating the M gradients in memory with gggm = ∇Φm(xxxOSEM), ∀m may improve early

algorithm performance. This methodology is comparable to SVRG during its first update

and reconstruction performance using this methodology is demonstrated in Figure 4.10.

These results are compared to similar SAGA configurations without prepopulating and it is

observed that reconstruction performance is in fact negatively impacted by prepopulating.

The expected mean ROI values fluctuated significantly for a longer reconstruction period

and the 15 stochastic realisation standard deviations were significantly larger. The reasoning

for this is discussed in Section 4.6.5.

4.5.7 Impact of Noise

The impact data noise has on the stochastic algorithm reconstruction performance is in-

vestigated in this sub-section. The implemented stochastic algorithm configurations were

selected to be advantageous and are based on the results presented in Sections 4.5.3, 4.5.4

and 4.5.5. Two metric measurements are demonstrated for each reconstruction configura-

tion for each data set in Figure 4.11. On the left, sub-figures (a), (c) and (e), mean lung

lesion ROI values throughout the reconstruction are shown (denoted by Ωr
k) and on the
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right, sub-figures (b), (d) and (f), objective function values Φ(xxxk) are presented. In this

sub-section, references to (a) - (f) correspond to the sub-figures in Figure 4.11.

(a) 50 Million Events Ωr
k

(b) 50 Million Events Φ(xxxk)

Figure 4.11: (Page 1/3)
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(c) 250 Million Events Ωr
k

(d) 250 Million Events Φ(xxxk)

Figure 4.11: (Page 2/3)

For the 50 million event data set, the SVR algorithms demonstrated large fluctuations

in Ωr
k during the first five epochs of (a). These reduced significantly over the remaining

epochs and appeared to converge to a value of Ω̂r ≈ 1.18. In comparison, the BSREM

reconstructions either exhibited large inter-update variations in Ωr
k or were slow to con-

verge. This slow convergence was likely a result of the use of fewer subsets (M = 24)

and a larger η = 1.5 value. In the adjacent figure (b), the epoch periodic measurements

of Φ(xxxk) indicated a larger discrepancy between algorithm performances. However, the
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(e) 1200 Million Events Ωr
k

(f) 1200 Million Events Φ(xxxk)

Figure 4.11: (Page 3/3) Lung insert mean values across 15 stochastic realisations for XCAT data
sets with (a) 50, (c) 250 and (e) 1200 million prompt events. Mean objective function
evaluations of 15 stochastic realisations, measured at every epoch, of BSREM, SAGA
and SVRG reconstructions for XCAT data sets with (b) 50, (d) 250 and (f) 1200 mil-
lion prompt events. Standard deviation markers were removed for clarity. SAGA and
SVRG reconstructions utilised a DDDEM(xxx5M) as a preconditioner and 72 subsets while
BSREM utilised the DDDEM(xxxk) preconditioner. Various step size relaxation parameter
η values are demonstrated.
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other SVR algorithm configurations outperformed the BSREM reconstructions after the 5th

epoch. Note, the fastest converging Ωr
k SAGA reconstruction in (a), using η = 0.4, appeared

non-competitive in (b).

The 250 million event reconstruction Ωr
k measurements shown in (c) demonstrated

similar performance to the 50 million event data set. The SVR algorithms exhibited some

initial variation in mean Ωr
k measurements before seemingly converging to Ω̂r ≈ 5.8. As

with (a), the BSREM reconstructions in (c) suffered from either inter-update variations in Ωr
k

values or slow convergence. The measurements shown in (d) depict low Φ(xxxk) values for the

SAGA reconstruction with η = 0.4 and the M = 24 with η = 1.5 BSREM reconstructions.

All other BSREM, SAGA and SVRG reconstructions appeared to similarly optimise Φ(xxxk)

over the 20 epochs with the SVRG algorithms slightly outperforming other methods after 5

epochs.

Finally, the 1200M reconstructions indicated greater discrepancies in Ωr
k performance

during early updates in (e), when compared to (a) and (c). Notably, all reconstructions

using η = 1.5 performed poorer than their η = 0.4 comparisons and, with the exception of

M = 48 and η = 0.4 BSREM reconstruction, the SVR algorithms outperformed BSREM.

Compare this to the Φ(xxxk) measurements plotted in (f) where all reconstructions, besides

BSREM with M = 24 with η = 1.5, were comparable. In both (e) and (f), the BSREM

reconstruction using η = 0.4 and M = 48 was fast at optimising the metrics during early

epochs and competitive with the SVR algorithms at later epochs, although there were some

inter update variations in Ωr
k when approaching 20 epochs.

4.5.8 Non-Simulated Data Sets

The previous sections assessed various configurations of SAGA and SVRG using the XCAT

GATE simulated data set. In this sub-section, the SVR algorithms are applied to non-

simulated 3D PET data sets and algorithm performance is compared to BSREM using

ROI metrics. SVR algorithms are configured similarly to the algorithms presented in Sec-

tion 4.5.7, with various step size relaxation parameters η , the DDDEM(xxx5M) preconditioner and

M = 68 or M = 72 subsets. However, only a single stochastic realisation is presented for

each algorithm configuration.

4.5.8.1 Patient Data
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Multiple reconstructions of the patient data set (described in Section 4.2.3) were per-

formed with various algorithm configurations. The presented results in Figure 4.12 corre-

spond to the “optimal” algorithm η value configurations for BSREM (17 and 34 subsets),

SAGA and SVRG (68 subsets). Multiple reconstructions were performed with various η

values for each algorithm. The presented configuration minimised the ROI percentage error

of the mean bronchial carcinoma ROI (with respect to Ω̂r) over the first 10 epochs. There-

fore, these “optimal” algorithms converged fast while minimising inter-update variations.

(a) Bronchial Carcinoma

(b) Hilar Lymph Node Metastasis

Figure 4.12: (Page 1/2)
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(c) Liver Standard Deviation

Figure 4.12: (Page 2/2) Reconstruction performance of the patient data using BSREM (17 and 34
subsets) and SAGA and SVRG (68 subsets). (a) Bronchial Carcinoma (SUVpeak) and
(b) Hilar Lymph Node Metastasis (SUVpeak) and (c) ROI standard deviation in the
patient’s liver (SUV).

The mean bronchial carcinoma values, shown in Figure 4.12a, converged quickly to

an SUV peak value of 6.138 for both SAGA and SVRG with minimal deviations after 3

epochs. The liver mean ROI value converged to 3.68 SUV using SAGA and SVRG within

a similar number of epochs (plots not shown). Additionally, the standard deviation of voxel

values within the liver ROI converged to a value of 0.39 SUV, see Figure 4.12c.

4.5.8.2 NEMA

The NEMA phantom data set (described in Section 4.2.4) was reconstructed using SAGA

and SVRG with η = 0.2, M = 72 and the DDDEM(xxx5M) preconditioner. The mean ROI values

of the largest and smallest spheres (37mm and 10mm diameters) over the reconstruction pro-

cess are plotted in Figures 4.13a and 4.13b, respectively. Although the phantom’s spheres

were filled with equal activity, the smaller sphere was reconstructed with less intensity. This

was likely a consequence of spill-over partial volume effects [Erlandsson et al. 2012], i.e.

over-smoothing due to the penalty.

It is evident that the 37mm sphere converges faster than the 10mm sphere for all al-

gorithms. In Figure 4.13a, the single SAGA stochastic realisation quickly achieved the

approximately correct ROI scale within 2 epochs. However, a few additional epochs were

required for the inter-iteration variations to dissipate. The SVRG reconstruction ROI values
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(a) 37mm NEMA sphere

(b) 10mm NEMA sphere

Figure 4.13: Reconstruction profiles of the mean values (kBq/mL) of (a) the 37mm sphere and
(b) the 10mm sphere in a NEMA phantom. NEMA phantom details can be found in
Section 4.2.4. Algorithms used are BSREM, with 24 and 48 subsets, and SAGA and
SVRG, with 72 subsets.

were delayed in achieving converged mean value by the initial full epoch of computation.

However, the amplitude of the variations between sequential updates appeared lesser for

SVRG than for SAGA at similar epochs. This larger sphere converged quickly for both

BSREM reconstructions and, after approximately 6 epochs, BSREM with 24 subsets ap-

peared comparable to the stochastic algorithms.

SAGA’s and SVRG’s initial performance, shown in Figure 4.13b, was similar to the
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results of the previous figure, but, the inter-update variations appeared larger. Within epochs

2 to 4, SVRG over and then under estimated the mean ROI values. After the gradients

were recomputed (4th to 5th epoch), the ROI steadily converged with limited inter-iteration

variations.

4.6 Discussion of Stochastic Variance Reduction Algorithms Ap-

plied to PET

In Section 4.5, the results of the SAGA and SVRG algorithms, used to reconstruct various

3D PET data sets in a variety of configurations, were presented. Throughout this section,

these results are discussed.

4.6.1 Number of Subsets Impact

In Figure 4.6b and Figure 4.6c, SAGA’s and SVRG’s use of a greater number of subsets

resulted in faster mean convergence of the ROI. However, large stochastic variations in

ROI metric performance, between stochastic realisations, were observed during the initial

epochs. These large deviations were a result of stochastic subset selection but reduced after

a few epochs. Furthermore, the maximum standard deviation values for the M = 72 and

M = 96 reconstructions were comparable to fluctuations in the comparison BSREM ROI

values, shown in Figure 4.6a.

In Section 4.3.2 and the reconstruction results depicted in Figure 4.5, it was observed

that the variance reduction algorithms are sensitive to subset selection, particularly during

early updates. This sensitivity was demonstrated by the initial epochs of OS SAGA and OS

SVRG outperforming the stochastic subset selection methods. From Figure 4.4 it can be

predicted that OS methodologies are effective during early updates. Increasing the number

of subsets results in less balanced subsets. Hence, because of SAGA’s and SVRG’s initial

subset selection sensitivity and a greater number of subsets being employed, the algorithms

demonstrated larger variations in initial algorithm performance between stochastic realisa-

tions.

The M = 72 SAGA and SVRG reconstructions in Figure 4.6 demonstrated a balance

between fast initial mean performance and smaller standard deviations. The standard de-

viations between stochastic realisations converged to less than 0.1% within 10 epochs.

This is likely explained by all gggm ≈ ∇Φm(xxxk) for all stochastic realisations after approx-

imately 10 epochs, regardless of the number of subsets. Hence, the approximation that
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∇̃k,mk ≈ ∑
M
µ=1 gggµ ≈ ∇Φ(xxxk) becomes true and Equation (2.51) becomes (approximately)

invariant to mk.

Therefore, the primary impact the number of subsets has on the SAGA and SVRG

algorithms occurs during the first few epochs. Note, even though BSREM utilised a step

size relaxation sequence, while SAGA and SVRG used αk = 1, BSREM does not suppress

the inter-update variations at later epochs as much as SAGA and SVRG do.

4.6.2 Differences Between SAGA and SVRG

When compared with SAGA, SVRG demonstrated reduced variations between stochastic

realisations during early updates in Figure 4.6 and 4.7. This stability is likely a consequence

of ∑
M
µ=1 gggµ remaining constant for the γ = 2 epochs of stochastic subset selection. Alter-

natively, consider the fact that although it is expected that a subset index m ∈ {1,2, . . . ,M}

is selected once every epoch, the expected number of epochs required to select every m

once grows as O(logM) [Flajolet et al. 1992]. Hence, a number of SAGA’s stored subset

gradients may not have been computed from recent xxxk iterates. Thus, for various m indices,

gggm ̸≈ ∇Φm(xxxk), which may detrimentally impact the update direction. This may further

increase the standard deviation of metric performance between stochastic realisations. In

contrast, because SVRG recomputes all gggm terms periodically from x̃xx, it is expected that

gggm ≈ ∇Φm(xxxk) ∀m, as long as γ is small enough and xxxk ≈ x̃xx. However, SVRG also ex-

hibited slower convergence, likely because of this periodic recomputation that resulted in

significant additional computational cost while not updating xxxk.

4.6.3 Convergence

In order to assist with convergence to the PML solution, in this work the SVR algorithms

were implemented with a modified version of the EM preconditioner. This preconditioner

was anchored after various epochs of computation. When using a constant step size, a sys-

tematic error was observed in both the lung lesion (Figures 4.7 and 4.9) and the region out-

side of the thorax (Figure 4.8) at later epochs of reconstructions utilising the DDDEM(xxxOSEM)

preconditioner with η = 0. It is hypothesised that this bias relates to an excessive effective

step size in this surrounding background region due to the preconditioner, αk = 1 and the

non-negativity constraint. This positive background bias appears to have led to a (small)

negative bias inside the torso due to data count preservation. By deferring the anchoring of

the preconditioner until later epochs, e.g., DDD(xxx5e), the effective step size in this region was

significantly reduced because voxel values tended towards zero. This allowed the recon-
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structions to converge closer to the solution in the investigated ROIs.

Additionally, several step size relaxation parameters η were investigated in Figure 4.9.

Both the XCAT lung lesion insert and the region surrounding the torso (Figure 4.8) con-

verged closer to the solution with η > 0 than η = 0. However, similar to BSREM, over re-

laxation may have impeded reconstruction performance and reduced the convergence rate.

Thus, heuristic tuning of η is still required for this methodology, although it seems apparent

that the SVR algorithms are less sensitive to the parameters selection.

The experimental results indicate that the implementation of a moderately relaxed step

size sequence, along with a delayed anchored preconditioner, e.g., DDD(xxx5e), allows for fast

numerical convergence.

4.6.4 Impact of Data Noise

Multiple data sets were used in this work to evaluate SVR algorithms. Reconstruction per-

formance of various algorithm configurations at multiple noise/count level reconstructions

of the XCAT GATE simulated data, discussed in Section 4.2.2, were presented in Fig-

ure 4.11. In these plots, the SAGA and SVRG reconstructions generally achieved higher

objective function values faster than BSREM with the 50 million event data set, see Fig-

ure 4.11b. Yet, as the number of events increased, BSREM reconstructions became com-

parable in optimising the objective function. Moreover, as the data set SNR increased, all

reconstruction algorithms appeared less sensitive to relaxation parameter η . In comparison,

the ROI plots in Figure 4.11 demonstrated that the SVR algorithms reduce the impact of

subset selection, which is notable for the 50 million event data set. Additionally, although

this impact is reduced for higher count data, likely due to subset balance improving with

higher SNR data sets because of relatively reduced noise contributions, the SVR algorithm

lung lesion ROI converged faster with the use of more subsets.

4.6.5 SAGA Prepopulating

As observed in Section 4.5.6 and Figure 4.10, prepopulating SAGA’s gggm vectors with gggm =

∇Φm(xxxOSEM), ∀m did not improve the convergence rate of the XCAT lung insert. This

contradicts the observations in Schmidt et al. 2017. To attempt to explain this, consider

the SAGA reconstruction without prepopulation. This algorithm’s initial ∇̃k,mk evaluations

will have smaller magnitude than the prepopulated gggm SAGA algorithm as few non-zero gggm

variables exist. This will reduce the effective step size of the update direction during these

early updates. Thus the algorithm gradually increases the step size as more gggm variables
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become populated as k increases.

Furthermore, during these early updates, with minimal information being provided by

the gggm variables, the algorithm likely converges closer to x̂xx as the SAGA algorithm remains

akin to a stochastic preconditioned gradient ascent algorithm. Hence, during this early

period, many of the newly assigned gggm = ∇Φm(xxxk) evaluations better represent ∇Φm(x̂xx),

compared to ∇Φm(xxxOSEM).

Next, consider the fact that the SAGA algorithm with prepopulation and the SVRG al-

gorithm are indistinguishable for the first update. Yet, the SVRG reconstructions in similar

configurations, e.g., M = 72 in Figure 4.6c did not suffer the same large stochastic real-

isation standard deviations between epochs 2 and 4. As the discrepancies between these

algorithms occurred over multiple stochastic realisations for both data sets, it may be con-

cluded that the cause relates to the differences in the algorithm methodology. The primary

discrepancy is the storage of gggm = ∇Φm(xxxk) after each iteration of SAGA, whereas SVRG

retains constant gggm, ∀m variables for the γM updates. At the second update a random subset

index mk is selected and the gggmk
= ∇Φmk(xxxk) variable will be stored. Subsequent updates

will continue this trend and additional gggm variables will be reassigned and will not con-

tain the initial prepopulated ∇Φm(xxxOSEM) values. Thus, the stochastic variability will be

increased for prepopulated SAGA compared to SVRG.

4.6.6 Image Noise Convergence

Reconstruction performance of a clinical patient data set was evaluated in Section 4.5.8.1.

Noise and bias trade-offs are commonly evaluated in PML reconstruction analysis [Ahn et

al. 2015; Teoh et al. 2015]. However, this evaluation is sensitive to the reconstruction algo-

rithm, epoch number and objective/penalty function, which was somewhat demonstrated in

Figure 4.12a. The SUVpeak of the bronchial carcinoma converged quickly with BSREM

in Figure 4.12a, although some inter-update variations were present. Yet, the BSREM liver

standard deviations did not converge within 10 epochs in Figure 4.12c. Both of the BSREM

reconstructions exhibited standard deviation values that were generally greater than the

value obtained after 10 epochs by the SVR algorithms, with significant variations between

epochs.

The SUVpeak for the bronchial carcinoma converged quickly for SAGA and SVRG re-

constructions, similar to BSREM. However, the SVR algorithms were also able to converge

quickly in the liver. Therefore, these SVR algorithms removed a source of potential error in
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noise and bias comparisons due to the impact of the number of subsets and reconstruction

duration (after 4 epochs). Yet, the reliance on objective function remains.

4.6.7 Practical Implementation for PET Reconstruction

This sub-section discusses some practical aspects of implementing SVR algorithms to PET

reconstruction.

4.6.7.1 Computation Cost Comparison

Throughout this thesis, it has been assumed that an epoch of each of the SVR algorithms is

equivalent to a BSREM epoch. However, the SAGA and SVRG algorithms incur additional

computational cost in the evaluation of ∇̃k,m(xxxk) due to the additional image/vector manipu-

lations associated with Equation (2.51). In an efficient software implementation, the impact

of these basic image-space operations should be negligible with respect to the computational

cost of evaluating ∇Φm(xxx), which requires subset forward and backward projection opera-

tions. This is because the number of voxels in an image Nv is considered small for modern

computing systems, especially when compared to the number of projection data bins Nb

in 3D PET data sets, e.g., for the non-TOF GE Discovery MI (5 ring): Nv = 9.29× 106

and Nb = 2.23×108. For TOF reconstruction, Nb may increase by an order of magnitude.

Therefore, the computational effort for evaluating an epoch of SAGA or SVRG is expected

to be little more than the computational effort to evaluate an epoch of BSREM.

4.6.7.2 Reconstruction Duration and Static Objective Function

The SVR algorithms demonstrated potential to PET reconstruction in this work. However,

because of the population of the M gggm variables, these algorithms require a minimum of

an epochs worth of computation to be as effective as designed. This is clearly evident for

SVRG with its initial population of the gggm variables before the first algorithm update is

applied. Following this, the algorithm iterates for γ epochs before it effectively restarts

from a new x̃xx. Therefore, an SVRG reconstruction duration should iterate for longer than a

single epoch and an integer number of γ +1 epochs is recommended.

Several advanced image reconstruction methods alternate between “model estimation”

and an “image reconstruction”, e.g., Motion-Compensated Image Reconstruction (MCIR)

[Dikaios et al. 2011] and scatter estimation [C. Tsoumpas et al. 2004; Thielemans et al.

2012]. As the model estimation step modifies the objective function, algorithms that keep

history of previous updates may retain information that does not reflect the newly modified

objective function. The SVR algorithms rely on the approximation that ∇Φm(xxxk) ≈ gggm
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for the evaluation of ∇̃k,mk in Equation (2.51). Hence, the SVR algorithms should only be

considered for optimising static objective functions. For use with these advanced image

reconstruction methods, these algorithms should be applied with care because significant

changes in Φ(xxx) may result in poor update steps. Alternatively, SVRG could recompute the

M gggm variables after every change in Φ(xxx) but this may be inexpedient.

4.6.7.3 Memory Requirements

The memory requirement for storing M subset gradient variables gggm is insignificant on a

modern computing system for current PET images. For example, assuming each gggm requires

approximately 20MB in memory (as is the case for the GE Discovery 690), with M = 72,

the memory requirements are 1440MB. However, with more complex objective functions,

e.g., those optimising dynamic data sets, this memory requirement may become restrictive

with a large M. Additionally, with the advent of longer PET scanners increasing the FOV,

these memory requirements may become more relevant [Spencer et al. 2021].

4.6.8 Alternative Stochastic Algorithms

There exist a number of comparable algorithms to those presented in this work. This in-

cludes a recently proposed stochastic algorithm for PET reconstruction (SPDHG) and alter-

native stochastic variance reduction algorithms.

4.6.8.1 SAG

Based on poor performance during preliminary studies (Twyman et al. 2020, Twyman et al.

2021a and Section 4.3.2), SAG reconstruction performance results were not presented using

3D data sets in Section 4.5, however, they were computed. Some of these SAG algorithm

configurations (using the stochastic subsets method) diverged in a similar manner to the

OS SAG reconstruction in shown Figure 4.5a. As aforementioned in Section 2.3.5.2 and

Appendix C, SAG is a biased algorithm. The SAG ∇̃k,mk computation relies more on the

∑
M
µ=1 gggµ term of Equation (2.51) than SAGA because ξ = 1. This likely makes the SAG

algorithm more sensitive to instances where gggm ̸≈ ∇Φm(xxxk) for any m. This may have

induced the poor performance observed with some SAG reconstructions.

In Driggs et al. 2020b, various ξ ∈ (1,M) values were investigated for both SAGA

and SVRG in Equation (2.51). This study indicated some algorithm bias can accelerate the

optimisation of the objective function.
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4.6.8.2 Alternative SVRG

An alternative SVRG implementation that benefits from reduced memory requirements can

also be employed. Only the full gradient GGG = ∑
M
µ=1 gggµ and anchored position x̃xx are stored

in memory. At each update, ∇Φm(xxxk) and ∇Φm(x̃xx) are computed. We note that this imple-

mentation should generally be unnecessary for the PET reconstruction problem due to the

relatively small memory requirements for PET distribution volumes, as discussed in Sec-

tion 4.6.7.3, and the additional, but significant, computational cost of evaluating ∇Φm(x̃xx) at

every update.

4.6.8.3 SARAH

The StochAstic Recursive grAdient algoritHm (SARAH) algorithm [Nguyen et al. 2017] is

closely related to the previously described alternative SVRG algorithm in Section 4.6.8.2.

SARAH also periodically recomputes all gggm terms from x̃xx but only stores x̃xx and GGG =

∑
M
m=1 gggm in memory. The algorithm evaluates two subset gradients at each update in its

computation of ∇̃k = ∇Φmk(xxxk)−∇Φmk(xxxk−1)+GGG. This additional computation is the rea-

son that SARAH is not included for comparison in this thesis.

4.6.8.4 SVREM

Another SVR algorithm is Stochastic Variance Reduction EM (SVREM), which was ap-

plied to penalised PET image reconstruction in a preliminary study [Kereta et al. 2021]. This

algorithm was developed in parallel with the research presented in this thesis. SVREM ex-

tends OSEM into a stochastic framework and incorporates insights from variance reduction

techniques for gradient based methods into the EM framework. The methodology involves

closed-form update equations based on parabolic surrogates and features non-negativity

preservation. The SVREM algorithm demonstrated similar performance to SAGA and

SVRG.

Currently the SVREM is incompatible with the RDP (which was used throughout

this thesis) because of the algorithms requirement to construct a surrogate of the penalty

function. This requires a penalty energy function in the form of ρ(x), where (generally)

x = xi− xl , see Section 2.2.3.

4.6.8.5 SPDHG

The SPDHG algorithm has been recently developed and applied to numerous PET image re-

construction problems [Chambolle et al. 2018; Ehrhardt et al. 2017; Delplancke et al. 2021].

SPDHG is a subset/stochastic extension of the Primal Dual Hybrid Gradient (PDHG) algo-
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rithm that solves a saddle point problem, which is separable in the dual variable allowing for

the use of subsets [Chambolle et al. 2018]. Similar to the variance reduction optimisation

algorithms, SPDHG retains information from previous iterations, which reduces variance.

This information is stored in projection space that may result in computer memory com-

plications for high dimensional data [Schramm et al. 2022]. This algorithm guarantees

(almost sure) convergence to the PML solution x̂xx. When combined with preconditioning,

SPDHG reconstructions can utilise a large number of subsets and it has shown promising

application for 3D PET reconstruction [Ehrhardt et al. 2019]. However, step size selection

is generally heuristic for SPDHG and may significantly impact algorithm performance if

poorly selected.

Similar to SVREM, the reconstruction performance of SPDHG was not compared to

SAGA and SVRG in this work due to difficulties deriving the convex conjugate of the RDP.

4.6.9 Limitations of this Study

There are a variety of limitations regarding the presented studies applying variance reduc-

tion algorithms to PET reconstruction in this chapter.

A primary limitation of this research is the lack of comparison between the algorithms

presented and other PET algorithms, such as those discussed in Section 4.6.8, in addition to

other popular optimisation algorithms in the literature, e.g., OS-SPS [Ahn et al. 2003], Nes-

terov and momentum methods [Nesterov 2013; Ruder 2016], and L-BFGS-B(-PC) [Tsai

et al. 2018]. As aforementioned in Section 4.6.8.5, SPDHG and SVREM comparisons are

not currently possible with the objective function used in this work because of the RDP.

Nesterov and momentum modifications of the SAGA and SVRG algorithms have been

presented in the optimisation literature [Allen-Zhu 2016; Shang et al. 2017; Driggs et al.

2020a], however, they have not been applied to PET. The benchmark comparisons between

these novel stochastic algorithms remains a possible avenue of future work.

Many of the figures shown in Section 4.5 plotted the mean and standard deviations of

15 stochastic realisations of each algorithm configuration. This number of realisations was

selected heuristically. A large number of stochastic realisations is required to accurately

demonstrate the expected performance of each algorithm configuration and its expected de-

viations. This was balanced against the practical experimental feasibility of running a sig-

nificant number of PET reconstructions. More reconstructions would improve the depicted

accuracy of the expected performance, but may not be necessary.
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The presented results illustrated the expected performance of a subset of the possi-

ble algorithm configurations in the proposed setup. This included a single preconditioner

formulation, albeit with various inputs, and a single step size relaxation methodology. Al-

ternative formulations and methodologies of configuration factors may result in alternative

reconstruction performance.

Throughout this thesis, a number of metrics have been employed to quantitatively as-

sess algorithm performance over the iterates. Particular focus was given to quantification

of ROI convergence in Section 4.5, although objective function values are shown in Sec-

tion 4.5.7. Additionally, the ∆% metric was used in Chapter 3 and Section 4.3. In some

instances, e.g., Figure 4.11, an evaluation using one metric may have indicated superior

algorithm performance but an alternative metric did not indicate this was the case. Thus,

many of the statements made were metric specific and more numerous or advanced metrics

are likely required for a full analysis of algorithm performance.

Finally, although the stochastic algorithms were applied to several data sets of various

noise levels, only static acquisitions were investigated using non-TOF data.

4.6.10 Conclusion

To conclude this section, SAGA and SVRG were successfully applied to PET image recon-

struction in a preconditioned form. It was found that SAGA and SVRG are less sensitive

to the number of subsets than the comparator, BSREM, and thus, using a larger number

of subsets, the algorithms converged faster to the MAP solution. However, the amplitude

of expected deviations between stochastic realisations increased during early epochs as the

number of subsets increased. SAGA generally allowed the investigated metrics to con-

verge faster but SVRG appeared more stable in metric values and in most cases steadily

approached convergence rather than fluctuating around the value. Furthermore, allowing

the algorithms’ preconditioner to vary for a number of epochs improved the conditioning of

the reconstruction problem and step size relaxation could assist in accelerating convergence

(if optimal parameters were selected). Furthermore, it was observed that the prepopulation

of the SAGA gradients in memory did not assist in improving algorithm performance.

The two stochastic variance reduction algorithms demonstrated notably improved con-

vergence properties of low count noisy data sets compared to BSREM. Finally, recon-

struction performance was assessed across multiple simulated and non-simulated data sets,

which resulted in similar conclusions illustrating SAGA and SVRG capabilities for reliable
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PET image reconstruction.



Chapter 5

Conclusion

5.1 Main Conclusions

As discussed in Chapter 2, iterative optimisation is used almost ubiquitously throughout

modern clinical PET reconstruction and penalised methods are becoming more common-

place as a result of the Q.Clear algorithm’s inclusion into General Electric PET/CT systems

[Ross 2014]. Iterative algorithms are no longer required to terminate early to prevent noisy

distribution estimates because PML algorithms are able to converge to desirable MAP solu-

tions when regularisation is balanced. Therefore, faster PET reconstruction algorithms are

sought after to reduce the computational requirements to numerically converge to the MAP

solution.

The current standard of subset PET reconstruction algorithms demonstrate limit cy-

cle behaviour as a consequence of discrepancies between sequentially applied subset data

used to update the estimate. Convergence is guaranteed with the use of relaxed step size

sequences but performance may be impacted by heuristic selection of parameters. Hence,

with practical limitations on reconstruction durations, algorithms may not converge.

The primary motivation of the studies in this thesis were to accelerate PML PET image

reconstruction and to improve algorithm stability by limiting the impact of subset variance.

To achieve these goals, adaptive subset size and stochastic optimisation algorithms were

applied to PET reconstruction.

In Chapter 3, the AutoSubsets algorithm was presented. The algorithm was fast at op-

timising the objective function during the first few epochs because of its use of small subset

sizes. However, the algorithm appeared to increase subset size too quickly and convergence

rates were impeded after little computation.

In tandem with the AS algorithm, list mode event-by-event subset reconstruction was
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presented. It was noted that reconstruction of this data could be achieved with significantly

more subsets than could be used in projection data subset algorithms. However, the recon-

structed image’s voxel noise increased with more subsets and the AS algorithm was able to

suppress this noise by using larger subsets at later updates.

The application of stochastic variance reduction algorithms to the PET reconstruction

problem was presented in Chapter 4. These algorithms utilise previously computed subset

gradients to better approximate the full data gradient used to update the estimated distri-

bution. The utilisation of this variance reduced gradient approximation allows for more

subsets to be used to update the distribution and thus permits more updates within an epoch

of computation.

A preliminary study in Chapter 4 investigated the impact of various subset method-

ologies on iterative PET image reconstruction performance for a number of reconstruction

algorithms, see Section 4.3. Two of the investigated subset methods attempted to balance

subsets by binning regularly space rows of the projection data into each subset. It was

observed that these subset construction methods significantly improved preconditioned gra-

dient ascent performance. However, stochastic subset sampling methods result in poorer

reconstruction sequences than those using the OS sampling method. As expected, this result

was amplified for reconstructions using more subsets. The variance reduction algorithms

demonstrated comparable performance between all subset sampling methods, except the OS

SAG configuration that diverged. Thus, the variance reduction algorithms are less sensitive

to subset selection than preconditioned subset gradient ascent.

Various configurations of the SAGA and SVRG algorithms were applied to PET im-

age reconstruction in Section 4.5 and compared to BSREM reconstructions across multiple

non-TOF PET data sets. This investigation conducted multiple stochastic realisations of

each algorithm configuration to assess the expected performance. It was observed that pre-

conditioned SAGA and SVRG are expected to converge within 20 epochs for a number of

configurations, outperforming BSREM across multiple metrics. Therefore, the SAGA and

SVRG algorithms, in a preconditioned formulation with moderate step size relaxation, have

significant potential for PET image reconstruction with minimal modification to current re-

construction methodologies. These algorithms accelerated convergence with the use of a

larger number of subsets and reduced the impact of the variance between subsets.
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5.2 Algorithm and Software Development

In addition to the iterative reconstruction algorithm research, a large volume of software

was developed to support these studies. This included the implementation of the pre-

sented BSREM and stochastic variance reduction algorithms along with various experi-

mental methodologies. The primary software contributions provided by the author are sum-

marised below.

5.2.1 Iterative PET Algorithms

A python project was developed to implement and configure the various iterative recon-

struction algorithms in a modular framework. The implemented modules were:

(a) The AutoSubsets algorithm.

(b) Various preconditioned subset gradient ascent algorithms e.g., BSREM and OSEM.

(c) Various preconditioner methodologies.

(d) Step size methods, including line searches (back-tracing and golden-section search).

(e) Stochastic variance algorithms (SAG, SAGA, SVRG, SARAH and SVREM).

This software was built to interface with STIR for objective function computations and data

set handling.

5.2.2 Cluster Distribution

For the majority of this project, algorithm analysis was primarily performed on a distributed

High Performance Computing (HPC) cluster. A number of tools were developed to auto-

mate much of the interfacing to allow for the generation, extraction and analysis of the data.

This included:

(a) Tools to generate, submit and control (including error state checks) large batch cluster

jobs.

(b) Automatic computation of several image quality and algorithm performance metrics

at each update during HPC job run-time. This significantly reduced hard disk storage

requirements as reconstruction sequences did not need to be saved.

(c) Plotting tools to extract data after multiple jobs, filter specific configuration variables

and plot stochastic realisations.
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5.2.3 Other Software

Various contributions were made to STIR to support this work, see Appendix B for a de-

tailed list. Additionally, the STIR-GATE-Connection project was formalised, see Appendix

A for a full summary. Finally, a number of scripts were produced to convert the data output

of GE’s Duetto PET Toolbox software to STIR compatible interfiles.

5.3 Suggested Future Research

This thesis has demonstrated a prototype version of the AutoSubsets algorithm and a fur-

ther in-depth application of SAGA and SVRG to iterative PET reconstruction. This section

explores the possible directions of future research that relate to this thesis. These main

suggested topics are: improvements to the AutoSubsets algorithm, alternative research to

improve SVR algorithm configurations, second order stochastic algorithms, and the appli-

cation of SVR to more complex clinical PET data set applications.

5.3.1 AutoSubsets

The preliminary study of the AS algorithm presented in this work yielded moderate results.

Zeng 2021 presented a number of modifications to the algorithm and an additional investi-

gation, which is discussed in Appendix D. However, further directions of future work might

exist for the algorithm and these are discussed in this sub-section.

5.3.1.1 Alternative Methodologies

As aforementioned in Section 3.5.4, the CSI metric, given by Equation (3.1), may not be

the best metric to determine when subset size should increase. Future work with this al-

gorithm could investigate alternative metrics, e.g. the use of subset update magnitudes as

well as directions. Additionally, the current CSI measurement does not account for the non-

negativity constraint on xxx as it only takes update direction arguments pppk,1 and pppk,2. The

negativity constraint might be taken into account by a modification to the CSI measurement

inputs, given by

S†
c = Sc(ppp†

Sk,1
, ppp†

Sk,2
) =

ppp†
Sk,1
· ppp†

Sk,2

∥ppp†
Sk,1
∥2∥ppp†

Sk,2
∥2

, (5.1)

where ppp†
Sk,1

= Pxxx≥0

[
xxxk +αk pppSk,1

]
− xxxk and ppp†

Sk,2
= Pxxx≥0

[
xxxk +αk pppSk,2

]
− xxxk. This modifi-

cation would reduce the influence of update directions into negative space on the cosine

measurement.

An alternative adaptive subset size methodology was proposed by Bollapragada et al.
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2018. This method utilises an inner product test to determine when subset size should in-

crease by ensuring the search direction is an ascent direction with high probability. This

is achieved by evaluating the variance between every sample’s update direction in a sub-

set. If the variance exceeds a variable threshold value (based on the norm of the subset

update) the subset size is increased. Future work might implement the algorithm proposed

in Bollapragada et al. 2018 as a comparison to AS.

5.3.1.2 Relaxed Step Sizes

In this study, a fixed step-size was used in order to allow for easier comparisons. However,

the implementation of a small relaxing step size sequence may aid in the convergence of

the AS algorithm. As the step sizes are relaxed, the size of the limit set reduces, which will

assist in the AS algorithm’s ability to converge closer to the MAP solution. A joint imple-

mentation step size relaxation and subset size increases may aid in algorithm performance.

5.3.2 Alternative Stochastic Variance Reduction Configurations

A number of alternatives to the stochastic variance reduction algorithms might be investi-

gated in future studies. Three of these possible alternative configuration changes are dis-

cussed in this sub-section.

5.3.2.1 Warm Starting

Many authors of complex optimisation algorithms suggest initialising from an approxima-

tion of the parameters, known as a warm start [Schmidt et al. 2017; Tsai et al. 2018]. There-

fore, all the SVR algorithms in Chapter 4 were always initialised from the output of one

epoch of OSEM reconstruction. This methodology generally performed well and it was

observed in initial testing that this could accelerate the algorithms. However, a single epoch

of OSEM was selected heuristically. Future studies should investigate alternative warm

starting methodologies that could result in lower initial computational cost or an improved

initialisation estimate.

Several potential methods for computing approximate estimates exist with various lev-

els of associated computational cost. These methods should approximate the general struc-

ture of the reconstruction object and the global image scale but do not need to resolve small

details. One example method is filtered back projection of the measured data and heavy

post smoothing. This will provide general structural information and is relatively cheap to

compute [Qi et al. 2006]. Alternatively, an estimate computed from a fraction of an epoch

of OSEM may further reduce the computational requirements. Finally, the AS algorithm
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was found to perform particularly well during early epochs. A limited duration initial re-

construction using this algorithm may be effective at initialising the SVR algorithms.

5.3.2.2 Penalty Functions

Chapter 4 results demonstrated algorithm performance by optimising an objective function

with the RDP. Yet, it can be expected that the results observed will translate for alternative

priors. This was demonstrated in a parallel study to this work where SVREM (Section 5.3.3)

and preconditioned SAGA and SVRG algorithms optimised an objective function using

the log-cosh prior [Kereta et al. 2021]. The conclusions of SAGA and SVRG algorithm

performances were similar between the results demonstrated in this thesis and that work.

The SPDHG algorithm is often implemented with non-smooth penalties, e.g., TV, see

Section 2.2.3.2 [Ehrhardt et al. 2019]. This is achieved with the use of the proximal opera-

tor [Parikh et al. 2014]. Many stochastic variance reduction algorithms have been extended

to the proximal setting, including SAGA, SVRG and those discussed in Section 4.6.8 [De-

fazio et al. 2014; Xiao et al. 2014]. Therefore, the most commonly used priors in PET

image reconstruction are applicable for use with these variance reduction algorithms. Fu-

ture work should investigate the impact of various regularisation parameters have on SAGA

and SVRG convergence rates and hyper-parameters.

Alternative applications of the subset/regularisation methodology could be considered

for the SVR algorithms. One method, commonly used in SPDHG, is to consider the prior as

another subset. This is discussed in Section 2.3.4. However, because subsets are constructed

over the data-fit metric (log-likelihood) one might consider the SVR algorithms for just that

data and modify Equation (2.51) to ∇̃k,mk =
(
∇Lmk(xxxk)−gggmk

+∑
M
µ gggµ

)
+β∇R(xxxk), where

gggm is updated from ∇Lm(xxx) measurements. Future work may investigate this removal of the

penalty gradient from the variance reduction for a simplified methodology.

5.3.2.3 Preconditioners

This work drew conclusions entirely from the application of the SVR algorithms utilising

diagonal, positive definite, EM-like preconditioners, given by Equation (2.29). Allowing

the EM preconditioner to vary over a few epochs before anchoring xxx was observed to im-

prove the convergence of SAGA and SVRG. However, it should be noted that the DDDEM(xxxk)

preconditioned SAGA and SVRG reconstructions appeared to numerically converge in both

Figure 4.6 and Figure 4.7. Future research may wish to investigate the convergence proof of

DDDEM(xxxk) preconditioned SAGA and SVRG reconstructions using a η > 0 in Equation (4.2).
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Additionally, the application of alternative diagonal preconditioners, that do not it-

eratively change, remains to be investigated. Examples of these preconditioners are the

OS-SPS “precomputed denominator” [Ahn et al. 2003] and other related Hessian row-sum

preconditioners [Tsai et al. 2016].

5.3.3 Comparisons with Other Stochastic Algorithms

In recent years, a number of stochastic algorithms have been presented in the PET recon-

struction literature. These include SAGA, SVRG and some of those discussed in Sec-

tion 4.6.8, e.g., SVREM [Kereta et al. 2021] and SPHDG [Ehrhardt et al. 2019]. Thus far,

no direct comparison has been made between these algorithms. In future, a study should

aim to incorporate these algorithms into a common framework and compare algorithm per-

formance across numerous metrics for multiple data sets with the aim of determining which

is most applicable for the next generation of clinical PET reconstruction algorithms.

5.3.4 Second Order Stochastic Optimisation

As an alternative to diagonal preconditioners, further work may explore stochastic second

order methods. The L-BFGS-B algorithm, discussed in section 2.3.2.3, applies a local ap-

proximation of the inverse of the Hessian (∇2Φk)
−1 as a preconditioner [Nocedal et al.

2006; Tsai et al. 2018]. The algorithm has been shown to improve the convergence proper-

ties of iterative PET reconstruction [Tsai et al. 2018]. However, this algorithm requires full

gradient evaluations to construct a suitable approximation of (∇2Φk)
−1 and does not natu-

rally lend itself to stochastic or subset optimisation due to data consistency requirements.

However, two novel stochastic-L-BFGS algorithms have been proposed. The first combines

SGA with L-BFGS (SQN) [Byrd et al. 2016] and the other SVRG with L-BFGS (SL-BFGS)

[Moritz et al. 2015]. These algorithms nest SGA or SVRG into an external loop that com-

putes the L-BFGS correction pairs from subsets of the data. This step is subtly different to

L-BFGS’s methodology because of the use of subsets.

While these stochastic second order methods may result in faster convergence in the-

ory, it is unlikely that a significant performance improvement would be realised within 10

epochs, compared to the EM preconditioned SVR algorithms in Chapter 4. The second

order methods require a number of epochs to compute the correction pairs used to approxi-

mate (∇2Φk)
−1. However, while these stochastic L-BFGS algorithms may not be clinically

relevant, fast converging image reconstruction algorithms are often desired for research pur-

poses.
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5.3.5 Alternative PET Applications

In recent years, TOF data reconstructions have become standard in clinical practice. These

reconstructions generally require fewer updates for desirable images as additional local

LOR information is present [Efthimiou et al. 2019]. However, TOF projection operations

are often more computationally expensive. Future work should investigate the application

of the algorithms presented in this work to TOF data set reconstructions.

Two unmentioned well researched applications of PET reconstruction relate to the

measurement and correction for motion present in PET data [Kyme et al. 2021] and para-

metric image reconstruction [Gallezot et al. 2019; Zuo et al. 2018].

Reconstructed images of the thorax often suffer from significant resolution loss and

degradation due to respiratory and cardiac motion [Nehmeh et al. 2002]. Measurements of

the motion can be recorded during a PET scan with an external device or measured from

the PET data itself [Thielemans et al. 2011]. These measurements allow for the splitting of

the PET data into separate gates, where each gate represents a distinct state of the breath-

ing or cardiac cycle. Thus, the data dimensionality increases, which results in additional

reconstruction computational cost.

One may reconstruct each of the gated data separately and register them to a reference

gate [Bai et al. 2009]. However, the gated data generally suffers from low SNR because

the gate frames occupy a fraction of the full scan duration. Another method is to perform

MCIR. MCIR algorithms embed motion correction into the reconstruction sequence and

this has been accelerated by constructing subsets of projection angles (as was done in this

thesis) and motion gates [Dikaios et al. 2011].

Parametric imaging is the process of creating fully quantitative maps of pharmacoki-

netic parameters by acquiring a time series of images of the tracer concentration [Gallezot

et al. 2019; Charalampos Tsoumpas et al. 2008]. Similar to motion gated data, these time

frames may be short in duration leading to low SNR. Parametric imaging can also be com-

bined with motion correction to reduce image artefacts.

In both parametric and motion imaging, the data sets may suffer from high noise and

hence reconstructions may be more sensitive to subset algorithms. As shown in Figure 4.11,

the SVR algorithms can improve reconstruction convergence rates of low SNR data sets

compared to BSREM. This is achieved because of the SVR algorithms reduced sensitivity

to unbalanced subsets. The application of stochastic methods to these higher dimensional
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data sets may be beneficial in reducing reconstruction computation time and reduce the

impact of limit cycle variations. Moreover, subsets could be constructed over these addi-

tional data dimensions. This has been previously demonstrated using the SPDHG algorithm

[Delplancke et al. 2021].

5.3.6 List Mode Stochastic Variance Reduction

As presented in Section 3.4.3, event-by-event subset list mode reconstruction appears to

be an effective methodology for reconstructing PET data. Future work might consider the

application of SVR algorithms to list mode data. As observed, this type of data allows for a

large number of low variance subsets to be constructed. However, multiple epoch list mode

reconstruction is rarely needed for large list mode data sets [Reader et al. 2002]; yet, the

SVR algorithms require this to perform as designed. Hence, the SVR algorithms may only

be applicable to small list mode data sets.
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Appendix A

The STIR-GATE-Connection Project

Monte Carlo simulation and image reconstruction software are powerful tools for the de-

velopment of: new scanner designs, algorithms for image reconstruction, intrinsic resolu-

tion modelling, and partial volume modelling. However, the development of Monte Carlo

simulation and reconstruction libraries are often separate, resulting in different standards

and conventions. Thus, it is important to link these efforts for easier usage. STIR-GATE-

Connection aims to provide a simplified pipeline to progress from Monte Carlo simula-

tion using GATE [Jan et al. 2011] to quantitative image reconstruction of a known true

tracer distribution using STIR [Thielemans et al. 2012]. STIR-GATE-Connection is a

collection of scripts that aid with the: setup of a realistic GATE simulation of a vox-

elised phantom using a user selected scanner configuration, conversion of the output list

mode data into STIR compatible projection data, and computation of additive and multi-

plicative data corrections for Poisson image reconstruction using STIR. A public release

of STIR-GATE-Connection , licensed under the Apache 2.0 License, can be downloaded

at: http://www.github.com/UCL/STIR-GATE-Connection and has been pre-

viously described in Twyman et al. 2021b.

Similar projects exist to link Monte Carlo simulation software to reconstruction soft-

ware. Examples of these are Customizable and Advanced Software for Tomographic Re-

construction (CaSTOR) [Merlin et al. 2018] and SIMPET [Paredes-Pacheco et al. 2021].

CaSTOR demonstrates the ability to process GATE data into a CASToR datafile format

for image reconstruction with a variate of algorithms, along with many other operations.

SIMPET is a cloud-based platform that uses SimSET [Baum et al. 2007] for Monte Carlo

simulation and STIR for reconstruction.

http://www.github.com/UCL/STIR-GATE-Connection
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A.1 GATE Simulations

GATE Monte Carlo simulations are configured via text macro files. STIR-GATE-

Connection incorporates a modular approach with these files, which allows various scan-

ners, digitises, phantoms, and more to be substituted into the GATE configuration with ease.

The STIR-GATE-Connection project was developed to concatenate collections of GATE

macro files and methodologies from a number of previous works, including: Efthimiou et

al. 2017, Efthimiou et al. 2019, Emond et al. 2019 and Brusaferri et al. 2022. Initial project

development began after the investigation of the AutoSubsets algorithm (Chapter 3) and was

used for XCAT simulated data generation for the SVR algorithms studies, see Section 4.2.2.

While GATE offers the ability to simulate emission from voxelised phantoms, the gen-

eration of multiple configurations can be tedious and prone to user mistakes due to du-

plication of parameters. STIR-GATE-Connection simplifies this process with an example

GATE simulation script to setup and run voxelised phantom simulations. Given a voxelised

phantom, or STIR image generation parameter file, a setup script loads the desired scanner

geometryi and a density map is generated from the attenuation file. Additionally, a num-

ber of GATE macro variables are computed from the voxelised phantom’s header files and

automatically passed to GATE. These include the origin position, voxel size and number

of voxels. Previously, these values were manually set in the macro files by the user. Once

setup, the Monte Carlo simulation is run.

STIR-GATE-Connection also supports the running of GATE in batch-array cluster

jobs. The initial setup script must be run prior to launching jobs. The simulated scan

duration is split across each job of the batch-array with each node computing a small time

frame GATE simulation. Once complete, the output files can be concatenated. Example

scripts are provided for the Sun Grid Engine cluster system.

A.2 Conversion to Projection Data

The GATE configuration in STIR-GATE-Connection outputs two list mode ROOT files per

simulation [Brun et al. 1997]. One file contains coincidence events and the other contains

delayed coincidence events. An unlisting script is included in the project that converts

these root files into STIR compatible interfile projection data for the relevant scanner. This

unlisting can be filtered to exclude various event types.

iGE Discovery 690 PET/CT [Bettinardi et al. 2011] and Siemens mMR [Delso et al. 2011] example scanner
templates for GATE and STIR are provided in the STIR-GATE-Connection project files.
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A.3 Data Modelling Computation via STIR

Iterative reconstruction methods incorporate the estimated contributions of both scattered

and random events, as well as physical and geometric factors of the scanner and attenua-

tion factors, into the system model, see Section 2.2.1. STIR-GATE-Connection includes an

example script demonstrating how to compute the component-based normalisation factors

with crystal efficiencies and “geometric” effects. This normalisation term is represented as

AAAdet.sens. in Equation (2.4). Symmetries are imposed on the latter to reduce noise. This is

achieved by unlisting only the true coincidence events from a GATE simulation of a uniform

cylindrical activity distribution as large as the scanner field-of-view and then comparing the

resulting data to a STIR forward projection for the scanner using maximum likelihood com-

putation [Niknejad et al. 2016]. An example, computed using STIR-GATE-Connection , of

AAAdet.sens. for the GE Discovery 690 PET/CT is shown in the bottom left of Figure A.1. Addi-

tionally, attenuation correction factors, AAAattenuation in Equation (2.4), may be computed with

STIR for inclusion into the system model. An example slice of AAAdet.sens.AAAattenuation for the

XCAT simulated data used in Section 4.2.2 is shown in the bottom right of Figure A.1.

An estimation of random coincidence events may be made with STIR-GATE-

Connection tools. Singles are estimated from the delayed coincidence events (recorded

by GATE) using a maximum likelihood algorithm and then multiplied to find the randoms

rates [Hogg et al. 2002]. However, a discrepancy was observed between the total number of

delayed coincidence events and the number of random events in the coincidence data. This

was determined to stem from an approximately 9% overestimation of random events in the

delayed data (output by GATE) over the randoms events in coincidence data [Twyman et al.

2021b].

An estimation of the scatter contribution may be computed using STIR’s iterative sin-

gle scatter simulation and estimation utilities [C. Tsoumpas et al. 2004; Thielemans et al.

2012]. Three 1D line profiles, across a sinogram projection angle, are shown in Figure A.1.

These profiles show the measured coincidence data as well as the estimated and measured

random plus scattered coincidence events for the 250 million event XCAT data set described

in Section 4.2.2.

Once these models of normalisation, randoms and scatter are computed, example STIR

files demonstrate how to reconstruct the data using iterative algorithms. An example OSEM

reconstruction is shown in Figure A.2.
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Figure A.1: Top: line profiles over a single sinogram projection angle of the coincidence event data,
unlisted random and scattered events data, and the random and scattered event esti-
mation data. Bottom Left: a normalisation sinogram. Bottom Right: a multiplicative
correction factors sinogram.

Figure A.2: An OSEM reconstruction of the measured XCAT torso phantom data, simulated in
GATE, using 8 subsets and 40 sub-iterations: coronal view (Left), sagittal view (Mid-
dle), and transverse view (Right) .
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A.4 STIR-GATE-Connection Conclusion
This appendix described the STIR-GATE-Connection project and detailed the easy to use

pipeline. STIR-GATE-Connection simplified GATE simulation configuration of PET, pro-

vides conversion tools of list mode data into STIR projection data and provides examples

for computing system modelling terms. This project allows for iterative reconstruction to be

performed on GATE acquired data. Future development of this project could add additional

example scanner geometries.



Appendix B

Contributions to STIR

STIR is an open source object-oriented framework for tomographic imaging [Thielemans et

al. 2012]. Much of the research presented in this thesis was conducted using STIR tools and

utilities. A number of contributions were made to the STIR library that aided the research

in this thesis and improve the quality of the software. These changes will assist others in

the research community who utilise STIR to some degree. A list of the major and minor

contributions, including relevant GitHub links, are provided in this appendix.

B.1 Major Contributions
(a) A number of improvements were made to penalty function classes in STIR. These

include:

• Addition of the Relative Difference Prior (RDP). Methods were added to

compute the functions value and gradient. https://github.com/UCL/

STIR/pull/335

• Addition of the Log-cosh prior. Methods were added to compute the func-

tions value, gradient, parabolic surrogate curvature and Hessian vector product.

https://github.com/UCL/STIR/pull/716

• As aforementioned, Hessian vector products (i.e.,

accumulate Hessian times input) were added to the existing and

added prior classes. https://github.com/UCL/STIR/pull/719/

files

• Consistency tests for penalty function gradients and Hessian methods

were added, see: https://github.com/UCL/STIR/pull/695 and

https://github.com/UCL/STIR/pull/902

https://github.com/UCL/STIR/pull/335
https://github.com/UCL/STIR/pull/335
https://github.com/UCL/STIR/pull/716
https://github.com/UCL/STIR/pull/719/files
https://github.com/UCL/STIR/pull/719/files
https://github.com/UCL/STIR/pull/695
https://github.com/UCL/STIR/pull/902
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(b) A utility to compute spatially-variant penalty strengths was implemented as per

Tsai et al. 2020. In addition to the prior methods, this required the computa-

tion of the Hessian vector product for the log-likelihood function in STIR. Pre-

viously, add multiplication with approximate Hessian (and its sub-

methods, existed to compute Equation (2.31) [Ahn et al. 2003]. An additional method

(accumulate Hessian times input) was implemented to compute Equa-

tion (2.11) and similar Equation (2.30). https://github.com/UCL/STIR/

pull/733

(c) A number of modifications were made to STIR’s interface with ROOT data, output

by GATE. These changes were made in conjunction with STIR-GATE-Connection ,

see Section A.

• Improvements were made to ROOT I/O by only accessing the needed branch in-

formation from a ROOT event when required. This led to (approximately) a fac-

tor 2×2 = 4 speed-up in reading ROOT data from file. https://github.

com/UCL/STIR/pull/813 and https://github.com/UCL/STIR/

pull/814

• The ability to exclude different types of coincidence events when reading

ROOT data was added. https://github.com/UCL/STIR/pull/850/

files

• Alignment and validation of GATE and STIR crystal location, via consistency

tests https://github.com/UCL/STIR/pull/991. Similarly, general

improvements to STIR’s ROOT interface for x-y plane rotations https://

github.com/UCL/STIR/pull/1016.

(d) A consistency issue was fixed between subset log-likelihood evaluations and subset

gradient computation when various sensitivity methods were used. This required a re-

design of STIR’s log-likelihood gradient computation ∇Lm(xxx), which was previously

formulated as

∇Lm(xxx) = AAA⊤m

(
yyym

AAAm(xxx)+bbbm

)
−SSSm. (B.1)

This formula was correct when using ”subset-sensitivities”, i.e., SSSm = AAA⊤m1. However,

an option in STIR exists to use a total sensitivity in the preconditioner. Utilising total

https://github.com/UCL/STIR/pull/733
https://github.com/UCL/STIR/pull/733
https://github.com/UCL/STIR/pull/813
https://github.com/UCL/STIR/pull/813
https://github.com/UCL/STIR/pull/814
https://github.com/UCL/STIR/pull/814
https://github.com/UCL/STIR/pull/850/files
https://github.com/UCL/STIR/pull/850/files
https://github.com/UCL/STIR/pull/991
https://github.com/UCL/STIR/pull/1016
https://github.com/UCL/STIR/pull/1016
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sensitivity in the preconditioner resulted in SSSm = 1
M SSS = 1

M AAA⊤1. As these SSSm variables

were used in the computation of ∇Lm(xxx), the formula was incorrect. Thus, ∇Lm(xxx)

was modified to

∇Lm(xxx) = AAAT
m

(
yyym

AAAm(xxx)+bbbm
−1

)
, (B.2)

which resolved this issue. https://github.com/UCL/STIR/pull/893

(e) A development branch of STIR exists that allows for the reconstruction and process-

ing of TOF data. Although not used in this thesis, a number of software improvements

were made to TOF code.

• Optimised computation of TOF kernel location https://github.com/

NikEfth/STIR/pull/20.

• Improved projector multithreading over TOF bins https://github.com/

NikEfth/STIR/pull/22.

• Reduced computational cost of applying TOF kernels by generating a class

to interpolate values based upon pre-processed values https://github.

com/NikEfth/STIR/pull/24.

• Improvements to TOF symmetry and caching of LORs https://github.

com/NikEfth/STIR/pull/25.

• Re-engineered TOF consistency tests with GATE simulated data https://

github.com/NikEfth/STIR/pull/30.

B.2 Minor Contributions

(a) Improved documentation and mapping between STIR’s and GATE’s geometry key-

words. https://github.com/UCL/STIR/pull/569

(b) Demonstration examples of objective function value computation, gradient ascent

(no preconditioning) and a line searches in C++ https://github.com/UCL/

STIR/pull/477

(c) Allow a Single Slice Re-Binning (SSRB) [Daube-Witherspoon et al. 1987] utility

to utilise template projection data geometry for output map. https://github.

com/UCL/STIR/pull/708

https://github.com/UCL/STIR/pull/893
https://github.com/NikEfth/STIR/pull/20
https://github.com/NikEfth/STIR/pull/20
https://github.com/NikEfth/STIR/pull/22
https://github.com/NikEfth/STIR/pull/22
https://github.com/NikEfth/STIR/pull/24
https://github.com/NikEfth/STIR/pull/24
https://github.com/NikEfth/STIR/pull/25
https://github.com/NikEfth/STIR/pull/25
https://github.com/NikEfth/STIR/pull/30
https://github.com/NikEfth/STIR/pull/30
https://github.com/UCL/STIR/pull/569
https://github.com/UCL/STIR/pull/477
https://github.com/UCL/STIR/pull/477
https://github.com/UCL/STIR/pull/708
https://github.com/UCL/STIR/pull/708
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(d) ROI utility improvements https://github.com/UCL/STIR/pull/913 and

https://github.com/UCL/STIR/pull/915

(e) Exposed numerous C++ classes and methods to python via swig, e.g:

• Compute total ROI values https://github.com/UCL/STIR/pull/

913

• Separable gaussian image filter https://github.com/UCL/STIR/

pull/946

(f) Python script examples https://github.com/UCL/STIR/pull/934

(g) Projector OpenMP improvements https://github.com/UCL/STIR/pull/

937

(h) GE singles to randoms utility fix and investigation python script. https:

//github.com/UCL/STIR/pull/961 and https://github.com/UCL/

STIR/pull/941

(i) Added GE Discovery MI 5 ring scanner geometry https://github.com/UCL/

STIR/pull/981

(j) Fixed some LOR symmetry operations https://github.com/UCL/STIR/

pull/1000 and https://github.com/UCL/STIR/pull/1001

https://github.com/UCL/STIR/pull/913
https://github.com/UCL/STIR/pull/915
https://github.com/UCL/STIR/pull/913
https://github.com/UCL/STIR/pull/913
https://github.com/UCL/STIR/pull/946
https://github.com/UCL/STIR/pull/946
https://github.com/UCL/STIR/pull/934
https://github.com/UCL/STIR/pull/937
https://github.com/UCL/STIR/pull/937
https://github.com/UCL/STIR/pull/961
https://github.com/UCL/STIR/pull/961
https://github.com/UCL/STIR/pull/941
https://github.com/UCL/STIR/pull/941
https://github.com/UCL/STIR/pull/981
https://github.com/UCL/STIR/pull/981
https://github.com/UCL/STIR/pull/1000
https://github.com/UCL/STIR/pull/1000
https://github.com/UCL/STIR/pull/1001


Appendix C

Stochastic Variance Reduction Bias Analysis

A generalised variance reduction analysis is considered to assess the bias estimation of the

SVR algorithm gradient approximations [Defazio et al. 2014]. Statistical variance reduction

methods estimate a variable E[X ] given the easily computable E[Y ]. It is assumed that these

two variables are highly correlated, i.e., X = ∇Φm(xxx) and Y = gggm. An estimator ωι is

introduced to approximate E[X ], which is given by

ωι := ι(X−Y )+E[Y ], (C.1)

where ι ∈ [0,1] is a step size. Therefore, E[ωι ] is given by

E[ωι ] = ιE[X ]+ (1− ι)E[Y ]. (C.2)

Standard variance reduction use ι = 1 such that E[ωι ] =E[X ] and the estimator is unbiased.

The variance of ωι is given by

Var(ωι) = ι
2
[

Var(X)+Var(Y )−2Cov(X ,Y )
]
, (C.3)

where Cov(X ,Y ) is the covariance. If Cov(X ,Y ) is large enough then the variance of ωι is

reduced with respect to X . Varying ι from 1 to 0 reduces the variance towards a minimum

but increases the bias towards E[Y ].

Equation (C.1) and Equation (2.51) subtly differ. This is related to the use of Φ(xxx) =

∑
M
m Φm(xxx) in this thesis, see Equation (2.41), rather than the Φ(xxx) = 1/M ∑

M
m Φm(xxx) applied

in Defazio et al. 2014. Thus ∇̃k,mk = Mωι , as ωι is a reduced variance estimate of ∇Φm(xxx),

and ι = ξ/M. Hence, in this thesis, the SAGA algorithm uses ξ =M while SAG uses ξ = ι .
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This indicates that SAG has greatly reduced variance in its sampling, by a factor 1/M2, but

at the expense of non-zero bias [Defazio et al. 2014]. Using the same arguments, it is clear

that the SVRG algorithm also provides an unbiased estimate of the gradient, like SAGA.



Appendix D

AutoSubsets: A Follow-Up MSc Project

Following the investigations conducted in Chapter 3, AutoSubsets algorithm research was

continued by another UCL student, Yiying Zeng, during an MSc project under the co-

supervision of this Thesis’ author and Prof. Kris Thielemans. This MSc project was pre-

sented in [Zeng 2021] and the primary research outcomes are summarised in this appendix.

During the preliminary study of the AutoSubsets (AS) algorithm, discussed in Chap-

ter 3, the algorithm was observed to be sensitive to the subset selection methodology. It

was found that the GRS sampling method reduced this sensitivity. However, at later up-

dates, the AS algorithm would increase nk in sequential updates until nk = nmax. This was

a consequence of the Sc values, given by Equation (3.1), maintaining negative values, i.e.,

Sc < T = 0.0. It was theorised that this rapid increase in nk resulted in a significant reduction

in convergence rate.

Zeng 2021 implemented dynamic threshold functions T (nk,nmax) that reduced T = 0

to T = −1 as nk→ nmax. When implemented into the AS algorithm, reconstruction objec-

tive function value performance over the iterates improved. When compared to OS-MAP

reconstruction algorithms using various numbers of subsets and subset sampling methods,

the AS algorithm (with this dynamic threshold) demonstrated better algorithm performance

with reduced limit cycle behaviour.

Additionally, Zeng 2021 compared algorithm performance using different objective

function configurations by utilising different β values. It was observed that the AS algo-

rithms performance improved when the stronger penalisation was used.

In summary, the MSc project extended the AutoSubsets algorithm and the use of a

dynamic threshold prevented the algorithm from increasing subset size too quickly and

improved convergence rates.
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Bottou, Léon, Frank E. Curtis, and Jorge Nocedal (Jan. 2018). “Optimization Methods

for Large-Scale Machine Learning”. In: SIAM Review 60.2, pp. 223–311. DOI: 10.

1137/16M1080173.

Bottou, Léon and Yann Le Cun (2004). “Large scale online learning”. In: Advances in Neu-

ral Information Processing Systems. MIT Press.

Browne, Jolyon and A.B. De Pierro (Oct. 1996). “A row-action alternative to the EM algo-

rithm for maximizing likelihood in emission tomography”. In: IEEE Transactions on

Medical Imaging 15.5, pp. 687–699. DOI: 10.1109/42.538946.

Brun, Rene and Fons Rademakers (Apr. 1997). “ROOT - An object oriented data analysis

framework”. In: Nuclear Instruments and Methods in Physics Research, Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment 389.1-2, pp. 81–

86. DOI: 10.1016/S0168-9002(97)00048-X.

Brusaferri, Ludovica, Elise C. Emond, Alexandre Bousse, Robert Twyman, Alexander C.

Whitehead, David Atkinson, Sebastien Ourselin, Brian F. Hutton, Simon Arridge, and

Kris Thielemans (2022). “Detection Efficiency Modeling and Joint Activity and Atten-

uation Reconstruction in Non-TOF 3-D PET from Multiple-Energy Window Data”. In:

IEEE Transactions on Radiation and Plasma Medical Sciences 6.1, pp. 87–97. DOI:

10.1109/TRPMS.2021.3064239.

Byrd, R. H., S. L. Hansen, Jorge Nocedal, and Y. Singer (Jan. 2016). “A Stochastic Quasi-

Newton Method for Large-Scale Optimization”. In: SIAM Journal on Optimization

26.2, pp. 1008–1031. DOI: 10.1137/140954362.

Byrd, R. H., Peihuang Lu, Jorge Nocedal, and Ciyou Zhu (Sept. 1995). “A Limited Mem-

ory Algorithm for Bound Constrained Optimization”. In: SIAM Journal on Scientific

Computing 16.5, pp. 1190–1208. DOI: 10.1137/0916069.

Byrne, C.L. (1998). “Accelerating the EMML algorithm and related iterative algorithms

by rescaled block-iterative methods”. In: IEEE Transactions on Image Processing 7.1,

pp. 100–109. DOI: 10.1109/83.650854.

https://doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173
https://doi.org/10.1109/42.538946
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1109/TRPMS.2021.3064239
https://doi.org/10.1137/140954362
https://doi.org/10.1137/0916069
https://doi.org/10.1109/83.650854


BIBLIOGRAPHY 139
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