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Post-stroke cognitive and linguistic impairments are debilitating conditions, with limited therapeutic options.
Domain-general brain networks play an important role in stroke recovery and characterizing their residual func-
tion with functional MRI has the potential to yield biomarkers capable of guiding patient-specific rehabilitation.
However, this is challenging as such detailed characterization requires testing patients on multitudes of cognitive
tasks in the scanner, rendering experimental sessions unfeasibly lengthy. Thus, the current status quo in clinical
neuroimaging research involves testing patients on a very limited number of tasks, in the hope that it will reveal a
useful neuroimaging biomarker for the whole cohort. Given the great heterogeneity among stroke patients and the
volume of possible tasks this approach is unsustainable. Advancing task-based functional MRI biomarker discov-
ery requires a paradigm shift in order to be able to swiftly characterize residual network activity in individual
patients using a diverse range of cognitive tasks.
Here, we overcome this problem by leveraging neuroadaptive Bayesian optimization, an approach combining real-
time functional MRI with machine-learning, by intelligently searching across many tasks, this approach rapidly
maps out patient-specific profiles of residual domain-general network function. We used this technique in a cross-
sectional study with 11 left-hemispheric stroke patients with chronic aphasia (four female, age ± standard devi-
ation: 59± 10.9 years) and 14 healthy, age-matched control subjects (eight female, age ± standard deviation:
55.6 ±6.8 years). To assess intra-subject reliability of the functional profiles obtained, we conducted two independ-
ent runs per subject, for which the algorithm was entirely reinitialized.
Our results demonstrate that this technique is both feasible and robust, yielding reliable patient-specific functional
profiles. Moreover, we show that group-level results are not representative of patient-specific results. Whereas
controls have highly similar profiles, patients show idiosyncratic profiles of network abnormalities that are associ-
ated with behavioural performance.
In summary, our study highlights the importance of moving beyond traditional ‘one-size-fits-all’ approaches
where patients are treated as one group and single tasks are used. Our approach can be extended to diverse brain
networks and combined with brain stimulation or other therapeutics, thereby opening new avenues for precision
medicine targeting a diverse range of neurological and psychiatric conditions.
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Introduction
Cognitive and linguistic impairments following brain injury such
as stroke are a leading cause of disability, affecting over a quarter
of a million people in the UK, with numbers expected to increase
dramatically given the ageing population.1 Current therapeutic
strategies are only of limited success2–4; therefore, there is a need
for developing biomarkers that guide clinical prognosis as well as
rehabilitation strategies. Given the great heterogeneity in stroke
patients, functional MRI is a promising method for discovering
candidate biomarkers capable of distinguishing patient subgroups
as it allows non-invasive mapping of brain (dys)function.
However, to date, no functional MRI-derived biomarker is ready to
be used in clinical trials for predicting recovery of cognitive or lan-
guage function.5

Nonetheless, functional MRI measures during task execution
(‘task-based functional MRI’) show promising potential as clinical-
ly relevant biomarkers and thereby represent a developmental pri-
ority.5 A major challenge for any progress in this direction is
selecting the optimal task (or battery of tasks) to be administered
to patients in the magnetic resonance scanner.

This is because neither cognitive nor language-related func-
tions can be readily mapped to distinct, single brain regions but ra-
ther emerge through the interaction between domain-specific (e.g.
motor, auditory, language networks) and domain-general brain
systems. Highly domain-general brain networks, such as fronto-
parietal networks (FPNs) support processes including attention,
working memory and learning (or re-acquisition) of a skill.6–9

Damage to domain-general brain networks may explain why cog-
nitive impairments seen in stroke are distributed across diverse
cognitive processes.10,11 We have previously shown that intact do-
main-general brain regions are critical in recovery of language
function following aphasic stroke12–15 in keeping with studies con-
firming their role in recovery of motor deficits16 and the learning
of pseudo language.17 This builds a convincing case for their po-
tential as a prognostic biomarker.

However, characterizing residual function of domain-general
networks in stroke patients is challenging because there is not a
single, optimal task that is unique to probe each network; instead
it involves quantifying network activation across many different
cognitive tasks. However, such prolonged, multi-task neuroimag-
ing protocols18–20 are practically unfeasible in patients. Thus, the
current status quo for clinical neuroimaging studies typically
involves selecting a specific task (or small subset of tasks) in a

relatively ad hoc manner, in the hope that it will reveal a useful
neuroimaging biomarker. Given both the sheer volume of possible
tasks and the constraints on patient time, this approach is unsuit-
able. Advancing task-based functional MRI biomarker discovery
requires a paradigm shift in order to be able to swiftly characterize
residual brain network activity in individual patients using a di-
verse range of cognitive tasks.

Development of real-time analysis of functional MRI data in
combination with machine-learning techniques (i.e. Bayesian opti-
mization)21,22 provides an unprecedented opportunity to derive
subject-specific profiles of brain network function across multiple
tasks in a short period of time,23 making it feasible to use in
patients. Neuroadaptive Bayesian optimization can efficiently
search a large task space (Fig. 1A) to identify the optimal set of cog-
nitive tasks that maximize a predefined target brain network state
in each individual (Fig. 1B). The approach’s efficiency stems from
the intelligent search procedure: based on real-time analysis of the
functional MRI data, the machine-learning algorithm decides
which task to test next in that particular subject; this is substan-
tially faster than exhaustively testing all possible tasks while far
more informative than selecting tasks at random.

Here, we apply neuroadaptive Bayesian optimization to a
cohort of left-hemispheric stroke patients with chronic aphasia
and demonstrate the approach’s potential for assessing patient-
specific residual brain network function effectively and rapidly.
Specifically, for each patient we identify the set of cognitive tasks
that maximally dissociate two domain-general networks, namely
increasing activation in the bilateral FPN, and decreasing activa-
tion in the default mode network (DMN) (Fig. 1C). The choice of
this target brain state (i.e. FPN 4 DMN) was motivated by evidence
suggesting that the difference in activity between these two
networks was associated with language performance in left-hemi-
spheric, aphasic stroke patients.15 For comparison, the method
was also run in age-matched, healthy control subjects.

Materials and methods
Participants

The study was approved by the National Research Ethics Service
Committee. We recruited 14 patients with left hemisphere infarcts,
over the age of 40 [mean age ± standard deviation (SD):
58.57 ±10.43 years, mean post-stroke time ± SD: 5.52 ± 3.25 years]
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and premorbid fluency in English. Patients with a previous history
of a stroke resulting in aphasia or other neurological illness, or
concurrent use of psychoactive drugs, were not eligible to enter
the study. Table 1 contains further patient details. As controls, we
recruited 15 fluent English-speaking healthy participants over the
age of 40 (mean age ± SD: 56.73 ± 6.76 years), with no history of any
neurological/psychiatric disorders. Sample size was informed by
our previous studies using this technique in healthy individu-
als.21,25 All participants were right-handed, had normal or cor-
rected-to-normal vision and normal adult hearing. For three
patients (Patients 030, 032 and 040) the second run was discarded
due to distress and/or fatigue, causing us to stop the run prema-
turely. These three patients were excluded from all analyses as
we could not guarantee the validity of the patient-specific
results. In addition, from the 15 control subjects, one had to be
excluded as auditory stimuli could not be heard due to a
technical issue. Thus, all analyses are based on 11 patients (four
female, mean age ± SD: 59 ± 10.9 years, mean post-stroke time ±

SD: 5.95 ± 3.42 years) and 14 controls (eight female, mean age ±

SD: 55.6 ± 6.8 years).

Task space

Neuroadaptive Bayesian optimization is substantially more effi-
cient than randomly or exhaustively sampling all tasks because of
two desirable properties: (i) it incorporates prior information about
how the cognitive tasks relate to each other; and (ii) guides its own
sampling trajectory across tasks in an intelligent manner. The in-
tuition behind (i) is that tasks that are expected to elicit a similar
brain response are grouped together in the search space, while dis-
similar tasks are grouped further apart. Thanks to this prior infor-
mation, the algorithm does not need to test all possible tasks in
the real-time optimization run, but instead can sample a few,
highly informative tasks and then make predictions for all other
tasks by applying a non-linear spatial regression (i.e. Gaussian pro-
cess regression). This allows the algorithm to swiftly identify
regions in the task space that are suboptimal for its optimization
aim (i.e. maximizing FPN 4 DMN dissociation) and instead focus
on sampling tasks from the optimal regions in the search space.

Here, we designed a 2D task space (Fig. 1A) with one dimension
corresponding to ‘type of task’ and the other to ‘task difficulty’. We
selected three cognitive tasks (Calculation, Go/No-Go, and

Figure 1 Overview of methodology. (A) We designed a 2D task space with one dimension corresponding to type of task (seven tasks), and the other to
task difficulty (three levels). Tasks were ordered using pilot data collected separately in healthy volunteers. (B) This task space was searched through
in our real-time experiment using neuroadaptive Bayesian optimization. The aim was to quickly identify a subject-specific set of tasks that maximize
the difference in activity between the FPN and DMN. The method operates in the following steps: (1) the algorithm chooses a specific task � difficulty
combination from the task space; (2) functional MRI data are collected while the subject is performing the task; (3) the difference in brain level activa-
tion between FPN (red) and DMN (blue) is computed in real-time; and (4) the result from step 3 is used to update the algorithm and subsequently
choose the next task � difficulty combination to be presented to the subject in the next iteration [back to step (1) in a closed-loop fashion]. (C) FPN
and DMN network masks derived from Yeo et al.24
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Encoding) and four language tasks (Overt Naming, Auditory
Comprehension, Semantic Judgement, and Verbal Learning). Tasks
were chosen according to three criteria: (i) their ability to assess
core cognitive and language deficits; (ii) their predicted probability
of recruiting the FPN24; and (iii) the ability for patients to perform
and understand these tasks.26 Whereas in our past work, we have
aligned tasks in the search space based on a previous meta-ana-
lysis,23 here we added three tasks (Auditory Comprehension,
Semantic Judgement and Verbal Learning) that were not part of
this meta-analysis. Therefore, to order these seven tasks along the
task dimension, we used pilot data collected prior to the real-time
study in eight healthy volunteers (three female, mean age ± SD:
27.9 ± 8.3 years). Each task had three levels of difficulty with
increasing complexity and cognitive demand, resulting in a total
of 21 different task � difficulty conditions the algorithm could
choose from. All tasks and their variants are briefly described in
the Supplementary material and depicted in Supplementary Fig. 1.

Experimental procedure

All patients underwent the Comprehensive Aphasia Test (CAT)
outside of the scanner27 before the experiment began
(Supplementary material).

For the real-time functional MRI study, each participant under-
went two, independent optimization runs for which the algorithm
was reinitialized and thus blind to any data collected in the sub-
ject’s previous run or any previous subjects, allowing us to assess
the intra-subject reliability of results.

Each run was initiated randomly (i.e. first four task blocks were
selected randomly from across the task space). The start of each
run was synced with the onset of the first repetition time and each
new task block was initiated by a repetition time. The first task
commenced after 10 repetition times to allow for T1 equilibration
effects. Each run lasted 14.2 min and consisted of 16 task block
iterations; each iteration consisted of a task block lasting 34 s fol-
lowed by 10 s rest block (white fixation cross on black background).
Preceding each task block, participants received a brief instruction
(5 s) about the task they would need to perform in the upcoming
block followed by a short 3 s rest period (black background). For
five patients, task instructions had to be provided orally via a
microphone because of reading impairments. Participants used
their left hand to indicate answers via a keypad.

Subjects were trained on all tasks outside of the scanner and
informed about the real-time nature of the functional MRI experi-
ment, but no information was given on the actual aim of the study
or which parameters would be adapted in real-time. The investiga-
tor was not blinded due to the complexity of data acquisition and
the need to ensure that real-time optimization was functioning.

Real-time functional MRI

Masks of the bilateral target brain networks (Fig. 1C) were based on
a meta-analysis reported in Yeo et al.24 The FPN (i.e. component
09) covered the superior parietal cortex, intraparietal sulcus, lat-
eral prefrontal cortex, anterior insula and the posterior medial
frontal cortex. The DMN (i.e. component 10) spanned the posterior
cingulate cortex, precuneus, inferior parietal cortex, temporal cor-
tex and medial prefrontal cortex. Thresholded (z4 2) and binar-
ized maps of the two brain networks were used as mask.

Real-time functional MRI data analyses were performed on a
conventional Mac mini system; in the Supplementary material we
detail hardware specifications as well as the exact procedure for
turning on the real-time export of functional MRI data on the
Siemens magnetic resonance console computer. For real-time func-
tional MRI preprocessing (Supplementary material), we followed a
similar procedure as described in our previous work.23 For comput-
ing the FPN 4 DMN dissociation target measure, after each task
block, we ran incremental general linear models (GLMs)
(Supplementary material) on the preprocessed time courses of each
network separately and then computed the difference between the
estimates of all task regressors of interest (i.e. beta coefficients) for
the FPN and DMN (i.e. FPN 4 DMN). The resulting contrast values
were then entered into the Bayesian optimization algorithm. An ini-
tial burn-in phase of four randomly selected tasks was employed,
i.e. the first GLM was only computed at the end of the fourth block
after which the closed-loop experiment commenced.

Bayesian optimization

Bayesian optimization is a two-stage procedure that repeats itera-
tively in a closed loop. The first stage is the data modelling stage,
in which the algorithm uses all available samples obtained from
real-time functional MRI (i.e. FPN 4 DMN contrast values) up to
that iteration to predict the subject’s brain response across the

Table 1 Details of stroke patients

Patient ID Age Sex Time since
stroke, in years

Lesion territory Lesion volume, in cm3 CAT score
Average/sum

030a 69 Female 6 SC, WM, C (FC, IC, PC, TC) 22.28 119.0/10.82
031 58 Male 11.5 C (left PC, TC), SC, WM 12.63 511.0/46.45
032a 50 Male 1.5 C (left FC, TC, PC), SC regions 17.81 307.0/27.91
033 63 Male 5.5 C (left FC, PC), WM 4.87 595.0/54.09
034 40 Male 0.5 Left SC WM 0.31 805.0/73.18
035 60 Female 5.5 SC WM, SC GM, C (FC, TC, PC, OFC) 21.64 424.5/38.59
036 78 Female 6.5 SC WM, C (FC, TC, PC, OFC) 1.96 573.5/52.14
037 52 Female 4.5 C (left FC, IC, PC), WM 14.34 558.0/50.73
038 55 Male 5 C (FC, IC, PC), WM, SC GM 4.58 702.5/63.86
039 72 Male 2.5 C (left FC, IC, PC), WM, SC GM 8.55 627.5/57.05
040a 52 Male 4.25 C (left FC, IC, WM), right-sided pontine WM 3.33 612.5/55.68
041 67 Female 4.5 C (left PC) 1.52 590.5/53.68
042 47 Male 12 C (left FC, IC and PC) 21.42 422.5/38.41
043 57 Male 7.5 C (left FC, IC, PC), WM, SC GM 12.76 179.0/16.27

C = cortical; FC = frontal cortex; GM = grey matter; IC = insular cortex; OFC = orbitofrontal cortex; PC = parietal cortex; SC = subcortical; TC = temporal cortex; WM = white matter.
aPatients were excluded from all analyses as their second run had to be prematurely stopped.
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entire task space using Gaussian process regression.28–30 For the
Gaussian process, we used a zero mean function and the squared
exponential kernel.29 The second stage is the guided search stage,
in which an acquisition function is used to propose the task the
subject will need to perform in the next iteration. Here we used
the upper-confidence bound (GP-UCB) acquisition function31 that
favours the selection of points with high predicted mean value (i.e.
optimal tasks), but equally prefers points with high variance (i.e.
tasks worth exploring). Algorithmic details for both stages are pro-
vided in the Supplementary material.

Statistical analysis
Behavioural accuracy

To assess if patients understood task instructions and performed
higher than chance-level on the various tasks, we computed the
non-parametric effect size measure AUROC (area under the re-
ceiver operating characteristic curve32) between the true empirical
distribution of patients’ accuracy and the generated chance-level
distribution for each task condition separately. The empirical dis-
tribution was computed for each task condition separately based
on the mean accuracy (i.e. not AUROC) of each patient. The
chance-level distribution was derived by randomly shuffling (1000
permutations) the trial sequence and the corresponding behav-
ioural responses of each task block, and then re-computing the
mean accuracy of each patient; this procedure had the advantage
of preserving the overall response pattern of each patient. AUROC
is one of the few existing non-parametric measures of effect size;
thereby robust to violations of normality and advised for small
samples. AUROC can be understood as a measure of overlap be-
tween two distributions and its values range from 0 to 1; a value at
0.5 indicates that there is no effect found between the two distri-
butions (i.e. chance-level performance). Significance was deter-
mined when the one-sided lower 95% confidence bound
(computed via bootstrapping) was higher than an AUROC of 0.5.

Linear mixed-effect models of behavioural and functional
MRI data

To assess behavioural performance, functional MRI measures, in-
scanner motion and the relationship between functional MRI and
behaviour, linear mixed-effect (LME) modelling was performed. As
difficulty level 2 was sampled far fewer times than difficulty levels
1 and 3 (Fig. 2D), results from difficulty levels 1 and 2 were merged
for these analyses. Several LME models were specified (by model-
ling interactions among fixed effects and adding/dropping random
effects) for each dependent variable and model selection (details
in the Supplementary material) was performed using simulated
likelihood ratio tests (with 500 replications for simulation and
alpha level set at 0.05); each winning model as well as the number
of competitor models tested against are listed in Table 2. For non-
significant group-level LME results (i.e. no difference found be-
tween patients and controls), we performed equivalence testing
using the two one-sided tests procedure33 with an alpha set to 0.05
to confirm the absence of a group-level effect. For this, the small-
est effect size of interest was determined for each research ques-
tion based on objective criteria and/or heuristics, which are
detailed in the Supplementary material.

Intra-subject reliability

To assess intra-subject reliability of our results, we computed the
Spearman’s rank correlation of the Bayesian predictions across the
task space between the two runs of each subject. For statistical in-
ference, we performed permutation testing (i.e. 10 000

permutations) where we shuffled the FPN 4 DMN values and cor-
responding task indices of the second run and then refitted the
Gaussian process (hyperparameters were kept identical to the
real-time scenario) for these shuffled values before computing the
correlation coefficient between the two runs. For each permuta-
tion, we then computed the median of the Fisher z-transformed
correlation values for each group separately. To correct for mul-
tiple comparisons, at each permutation we only kept the max-
imum of both median values (i.e. ‘max statistic’ method34). The
median of our true empirically obtained (Fisher z-transformed)
correlation coefficients for patients and controls were then com-
pared to the generated null distribution of maximum median val-
ues with a one-sided alpha-level set at 0.05.

Assessing dissimilarity of patients’ functional profiles

To assess if patients’ individual profiles were more dissimilar
among each other than those of control subjects, we computed a
dissimilarity matrix, i.e. the correlation distance (1 – Spearman’s
rank correlation35) of each subject’s functional profile to all other
subjects’ individual profiles. As intra-subject reliability was high
across runs (see the ‘Results’ section), we derived each individual’s
functional profile by collapsing both runs (i.e. fitting Gaussian pro-
cess on all observations from both runs) with the aim of deriving a
more precise depiction of individuals’ functional profiles. Next, we
computed the correlation distance among all subjects. For statis-
tical inference, we performed permutation testing (10 000 permu-
tations) where we replicated this procedure but randomly shuffled
the label for patients and controls. We then computed two differ-
ent t-statistics: (i) the difference between controls’ dissimilarity
(i.e. upper triangle of control-by-control matrix) and patients’ dis-
similarity (i.e. upper triangle of patient-by-patient matrix); and (ii)
the difference between controls-by-patient dissimilarity (i.e. full
matrix) and patients’ dissimilarity. Finally, our true empirical t-
statistics were then compared to the generated null distribution of
t-values with a one-sided alpha-level set at 0.05. To visualize dis-
similarity among patients’ functional profiles in 2D, we used clas-
sical multidimensional scaling (MDS), a dimensionality reduction
technique that preserves between-subject distances. The tech-
nique can be understood analogous to a principal component ana-
lysis on the dissimilarity matrix, yielding the main principal
coordinates through the data (i.e. eigenvectors); with the first one
explaining most variance (i.e. largest eigenvalue). For subject
clustering, we performed density-based spatial clustering of appli-
cations with noise (DBSCAN) on the dissimilarity matrix, an ap-
proach that groups together points that are closely packed
together (i.e. points with many neighbours) and marks outliers
that lie alone in low-density regions (i.e. with nearest neighbours
too far). Cluster results were visualized in 2D MDS space. For com-
parison to MDS, we also computed the t-distributed stochastic
neighbour embedding (t-SNE) on the dissimilarity matrix, a non-
linear dimensionality reduction technique that better preserves
the global structure of the data at the cost of between-subject
distances.

To explore whether the dissimilarity among subjects’ function-
al profiles may be associated with performance, we took subjects’
weightings on the first principal coordinate of MDS and correlated
(i.e. Pearson r) it with in-scanner and out-of-scanner behaviour.
Since each subject had performed different tasks and difficulty lev-
els in the scanner, mean in-scanner accuracy could not be
obtained by simple averaging across all tasks; thus, we obtained
mean in-scanner accuracy by extracting each subject’s random
intercept from an LME (LME A1 in Table 2 but excluding the ‘Group’
regressor). For out-of-scanner performance, we used the sum of
patients’ CAT score. To account for patients’ lesion volume
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(Table 1), we also ran partial correlation analyses. For statistical in-
ference of these correlation analyses, we performed permutation
testing (50 000 permutations, one-sided alpha-level set at 0.05) by
randomly shuffling subjects’ labels; P-values obtained from this
were corrected for multiple comparisons using the false-discov-
ery-rate (FDR)36 with an alpha-level set at 0.05.

Normalizing patient’s FPN 4 DMN contrast and accuracy
to control distribution

To assess if there was a single task, for which all patients showed a
different FPN 4 DMN dissociation than controls, we ‘normalized’ the
Bayesian prediction of each patient’s FPN 4 DMN contrast value to

Figure 2 Behavioural results and sampling behaviour of algorithm. All results are listed for patients (left), controls (middle) and the difference between
controls and patients (right). (A) AUROC is a non-parametric effect size measure indicating the difference between the empirically obtained accuracy
and chance level for each task. Stars indicate the tasks for which patients and controls performed significantly above chance; significance was deter-
mined using a one-sided 95% lower confidence bound criterium of AUROC 4 0.5, exact values are listed in Supplementary Table 1. (B) Median and (C)
variance of reaction time [i.e. median absolute deviation (MAD)] across task space. (D) Given the algorithm’s subject-specific trajectories through the
task space, each subject is exposed to a different set of tasks; here, we show the absolute number of times each task was selected by the algorithm—
corrected for the difference in sample size n across both groups (i.e. n = 11 for patients and n = 14 for control subjects). Grey shaded areas correspond
to NaN: accuracy could not be computed for the Naming task (as no chance level could be determined) and the first difficulty level of the Auditory
Comprehension (as it was always correct); reaction time could not be computed in the Naming task (as no button press was required) and for Go/No-
Go tasks (as subjects were instructed to inhibit a response). See Supplementary material for details on each task.
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the control distribution using the modified z-score.37 This analysis
was done for each task and difficulty level separately. This procedure
was also performed for patient’s accuracy. However, in contrast to
FPN 4 DMN contrast values for which we had Bayesian predictions
for each task (i.e. Gaussian process regression across the task space),
we did not have each subject’s accuracy for each task condition due
to the sampling behaviour of the algorithm (Fig. 2D). Therefore, we
limited the normalization of patient’s accuracy to task conditions for
which we had enough controls (i.e. n47) to accurately compute the
control distribution. A patient’s FPN 4 DMN contrast value and accur-
acy for a particular task was marked significantly different (i.e. ‘out-
lier’) when the absolute modified z-score was 41.96. This was a
liberal criterion, as commonly a threshold of 3.5 is used.

Data availability

All Python, bash and MATLAB code for implementing neuroadap-
tive Bayesian optimization is available from GitHub http://github.
com/romylorenz/strokeLoop. For Gaussian process regression, we
use a Python implementation from http://github.com/SheffieldML/
GPy. Relevant data are available from the authors upon reasonable
request.

Results
Most patients are able to perform multiple tasks in
the scanner

Given the nature of the clinical populations, we first assessed
whether patients performed above chance while undergoing the

scan, indicating their understanding of the various task instruc-
tions. For this, non-parametric effect size measures (i.e. AUROC)
were computed for each task condition separately, comparing pa-
tient group-level accuracy with chance level. Results (Fig. 2A, left,
corresponding lower confidence bound is listed in Supplementary
Table 1) demonstrate that patients performed above chance for all
difficulty levels of the Go/No-Go task, for the easiest and medium
levels of the Calculation task and the easiest level of the Semantic
Judgement task. Further, they performed above chance for the
most difficult level of the Auditory Comprehension task but not for
the medium level—which can likely be explained due to unequal
sampling across both conditions (i.e. the medium level was only
sampled three times) (Fig. 2D). With respect to the Encoding task,
patients performed only above chance for the medium difficulty
level. Given that the lower confidence bound for the easiest level
of the Encoding task is 0.4903 (Supplementary Table 1) and AUROC
values are 40.6 for the easiest and medium level of this task, it
can be assumed that patients performed higher than chance—
even though it appears that this task is among the harder tasks
tested. Patients did not perform above chance for any level of the
Verbal Learning task, however, neither did controls (Fig. 2A, mid-
dle), illustrating that this task was ill-designed (Supplementary
material).

Patients perform less accurately, slower and more
variably than control subjects

As expected, overall patients performed less accurately [LME A1 (all
LME formulas listed in Table 2): Group t(746) = –4.13, P 5 0.001] and
slower than controls [LME A2: Group t(643) = 5.53, P 5 0.001].

Table 2 LME models for each dependent variable

Domain Dependent variable ‘Winner’ LME model (based on
simulated likelihood ratio tests)

Won competi-
tions/#
competitor
models

Behaviour (A1) Accuracy (% of correct trials
within a task block)

Acc � 1 + Group 3 Run + Group 3 Difficulty +
(1 j Subject) + (1 j Task) + (1 j Subject: Task)

7/7

(A2) Reaction times (correct
responses)

Rt � 1 + Group 3 Run + Group 3 Difficulty + (1 j Subject)
+ (1 j Task) + (1 j Subject: Task)

3/3

(A3) MAD accuracy MAD_Acc � 1 + Group 3 Run + Group 3 Difficulty + Run
3 Difficulty + Group 3 Run 3 Difficulty + (1 j Task) +
(1jSubject)

4/4

(A4) MAD reaction times MAD_Rt � 1 + Group 3 Difficulty + (1jSubject) 7/7
Functional MRI (B1) FPN 4 DMN betas_FPN4DMN � 1 + Run + Group 3 Task + Group 3

Difficulty + Task 3 Difficulty + Group: Task: Difficulty
+ (1 j Subject) + (1 j Subject: Task) + (1 j Repetition)

11/11

(B2) FPN betas_FPN � 1 + Run + Group 3 Task + Group 3

Difficulty + Task 3 Difficulty + Group: Task: Difficulty
+
(1 j Subject)

5/5

(B3) DMN betas_DMN � 1 + Group 3 Run + Group 3 Difficulty +
(1 j Subject) + (1 j Task) + (1 j Subject: Task)

4/5

(B4) MAD FPN 4 DMN MAD_betas_FPN4DMN � 1 + Group 3 Run + (1 j Subject) 7/7
(B5) In-scanner motion (mean

framewise displacement FD)
FD � 1 + Group + Run + (1 j Subject) 2/2

Functional MRI
and
behaviour

(C1) Accuracy and FPN4DMN Acc � 1 + Run + Difficulty + Group 3 betas_FPN4DMN +
(1 j Subject) + (1 j Task) + (1 j Repetition) + (1 j Subject:
Task)

18/19

(C2) Reaction time and FPN 4 DMN Rt � 1 + Run + Difficulty + Group 3 betas_FPN 4 DMN +
(1 j Subject) + (1 j Task) + (1 j Subject: Task)

13

Acc = accuracy; FD = framewise displacement; Rt = reaction time. For LMEs, categorical regressors were ‘Group’ (patients or controls), ‘Subject’ (our 25 different subjects), ‘Run’ (run

1 or run 2) and ‘Task’ (the seven tasks). Ordinal regressors were ‘Difficulty’ (difficulty level 1 or 3), and ‘Repetition’ (corresponding to the number of times the same task has been

sampled before in an individual subject’s run). For the LME formulas in the third column of the table, fixed effects are indicated in bold and random effects are in italics.
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Median and variance [i.e. median absolute deviation (MAD)] of reac-
tion times for each task are shown in Fig. 2B and C, respectively.
Both patients and controls performed less accurately [LME A1:
Difficulty t(746) = –4.76, P 5 0.001] and more slowly for more difficult
task levels [LME A2: Difficulty t(643) = 9.84, P 5 0.001]. Patients’ ac-
curacy was not differentially affected by task difficulty compared to
controls [i.e. no interaction effect, LME A1: Group � Difficulty t(746)
= –0.95, P 5 0.034]; in fact, they showed a gentler increment in re-
sponse time with increasing difficulty compared to controls [LME
A2: Group � Difficulty t(643) = –2.58, P = 0.01]. This is due to
patients’ considerably slower responses for the easiest task condi-
tions relative to controls (Fig. 2B) and that there was a set time win-
dow to respond for each task (Supplementary material). Whereas
reaction times decreased from the first to second run in both groups
[LME A2: Run t(643) = –2.98, P = 0.003], only patients were more ac-
curate in the second run [LME A1: Group � Run t(746) = 2.04, P =
0.042]. Overall, we found that patients showed a trend to vary more
in their within-task accuracy than controls [LME A3: Group t(100) =
1.97, P = 0.052]. Accuracy in both groups varied more in the second
versus first run [LME A3: Run t(100) = 2.33, P = 0.022], but this effect
seems to be driven by an increase in variance for controls rather
than patients [LME A3: Group � Run t(100) = –3.05, P = 0.003], but
only for the easiest task conditions [LME A3: Group � Run �
Difficulty t(100) = 2.42, P = 0.017] as across both groups, variability of
accuracy decreased in the second run for the most difficult task con-
ditions [LME A3: Run � Difficulty t(100) = –2.47, P = 0.015]. We found
no effects of within-task variance in reaction times (LME A4) be-
tween both groups; however, we could not confirm that the group-
level effect was statistically equivalent [t(16.33) = 0.48, P = 0.319],
given symmetric equivalence bounds of ± 0.6 in standardized
Cohen’s d effect size.

Neuroadaptive Bayesian optimization is a feasible
technique for patients

With respect to our real-time optimization results of FPN 4
DMN dissociation across the task space, we found significant
intra-subject reliability for controls (median Spearman rho ± SD:
0.91 ± 0.18, P 5 0.001) and patients (0.71 ± 0.45, P 5 0.001). When
investigating how FPN 4 DMN contrast values varied for the same
task within an individual (i.e. when sampled multiple times), we
found no significant difference in variance between patients and
controls [LME B4: Group t(108) = 0.88, P = 0.38], this effect was stat-
istically equivalent [t(14.71) = 1.99, P = 0.033], given symmetric
equivalence bounds of ±1.2 in Cohen’s d effect size. With respect to
in-scanner motion, we found that both patients and controls
moved significantly more in the second run [LME B5: Run t(47) =
2.34, P = 0.023] but that there was no significant difference be-
tween the two groups [LME B5: Group t(47) = 1.74, P = 0.088]. We
confirmed this effect to be statistically equivalent [t(14.42) = 2.425,
P = 0.015] given symmetric equivalence bounds of ±0.2 mm on a
raw scale. This indicates robustness of our obtained results and
demonstrates the feasibility of the approach to achieve reliable
results in patient populations.

Semantic judgement, calculation and encoding
tasks maximally dissociate FPN from DMN in
patients and controls

Group-level Bayesian predictions across the task space (i.e.
Gaussian process regression on all observations) are shown in Fig.
3A for patients and controls, separately. We found that across both
groups, Semantic Judgement [LME B1: t(771) = 5.11, P 5 0.001],
Calculation [LME B1: t(771) = 4.39, P 5 0.001] and Encoding [LME B1:
t(771) = 4.26, P 5 0.001] tasks maximally differentiate the FPN from

the DMN. Collapsed over all tasks, more difficult task conditions
result in a larger FPN-DMN dissociation in both groups [LME B1:
Difficulty t(771) = 2.95, P = 0.003]. The sampling behaviour of the
Bayesian optimization algorithm clearly confirms these results
(Fig. 2D): for both patients and controls the most difficult condi-
tions of these three tasks were most often selected by the algo-
rithm, indicating that the algorithm identified them as optimal for
maximizing the FPN 4 DMN dissociation. While this is very pro-
nounced for controls, in particular for difficulty level 3 of the
Calculation task (Fig. 2D, middle); it is worth noting that the algo-
rithms sampled much more exhaustively across the task space for
patients (Fig. 2D, left), potentially indicating more diversity in the
optima identified among individual patients. Surprisingly, at the
group level, it appears that patients do not show a qualitatively
different FPN-DMN dissociation pattern across the task space com-
pared to controls (Fig. 3A), but only seem to have a slightly dimin-
ished FPN 4 DMN dissociation for the Semantic Judgement,
Calculation and Encoding tasks. These qualitative observations are
also confirmed statistically: patients have a significantly lower
FPN 4 DMN dissociation only for the Semantic Judgement task in-
dependent of difficulty level [LME B1: Group � Semantic
Judgement t(771) = –2.11, P = 0.035]. This finding may be because
the patients’ group-level results are not a good representation of
individual results of patients and is in line with the algorithm’s
sampling behaviour. To understand the relative contribution of
both the FPN and DMN to these results we also computed the acti-
vation values for both networks across the task space separately
(Fig. 3B, second and third row). While we found no significant dif-
ference among the groups for either the FPN [LME B2: Group t(771)
= 1.28, P = 0.20] or DMN [LME B3: Group t(794) = 0.61, P = 0.54],
equivalence testing could not confirm the group-level effect to be
statistically equivalent for either network [tFPN(10.56) = 0.76, P =
0.23, tDMN(10.4) = 0.35, P = 0.36, given symmetric equivalence
bounds of ±0.5 in Cohen’s d effect size]. Finally, we were interested
in understanding the relationship between neural and behavioural
measures. While higher FPN 4 DMN contrast values were associ-
ated with longer reaction times across both groups [LME C2: FPN 4
DMN t(643) = 2.47, P = 0.014], there was no significant difference of
this effect in patients [LME C2: Group � FPN 4 DMN t(643) = –1.31,
P = 0.19]. Further, we did not find any association between the
magnitude of FPN 4 DMN dissociation and accuracy across [LME
C1: FPN 4 DMN t(746) = 1.59, P = 0.11] or between the two groups
[LME C1: Group � FPN 4 DMN t(746) = 0.35, P = 0.73].

Patients show unique profiles of network
dysfunction

Motivated by these findings, we wanted to understand if indeed
patients’ real-time optimization results are more diverse than con-
trol subjects’ results. When looking at the dissimilarity of FPN 4
DMN profiles between patients (Fig. 4A), we found that they are
significantly more dissimilar (t = –5.02, P = 0.038) than the FPN 4
DMN profiles between controls (Fig. 4B). Interestingly, we found
that patients’ individual profiles are even more dissimilar amongst
each other than when comparing them with controls’ individual
profiles (t = –2.77, P = 0.024). These statistically significant findings
demonstrate that patients really have unique profiles of network
dysfunction but that some patients look more similar to controls
than to other patients.

To visualize this finding, we plotted the dissimilarity among
each patient’s and control’s individual profile in 2D using MDS, a
dimensionality reduction technique that preserves between-sub-
ject distances. In Fig. 5A, we see that the majority of controls clus-
ter together (turquoise) at the centre, indicating high similarity
between their functional profiles. In contrast, most patients (dark
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Figure 3 Group-level results of real-time optimization. (A) Group-level Bayesian predictions across task space (i.e. Gaussian process regression across
all observations) for patients (left) and controls (right) indicate no qualitative difference in the FPN 4 DMN dissociation pattern across the task space
between both groups. Patients appear to only have a slightly diminished FPN 4 DMN dissociation for the Semantic Judgement, Calculation and
Encoding tasks. (B) To confirm that Bayesian predictions in A are not driven by the specific hyperparameters of the Gaussian process regression
(Supplementary material), we also plotted the median of the FPN 4 DMN dissociation values across the task space for both groups (top row). We con-
firm that the Bayesian predictions appropriately capture the underlying distribution of median FPN 4 DMN contrast values. To understand the rela-
tive contribution of the FPN and DMN to our group-level results, we plot the brain activation values for those networks separately (second and third
rows).
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blue) lie dispersed around the cluster of healthy controls and show
higher variance along the first and second principal coordinates,
indicating higher dissimilarity among their functional profiles.
Using density-based clustering, we confirm these descriptive
results: we identified one dense cluster (peach) consisting of most
controls (11 of 14 controls, exceptions are: Subjects 016, 018 and
020) and two patients (Patients 038 and 041) while all other nine
patients were classified as ‘outliers’ (red) of the cluster by the algo-
rithm (Fig. 5B). We found that subjects within the cluster perform
significantly better [t(23) = 2.17, P = 0.018] and less variable [two-
sample F-test for equal variance, F(12,11) = 0.17, P = 0.002] on tasks
in the scanner than subjects around the cluster; given that most
controls fall into this cluster, these results are expected.

For comparison, we used another dimensionality reduction
technique (t-SNE) that better preserves the global structure of
the data at the cost of between-subject distances. We notice that

t-SNE (Supplementary Fig. 2) pulls apart patients mainly based on
their respective weighting on the first principal coordinate derived
from MDS (Patients 033, 034, 038 and 041 have a negative weight-
ing and are thus grouped closer to controls with t-SNE, while the
other patients have a positive weighting). Thus, to explore whether
variance on the MDS’s first principal coordinate (that explains
most of the variance of dissimilarity between all subjects’ func-
tional profiles) also relates to variance in behaviour, we simply cor-
relate the weighting on the first coordinate with in-scanner
behaviour (i.e. mean accuracy across all tasks performed in the
scanner—derived by extracting each subject’s random intercept
from an LME, see ‘Materials and methods’ section). We found a sig-
nificant negative relationship (r = –0.40, n = 25, P = 0.025/PFDR =
0.042) across patients and controls; however, this seems to be
mainly driven by patients given the controls’ performance
approaching ceiling level (Fig. 5C). When only taking patients into

Figure 4 Subject-level results of real-time optimization. (A) Patients show unique profiles of FPN 4 DMN dissociation across the task space. (B) It can
be clearly seen that in contrast to patients, controls show a striking similarity of FPN 4 DMN dissociation across the task space. For all patients and
controls, we show the Bayesian predictions of FPN 4 DMN dissociation (i.e. Gaussian process regression based on subject-specific samples) across
the entire task space (top row) as well as all samples individually (bottom row); when a task was sampled multiple times within a subject, we computed
the median across those samples. We can see that Bayesian predictions appropriately capture the underlying distribution of samples.
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account, this negative association is strengthened (r = –0.64,
n = 11, P = 0.016/PFDR = 0.042) and remains high even when
accounting for patients’ lesion volume (r = –0.63, n = 11, P = 0.025/
PFDR = 0.042). We found a moderate, yet not significant negative re-
lationship with out-of-scanner behaviour (Supplementary Fig. 3).
Given our low sample size, we want to caution against the overin-
terpretation of these correlation results.

Since our patient cohort suffers from chronic post-stroke apha-
sia, we would expect that the result of patients exhibiting unique
patterns of network function is not specific for the dissociation of
the FPN from the DMN but also holds for functional networks clas-
sically associated with language. We tested this assumption and
could replicate our results for a left-lateralized language network.
By contrast, when focusing our analysis on a network associated
with motor function, we found no significant difference between
patients and controls (Supplementary material). These supporting
analyses illustrate our method’s specificity in characterizing indi-
vidual level network dysfunction in patients.

The potential of single tasks for biomarker discovery is
limited

Functional profiles derived from real-time optimization seem suit-
able for inferring patient’s current behavioural capabilities, indi-
cating their potential usefulness as clinically relevant biomarkers
for predicting stroke recovery (i.e. a patient’s future functional cap-
acity). To further understand if these multivariate profiles of re-
sidual network function yield additional information to that can
be obtained from univariate analyses of individual task activa-
tions, as is conventionally performed in clinical neuroimaging re-
search, we ‘normalized’ each patient’s task-specific Bayesian
prediction values with respect to the controls’ distribution. Results
from this analysis revealed the particular tasks on which each pa-
tient significantly deviates from healthy controls (Fig. 6A and C).
We were able to identify difference in patients’ FPN 4 DMN dis-
sociation from those of healthy controls, in only 9 of 21 possible
task conditions. As those conditions include almost exclusively
the hardest (five) and medium (three) difficulty levels, selecting an
appropriate task difficulty level seems to play an important role in

separating patients from controls. Moreover, different tasks iden-
tify different subsets of patients that display a significantly altered
FPN 4 DMN dissociation compared to controls; this implies that
task selection has an impact on which patients are labelled as
deviating from controls. Importantly, when comparing these
results to patients’ individual task performance (Fig. 6B and D), we
found little resemblance (Fig. 6E): most patients performed signifi-
cantly worse than controls on those tasks while showing no sig-
nificant difference in their FPN 4 DMN dissociation (light blue).
Taken together, these results highlight the challenge in a priori
selecting an appropriate task and difficulty level, questioning the
potential of univariate task-based functional MRI biomarkers for
predicting stroke recovery.

Discussion
In this study, we applied neuroadaptive Bayesian optimization for
the first time to a cohort of patients with the aim of rapidly search-
ing through a variety of different cognitive and language-related
task conditions in order to obtain patient-specific functional pro-
files of residual domain-general network function.

At the group level, patients qualitatively did not show an altered
FPN 4 DMN dissociation pattern across tasks compared to controls.
For both patients and controls, more difficult task conditions and
particularly the Semantic Judgement, Calculation and Encoding
tasks maximally dissociated the FPN from the DMN. This is in line
with our previous work, showing that the Calculation and Encoding
tasks as well as increased task demands strongly recruit this par-
ticular FPN in healthy volunteers.23,24 While we found no significant
difference between patients and controls for the Calculation and
Encoding tasks, we did find the Semantic Judgement task to be asso-
ciated with a significantly diminished FPN 4 DMN dissociation in
patients on a group level. However, it should be noted that our sam-
ple size was primarily optimized for individual-level analyses (i.e.
small sample with multiple runs per subject) and not for drawing
group comparisons. Given that some of our equivalence tests
yielded non-significant results, our study lacks power to detect
smaller group-level differences. Additional analyses revealed though
that even the existence of a group-level effect is not a prerequisite

Figure 5 Dissimilarity of functional profiles and association with behaviour. (A) Visualization of dissimilarity (1 – Spearman) among each patient’s
(dark blue) and control’s (turquoise) individual profile in 2D using MDS, a non-linear dimensionality reduction technique that preserves between-sub-
ject distances. Most controls (except Patients 016 and 020) cluster together at the centre, indicating high similarity between their functional profiles.
In contrast, most patients lie dispersed around the cluster of healthy controls, indicating higher dissimilarity among their functional profiles. (B)
Density-based clustering of dissimilarity (1 – Spearman) among each subject’s functional profile confirms descriptive results from A: we identified
one dense cluster (peach) consisting of almost all controls (except Subjects 016, 018, 020) and two patients (Patients 038 and 041). All other nine
patients were classified as ‘outliers’ of the cluster by the algorithm (red). (C) Subject’s variance on the first principal coordinate of MDS is significantly
associated with their behavioural performance in the scanner (r = –0.40, n = 25, P = 0.025/PFDR = 0.042). As controls (turquoise) perform almost at ceil-
ing, this association is mainly driven by patients (dark blue) and persists even when accounting for patients’ respective lesion volume (r = –0.63,
n = 11).
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that a given tasks differentiates well between patients and controls
on the individual level: when investigating individual patients’ neur-
al responses for the Semantic Judgement task (i.e. the task that
showed significantly different FPN 4 DMN dissociation between
patients and controls on the group level), only two out of all patients
showed a significantly lower FPN 4 DMN dissociation compared to
controls and two other patients showed a significantly stronger FPN
4 DMN dissociation on that task compared to controls. This high-
lights the limitations involved with the conventional approach in
clinical neuroimaging: it is remarkably difficult to predict before the
start of a clinical study which task will reveal a sensitive biomarker
that can be applied to an individual patient and that is capable of

differentiating patients from controls as well as subgroups of
patients; this is especially important considering the heterogeneity
in patients with respect to lesion location and multiple co-morbid-
ities (e.g. vascular disease) that differentially affect the function of
brain networks.

At the subject-level, we confirmed the validity of patient-spe-
cific functional profiles by comparing the real-time optimization
results of two independent runs. We found patient-specific pro-
files to be consistent; however, controls’ functional profiles were
characterized by a much higher intra-subject reliability. This lower
intra-subject reliability of patient-specific functional profiles may
be explained by patients showing learning effects (improved

Figure 6 Task-wise normalization (z-scoring) of patients’ FPN 4 DMN dissociation and accuracy to controls’ group result. (A) Patients’ FPN 4 DMN
Bayesian prediction values z-scored with respect to the control distribution for each task condition; each patient has a unique colour code. (B)
Patients’ accuracy z-scored with respect to control distribution separately for each task condition; each patient has a unique colour code. Note that
not all tasks could be z-scored because of a too small control sample for those tasks (refer to the ‘Materials and methods’ section). (C) A patient’s FPN
4 DMN contrast value for a particular task was marked significantly different (i.e. ‘outlier’, red or blue) when the absolute modified z-score was
41.96. For only 9 out of 21 possible task conditions, we identified at least a single patient that showed a dysfunctional FPN 4 DMN dissociation (i.e.
weaker or stronger FPN 4 DMN dissociation than controls). Importantly, there are only a few tasks that show a dysfunctional FPN 4 DMN dissoci-
ation in the exact same subset of patients: (i) Patients 034, 035, 036 and 038 showed significantly different FPN 4 DMN contrast values for the medium
and most difficult levels of the Encoding task and the most difficult level of the Semantic Judgement task; (ii) Patients 031, 034 and 038 showed a sig-
nificantly different FPN 4 DMN dissociation for the medium and difficult level of the Go/No-Go task. Importantly, for more than half of the tasks (i.e.
12), we do not find a significantly different FPN 4 DMN dissociation for patients. (D) A patient’s accuracy was marked significantly different (i.e. ‘out-
lier’, red or blue) when the absolute modified z-score was 41.96. (E) When comparing the outlier results, we observed little correspondence between
patient’s dysfunctional FPN 4 DMN dissociation and behaviour (red). Interestingly, patients that showed a significantly stronger FPN 4 DMN dissoci-
ation than controls (i.e. Subjects 034 and 038) seemed to perform similarly to controls on some of these tasks (dark blue). The majority of our patients,
however, performed significantly worse than controls while showing no significant difference in FPN 4 DMN dissociation (light blue). Grey shaded
areas correspond to NaN because of missing behavioural data for that subject (grey square) or because of a too small control sample for those tasks
(grey column).

Mapping residual brain network function BRAIN 2021: 144; 2120–2134 | 2131

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article/144/7/2120/6174117 by U

niversity C
ollege London user on 06 Septem

ber 2022



accuracy) in the second run, potentially contributing to slightly
different results across both runs.

Our findings clearly demonstrate that group-level results are
not representative of individual patient-specific results. We found
greater heterogeneity among the functional profiles of patients
than among those of controls. In fact, patients feature idiosyncrat-
ic profiles of FPN 4 DMN dissociation across the task space. This
was also in line with the sampling trajectories of the real-time al-
gorithm that sampled much more diversely for patients. By con-
trast, the algorithm’s sampling was much more focused for
controls as they showed a very high consistency in their functional
profiles; a finding replicating our earlier work.21,23 Interestingly,
we could show that the variance in patients’ functional profiles is
associated with their in-scanner performance even when account-
ing for lesion volume. This indicates that patients’ functional pro-
files are indeed capturing a specific functional dysfunction that
cannot be predicted from just the spatial extent of their stroke le-
sion. Given our low sample size, we are convinced that studies
with larger sample size and study preregistration are needed to
corroborate these explorative findings. Such studies will be able to
shed light on whether patients’ functional profiles represent a
(multidimensional) continuum or can be classified into subgroups
(e.g. patients with positive versus negative loading on the first
principal coordinate of MDS). Equally, such studies could investi-
gate why a few healthy control subjects also show considerable
variance in their functional profiles. While speculative, functional
profiles may be suitable markers for detecting early cognitive de-
cline that has not displayed in major behavioural deficits yet.
While we have only looked at patient’s relative differences of FPN
4 DMN magnitude among tasks (i.e. 1 – Spearman correlation
across tasks space) and compared them to controls, future studies
could also take absolute FPN 4 DMN differences into account (e.g.
by using 1 – Euclidean distance across task space35) as in the uni-
variate analyses, we observed two particularly well-performing
patients who showed a much stronger FPN 4 DMN dissociation
compared to controls.

One challenge of this closed-loop experimental framework is
that subjects are required to remember various task instructions
and switch between tasks in a relatively swift manner (every mi-
nute in our case). Despite these heightened task demands, in our
study, patients performed above chance for all tasks on at least
the easiest difficulty level (an exception was the Verbal Learning
task for which also control subjects performed at chance).

In summary, our study highlights the importance of moving be-
yond traditional ‘one-size-fits-all’ approaches in clinical neuroi-
maging where patients are treated as one group and single tasks
(or a few tasks) are used. Instead, we demonstrate that mapping
residual network activity following brain injury across many dif-
ferent tasks using real-time optimization yields robust patient-
specific functional profiles that carry meaningful information
about a patient’s behavioural capacity. From a conceptual point of
view, this multi-task approach also improves the generalizability
of our findings38 because the Gaussian process explicitly models
the subjects’ brain response across many different cognitive tasks
and variants of the same task (e.g. different difficulty levels);
results obtained are, therefore, not specific to a single task,39

allowing for far more principled generalization of these results.
Thus, multivariate functional profiles of residual brain function
derived from neuroadaptive Bayesian optimization may have
promising potential to become clinically relevant and generaliz-
able biomarkers with satisfactory test-retest reliability, that could
be leveraged to make patient-specific predictions about recovery
and guide individualized treatment planning.

Understanding how patient-specific profiles of residual net-
work function could be utilized for predicting stroke recovery and

guide rehabilitation is, however, beyond the scope of the present
study and needs to be addressed in longitudinal studies with larger
sample size. This would allow the study of how changes in
patients’ profiles at different stages of stroke recovery relate to
gradual behavioural and cognitive improvements. While we have
employed the technique to stroke patients in the chronic stage of
recovery, it can be equally administered to patients in the sub-
acute phase of stroke. Considering that we found no univariate lin-
ear relationship between FPN 4 DMN dissociation and task
accuracy in this study, we argue that the relationship between
patient’s profiles of residual network function and behaviour is
most likely of multivariate and possibly also non-linear nature. For
example, so far it is not clear if therapy should focus on training
patients on tasks associated with high or low residual FPN 4 DMN
dissociation or tasks for which residual FPN 4 DMN dissociation is
most different to controls. To unravel the possibly complex rela-
tionship between profiles of residual network function and behav-
iour, it may be critical to test patients on a large battery of tasks
outside of the scanner, which would allow obtaining patient-spe-
cific multivariate behavioural profiles (e.g. Butler et al.40and Halai
et al.41) with adequate statistical power, that then can be related to
multivariate profiles of residual network function using machine-
learning techniques such as canonical correlation analyses.

Neuroadaptive Bayesian optimization has immediate thera-
peutic potential in that it permits identifying patient-specific sets
of tasks for training specific brain networks/states; these tasks
could be administered as part of cognitive behavioural therapy
over prolonged periods of time. Importantly, our approach can
also be combined with therapeutic interventions involving non-in-
vasive brain stimulation.39,42 Using neuroadaptive Bayesian opti-
mization, cognitive task conditions and non-invasive brain
stimulation parameters could be searched through simultaneously
with the aim of identifying optimal therapeutic protocols tailored
to individual patients for behavioural therapy (i.e. optimal task) in
conjunction with brain stimulation (i.e. optimal stimulation
intensity).

Since structural brain imaging has been shown to predict
stroke patients’ current linguistic and cognitive impairments43 as
well as language outcome and recovery,44,45 an avenue for future
research would be to incorporate lesion information derived from
structural scans (�5 min) with rapidly obtainable functional pro-
files (�0–15 min) to further boost the accuracy of such predictions.
To what extent resting state functional MRI (e.g. Bonkhoff et al.46)
may carry additional predictive value, is an outstanding scientific
question. Equally, instead of using the same brain network masks
for all patients as we have done here, the technique could be fur-
ther refined by a priori specifying subgroup-specific brain networks
masks (e.g. derived from left-handed stroke patients) or even indi-
vidualized network masks derived from anatomical landmarks,
functional localizers (e.g. Fedorenko et al.47 and Mahowald and
Fedorenko48) or resting state functional MRI (e.g. Braga and
Buckner49and Gordon et al.50).

The strength of our real-time optimization approach lies in the
rapid mapping out of functional profiles of residual network func-
tion across a large space of cognition without the need to exhaust-
ively sample all possible tasks. This efficiency makes it a highly
interesting tool for clinical populations; yet it may come at a cost
of sensitivity. For example, we identified four stroke patients
whose functional profiles are similar to those of healthy controls.
Therefore, an interesting future direction may be to use neuroa-
daptive Bayesian optimization as a first stage for obtaining a com-
prehensive yet coarse depiction of residual brain function. Results
obtained from this first stage could then be used to inform a se-
cond stage of dense sampling51–53; patients could then be tested
repeatedly over a long period of time on a subset of tasks identified
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with real-time optimization, or real-time optimization repeated re-
peatedly.23 Such a two-stage procedure would yield very precise
individual functional profiles across the most informative tasks.

Beyond optimizing for brain network activation/dissociation as
we have done here, neuroadaptive Bayesian optimization is highly
versatile, allowing us to target any clinically promising functional
brain state that can be estimated in real-time, for example based
on functional42,54 or effective connectivity,55 multivariate patterns
of functional MRI activation,56–58 or EEG.59,60 Selecting appropriate
target brain states is ideally based on prior exploratory studies for
identifying candidate functional neuroimaging-based biomarkers
that carry predictive power about recovery and treatment re-
sponse.5 From a statistical point of view, the lower the contrast-to-
noise (CNR) ratio of the target brain state, the more observations
(e.g. longer runs) are needed to obtain satisfactory accuracy21;
therefore, target brain states for clinical populations should be
chosen that have moderate-to-high CNR.

In conclusion, we show for the first time that neuroadaptive
Bayesian optimization is a feasible, reliable and highly efficient ap-
proach for identifying patient-specific functional profiles of net-
work dysfunction. While the sample size is currently small, we
show that these unique patient profiles are associated with behav-
iour, thereby demonstrating the potential of this approach for
exploring and testing novel neuroimaging biomarkers for recovery
after stroke. This technique has broad reaching clinical implica-
tions and can be extended to a wide range of neurological and psy-
chiatric conditions. In particular, it will be of interest to those
developing presurgical functional localization around lesions such
as epileptogenic focus or tumours. Furthermore, this approach can
be extended to optimize for any target brain network/state and op-
timize task conditions and non-invasive brain stimulation param-
eters conjointly, thereby opening new avenues for precision
medicine for a wide range of neurological disorders.
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