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Summary

Background: Prevalence rates of child overweight and obesity for a group of children

vary depending on the BMI reference and cut-off used. Previously we developed an

algorithm to convert prevalence rates based on one reference to those based on

another.

Objective: To improve the algorithm by combining information on overweight and

obesity prevalence.

Methods: The original algorithm assumed that prevalence according to two different

cut-offs A and B differed by a constant amount dz on the z-score scale. However the

results showed that the z-score difference tended to be greater in the upper tail of

the distribution and was better represented by b�dz, where b was a constant that

varied by group. The improved algorithm uses paired prevalence rates of overweight

and obesity to estimate b for each group. Prevalence based on cut-off A is then

transformed to a z-score, adjusted up or down according to b�dz and back-trans-

formed, and this predicts prevalence based on cut-off B. The algorithm's performance

was tested on 228 groups of children aged 6–17 years from 20 countries.

Results: The revised algorithm performed much better than the original. The standard

deviation (SD) of residuals, the difference between observed and predicted preva-

lence, was 0.8% (n = 2320 comparisons), while the SD of the difference between

pairs of the original prevalence rates was 4.3%, meaning that the algorithm explained

96.7% of the baseline variance (88.2% with original algorithm).

Conclusions: The improved algorithm appears to be effective at harmonizing preva-

lence rates of child overweight and obesity based on different references.

K E YWORD S

CDC, harmonization, IOTF, obesity, overweight, prevalence, WHO

1 | INTRODUCTION

Child obesity continues to be a major public health concern, and it is

important for policy to be able to document its prevalence, across

ages and times, in children throughout the world. Two recent large

studies, the NCD Risc Factor Collaboration (NCD-RisC)1 and the

Global Burden of Disease (GBD),2 have recorded prevalence rates of

overweight and obesity by age and sex in 200 countries.

The two studies are important and valuable—but they also high-

light a fundamental weakness in that their results are not directly
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comparable. The NCD-RisC defined child overweight and obesity

using the body mass index (BMI) growth standard and reference of

the World Health Organization (WHO),3,4 whereas the GBD used the

International Obesity TaskForce (IOTF) reference cut-offs.5,6 The two

references when applied to the same group of children give different

prevalence rates of overweight and obesity, and there is no simple

way to convert from one to the other. This means that the two sets of

results cannot be compared or combined, a silo effect which repre-

sents a major waste of research effort.

This is an issue of data harmonization, and our previous paper7

introduced an algorithm to address it. The algorithm takes prevalence

rates based on one reference, for example, WHO, and estimates what

they would be if based on another reference, for example, IOTF.

It works by transforming prevalence to the normal equivalent deviate

(z-score) scale; this allows switching between references by adjusting

the prevalence z-score up or down by an amount that depends only

on the two references and the age and sex of the target group of

children. The adjusted z-score is then back-transformed to give an

estimate of prevalence according to the other reference.

The aim was that the algorithm be both reversible (i.e. predicting

from one reference to another and then back again returning the orig-

inal prevalence) and generalizable (i.e. applying to all datasets). In prac-

tice the algorithm worked reasonably well, explaining 88% of the

variance.7 The 12% unexplained error was still relatively large though,

making it less than ideal for routine use. We now show that the algo-

rithm can be materially improved. As previously described it focused

on individual prevalence rates of overweight or obesity, and ignored

the fact that most studies measure both overweight and obesity.

Taking the two rates together provides extra information, which

reduces the algorithm's unexplained error from 12% to 3%.

The aim of the paper is to describe the improved algorithm and

validate it using data on 480 000 children aged 6–17 years from

20 countries.

2 | METHODS

2.1 | BMI z-score cut-offs

Child overweight and obesity are defined as BMI exceeding an age-

sex-specific cut-off that corresponds to a particular BMI z-score.

Table 1 gives the z-score cut-offs for overweight and obesity accord-

ing to the IOTF and WHO references, and also the US Centers for

Disease Control and Prevention (CDC) reference.8 The IOTF z-score

cut-offs correspond to sex-specific z-scores of BMI at age 18, 25 kg/

m2 for overweight and 30 kg/m2 for obesity, for age 2–18.5 The

WHO cut-offs are whole numbers from 1 to 3 that apply to both

sexes, with higher cut-offs for age 0–5 than for age 5–19. The CDC

cut-offs are the 85th (overweight) and 95th (obesity) centiles of the

BMI distribution, for age 2–20 in both sexes.

Note that CDC defines overweight prevalence as excluding obe-

sity prevalence, whereas IOTF and WHO include it. The algorithm

requires overweight to include obesity, and where it does not obesity

is added to overweight. Overweight prevalence as reported here

always includes obesity prevalence.

2.2 | Distributions and QQ plots

The frequency distribution of BMI is markedly skew to the right,7 and

to adjust for it the three BMI references were constructed using ver-

sions of the LMS method.9 This ensured that BMI z-score in the three

reference populations was normally distributed. However, when

applying the references to other populations normality cannot be

assumed—in the decades since the reference data were collected

mean BMI has increased and the distribution of BMI has shifted to

the right, as seen by increasing rates of overweight and obesity world-

wide. This has affected the distribution of BMI z-score in a way that is

poorly documented.

A useful way to visualize the frequency distribution of BMI

z-score is with the quantile-quantile (QQ) plot, which plots obesity

prevalence against the corresponding z-score cut-off. Expressing the

prevalence as a z-score (e.g. 5% prevalence equals z-score 1.645)

simplifies the plot by plotting z-score against z-score. If the data are

normally distributed this gives a straight line QQ plot. And in addition,

if the data are from the reference population, that is, standard normal,

the z-score prevalence is identical by definition to the z-score cut-off

(the one defines the other) and the QQ plot is a straight line with

slope 1 and intercept 0.

Prevalence p is converted to z-score Z using the formula:

Z¼�Φ�1 pð Þ, where Φ�1 is the inverse cumulative normal distribution,

and the minus sign reflects BMI being above rather than below the

cut-off—a higher obesity cut-off gives a lower prevalence. The z-score

prevalence is called Z (upper case) to distinguish it from the z-score

cut-off z (lower case), so the QQ plot consists of Z plotted against z.

Based on reference data the plot corresponds to the straight line

Z¼ z. For data from a specified target group the QQ plot is con-

structed as follows: against each z-score z is plotted the z-score prev-

alence Z of individuals in the group whose BMI z-score matches or

exceeds z.

Figure 1 shows QQ plots for the CDC (green), IOTF (orange) and

WHO (blue) references based on their own reference data (single

TABLE 1 BMI z-score cut-offs for defining overweight and
obesity by age and sex according to the WHO, IOTF and CDC
references

BMI z-score cut-off

Reference Age (years) Sex Overweight Obesity

WHO 0–5a Both 2 3

5–19 Both 1 2

IOTF 2–18 Boys 1.31 2.29

2–18 Girls 1.24 2.19

CDC 2–20 Both 1.04 to <1.64b 1.64

aWHO age 0–5 uses weight-for-height not BMI.
bCDC overweight prevalence excludes obesity prevalence.
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dotted line, above), and also based on data from a target group of

3699 6-year-old boys from the Health Survey for England (solid lines,

below).10 Prevalence is plotted as Z on the left axis and as a percent-

age on the right axis, with the percentage falling as Z rises. Also

shown are the six reference overweight and obesity cut-offs (vertical

dotted lines), and on each line there are two points, the upper one

corresponding to the reference prevalence and the lower one to the

target group prevalence. It is clear that the overweight and obesity

rates differ from one reference to another. In addition, comparing the

points on each vertical line, overweight is nearly twice as common in

the target group compared to the reference populations, and obesity

is up to four times as common, showing how prevalence has increased

over time.

It is also clear that the three target group QQ plots differ in shape.

Focusing on the region covered by the six cut-offs (from z¼1 to

z¼2:3) the plots are (a) all close to a straight line; (b) appreciably

lower than the reference QQ plots; and (c) shallower in slope for IOTF

and WHO (though not CDC). This means that they can be summarized

as straight lines by extending the formula Z¼ z to Z¼ b� zþc, where

the slope b and intercept c differ between references and can be esti-

mated by linear regression.

2.3 | The original algorithm and the mean z-score
cut-off

The original algorithm assumed implicitly that the QQ plot for each

target group could be summarized as the line Z¼ zþc, that is, with

b¼1.7 This corresponds to a downward shift in the QQ plot as mea-

sured by the intercept c. However, z and c are measured on the refer-

ence's z-score scale, so to compare two references a common z-score

scale is needed. This was achieved as follows: each z-score cut-off

was converted to its corresponding BMI cut-off for the group's age

and sex (e.g. boys with mean age 6.5 in Figure 1). This BMI was in turn

expressed as an age-sex-specific z-score according to the other refer-

ence. The two z-scores then relate to the same BMI cut-off, and

hence to the same prevalence rate. The average of the two is a

z-score on a scale that links to the BMI cut-off and the corresponding

prevalence, and which is symmetric in the two references. Effectively

it represents an average QQ plot, midway between the QQ plots

for the two references. On this common scale the intercept c is the

same for the two references, and their z-score cut-offs are directly

comparable.

It follows that ZA ¼ zAþc and ZB ¼ zBþ c, where the subscripts

indicate references A and B. By difference dZ¼ dz where dZ¼ZB�ZA

and dz¼ zB� zA. This allowed ZB to be estimated as ZAþdz, or equiva-

lently ZA as ZB�dz. In other words, the difference in z-score preva-

lence between the references should match the difference between

the corresponding mean z-score cut-offs. But we showed7 that the

formula dZ¼ dz was unreliable and the modified formula dZ¼ b�dz

worked better, with values of b per group between 0.7 and 1.0.7 This

is the same as the QQ plot formula Z¼ b� zþc, with slope b rather

than 1.

2.4 | Improving the algorithm to estimate b

The improved algorithm links overweight and obesity prevalence for

each target group to estimate b—the two points on each QQ plot in

Figure 1 define the slope. So a requirement is that target group over-

weight and obesity prevalence rates should both be available, and in

addition they should differ from each other and both be greater than
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F IGURE 1 Quantile-quantile (QQ) plots of
BMI z-score in 3699 six-year-old boys from the
Health Survey for England according to the CDC,
IOTF and WHO references (solid lines). QQ plots
based on the reference data are also shown
(dotted), a straight line with slope 1 and intercept
0. Vertical dotted lines mark the overweight and
obesity cut-offs WHO +1, CDC 85, IOTF 25, CDC
95, WHO +2 and IOTF 30. Prevalence is plotted
against BMI z-score cut-off, with prevalence in z-
score units on the left axis and as a percentage on
the right axis. The points on each vertical cut-off
line mark the corresponding prevalence rates for
overweight and obesity in the reference
population (above) and the target group (below)
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zero (as zero prevalence corresponds to an infinite z-score). The work-

flow is as follows:

1. Specify the target group's mean age and sex

2. Obtain the target group prevalence rates of overweight (including

obesity) and obesity based on reference A

3. Transform to z-scores Zow,A and Zob,A where the subscripts indicate

overweight and obesity for reference A

4. Fetch from Table S1, for the target group's mean age and sex, the

z-score cut-offs zow,A and zob,A for reference A and zow,B and zob,B

for reference B

5. Calculate bA ¼ Zob,A�Zow,A

zob,A�zow,A

6. Calculate Zow,B ¼Zow,AþbA� zow,B� zow,Að Þ and Zob,B ¼ Zob,Aþ
bA � zob,B� zob,Að Þ

7. Back-transform Zow,B and Zob,B to obtain predicted prevalence rates

for overweight and obesity based on reference B.

2.5 | A worked example

Figure 2 focuses on the QQ plots of Figure 1 for the IOTF and WHO

references around the overweight and obesity z-score cut-offs. The

cut-offs are shown as vertical dotted lines, each plotted at the rele-

vant average z-score. Each prevalence rate is plotted against z-scores

for the reference (filled circles), the other reference (open circles), and

their average (open diamonds). Solid lines are drawn through the aver-

age z-score diamonds for each reference and extended across the

range. Predicted prevalence rates for each cut-off are then read off

the other reference line (+ signs). The observed (diamond) and pre-

dicted (+ sign) prevalences are very similar to each other, and the

residual errors (where residual¼ observed�predicted) are small

whether WHO predicts IOTF or IOTF predicts WHO. The reason for

the good fit is that the four diamonds lie close to a straight line, with

correlation r¼0:9990 (p¼0:0009). This ensures that the two refer-

ence lines are very similar in slope.

Table 2 presents the numbers underlying Figure 2, that is, the

average z-scores, dz and b, and the observed and predicted prevalence

rates of overweight and obesity for the target group, as percentages

and z-scores. The largest error in prevalence is 1.3%, while the other

errors are all 0.6% or less (Table 2).

2.6 | Data

To test the algorithm, two datasets were used from the previous

paper7: the Childhood Obesity Surveillance Initiative (COSI) study by

Wijnhoven et al.11 provided overweight (including obesity) and obe-

sity prevalence based on the IOTF and WHO references, in 225 190

primary school boys and girls aged 6–9 years across 13 European

countries during school year 2009/10. The study provided data for

52 distinct country-age-sex groups, with age grouped to the last

completed year. Deren et al.12 published prevalence rates of

overweight (net of obesity) and obesity based on IOTF, WHO, and

CDC cut-offs in 18 144 Ukrainian children and adolescents aged

F IGURE 2 Plots of prevalence against z-score
cut-off for the IOTF (orange) and WHO (blue)
overweight and obesity cut-offs in Figure 1, with
prevalence plotted on the z-score scale on the left
axis and as a percentage on the right axis. Each
prevalence rate is plotted against z-scores for the
reference (filled circles), the other reference (open
circles) and their average (open diamonds).
Regression lines of z-score prevalence on average

z-score for WHO and IOTF predict prevalence
rates for the other reference (+ signs). See text
and Table 2 for details
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6.5–17.5 years, in 22 distinct sex-year groups with age grouped to

the nearest year. For the analysis, obesity prevalence was added

to overweight prevalence.

In addition, individual data for 231 218 boys and girls aged 5–18

from the following publicly available surveys were obtained (with the

kind help of the NCD Risk Factor Collaboration):

• China Health and Nutrition Survey (CHNS): 1991–201513 (n= 17 975).

• Mexico National Survey of Health and Nutrition (ENSANUT) and

Mexican Family Life Survey (ENNViH): 2002–201614,15 (n = 77 354).

• US National Health And Nutrition Examination Survey (NHANES):

1973–201816 (n = 39 431).

• UK Health Survey for England (HSE): 1994–201910 (n = 69 466).

• Russia Longitudinal Monitoring Survey (RLMS): 1993–200517

(n = 26 992).

Further details of the datasets are in the appendix to the

NCD-RisC report.18 The individual data consisted of sex, age in

completed years, and measured height and weight recorded to

one decimal place. Individual data for 7157 Algerian children aged

6–18 were also kindly made available,19 consisting of sex,

decimal age, and measured height and weight to one decimal place.

For these individual data, body mass index was calculated as

weight kgð Þ=height mð Þ2, and country-age-sex-specific prevalence rates

for overweight (including obesity) and obesity by CDC, IOTF and

WHO were calculated for each completed year of age in each country,

with 26 groups for China, Mexico, USA, UK and Russia, and 24 for

Algeria. For the multi-year surveys, data were pooled across years

to ensure sufficient numbers in each group and minimize sampling

error. For analysis, all group mean ages were rounded to the nearest

0.5 years.

2.7 | Statistical analysis

The analysis involves two distinct steps: first estimate b, then convert

the prevalence rates. However it can be done in a single step using

weighted linear regression of Z on z across the four cut-offs. Two of

the prevalences are known and the other two are unknown, so setting

weights of 1 for the known prevalences and 0 for the unknown preva-

lences ensures that b is estimated from the known prevalences; how-

ever, it also provides fitted values for the unknown prevalences based

on their mean z-scores. So in Table 2, IOTF is estimated from WHO

using weights (1,0,1,0) (with the cut-offs ranked as in the table) while

to estimate WHO from IOTF the weights are (0,1,0,1). With just two

known prevalences the regression estimates the intercept and slope

with no degrees of freedom for error.

In addition unweighted linear regression including all four cut-offs

is used to estimate the linear regression coefficient b of Z on z, the

quadratic regression of Z on z, and the correlation r¼ cor Z, zð Þ. Here

there are one or two degrees of freedom for error.

To simplify the calculations, Table S1 provides mean z-scores for

the four cut-offs by sex and mean age in half-years from 2 to 18, for

the pairs of references WHO-IOTF, IOTF-CDC and CDC-WHO.

Values closest in age to the mean age of each target group should be

used in the analysis. Supplementary Box S1 provides sample R code

for analysing the data.

Altogether the data provided 228 country-sex-age groups, each

with prevalence rates based on all three (or for the 52 COSI study

groups just WHO and IOTF) references. The reference comparisons

for WHO-IOTF, IOTF-CDC and CDC-WHO were fitted sim-

ultaneously, by “stacking” the data into a single data frame with

52þ 228�52ð Þ�3¼580 rows, where each row provided four esti-

mates of overweight and obesity prevalence, giving 2320 predictions

TABLE 2 Summary statistics for WHO and IOTF overweight and obesity prevalence and z-score cut-offs in boys aged 6, for the two
reference populations and a target group of 3699 boys from the Health Survey for England10

Reference cut-off

WHO +1

overweight

IOTF 25

overweight

WHO +2

obesity

IOTF 30

obesity

Reference Z-score cut-off 1.00a 1.31b 2.00a 2.29b

BMI cut-off (kg/m2) 16.9 17.7 18.7 20.1

Z-score cut-off with other reference 0.92 1.45 1.77 2.63

Average z-score cut-off 0.96c 1.38c 1.89d 2.46d

Z-score difference dz +0.42c �0.42c +0.57d �0.57d

Target

group

Observed prevalence (z-score) 27.7% (0.59)a 17.8% (0.92)b 9.7% (1.30)a 4.7% (1.67)b

Slope b 0.76a 0.70b 0.76a 0.70b

Prevalence predicted by IOTF (z-score)e 26.4% (0.63) — 10.1% (1.28) —

Prevalence predicted by WHO (z-score)e — 18.1% (0.91) — 4.1% (1.73)

Observed minus predicted prevalence (z-

score)

+1.3% (�0.04) �0.3% (+0.01) �0.4% (+0.02) +0.6% (�0.06)

abWHO ¼ 1:30�0:59
2:00�1:00¼0:76.

bbIOTF ¼ 1:67�0:92
2:29�1:31¼0:70:

cOverweight dz¼1:38�0:96¼0:42 (+ve for WHO, �ve for IOTF).
dObesity dz¼2:46�1:89¼0:57 (+ve for WHO, �ve for IOTF).
eCalculated as (z-score of prevalence + b�dz) for other reference.
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overall. The percentage of the variance of prevalence explained

by the algorithm compared to the baseline model, where prevalence

pA is predicted by pB and vice versa, was calculated as

100 1� SD pA�E pAð Þð Þ=SD pA�pBð Þ½ �2
� �

based on all 2320 points.

The calculations were done in R (version 4.1.3) running in RStu-

dio. A function ob_convertr2 was written to do the conversion, which

is available in the first author's CRAN sitar package (version 1.3.0).20

3 | RESULTS

Data on 481 709 children aged 5–18 from 20 countries were grouped

into 228 one-year age groups by country and sex, with median 1112

children per group (minimum 145, lower quartile 737, upper quartile

2483, maximum 26 542).

Within each group, z-score prevalence Z and mean z-score cut-

off z for the four cut-off points were highly correlated—across the

580 age-sex-country-reference comparisons, the median correlation r

was 0.9994 (p = 0.0006), that is, almost perfectly collinear, with only

three correlations less than 0.98 and 19 (3%) less than 0.99. The

regression coefficient b based on the four points ranged from 0.4 to

1.5 with mean 0.81 (SD 0.17). Fifty-nine (10%) of the 580 quadratic

regressions had a significant quadratic term (p<0.05), 24 positive and

35 negative, indicating some curvature though no material bias.

Table 3 summarizes the distribution of residuals based on the

algorithm, where the residual is the difference between observed and

predicted prevalence, measured in both percentage and z-score units.

The mean residual was close to zero throughout, so the algorithm was

unbiased. The SD of residuals was also small, 0.8% or 0.05 z-score units

overall, based on 2320 predictions. For comparison the SD of the dif-

ference between prevalence rates SD pA�pBð Þ was 4.3%, meaning that

the algorithm explained 96.7% of the baseline variance in prevalence.

The residual SD was larger for overweight (1.0%) than for obesity

(0.6%), though overweight was nearly three times as common as obe-

sity (mean 21.2% versus 7.7%) so in proportional terms its residual

was smaller. On the z-score scale the SDs for overweight and obesity

were 0.04 and 0.06. Comparing the different pairs of references, the

residual SD ranged from 0.4% to 1.6% for overweight and from 0.2%

to 0.7% for obesity, with generally larger SDs for higher mean over-

weight prevalence. On the z-score scale residual SDs ranged from

0.03 to 0.07, unrelated to mean prevalence.

Figure 3 shows the relationship between observed and predicted

prevalence, for obesity and overweight separately: as scatterplots

(Figure 3A) and as Bland–Altman plots (Figure 3B). The points are

colour-coded by predicting and predicted references. Figure 3A shows

a very close association between observed and predicted prevalence,

with correlations of 0.995 and 0.996 (both p < 0.0001) respectively

for obesity and overweight, each based on 1160 points.

Figure 3B shows Bland–Altman plots, that is, residual prevalence

plotted against the mean of observed and predicted prevalence for

overweight and obesity separately. There is no obvious trend in resid-

ual versus mean, though variability is less at low prevalence. Four-

fifths of the obesity residuals are less than 0.6% in absolute value,

maximum 2.5%, while four-fifths of the overweight residuals are less

than 1.0%, maximum 8.2%. The largest three overweight residuals are

in small groups with 224 or fewer children.

TABLE 3 Summary statistics for predicting overweight and obesity prevalence according to the WHO, IOTF and CDC references, for groups
of children indexed by sex, age, country, predicting and predicted reference. The distribution of residuals (where residual = observed – predicted
prevalence) is shown in both % and z-score units

Category

Number
of
groups

Number of
children per group
(median)

Predicting
reference

Predicted
reference

Mean
observed
prevalence (%)

Mean

residual
prevalence
(%)

SD of

residual
prevalence
(%)

SD of residual
prevalence
(z-score)

Overall 2320 1112 14.4 0.0 0.8 0.05

Overweight 1160 1112 21.2 0.0 1.0 0.04

Obesity 1160 1112 7.7 0.0 0.6 0.06

Overweight 176 1098 CDC IOTF 18.6 0.0 0.4 0.03

Overweight 176 1098 IOTF CDC 19.2 0.1 0.6 0.03

Overweight 228 1158 IOTF WHO 25.6 0.0 1.6 0.06

Overweight 228 1158 WHO IOTF 20.0 �0.1 0.7 0.03

Overweight 176 1098 WHO CDC 19.2 0.0 0.6 0.04

Overweight 176 1098 CDC WHO 23.6 0.0 1.1 0.05

Obesity 176 1098 CDC IOTF 5.6 �0.1 0.6 0.07

Obesity 176 1098 IOTF CDC 8.1 0.2 0.5 0.05

Obesity 228 1158 IOTF WHO 9.5 0.1 0.6 0.05

Obesity 228 1158 WHO IOTF 6.1 �0.1 0.7 0.08

Obesity 176 1098 WHO CDC 8.1 �0.1 0.3 0.03

Obesity 176 1098 CDC WHO 8.5 0.1 0.3 0.03
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4 | DISCUSSION

The findings show that prevalence rates of child overweight and obe-

sity based on one BMI reference, for example, WHO, can to high

accuracy be converted to equivalent rates based on another refer-

ence, for example, IOTF. Figure 3 demonstrates the tight correlation

of 0.995 between predicted and observed prevalence across 2320

comparisons, where the SD of the residuals is 1.0% for overweight

and 0.6% for obesity. This improved algorithm explains 96.7% of the

baseline variance in prevalence, as compared to 88.2% achieved by

the original algorithm.7 So improving the algorithm has reduced the

residual variance by over four-fifths, from 11.8% to 3.3%. To apply
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the algorithm, the only requirements are that the target groups have

prevalence rates available for both overweight and obesity, and that

the rates are non-zero and different from each other.

The reason why the algorithm fits so well is because overweight

and obesity prevalence for the two references, plotted against the

corresponding cut-offs, lie close to a straight line, as seen in Figure 1.

Based on 228 target group comparisons the median correlation across

the four points is 0.9994, and all bar three of the 228 correlations

exceed 0.98, so the collinearity is quite general. It means that the two

target lines in Figure 2 are very similar in slope, so each can be used

to predict the other.

This collinearity arises because the BMI distribution QQ plots for

each target group retain the linearity of the original reference QQ

plots. The QQ plot shows the prevalence plotted against the corre-

sponding z-score cut-off across the z-score range. The dotted line

(Figure 1, top), with slope 1 and intercept 0, shows how BMI was dis-

tributed in the reference populations. But with the subsequent rise in

child obesity the BMI distribution has altered in two ways:

• The whole distribution has shifted to the right; overweight and

obesity prevalence have increased, and the QQ plot intercept has

shifted downwards (as higher prevalence corresponds to a lower z-

score).

• In addition the distribution has generally become more skew, with

a relatively heavier upper tail, and this has caused the QQ plot to

fall more at the upper than the lower end of the range, making the

line shallower.

This means that the target group QQ plot is still close to linear,

but its slope and intercept differ from 1 and 0 in a way that varies by

country, age and sex. The algorithm estimates the target slope and

intercept from the overweight and obesity prevalence rates based on

one reference, and converts the rates to the other reference assuming

that the same slope and intercept apply—this holds as the four points

are collinear. Thus the algorithm is close to reversible—converting

from A to B and back again gives prevalence rates very similar to the

original values—and it is generalizable in that each target group cali-

brates itself.

It is this use of overweight and obesity prevalence in tandem that

distinguishes the improved algorithm from the original.7 There each

prevalence rate was treated independently, which meant that with

just the one prevalence rate the intercept of the relevant QQ plot

could be estimated, but not the slope. For this reason the improved

algorithm cannot be applied to thinness, as there is just one thinness

cut-off per reference not two; however if studies were to report prev-

alence rates of two or more grades of IOTF thinness, this information

could be used in the same way to improve the estimate of WHO or

CDC thinness prevalence.

The shapes of the target group QQ plots in Figure 1 are instruc-

tive. Those for IOTF and WHO are essentially linear with slope

1 below the WHO +1 cut-off, indicating a similar increase in z-score

prevalence over time for underweight and normal weight individuals.

However, the plots tend to curve downwards above WHO +1 (the

84th centile) reflecting a heavier upper tail to the BMI distribution,

meaning that the z-score prevalence has increased more for those

overweight or obese. The CDC plot in contrast curves upwards in

both tails of the distribution, which is an indication of left skewness,21

and this relates to the way the CDC reference was constructed,

restricted to data from the 3rd to the 97th centile, that is, from �1.9

to 1.9 z-scores.22 The degree of skewness depends on the relative

lengths of the two tails of the distribution, so if the tails are excluded

from the analysis the skewness cannot be estimated accurately, and

this is what happened with CDC.

The analysis has focused on the IOTF, WHO and CDC references,

but it is worth pointing out that the same analysis can be applied to

any BMI reference that expresses BMI as a z-score (e.g. based on the

LMS method9) and which uses z-scores as cut-offs. Also, the same

analysis can be applied to a single reference where prevalence is

known for two cut-offs, to estimate prevalence at a third cut-off. In

this simpler case the z-score cut-offs do not need averaging as there

is only the one reference.

The study aimed to develop a reversible and generalizable algo-

rithm, and a strength of the study is that it has been successful as

applied to a wide variety of data sources. First, the data cover a wide

spectrum of overweight and obesity prevalence, from near 0% up to

60% overweight and 30% obesity (Figure 3). The fact that the fit is

adequate for these data implies similar goodness of fit for other stud-

ies covering the same prevalence spectrum. Second, having paired

prevalence rates for overweight and obesity means that the cut-offs

for the known and unknown rates are interleaved—in Figure 2 IOTF

overweight lies between WHO overweight and obesity, while WHO

obesity lies between IOTF overweight and obesity. These two preva-

lence rates are estimated by interpolation rather than extrapolation,

which increase their precision. Table 3 shows that WHO predicts

IOTF overweight more precisely than IOTF predicts WHO over-

weight, and similarly for WHO-CDC, while for obesity the reverse is

true. It is reassuring that the interpolated prevalence rates are more

precise than the extrapolated rates, but also reassuring that even the

extrapolated rates are relatively precise.

The three references cover differ age ranges: 0–19 years for WHO,

2–18 for IOTF and 2–20 for CDC (Table 1). The algorithm was validated

here with data from age 5 to 18 years, and it is a limitation of the study

that no children under age 5 were included. A complication is that WHO

uses weight-for-height rather than BMI under age 5, and BMI differs

from weight-for-height in that it adjusts for age as well as height.23 This

suggests that the algorithm may be largely irrelevant under age 5. How-

ever for age 2–5 BMI and weight-for-height are very similar:

BMI = weight/height2 while weight-for-height = weight/heightp where

p lies between 1.5 and 2.23 For this reason, weight-for-height z-score

and BMI z-score are likely to be similar for age 2–5, which suggests that

converting between WHO weight-for-height prevalence and IOTF or

CDC BMI prevalence may be justified. In addition some countries

already use the WHO cut-offs for BMI rather than weight-for-height, for

example, Canada,24 and so the algorithm has a role to play there.

A second limitation of the algorithm is that it requires the preva-

lence rates of overweight and obesity to be non-zero and different
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from each other. This means that groups need to be large enough to

include several cases of obesity, which implies even more cases of

overweight (since overweight prevalence includes obesity prevalence).

The groups used here were deliberately made large to minimize sam-

pling error, so that the observed residuals can be attributed to the

algorithm rather than to small numbers of cases.

In conclusion, the study has shown that the improved algorithm

using paired prevalence rates of overweight and obesity based on one

BMI reference is effective at predicting the corresponding prevalence

rates based on another reference. A table is provided to simplify the

analysis for groups of children using the IOTF, WHO or CDC

references.
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