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Abstract

Proliferative vitreoretinopathy (PVR) is a fibrotic eye disease that develops after
rhegmatogenous retinal detachment surgery and open-globe traumatic injury.
Idelalisib is a specific inhibitor of phosphoinositide 3-kinase (PI3K) 6. While PI3Ko
is primarily expressed in leukocytes, its expression is also considerably high in retinal
pigment epithelial (RPE) cells, which play a crucial part in the PVR pathogenesis.
Herein we show that GeoMx Digital Spatial Profiling uncovered strong expression of
fibronectin in RPE cells within epiretinal membranes from patients with PVR, and
that idelalisib (10 uM) inhibited Akt activation, fibronectin expression and collagen
gel contraction induced by transforming growth factor (TGF)-B2 in human RPE cells.
Furthermore, we discovered that idelalisib at a vitreal concentration of 10 uM, a
non-toxic dose to the retina, prevented experimental PVR induced by intravitreally
injected RPE cells in rabbits assessed by experienced ophthalmologists using an
indirect ophthalmoscope plus a +30 D fundus lens, electroretinography, optical
coherence tomography and histological analysis. These data suggested idelalisib could

be harnessed for preventing patients from PVR.
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Introduction

Proliferative vitreoretinopathy (PVR) develops after rhegmatogenous retinal
detachment (RRD) surgery and open-globe traumatic injury and is responsible for
5%—10% of all retinal detachment (1-5). The main feature of PVR is the formation of
epi- or sub retinal membranes (ERMs) consisting of extracellular matrix and a variety
of cells that include retinal pigment epithelial (RPE) cells, Muller’s glia cells,
fibroblasts, and macrophages (1,4,6). Among these cell types RPE cells are the
crucial player in the pathogenesis of PVR (1,4,7). When the retina is detached or
tears, some retinal cells (e.g. RPE cells) are activated by numerous factors such as
growth factors, cytokines to undergo a variety of changes including synthesis of
proteins (e.g., collagen, fibronectin), cell proliferation, epithelial mesenchymal
transition (EMT), as well as cell migration. Consequently ERMs form and their
contraction leads to retinal detachment (4,6,8-12).

Phosphoinositide (PI) 3-kinases (PI3Ks) play a critical part (13,14) in the
pathogenesis of PVR. PI3Ks activated by receptor tyrosine kinases, G-protein coupled
receptors or other factors can phosphorylate the 3-hydroxyl group of the PI’s inositol
ring. The resulting phosphorylation provides a docking site for a variety of signaling
enzymes with PH (Pleckstrin Homology) domains including the serine/threonine
protein kinase B (PKB, Akt). Akt plays a crucial role in cell survival and cell growth
(15,16). In the family of PI3K there are eight isoforms classified into three classes (I,
IT and II) (15,16). PI3Kc, -B and -8 consisting of a regulatory p85 subunit and a
catalytic subunit (p110c, -B and -9, respectively) belong to the PI3K class TA, and
they are regulated by the cell surface receptors including receptor tyrosine kinases
(16,17). Noticeably, while PI3Kd is primarily expressed in leukocytes (18), its

expression is considerably high in RPE cells, and it is essential for vitreous-induced
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Akt activation as well as proliferation, migration and contraction of RPE cells (2,19).

Idelalisib is a small molecule, which is a competitive inhibitor of the ATP
binding site of p1105 (20,21). It has clinically been used for treating certain cancers
(e.g., chronic lymphocytic leukemia) (21-24) and blocks vitreous-induced Akt
activation and proliferation of RPE cells (2). Currently there is no approved medicine
for preventing PVR even though huge efforts have been made on developing such
drugs (6,10-12,25-29). Surgery to restore the retinal position is still the only option for
treating PVR (27,30,31), but the visual outcome of the operation is poor as repeated
detachment after surgery causes the retinal damage (26). Therefore, development of a
pharmacological approach is urgent for preventing PVR.

We herein showed that idelalisib selectively inhibited transforming growth
factor (TGF) -B2 -stimulated Akt activation, fibronectin expression and collagen gel
contraction in human RPE cells and prevented experimental PVR in rabbits induced
by intravitreally injected RPE cells, indicative of idelalisib as a promising medicine

for treating PVR.

Materials and methods

Major reagents

Primary antibodies against p-Akt, Akt, and fibronectin were purchased from Cell
Signaling Technology (Danvers, MA), and the antibody against B-Actin was from
Santa Cruz Biotechnology (Santa Cruz, CA). Horseradish peroxidase-conjugated
secondary antibodies of mouse anti-rabbit IgG, and goat anti-mouse IgG were
purchased from Santa Cruz Biotechnology. Enhanced chemiluminescent substrate to

detect horseradish peroxidase was ordered from Thermo Scientific (Waltham, MA).
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Idelalisib was purchased from APExBIO (Houston, TX).

ARPE-19 cells are human RPE cells that were purchased from American Type
Culture Collection (Manassas, VA), and RPEM cells were RPE cells derived from an
ERM of a patient with grade C PVR as described previously (2,32). Both were
cultured in Dulbecco’s modified Eagle’s medium/nutrient mixture (DMEM/F12,

Gibco, Grand Island, NY) supplemented with 10% fetal bovine serum (FBS).

GeoMx Digital Spatial Profiling

GeoMx Immune Cell Profiling Panel Human Protein Core for nCounter kit, GeoMx
Hyb Code Pack Protein kit, GeoMx Nuclear Stain Morphology Kit, GeoMx Protein
Slide Prep Kit, GeoMx Hyb Buffer, GeoMx DSP Collection Plates 96, GeoMx DSP
Instrument Buffer Kit and nCounter Master Kit were purchased from Nanostring
(Nanostring Technologies, WA).

This experiment was performed as described previously 3334,

Briefly,
formalin-fixed OCT-embedded ERM and normal breast epithelial tissue slides were
washed thrice for 5 minutes, and the slides with the samples in 1 x citric acid buffer
were transferred into a pressure cooker to be steamed for 15 minutes. Subsequently,
the slides were cooled down at room temperature naturally within 30-60 minutes, and
then washed once in Tris-based solution with 0.01% triton (TBST). The slides were
then stained with fluorescently labeled morphology markers (CD45, Pan-cytokeratin)
for 1 hour and then washed twice in TBST. Finally, an antibody mix (GeoMx Immune
Cell Profiling Panel) was added to slides and incubated at 4°C overnight. SYTO
staining (GeoMx Nuclear Stain Morphology Kit) was used for staining nuclei. Slides

were loaded on the GeoMx microscope for imaging and barcode acquisition,

following the manufacturer supplied protocol. ROIs were segmented into



PanCK-positive and CD45-positive areas of interest.). ROI into 96-well plate (GeoMx
DSP Collection Plates) was collected and transferred to n-counter to read. The data

were analyzed by a DSP machine.

Western blot

Western blot was conducted as described in previous reports (2,13,35-37). Briefly,
when cells were grown to 90% confluence in 24-well plates, they were serum starved
for 24 hours, and then treated with TGF-B2 (10 ng/ml, R& D systems, Minneapolis,
MN) in the presence or absence of idelalisib (10 uM) for additional 48 hours. Proteins
from treated cells were extracted in an extraction buffer and separated by 10%
SDS-polyacrylamide gel electrophoresis. The proteins in the gel were then transferred
to polyvinylidene difluoride membranes for analysis using desired antibodies

(2,35,38-40).

Collagen gel contraction assay

This assay was conducted as described in previous reports (2,13,35-37). Briefly, when
cells grew to 90% confluence, they were collected and re-suspended at a density of 1
x 10® in 1.5 mg/ml of neutralized PureCol type I bovine collagen solution (Advanced
BioMatrix, San Diego, CA) (pH 7.2) on ice. The mixture of the cells with the collagen
was then transferred into 24-well tissue culture plates (300 pl/well). After incubated at
37°C for 90 minutes, 0.5 ml DMEM/F12 or in DMEM/F12 with 10 ng/ml TGF-f2
plus or minus idelalisib (10 pM) was added on the top of polymerized collagen gel in
the 24-well plate, which was then photographed on day 3. The gel diameter was then

measured, and the gel area was calculated using the formula 3.14 x r for further

statistic analyses.



Experimental PVR in rabbits

As previously described (6,35,36,41,42), PVR was induced in the right eyes of
8-weeks-old Dutch Belted rabbits (Covance, Denver, PA). Briefly, a gas vitrectomy
was performed by injecting 0.1 ml of perfluoropropane (C3F8) (Alcon, Fort Worth,
TX) into the vitreous cavity 4 mm posterior to the corneal limbus. One week later, all
20 rabbits were injected with platelet-rich plasma (0.1 ml) and 3.0 x 103 cells of
RPEM cells with idelalisib (final 10 uM) or its vehicle DMSO (final 0.01%) under an
operative microscope. The retinal status was examined with an indirect
ophthalmoscope plus a +30 D fundus lens on days 1, 3, 5, 7, 14, 21 and 28 by two
masked ophthalmologists. PVR was graded according to the Fastenberg classification
from 0 through 5 (35,42,43).

On day 28, 4 representative rabbits from stages 1 and 5 were in the dark for one
hour. The rabbits were deeply anesthetized with intramuscular anesthesia consisting
of ketamine (30-50 mg/kg), xylazine (5-10 mg/kg) and acepromazine (1 mg/kg).
Depth of anesthesia was verified by the absence of the toe pinch withdrawal reflex.
The pupils were dilated with topical 1% tropicamide to view the fundus.
Electroretinogram (ERG) analysis was performed as previously described 3°.
Following ERG, optical coherence tomography (OCT) was taken using spectral
domain (SD)-OCT system (Bioptigen Inc., Durham, NC). The animals were then
sacrificed, the eyes were enucleated, and representative eyeballs were fixed with 10%
formalin for histology analysis. This animal experiment was conducted at the animal
facility of the Schepens Eye Research Institute (Boston, MA).

The protocol for the use of animals was approved by the Schepens Eye Research

Institute Animal Care and Use Committee (Boston, MA), and all animal surgeries



adhered to the ARVO Statement for the Use of Animals in Ophthalmic and Vision

Research.

Statistics

Data were analyzed as described previously (2,44). Briefly, data from at least three
independent experiments were analyzed using ordinary one-way ANOVA followed by
the Tukey honest significant difference (HSD) post hoc-test. Animal experimental
data were analyzed using a Mann Whitney test (6,35,36,42). p less than 0.05 was

considered a significant difference.

Results

Fibronectin is upregulated in the RPE cells within ERMs from patients with

PVR

The GeoMx Digital Spatial Profiling (DSP) integrates with current histology methods
to have quickly, robust and reproducible spatial omics data**. To better understand the
PVR pathogenesis, we used GeoMx DSP to analyze the protein expression of
different tissues and cell types in ERMs from patients with PVR. The results showed
that in comparison of the normal control tissue CD68 and fibronectin were
significantly up-regulated in the ERMs (Fig. 1A, B). Notably, CD45 is a marker of all
hematopoietic cells, whereas CD68 is indicative of macrophage activation and able to
promote NF-kB nuclear translocation and inflammation, indicating that there is

infiltration of activated immune cells in the ERMs from patients with PVR.

DSP also showed that in comparison of CD45-positive cells in the RPE cells

within the ERMSs, fibronectin, o-smooth muscle actin, and pan-cytokeratin were
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significantly up-regulated, but CTLA-4 (cytotoxic T-lymphocyte-associated protein 4
or CDI152) and PD-L1 (programmed death-ligand 1) functioning as immune
checkpoints and down-regulate immune responses were down-regulated (Fig. 1A, C).
The heatmap and PCA analysis indicated that there was significant difference in
cells related to cell migration and inflammation between the ERMs and control tissues
(Fig. 1D, E, F and G). In agreement with previous studies (4,8,40,45,46), these DSP
results further demonstrate that inflammation and EMT play an important role in the

pathogenesis of PVR.

Idelalisib inhibits TGF-B2-induced Akt activation and fibronectin expression

Levels of TGF-B2 in the vitreous are elevated in eyes with intraocular fibrosis
including PVR (47), and PI3Kd plays an essential role in vitreous-induced Akt
activation and cellular responses intrinsic to PVR (2,19). In addition, TGF-2 is a
prominent cytokine to induce expression of fibronectin, one of the protein markers for
EMT playing an important role in the development of PVR (12,47). While the
receptor serine/threonine kinases activated by TGF-B2 operate mainly through the
Smad (e.g., phosphorylating Smad2) to regulate gene expression, they can also
stimulate the PI3K-Akt signaling pathway. Thereby we hypothesized that inhibition of
PI3Kd with its specific inhibitor idelalisib was able to prevent TGF-f2-induced
fibronectin expression and Akt activation in RPE cells. As shown in Fig. 2, western
blot analysis showed that TGF-B2 treatment for 48 hours indeed induced Akt

activation (5.1 £ 0.6 fold) as well as fibronectin expression (7.8 £ 0.8 fold) in

human RPE cells (ARPE-19), and that idelalisib abrogated these actions induced by

TGF-B2 in human RPE cells.



Idelalisib suppresses TGF-B2 -induced collagen gel contraction

In the PVR pathogenesis, the contraction of the ERMs eventually causes retinal
detachment (7,48,49). To mimic this process, an in vitro assay of collagen gel
contraction has been developed (2,35,42). This assay can be employed for evaluation
of a drug’s potential capabilities of inhibiting PVR in vitro. To examine if idelalisib
could inhibit TGF-B2-induced cell contraction, RPEM cells derived from an ERM
from a patient with PVR were mixed with collagen solution to form a collagen gel,
and media on the top of this collagen gel were treated with TGF-32 in the presence or
absence of idelalisib. The results showed (Fig. 3) that while TGF-32 treatment for 48
hours stimulated the contraction of the mixture of collagen with RPEM cells from
168.5 + 8.1 mm? to 78.0 + 12.8 mm? idelalisib significantly blocked this
TGF-B2-induced cellular event, that is, the collagen gel area was 131.2 £ 5.9 mm?.

These results indicate that idelalisib has high potential to inhibiting PVR in vivo.

Idelalisib prevents experimental PVR in rabbits

As inactivation of PI3K§ attenuated PVR-related signaling events (e.g., Akt activation)
and cellular responses (e.g., collagen gel contraction) induced by vitreous (2,19) and
TGF-B2 (Figs. 2-3), we next sought to clarify whether inhibition of PI3Kd could
prevent experimental PVR. The animal model of experimental PVR that most
researchers use is to intravitreally inject cells into the rabbit eyes because the lens of
rabbits is relatively small and this advantage can maximally limit the changes to the
lens and retina when performing intravitreal injections. In this experimental model of
PVR the rabbits are examined for the formation of cellular membranes in the vitreous

because their contraction can lead to retinal detachment (6,35,36,41,42,50).

10



We firstly evaluated the toxicity of idelalisib to the rabbit retina. We identified the
minimum effective dose (1 pM) and maximum 20 pM) tolerated dose of idelalisib to
RPE cells derived from patients with PVR (defined as RPEM cells) (2), and we
sought to establish the maximum dose of idelalisib that could be injected into the
vitreous without overt retinal toxicity. We chose RPEM cells for these studies because
they were most relevant to human PVR.

To this end, we intravitreally injected a total of 0.1 ml idelalisib to achieve a final
vitreal concentration of 10 or 20 uM after a gas vitrectomy in 6 rabbits. Examination
of rabbit eyes with an indirect ophthalmoscope plus a +30 D fundus lens on days 1, 3,
5, 7 by two ophthalmologists did not reveal any toxicity to the injected eyes. To
confirm this observation, on day 7 electroretinography (ERG) was harnessed to
monitor the retinal function. As shown in Fig. 4A, in comparison with the left
un-injected eyes, there were no obvious changes in the a-waves and b-waves in the
idelalisib-injected eyes. Examination with optical coherence tomography (OCT)
also showed that there were not significant changes in retinal thickness, indicating
that these two doses (10 and 20 pM) of idelalisib to rabbit retinas were well-tolerated
(Fig. 4B). In addition, histological analysis further demonstrated that there was no
significant change in the retinal structure after intravitreal injection of idelalisib into
the right eyes in comparison with the un-injected left eyes (Fig. 4C). Furthermore, our
previous experimental results also demonstrated that idelalisib at 10 uM did not cause
obvious adverse effects in mouse eyes examined by ERG, OCT and histological
analysis of the retinas®!. Consequently, we chose the 10 uM dose for the subsequent
experiments.

To determine whether idelalisib could prevent PVR, after a gas vitrectomy we

intravitreally injected platelet-rich plasma, RPEM cells, and then either idelalisib (10
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uM) or its solvent DMSO (0.01%) as a negative control (35,42). As shown in Fig. 5A,
on day 28 there were 7 injected eyes (87.5%) being retinal detachment ( PVR stages
4-5) among the 8 control-injected rabbits, and there was only one injected eye
(11.1%) being retinal detachment (PVR stage 3) among the 9 idelalisib-injected
rabbits evaluated by two ophthalmologists with an indirect ophthalmoscope plus a
+30 D fundus lens. These results indicated that severe PVR stages were significantly
reduced in rabbits injected with idelalsib, but there were 7 (77.8%) among the 9
idelalisib-treated rabbits developing epi-retinal membranes (PVR stages 1-2) (Fig.
5A).

To confirm the PVR stages evaluated by the ophthalmologists with an indirect
ophthalmoscope (Fig. 5A), the PVR status of 4 rabbits with stage 1 or 5 was further
evaluated by ERG (Fig. 5B) indicating that 1) the injected right eyes with PVR did
not affect the un-injected left ones, 2) minor vitreous fibrosis (PVR stage 1) did not
significantly affect retinal function; and 3) the retinal detachment caused retinal
dysfunction in the eye with PVR stage 5.  OCT analysis of 6 eyes with 2 normal eyes
as a control confirmed that 1) there were fibrotic tissues attaching the retina in the eye
with PVR stage 2 (1 eye); 2) the fibrotic tissues attached the retina causing the retinal
detachment in the eye with PVR stage 3 (1 eye); the retina got total detachment from
its original position with PVR stage 5 (2 eyes) (Fig. 5C). Histological analysis further
verified the fibrosis in PVR stages 2, 3 and 5 evaluated with an indirect
ophthalmoscope and OCT (Fig. 5D). These studies demonstrate that idelalisib
effectively protects rabbits from developing the severe stages (stages 4 and 5) of PVR,
suggesting this pharmacological intervention could be further tested for protecting

patients from developing PVR.
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Discussion

In the present study, fibronectin was identified by the advanced technology of the
GeoMx DSP to be strongly expressed in RPE cells within the ERMs from patients
with PVR (Fig. 1). This result is consistent with previous findings>?-*. Subsequently,
we discovered that idelalisib inhibited TGF-f2-induced Akt activation, fibronectin
expression and collagen gel contraction (Figs. 2-3), and these signaling events and
cellular responses are related to PVR. PVR is still a major obstacle to successfully
correct retinal detachment despite gradual improvements in surgical success rates over
the past decades; in particular, there are over 75% of postsurgical re-detachments in
developing PVR (55). However, there is still no effective medicine for this blinding
disease. Thereby we evaluated the potential of the FDA approved medicine idelalisib
for preventing PVR and found that this drug significantly inhibited experimental PVR
in an intravitreal cell injection rabbit model (Figs. 4-5). In this animal experiment, we
intravitreally injected RPE cells (3 x 10° cells /eye) derived from an ERM from a
patient with PVR (32) into Dutch belted rabbits, leading to severe PVR with retinal
detachment (Stages 3-5) in seven of 8 eyes by day 28 (Fig. 5) . Whereas other
investigators reported that these RPEM cells induced less severe PVR in New Zealand
albino rabbits, that is, by day 28 there was only one eye developed extensive
tractional retinal detachment among the 24 experimental eyes injected with 1 x 106
cells/eye (32). The different results of these two experiments might be due to using
different species of rabbits and cell numbers. In addition, in our current experiment,
rabbits were of a younger age (8 weeks) than those we used previously (16-24 weeks),
so the younger rabbits might be easier to develop severer PVR in this cell injection

model based on our unpublished observation. In general, RPE cells have less potential
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to induce experimental PVR in rabbits compared to fibroblasts based on our previous
experimental results (6,35,36,39,41,42,56).

In order to develop therapeutic approaches to PVR, so far there are a lot of
medical treatments tested including antineoplastic drugs (e.g., 5-fluorouracil, cisplatin
57, methotrexate58), tyrosine kinase inhibitors (e.g., dasatinib) (59), protein kinase C
inhibitors (e.g., herbimycin A) (60), TGF- receptor inhibitors (e.g., LY-364947) (61),
p53 inhibitors (e.g., nutlin-3) (42), scavengers of reactive oxygen species (e.g.,
N-acetyl-cysteine) (35), and other drugs (55). In spite of these considerable efforts,
clinical success is still unreached. Inactivation of PI3Kd in mice failed to show any
detectable phenotypes in their embryos and adult eyes, but its expression is enhanced
in pathological conditions (51). Given the hardly detectable expression of PI3K in
mouse photoreceptor cells (51), it is likely that its activity in these cells is not

essential. These findings indicate that PI3KJ is a promising target for PVR therapy.

In this report, we demonstrate that idelalisib, an FDA approved specific inhibitor
for PI3KJ, inhibits experimental PVR in a rabbit model, uncovering the potential of
this agent as a potential PVR prophylactic, addressing a currently unmet clinical need

(62).
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Figure legends

Figure 1. GeoMx Digital Spatial Profiling of ERMs from patients with PVR

(A) Corresponding regions of interest (ERM: epiretinal membranes from patients with
PVR, Control: breast epithelial tissue as a control) were captured for DSP analysis
based on immunofluorescent staining for CK (pan-keratin, Green), CD45 (Red) and
DAPI (Blue). Scale bar: 500 pum.

(B, C) Volcano Plot : The X-axis of the figure is the protein difference multiple (take
log2), and the Y-axis is the corresponding -logl0 (P value). In the figure, the red
points are significantly up-regulated proteins, the green points are significantly
down-regulated proteins, and the gray points are proteins that have no significant
changes. (B) Control tissue versus PVR membrane; (C) Epithelial cells versus
immune cells in the ERMs from patients with PVR. SMA: smooth muscle actin, CK:
pan cytokeratin, CTLA-4 (cytotoxic T-lymphocyte-associated protein 4 or CDI152)
and PD-L1 (programmed death-ligand 1).

(D, E) Assessment of IgG as normalizers. Clustered heatmap of relative expression of
proteins per ROI. Ward D2 clustering was applied, followed by K-means clustering to
delineate differences between expression profiles among compartments. CTL: control
(normal tissue); ERM: PVR membranes. D: CD68, Fibronectin, S6, SMA, PD-L1,
C56, CDl1lc, HLA-DR, CTLA4, CD45, CD4, CD6, GZMB, Histone H3, PanCK,
RbIG, Mslog2a, Ki-67, beta-2-microglobulin, PD-1, CD20, CD3, Ms IgG1, GADPH;
E: SMA, GADPH, Fibronectin, PanCK, CD56, CD8, Histon H3, PD-1, S6, Rb IgG,

CD45, CTLA4, CDl1l1c, Mslg2a, CD3, PD-L1, beta-2-microglobulin, CD4, GZMB,
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CD20, Ki67, CD68, HLA-DR, MslgGl; E:
(F, G) Principal Component Analysis (PCA). The X-axis is the first principal

component and the Y-axis is the second principal component.

Figure 2. Idelalisib inhibited Akt activation induced by TGF-p2 in human RPE

cells

(A) Serum-starved ARPE-19 cells were treated with TGF-B2 (10 ng/ml) or in addition
to idelalisib (10 pM) for 24 h and 48 h. Their lysates were subjected to western
blotting analysis using indicated antibodies. Shown is a representative of at least three
independent experiments.

(B) The bar graphs are mean + SD of three independent experiments. The data of the
intensity of bands was analyzed using one-way ANOVA followed by the Tukey HSD

post hoc-test. ***P < 0.001.

Figure 3. Idelalisib blocked TGF-f2 induced collagen gel contraction

RPEM cells were re-suspended in 1.5 mg/ml of neutralized collagen I (pH 7.2) at a
density of 1 x10° cells/ml and seeded into wells of a 24-well plate that had been
pre-incubated overnight with 5 mg/ml (BSA/PBS). The collagen was solidified by
incubation at 37°C for 90 minutes. The polymerized gels were overlaid with
DMEM/F12 alone (-) or TGF-B2 (10 ng/ml) supplemented with idelalisib (10 uM) or
its vehicle as indicated. 48 hours later, the gel diameter was measured and the gel area
calculated using the formula: 3.14 x 1. The bar graphs represent the mean + SD of the
three independent experiments; *** denotes p < 0.001 using one-way ANOVA

followed by the Tukey HSD post hoc-test. A photograph of the representative
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experiment in A is shown at the bottom of the bar graphs.

Figure 4. Examination of idelalisib toxicity in rabbit eyes

Idelalisib was injected into the rabbit vitreous to achieve a final vitreal concentration
of 10 or 20 uM (2 rabbits per dose). This day was considered day 0. The rabbits
underwent fundus examinations by experienced ophthalmologists on days 1, 3, 5, and
7. On day 7, the rabbit eyes were examined by electroretinogram (ERG, dark adaption)
(A) and optical coherence tomography (OCT) (B). Subsequently, the eyeballs from
the euthanized rabbits were subjected to histological analysis by hematoxylin & eosin
stain (C). Arrows in B point to retinas. Representative data are presented in each

panel for the indicated concentration. Scale bar: 200 um.

Figure 5. Idelalisib prevented experimental PVR in rabbits
PVR was induced in the right eyes of 8-weeks-old Dutch Belted pigmented rabbits.

Briefly, one week after gas vitrectomy, rabbits were injected intravitreally with
platelet-rich plasma (PRP, 0.1 ml) and RPEM cells (3.0 x 10° cells) supplemented
with either idelalisib (10 uM, 9 rabbits) or its vehicle (0.01% DMSO, 8 rabbits).

(A) The eyes of the rabbits were examined at the indicated times by two masked
ophthalmologists using a double blind approach, and the PVR status for each rabbit
was plotted. Each symbol denotes a rabbit injected intravitreally with drug vehicle
(triangle, 8 rabbits in total) and idelalisib (solid circle, 9 rabbits). The numbers in the
Y-Axis denote PVR stages (0 -5). PVR stage 0: the eye is normal; stage 1: there were
some fibrosis in the vitreous and intravitreal membranes formation in the eye; stage 2:
there were more fibrosis in the vitreous and more intravitreal membranes than those in

the stage 1, and there were focal traction and localized ocular changes, hyperemia,

27



engorgement and dilation; stage 3: the intravitreal membrane caused localized
detachment of retinal and medullary ray; stage 4: there were extensive retinal
detachment (total medullary ray detachment and peripapillary retinal detachment);
stage 5: the retina got total detached from its original position and there were retinal
folds and holes. The days in the X-Axis indicate the observation time starting from
the day 1 after the intravitreal cell injection. Statistical significance was assessed by
Mann-Whitney analysis.

A subset of rabbits was examined on day 28 by (B) ERG (4 rabbits): L stands for
left eyes without injection and R stands for right eyes injected with idelalisib or its
vehicle; (C) OCT (6 rabbits): PVR stage 0 (2 rabbits): without fibrosis; stage 2 (1
rabbit): a fibrotic band attached retina (double arrows); stage 3 (1 rabbit): fibrotic
bands attached retina and drew the retinal detachment; stage 5 (2 rabbits): the retina
got total detached. A single arrow points to the retina and double arrows point to
cellular membranes; (D) histology (6 eyeballs). The rabbit eyeballs were from stage 0
(2 eyeballs), stage 2 (1 eyeball), stage 3 (1 eyeball) and stage 5 (2 eyeballs). The
histological eyeball sections were stained with hematoxylin and eosin; arrowhead and

double arrows point to cellular membranes.
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