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Enhanced GPIS learning based on
local and global focus areas

Zuka Murvanidze1, Marc Peter Deisenroth1, and Yasemin Bekiroglu1,2

Abstract—Implicit surface learning is one of the most widely
used methods for 3D surface reconstruction from raw point
cloud data. Current approaches employ deep neural networks or
Gaussian process models with the trade-offs across computational
performance, object fidelity, and generalization capabilities. We
propose a novel method based on Gaussian process regression
to build implicit surfaces for 3D surface reconstruction (GPIS),
which leads to better accuracy in comparison to the standard
GPIS formulation. Our approach encodes local and global shape
information from the data to maintain the correct topology of the
underlying shape. The proposed pipeline works on dense, sparse,
and noisy raw point clouds and can be parallelized to improve
computational efficiency. We evaluate our approach on synthetic
and real point cloud datasets obtained from laser scans, synthetic
CAD objects and robot visual and tactical sensors. Results show
that our approach leads to high accuracy compared to baselines.

Index Terms—Perception for Grasping and Manipulation,
Visual Learning

I. INTRODUCTION

SURFACE reconstruction is an important step for modelling
the environment in many applications varying from com-

puter vision to robotics domain. There are various approaches
proposed for reconstruction of object surfaces and geometry,
following analytic [1], or data-driven [2], [3] solutions. A good
surface reconstruction algorithm should handle inputs with
varying sampling densities and at the same time generalize
well across different object topologies. Despite the drastic
proliferation of 3D scanning devices, efficient and accurate
reconstruction remains an active research topic [4].

Gaussian Process Implicit Surface (GPIS) representation
has been proposed [5] as a probabilistic approach to surface
reconstruction. In particular, it has been shown to be efficient
for different tasks in robotics: learning continuous sliding paths
[6], single-finger tactile exploration to guide a sensor to high
uncertainty regions [7], grasp planning in 2D using only visual
data [8], blind grasping by following surface contours for
shape estimation [9], and grasping based on pre-trained systems
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Fig. 1: Example ground truth models (the first row) and
reconstructions based on our approach (the second row).

using wrist poses [10], grasping in 3D combining visual and
tactile data [11], exploring surfaces and building compact 3D
representations of the environment [12]. Recent research also
proved its effectiveness in real-time applications, such as robot
vision, using a continuous mapping from sparse measurements
[13].

Standard GPIS approaches lead to approximate recon-
structions capturing general shape leaving out details. We
address this issue and focus on improving reconstruction
accuracy capturing more details about the underlying shape. Our
approach provides an efficient, generic solution that generalizes
well across the different types of inputs and fits the needs
of various applications without an explicit parametrization
leading to high reconstruction accuracy of implicit surface
learning [14] (example reconstructions can be seen in Figure
1). We compose a complex training dataset from sparse and
dense observations of synthetic CAD models and real-world
scans from robot visual and tactile sensors. The goal is to
highlight commonly encountered problems when dealing with
the different types of raw point clouds and outline the trade-offs
between reconstruction accuracy and computational speed.

We present a generic pipeline for 3D surface reconstruction
extending standard GPIS approach, that can work on dense
sparse, and noisy point clouds. This enables reconstructions
that yield higher accuracy in comparison to the standard GPIS
based approaches [15]. To achieve this, we first introduce an
automated data augmentation process for a raw point cloud.
We then structure the input based on local and global views
of the data using an Octree-based partitioning method, where
we fit a global shape function based on sampling from entire
object and local shape functions from partitioned segments.
During inference, we compare uncertainty values between
local and global models per query point and use the prediction
values from the model with higher confidence. This allows
us to maintain the correct topology of the shape and retain

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2022.3197905

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on September 06,2022 at 11:24:09 UTC from IEEE Xplore.  Restrictions apply. 



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022

accurate information about the global shape. Fidelity of the
reconstruction is boosted by the information regressed by the
local models, which enable reconstruction of the intricate
details. We present results using both synthetic and real datasets.

The remainder of the paper is organized as follows. Sec-
tion I-A discusses related works. Section II introduces our
surface reconstruction approach from local and global approx-
imations, detailing the data augmentation, and partitioning
steps. SectionIII presents evaluations using different datasets
and baseline approaches, and Section IV provides concluding
remarks and suggestions for future work.

A. Related Work

A wide variety of methods are available for surface recon-
struction. Some of the earliest research includes analytical
approaches such as Alpha-Shape [16], Ball Pivoting [17], and
Poisson Reconstruction [18] that convert point clouds into
meshes. One of the most frequently used classic method is the
Poisson Reconstruction, which works well with dense (roughly
1,000,000 points) and noise-free data, but its performance
degenerates with sparse, non-uniformly sampled, or noisy
observations. Implicit surface representation is another widely
used approach [19], where a regression step is applied to fit
an implicit function to an unorganized set of points. Various
implicit function choices have been proposed, such as wavelets
[20], Fourier coefficients [21] radial-basis functions [22], and
multi-scale approaches [23], [24]. More recent works extend
this formulation based on various data-driven approaches, e.g.
deep neural networks [2], Gaussian processes [5], [15], [25].

An emerging trend in the application of deep neural networks
is to learn latent feature space representations of object classes
from large datasets. Scan2Mesh [26] is an example of early
work in this direction. Even though this network is robust in
completing the missing parts of the input, it produces non-
smooth, coarse outputs and does not generalize to unseen
shapes. A slightly different approach in AtlasNet [27] represents
a 3D shape as a collection of parametric surface elements
and, in contrast to prior work, directly infers an object’s
surface. Other approaches present trained models that learn the
direct mapping from latent vector encodings to implicit surface
functions [2], [28]–[31]. Such implicit representations are more
suitable for modeling objects with complex topologies and
produce visually appealing smooth reconstructions. However,
they can encode only a limited number of classes of objects and
reconstruct the shapes from those categories. Points2Surf [3]
encodes a feature representation of local patches of geometry
and relies on the assumption that local regions of objects
have somewhat similar properties. These models generalize
well across the unseen shapes and produce high fidelity
reconstructions. However, due to its patch-based nature, it
is prone to introducing topological noise. Furthermore, for
each query point, the model evaluates the entire local patch
coupled with the global encoding of the object. It has a high
computational cost, which causes long training and inference
times that make it impractical for real-time applications.

A good representation of object shape should ideally allow
for the following requirements: i) encode uncertainty about the

shape, with uncertainty varying over different surface regions;
ii) optimally combining different sources of information,
e.g. tactile and visual. A probabilistic shape representation,
Gaussian Process Implicit Surfaces, GPIS, [5], [32] is a good
candidate to address these requirements. They have been
shown to produce good surface reconstructions to identify
or categorize objects [15], [33], [34]. After its introduction,
GPIS gained popularity in the field, and its applications have
quickly emerged.

Due to the flexible nature of the Gaussian process (GP),
further extensions have been proposed that enhance its capabil-
ities to fulfill even more demands across the applications. One
such extension is the incorporation of geometric priors [25]
to model expectations about the object’s shape. The method
enables the reconstruction of the missing parts from the partial
object observations. However, the primary challenge is to find
an appropriate geometric prior for novel data, which is a non-
trivial task limiting the generalization capabilities. Priors also
force reconstructed meshes to align with specific requirements
resulting in overly smooth and vague outputs.

Another line of research tries to increase the accuracy of
reconstruction by sacrificing the computational demand and
run-time of the algorithm. GPs suffer from the cubic training
complexity O(n3) with respect to the size n of the training
dataset. This limits their scalability to large training sets that
we often encounter in synthetic objects or high-resolution 3D
scans. Many approaches [35] are being proposed by the GP
community to offset this limitation using various methods that
fall into two main categories; making global approximations to
distillate the entire data using sparse Gaussian approximations
[15], [36]–[38], and fitting local approximations involving
the division of the data into learning subspace [39]–[45]. For
instance, GP-MPU [39], applies multi-level-partitioning of unity
and replaces polynomial functions used in the original approach
[42] with Gaussian processes. Other work uses overlapping
local GPs [46] with the underlying hypothesis that having
the subset of points captured by the neighboring patches will
improve the results. However, using the same data across
multiple models diminishes the computational performance
and seems redundant. The authors suggest the observation of
empty spaces in reconstructed objects, where training input
is sparse or non-existent. Further iterations on these models
produced hierarchical [41] and skeleton-based [40] approaches,
where the latter achieve comparable results to the state-of-
the-art but relies on the assumption that input point cloud is
dense.

The primary focus of our work is to increase the accuracy
of reconstructed GPIS, given sparse, dense, and noisy point
clouds, while maintaining adequate run-time and computational
efficiency. We implement a segmentation algorithm to extract
a critical training set from the input and employ powerful data
augmentation techniques to maximize reconstruction fidelity.
Simple parameterization allows our approach to adapt and fit a
wide range of applications such as robot grasping, navigation,
and its interaction with the environment. At the same time, it
can satisfy the demands of graphics-intensive applications that
require visually appealing objects with high resolution. This is
achieved by implicit selection of augmentation technique, based
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Fig. 2: System outline starting from raw point cloud input to surface reconstruction based on GP regression.

on the available training data (unless explicitly parameterized),
and variable learning parameters that adjust noise and length-
scale depending on individual input shape. Furthermore, unlike
the approach proposed in [25], we omit any prior assumptions
about the shape. Similar to [39], [40] and [41] we do partition
the data into multiple local regions. However, our partitioning
relies on an Octree data-structure, that allows recursive sub-
division of the shape. Parent nodes in the tree encode global
shape while children contain detailed information about the
local shapes, such representation also allows tight control over
the recursion depth, which directly correlates to reconstruction
speed/fidelity trade-off. This coupled with proposed data pre-
processing methods compose our approach to directly obtain
implicit surface function of the 3D shape from unordered point
clouds.

II. SURFACE RECONSTRUCTION

Our method combines analytical pre-processing of a given
point cloud and probabilistic learning of an implicit surface
function that captures the underlying shape using Gaussian
process regression. In this work, we focus on learning a
model for a given object. Figure 2 illustrates multiple stages
of our method, which begins with data standardization and
augmentation. In the first step, we augment the data and
generate additional training points that lie inside and outside
of the observed point cloud. We identify the areas with more
details and sample them more densely than slowly-varying
regions. As a result, we obtain a critical training set, which is
used in Gaussian process regression step to learn the implicit
surface function. We evaluate the learned model using a cubic
grid of size n placed around the input object. Finally, we
extract the output mesh using the Marching Cubes algorithm
[47].

A. Surface Reconstruction using Gaussian Processes

We construct an implicit surface representation based on GP
regression [5] to create a model of an unknown surface. The
implicit surface is defined as f(x) : R3 → R, in which f(x)
is the piece-wise function where x ∈ R3 is the observed point:

f(x) =


−1, if x is below the surface
0, if x is on the surface
1, if x is above the surface.

(1)

A GP is a stochastic process, so that any finite collection
of random variables has a multivariate normal distribution. A

GP is the joint distribution of all (infinitely many) random
variables and therefore it can be interpreted as a distribution
over the functions f(·), and we write f(·) ∼ GP(0, k(·, ·)),
where k is the covariance function of the GP.

Given a training set T with inputs xi ∈ R3 and corre-
sponding noisy observations yi ∈ R, the relation between
the function values and corresponding observations defined
as yi = f(xi) + ϵi, where ϵi ∼ N (0, σ2

n) are independent
and identically distributed noise variables, that follow a zero-
mean Gaussian distribution with variance σ2

n. Given a finite
set X′ ∈ Rn∗,3 that comprises n novel input points x′,
i.e the points outside the training set T , the distribution
of f ′ = [f(x′

1), . . . , f(x
′
n)]

T is a multivariate Gaussian
p(f ′|y,X,X′) = N (µ′,Σ′), whose mean and covariance are
given by

µ′ = k(X′,X)[k(X,X) + σ2
nI]

−1y,

Σ′ = k(X′,X′)− k(X′,X)[k(X,X) + σ2
nI]

−1k(X,X′)
(2)

respectively. Here, k(X,X) ∈ Rn,n, k(X′,X′) ∈ Rn′,n′
and

k(X,X′) ∈ Rn,n′
comprise of elements k(xi,xj), k(x′

i,x
′
j)

and k(xi,x
′
j) accordingly, for i and j denoting a row and

column indices. Thus k(X′,X) = k(X,X′)T . The choice of
the covariance function plays a crucial role in solving problems
using Gaussian processes, because they discriminate between
the functions to be selected for the inference, based on their
characteristics, for instance stationarity and smoothness [48]. In
our implementation, we use the radial basis function covariance
function (also called squared-exponential, eq. (3)), which
is characterized by the two hyper-parameters the (function)
variance σ2 and the length scale l:

kSE(x,x′|θSE = {σ2, l}) = σ2 exp

[
− ∥x− x′∥2

2l2

]
. (3)

Hyper-parameters are optimized using the standard training
method for Gaussian processes, i.e., maximizing the marginal
likelihood [48]. Empirical evaluations show that the length-
scale hyper-parameter affects generalization performance across
various shapes considerably, i.e. low values help capturing more
details about the underlying surface features while higher values
lead to smoother surfaces. The optimization procedure leads
to results where we can both capture details and smooth out
areas with missing points satisfactorily.

B. Data Augmentation and Processing
In addition to the points from the raw point cloud input,

auxiliary training points are generated in this step to increase the
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accuracy of the resulting reconstructions. Ideally, the training
set should contain points both inside and outside the object’s
surface. In order to generate these points we propose to
use two approaches. The first method, radial augmentation,
illustrated in Figure 3 on the left generates spheres inside and
outside the object surface to sample auxiliary points. This data
augmentation method computes two distances, between the
centre of the object and its furthest and closest points. These
distances are then offset by a fixed constant ϵ = 0.035 and
used as radii to generate spheres inside and outside of the
object surface, from which augmented points are sampled. A
limitation of this method is that it makes a prior assumption
about the modeled shape that the geometric center lies inside
the surface. Consequently, they perform poorly when applied
to the inputs that violate this premise such as torus.

The second technique, producing visually appealing and
high-fidelity results, is per-point normal augmentation. The key
idea is to generate two novel points for each vertex, projected in
the positive and negative directions along the normal, where the
projection magnitude is multiplied by a small offset value ϵ. We
set this offset empirically to be ϵ = 0.035 on normalized data
(mean-centered, unit variance). Even though this augmentation
method is very effective in terms of improving reconstruction
accuracy, it triples the size of the initial training data. We often
need to down-sample such datasets, so that non-parametric
models, such as Gaussian processes, can efficiently handle
them. We randomly down-sample the resulting augmented data
preserving a set of points inside and outside the surface of the
object.

If normal information is available in the data set, we apply
one more step before down-sampling that is critical point
selection. This selection step is performed by computing the
dot product between the normals of the points in the same
local neighbourhood grouped together based on their locations.
The points that are selected as critical have normals that are
sufficiently dissimilar to the normals of the neighbouring points.
After this step, both critical and non-critical training points are
sampled with the corresponding ratio of 4:1. This way we do
not lose information about the less detailed areas of the object
while including more points from complex areas of geometry.

C. Dataset Partitioning and Local Approximations

We apply a dataset partitioning step to create local regions
where we can fit local GP models for capturing more details
in our reconstructions. We use Octree data structure for subdi-
viding the space occupied by the input point cloud into local
regions, which is commonly used for compact representation
of 3D volume. It also enables nearest neighbor search in
logarithmic time making it further useful for segmentation
and processing tasks. Figure 4 shows different coloring of each
such sub-region, where we fit the local GP models following
the same pipeline as described in Figure 2. We set the depth of
the octree to 1, producing 8 equal-sized partitions. The octree
depth should be increased for high accuracy reconstructions,
which in turn produces more local GPs requiring additional time
and computational resources for training, unless parallelized.

Fig. 3: Data augmentation: Radial (left) and Normal (right) based.
Points inside the surface, on the surface, and outside the surface
are colored in red, white, and green respectively.

Fig. 4: Training input partitioning into local regions

D. Merging Local and Global Approximations

The final step in the proposed pipeline is to combine global
and local model predictions. Initially our distance voxel only
consists of global model predictions. For each partition, we
pick corresponding local model and infer distance value and
uncertainty value (variance) for every query point in that
partition. As a result, for each point of interest we have
two predictions, one from global GPIS and one from its
corresponding local GPIS. We compare the uncertainty values
of these predictions and select the one with the lowest variance,
which improves final surfaces in comparison to only using the
local predictions. We correct the global model predictions in
the distance voxel where local model obtains distance measure
with lower uncertainty value.

Let G0 be a global GPIS, and G1, ..., Gn be local GPISs
And µi and σi their corresponding means and variances. Let
j denote the jth query point in test sample, then for each
point we select the mean value which corresponds to smaller
variance:

µ0,j =

{
µi,j if σi,j < σ0,j

µ0,j otherwise
(4)

This way we merge the overall knowledge about the shape into
single voxel µ0. This approach implicitly deals with potential
discontinuities that may arise when combining different local
regions together. This is because GPIS yields much higher
variances at the edges of the local shapes where non-smooth
(discontinued) transitions are present. In this case, global
GPIS, which captures the entire geometry of the object, yields
significantly lower variance, therefore the predictions from the
global model are selected. This way, when two non-overlapping
neighboring regions are merged, better accuracy is achieved.
This volumetric grid then is fed into marching cubes algorithm
to reconstruct continuous smooth surfaces with high fidelity.
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Fig. 5: Surface reconstruction results. The first column: input
point cloud. GT denotes ground truth, Points2Surf is the deep
learning based approach [3]. GPIS denotes the standard GP
based reconstruction approach [5], [15], [32], csGPIS denotes
our approach without local enhancements, and eGPIS denotes
the proposed approach with all features including augmentation
and local enhancements.

III. RESULTS

In this section we present results and analysis of applying
our approach for a set of reconstruction tasks, and also provide
comparisons to baseline approaches. We aim to answer:
1) Does the data augmentation procedure help to improve
GPIS reconstructions? 2) Do local GP estimations improve
accuracy and quality of the reconstructions? 3) How robust is
the approach to noise in the data?

We use synthetic and real datasets to evaluate our approach,
eGPIS, and compare it with three baseline methods, standard
GPIS approach [5], [15], [32] without the proposed data
augmentation procedure, GPIS approach (denoted by csGPIS
in the tables) without local enhancements using the same data
augmentation introduced in the previous section, and a state
of the art deep learning approach, Points2Surf [3] (P2S).

We present quantitative results in TablesI, II, and III, which
detail the number of points used in the reconstruction and
the distances to the ground truth using three types of distance
measures: mean-square, Hausdorff, Chamfer. Table I shows
the reconstruction results in terms of the distances to the
ground truth for the standard GPIS approach without the
new augmentation technique, and csGPIS, using the proposed
data augmentation approach. We can see that the proposed
augmentation approach leads the better accuracy in comparison
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Fig. 6: Reconstructions from noisy point clouds. First Column:
mesh with added Gaussian noise. GT denotes ground truth,
Points2Surf is the baseline approach [3] and eGPIS is the
proposed approach.
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Fig. 7: Reconstructions from real robot data [49].

to the baseline GPIS approach with and without noise in the
data. We also observe that denser point sampling leads to higher
accuracy in reconstructions at the cost of more computational
time, and that given similar number of points, eGPIS leads to
higher accuracy in comparison to the baseline approaches as
seen from Table I and III 1.

Table II summarizes the performance differences of a
deep learning approach, Points2Surf (P2S), standard GPIS
approach, GPIS without local enhancements (csGPIS) and the
proposed approach (eGPIS). The proposed approach eGPIS in
comparison to the baselines leads to better accuracy in general
for the test objects as shown by the resulting distances to the
ground truth, also supported by the averaged results in the table.
Resulting GPIS models demonstrate less topological noise or
errors compared to P2S. In general GPIS based results are

1Data preprocessing time including critical set segmentation and augmenta-
tion steps for csGPIS and eGPIS is around 2 to 20 seconds depending on the
input point cloud. P2S preprocessing time can take minutes on a high spec
GPU machine.
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GPIS (Original) csGPIS (Original) GPIS (Noisy) csGPIS (Noisy)
Points CD HD MD Time CD HD MD Time CD HD MD Time CD HD MD Time
2000 3.526 31.270 10.324 0.80 2.377 29.069 7.031 0.18 36.978 31.887 11.065 0.78 2.497 30.069 8.011 0.18
3000 2.932 27.371 8.958 1.59 0.840 18.761 4.198 0.41 30.288 28.316 9.836 1.76 0.637 20.616 4.537 0.70
4000 2.833 25.963 9.027 2.80 0.456 14.906 3.145 0.62 2.818 28.286 9.154 3.38 0.584 16.336 3.908 1.19
5000 2.236 21.567 7.284 6.98 0.414 13.627 3.035 0.90 2.489 24.889 7.318 8.43 0.452 15.862 3.423 1.48
6000 2.110 21.035 6.898 9.22 0.389 13.502 2.983 1.15 2.194 21.027 7.333 10.00 0.421 15.546 3.134 2.38
9000 2.035 20.996 3.910 22.12 0.338 12.160 2.625 2.51 1.783 20.165 6.913 34.23 0.392 13.160 2.625 3.67
10000 1.856 18.003 3.852 23.48 0.302 12.033 2.596 3.47 1.649 17.117 4.156 35.17 0.345 12.809 2.596 5.26

TABLE I: Results averaged across all objects, GPIS vs csGPIS comparison for original and noisy inputs, distances are based on
measurements in mm and time in minutes. Minimum values per distance and elapsed time for each approach and experiment
(with and without noise) are given in bold.

P2S GPIS csGPIS eGPIS
Name CD HD MD CD HD MD CD HD MD CD HD MD
angel 90.607 17.226 5.445 0.049 6.758 0.963 0.032 6.577 0.925 0.029 6.133 0.847

armadillo 2.920 13.377 4.427 0.094 10.291 1.748 0.077 8.961 1.460 0.074 8.399 1.439
bunny 81.713 44.280 98.086 3.361 61.306 9.532 2.594 39.887 9.867 2.288 38.212 9.739

cup 88.272 48.203 8.406 1.944 30.050 10.123 0.136 15.116 1.938 0.129 14.168 1.878
dragon 13.973 9.260 0.477 0.043 8.956 1.149 0.044 9.325 1.149 0.040 9.007 1.058
galera 14.752 42.649 0.452 5.179 34.944 17.033 0.166 10.774 2.408 0.160 10.662 2.475
hand 15.588 62.683 0.699 10.033 40.317 21.887 0.017 2.761 0.786 0.011 2.419 0.760
happy 49.724 6.630 2.386 6.056 41.859 19.176 0.055 8.310 1.282 0.051 8.476 1.232
horse 86.058 151.203 53.938 0.003 1.796 0.317 0.001 1.039 0.168 0.003 1.718 0.313
liberty 99.856 16.237 5.703 0.037 7.138 0.923 0.031 6.962 0.909 0.030 6.911 0.858
netsuke 16.580 7.742 0.452 0.119 10.334 2.071 0.116 9.323 2.119 0.116 9.033 2.121
serapis 16.452 3.225 0.547 0.290 11.757 3.599 0.273 11.333 3.539 0.274 11.219 3.558
suzanne 44.418 24.986 49.538 1.010 24.862 7.173 0.932 24.752 7.191 0.925 21.293 7.348
tortuga 12.228 2.059 0.360 0.274 3.572 1.090 0.254 15.126 3.007 0.266 13.329 2.986
Average 59.510 32.126 16.494 2.035 20.996 6.913 0.338 12.160 2.625 0.314 11.499 2.615

TABLE II: Results per-object: Baseline approaches P2S and GPIS vs the proposed csGPIS and eGPIS. Distances are based on
measurements in mm. Minimum values per distance for each approach are given in bold, the second best result in red and the
third best result in cyan.

Original Noisy
Global Local CD HD MD Time CD HD MD Time
5000 3000 0.345 13.188 2.708 1.47 0.362 14.094 2.814 2.74
8000 5000 0.330 12.612 2.619 6.16 0.358 13.230 2.735 7.06
9000 5000 0.286 11.858 2.522 15.97 0.316 12.249 2.624 16.51
10000 7000 0.274 11.596 2.561 18.10 0.291 12.239 2.601 19.83
11000 7000 0.206 11.118 2.531 21.54 0.284 12.192 2.590 22.94

TABLE III: Results across all objects using eGPIS.
Distances are based on measurements in mm and time in minutes.

Name GPIS P2S eGPIS
box1 2.8995 12124.6591 2.1812
box2 2.4051 7708.5759 2.1053
box3 2.3028 18928.7009 1.9836
cyl1 3.2799 9470.8379 2.081
cyl2 2.9721 8729.1513 2.1625

spray1 2.4376 11309.7142 2.2386
spray2 2.5245 12296.1702 2.105
spray3 2.7742 11945.5462 2.0406

Average 2.6994 11564.1694 2.1122

TABLE IV: Results from real robot dataset
comparing Chamfer distances to the ground truth.

GT P2S eGPIS

Fig. 8: Close inspection of the reconstructions by P2S and
eGPIS. GT denotes ground truth reconstructions.

better than the deep learning approach, consistently based on
the Chamfer distance. As for the other two distance measures
P2S leads to better accuracy for a few objects such as tortuga,

serapis, netsuke where the GPIS based approaches tend to
smooth out very fine and sharp details.

We visualize the reconstruction results of input point clouds
for experiment objects in Figure 5 for synthetic objects, Figure
6 with noisy inputs for the synthetic objects, and Figure 7
from real data collected by a robot [49], using the baseline
approaches and the proposed approach. Results from Figure 5
demonstrate the eGPIS can both capture fine details of surfaces
while at the same time providing smoothness in comparison to
the baselines. Figure 8 provides a closer look at reconstructed
surfaces from an object model that has fine details. As seen,
the baseline approach P2S tend to generate details that are not
available on the original surface also missing existing details
such as the fingers, while eGPIS produces smooth surfaces
and captures those missing details better. Figure 6 presents
the experiment results where the original input point clouds
are corrupted by noise. Proposed csGPIS and eGPIS lead to
better reconstructions in comparison to the other baselines
and eGPIS in general produces the best results in terms of
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reconstruction accuracy, completeness and smoothness. These
characteristics also appear in the experiments where we use real
data generated using tactile and visual measurements in Figure
7. eGPIS based reconstructions lead to complete, smooth, most
accurate surfaces in comparison to the baseline approaches
P2S and GPIS, yielding the smallest distances to the ground
truth data as shown in TableIV.

As for computational requirements, the deep learning ap-
proach, Points2Surf, was trained for approximately 5 days on
a specialized hardware. In comparison, our approach regresses
independent models per object without parallelizing or GPU
acceleration. P2S does heavy pre-processing using Blender
software to sample and convert point clouds into appropriate
format, while our approach has more rapid and efficient pre-
processing. Inference time in P2S, heavily depends on the
hardware and GPU specifications, however, single CPU suffices
efficient inference in our method and the partitioning together
with the local GP calculations can also be easily parallelized
to improve efficiency.

IV. CONCLUSION
The paper presents a 3D reconstruction approach to build

implicit surface representation of a given object point cloud
observation via Gaussian process regression. The Gaussian
process formulation for surface reconstruction has been shown
to model unknown object shape taking into account the uncer-
tainties in observations successfully. In this paper, we further
extend this approach and demonstrate that GPIS formulation
can yield high quality reconstructions by exploiting local and
global models. Results on synthetic and real-world datasets
demonstrate that Gaussian processes outperform baseline
approaches both in reconstruction accuracy, completeness and
smoothness of the resulting surfaces. 2 We plan to further
improve the quality of the reconstructed surfaces where fine
details need to be captured. Another future work direction is to
learn generic models based on training data including various
objects rather than learning models per a given object.
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