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ABSTRACT
Given their strong performance on a variety of graph learning tasks,
Graph Neural Networks (GNNs) are increasingly used to model
financial networks. Traditional GNNs, however, are not able to cap-
ture higher-order topological information, and their performance
is known to degrade with the presence of negative edges that may
arise in many common financial applications. Considering the rich
semantic inference of negative edges, excluding them as an obvious
solution is not elegant. Alternatively, another basic approach is
to apply positive normalization, however, this also may lead to
information loss. Our work proposes a simple yet effective solution
to overcome these two challenges by employing the eigenvectors
with top-𝑘 largest eigenvalues of the raw adjacency matrix for pre-
embeddings. These pre-embeddings contain high-order topological
knowledge together with the information on negative edges, which
are then fed into a GNN with a positively normalized adjacency ma-
trix to compensate for its shortcomings. Through comprehensive
experiments and analysis, we empirically demonstrate the superi-
ority of our proposed solution in a Bitcoin user reputation score
prediction task.
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1 INTRODUCTION
Despite a massive increase in its popularity over recent years, Bit-
coin, a digital currency based on blockchain technology, has been
continuously criticized for its role in facilitating financial crimes
[5, 43]. Its innovative characteristics (such as decentralization and
anonymity) that have helped promote its image as a disruptor of
modern financial systems, have also attracted various criminal ac-
tivities including money laundering, blackmail, trafficking, and
scams [50]. Recent literature has begun to address these issues by
investigating the risks associated with bitcoin transaction networks
and exploring techniques to detect malicious activities [1, 54].

Deep learning, for instance, is one such technique that has seen
recent success across a number of problem domains and is increas-
ingly being researched in academia and industry to augment or
replace traditional rules-based monitoring systems (see [15] for an
overview). More generally, deep learning is widely used for anom-
aly detection [36], fault or disease diagnosis [26, 29, 34, 51], as well
as pattern, sequence recognition [9, 19, 32] and natural language
processing [30, 31, 33, 35, 39–41]. Deep learning research within
the Bitcoin literature, however, has focused on forecasting future
prices and returns [18] with relatively few papers exploring how it
can be used to identify financial crimes [3, 6].

Recently, common deep learning architectures have been ex-
tended to leverage the topological properties of data. For example,
Graph Convolutional Networks (GCN) leverage the concept of
weight sharing and can capture complex non-linear relationships
between nodes. As a feature extractor for graphs, these networks
may be adapted to any tasks involving graph-structural data such
as protein identification [45], collaborative filtering [46] and text
summarization [52]. These architectures are potentially appropriate
for financial transaction data which can be modeled and analyzed
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using graphs with interconnected users. For example, node identifi-
cation can be used to identify whether a transaction is legal, and
link prediction can determine whether two financial entities have a
specific relationship. These techniques may also be used for decen-
tralized financial networks such as Bitcoin, in which transaction
information exists on each node in the form of distributed storage
and the nodes are linked to each other, which can be regarded as an
explicitly weighted signed directed network. Several recent studies
have started to explore how these models may be used to detect
illicit activities within the Bitcoin network [27, 44, 53].

Our approach builds on these recent papers by exploring how
classical neural learning and Graph Neural Networks (GNNs) may
be used for malicious or suspicious behavior detection in the Bitcoin
transaction network or other similar financial networks requiring
supervision. We formulate a prediction task using mutual rating
scores among member nodes provided by the Bitcoin OTC (Over-
The-Counter) and Bitcoin Alpha platforms. These scores range from
-10 (total distrust) to +10 (total trust) and the magnitude represents
the degree of distrust or trust, respectively. Due to the anonymity
of Bitcoin transactions, our model relies solely on these mutual
ratings of transactions to evaluate the reputation of nodes. We
demonstrate that with this network, for each node, we are able to
generate high-quality embeddings that may be used to accurately
identify reputation ratings as well as to develop further practical
financial regulatory applications including fraud detection. We also
extend the literature by exploring several modeling approaches and
practical challenges, including normalization, eigenvector extrac-
tion, and unsupervised pre-training of the embeddings.

2 RELATEDWORK
2.1 Graph Neural Networks
Graph Neural Networks (GNNs) are a family of neural network
architectures that may be applied to non-Euclidean data structures
such as graphs [55]. These networks can be categorized as either
spectral or spatial-based.

Spectral-based GNNs map the graph data to the spectral domain
with Fourier transform, perform convolution in the spectral domain,
and then return the data back to the spatial domain with an inverse
Fourier transform. In an early paper, [11] treat the convolution ker-
nel as a 𝑛-dimensional trainable parameter since the convolution
kernel is concerned with all the eigenvalues of the Laplacian matrix.
This early approach was computationally expensive and did not
consider local topological information. [10] extend this approach
and approximated the convolution kernel with a 𝑘-order truncated
polynomial, reducing the computation complexity and importing
𝑘-order local structural knowledge. [20] further simplified the con-
volution kernel with first-order truncated polynomials, where each
node merely observes its first-hop neighbors at each layer. With this
approach, the receptive field of each node can still be expanded by
stacking GNN layers. Although still classified as spectral-based, this
first-order approximation GCN is more closely related to spatial-
based GNNs with first-order neighborhood aggregation.

Spatial-based GNNs introduce convolution through local neigh-
borhood aggregation where each node updates its representation
by iteratively aggregating its neighbor’s information. For example,
GraphSAGE [14] introduce several aggregation operators such as

“mean”, “max pool”, “sum”, and “Long Short-Term Memory (LSTM)”
to allow the GNN to be applied to various tasks. To allow for dy-
namic edge weights, [45] use an attention mechanism to dynami-
cally adjust the edge weights, encouraging each node to focus on
its critical neighbors.

In our experiment, outlined in Section 4.1, we assume access to
the edge weights and evaluate the performance of three different
approaches on a downstream task: a simplified version of GCN
without an activation function (referred to as Simplifying graph
Convolutional Networks), a first-order approximation GCN (which
we refer to as GCN), and GraphSAGE.

2.2 Applications of GNNs in Finance
There is rich literature on the application of deep learning and
graph learning algorithms in finance [8, 24, 25, 38]. For example,
[47] introduce scalable graph convolutional neural networks for
forensic analysis of financial data to support anti-money laundering
(AML). They used a large synthetic graph they created to conduct
preliminary experiments and highlighted the promise of graph deep
learning in the field of financial crime detection. In a more recent
paper, [48] introduce a time series graph dataset that contains many
Bitcoin transactions (nodes) and directed payment flows (edges)
which they use in an experiment to identify illicit transactions.
They compared their results using different variants of the graph
convolutional network (GCN) against more traditional approaches
such as random forests, multilayer perceptrons, and logistic regres-
sion models. The authors found that the GCN models are able to
improve performance and leverage the topological structure of the
data. They further provide a model that allows for navigating the
graph and observing the performance of anti-money laundering
activities over time.

2.3 Network Embedding Approaches
Node embeddings are often estimated using either GNNs, matrix
factorization (MF), or random walks (RW). GNN-based approaches
iteratively update node embeddings through neighborhood aggre-
gation and as such most GNNs can be used for node embeddings.
MF-based methods factorize an adjacency matrix (which may be
a matrix other than the Laplacian) as two identical low-rank la-
tent matrices, which can be treated as the embedding matrix. For
example, [17] estimates node embeddings by minimizing the Eu-
clidean distance between the multiplication of two latent matrices
and the node similarity matrix. [16] extend this and import local
structure information into the similarity matrix, such that each
node is only connected with its 𝑘-nearest neighbors. The work by
[4] extends this further by utilizing auxiliary information (i.e., node
labels) to improve the training such that the node embedding is
encouraged to maintain local topological information and preserve
class separability.

RW-based approaches on the other hand draw inspiration from
skip-gram language models, which perform random walks upon a
graph and sample a list of paths. In the language analogy, each path
is treated as a sentence and each node is regarded as a word. The
node embeddings are then obtained by maximizing the concurrency
probability of nodes within a window in a path. Differences in
approaches to how paths and candidate nodes are chosen have
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given rise to several different RW-based algorithms. For example,
the DeepWalk algorithm introduced by [37] employs an unbiased
random walk to select candidate nodes. LINE [42], on the other
hand, treats the first and second-hop neighbors as a node’s relevant
context, which is analogous to the Breadth-First Search (BFS), and
node2vec [13] offers a balance between BFS and Depth-First Search
(DFS).

While all the methods described may be used to estimate graph
embeddings, there are some trade-offs between them. For example,
MF-based methods fail to exploit the structural information of
graphs. While GNNs and RW-based methods are able to leverage
this information, they are weak in addressing negative edges. For
GNNs, current research tends to abandon the negative edges to
retain the graph homophily [46], regardless of the rich semantic
meaning of negative signals.

We aim to improve upon these issues in our currentwork through
embedding methods that can both accommodate negative edges
and leverage the global topological information. First, we design
a loss function based on the objective of MF-based methods. We
also reconstruct the weighted adjacency matrix by multiplying
the node embedding matrix and utilized the reconstruction loss to
guide the network. Then, to inject local topological information into
node embedding, we employ GNNs as the intermediary component.
Finally, to incorporate the semantics of negative edges and high-
order structural information, we adopted top-𝑘 largest eigenvectors
as the node pre-embedding. For this step, we explore both DeepWalk
and node2vec as pre-embedding methods.

3 PRELIMINARIES
3.1 Graph Neural Networks
A graph is a structure that may be used to represent interconnected
data points (e.g., a network of users connected by financial transac-
tions). A graph 𝐺 can be defined as 𝐺 = (𝑉 , 𝐸,A), where 𝑉 is the
node-set, 𝐸 is the edge set and, A ∈ 𝑅𝑛×𝑛 is an adjacency matrix
(with 𝑛 equal to the number of nodes ) describing the connections
between nodes. Normally, A𝑖 𝑗 = 1 if there is a link from node 𝑖 to
node 𝑗 , otherwise, A𝑖 𝑗 = 0. In some cases, A may be a weighted
matrix, where A𝑖 𝑗 ≠ 0 not only implies that there is a link from
node 𝑗 to node 𝑖 but also indicates the properties of this link. Each
node 𝑣𝑖 ∈ 𝑉 may also contain additional information such as a
vector 𝑥𝑖 of features describing its properties.

Graph Neural Networks (GNNs) is a state-of-the-art graph learn-
ing technique that has grown in popularity over recent years. They
incorporate the topological information into node representations
with a message-passing mechanism where each node receives in-
formation from its neighbors to update its own representation and
sends its information to neighbors at the same time [12]. As shown
in Figure 1, the input of a GNN is a graph with node features and the
output is a graph with an updated node representation. In each hid-
den layer, each node aggregates its neighbors’ information once and
then updates its own representation by performing a non-linear
transformation upon the aggregated information. Formally, the
forward propagation of each GNN layer can be written as:

H𝑙+1 = 𝜎 (𝐴𝑔𝑔(𝐹 (A),H𝑙 ,𝑊 𝑙 )) (1)

where 𝜎 is an activation function, 𝐴𝑔𝑔 is an aggregation operation,
𝐹 (A) is an improved adjacencymatrix,H𝑙 is the node representation
matrix at the 𝑙-th layer, and𝑊 𝑙 is a trainable parameter matrix at
the 𝑙-th layer. The design of the aggregation operation and the
improved adjacency matrix is where various GNNs differ from each
other.

Note that although GNNs are often categorized as spectral-based
and spatial-based, the introduction of a first-order approximation
of the convolutional kernel by [20] has made spectral-based GNNs
equivalent to the first-order neighborhood aggregation in the spatial
domain.

Figure 1: A schematic view of generic graph neural networks.

3.2 Adjacency Matrices
Several approaches have been introduced to improve the adjacency
matrix used by a GNN. For example, many GNNs introduce a self-
loop to the adjacency matrix to prevent each node from forgetting
its own information, acquiring Ã = A + 𝐼 where 𝐼 is the identity
matrix. Some GNNs [20, 49] employ a normalized adjacency matrix
defined as:

𝐹 (Ã) = D− 1
2 ÃD− 1

2 (2)
where D is the degree matrix of Ã. In this case, the weight of the
link from node 𝑖 to node 𝑗 is normalized by their degrees as:

𝐹 (Ã)𝑖 𝑗 =
Ã𝑖 𝑗√
𝑑𝑖
√︁
𝑑 𝑗

(3)

where 𝑑𝑖 is the degree of node 𝑖 . Others have employed a random
walk adjacency matrix [2] defined as:

𝐹 (Ã) = D−1Ã (4)

where the weight of the link from node 𝑖 to node 𝑗 is normalized
by the degree of node 𝑖 .

3.3 DeepWalk & Node2vec
DeepWalk [37] and Node2vec [13] are two node embedding meth-
ods drawing inspiration from language models. To estimate node
embeddings, they perform random walks among graphs to sample
a list of paths. The list of paths is regarded as the corpus of a lan-
guage model such as word2vec [28], where each path is a sentence,
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and each node is a word. The node embeddings are then the by-
product of maximizing the node concurrence possibility in these
paths. DeepWalk and Node2Vec differ in their strategies to generate
the paths. Given a path 𝑐 where 𝑐𝑖 denotes the 𝑖-th node 𝑢 in the
path, in DeepWalk, the possibility to select 𝑣 as the 𝑖 + 1-th node of
𝑐 is defined by:

𝑝 (𝑣 = 𝑐𝑖+1 |𝑢 = 𝑐𝑖 ) =
{
𝜋𝑢𝑣
𝑧 (𝑢, 𝑣) ∈ 𝐸

0 otherwise
(5)

where 𝜋𝑢𝑣 is the transition probability from node 𝑢 to 𝑣 and 𝑧 is a
normalization constant. This method is BFS preferred, which tends
to visit the nodes that are close to the previous node. The node2vec
methods imports parameters to adjust the preference to BFS or DFS,
whose sampling protocol is defined by:

𝑝 (𝑣 = 𝑐𝑖+1 |𝑢 = 𝑐𝑖 ) =


𝜋𝑢𝑣
𝑝𝑧 𝑑𝑢𝑣 = 0
𝜋𝑢𝑣
𝑧 𝑑𝑢𝑣 = 1

𝜋𝑢𝑣
𝑞𝑧 𝑑𝑢𝑣 = 2

(6)

where 𝑑𝑢𝑣 denotes the shortest path between node 𝑢 and node 𝑣 ,
𝑑𝑢𝑣 = 0 denotes that 𝑣 is visited before 𝑢 (thus if 𝑝 is small, the
model is likely to revisit the observed node), 𝑑𝑢𝑣 = 2 indicates that
𝑢 and 𝑣 are 2-hop neighbors (thus if 𝑞 is small, the model tends to
visit the 2-hop neighbors of the previous node, which is analogous
to DFS search).

4 METHODOLOGY
4.1 Problem Definition
We define our graph to be a rating network where nodes are Bitcoin
users and the edge weights are the rating scores from one user to
another. Negative rating scores indicate “distrust” between users
while positive implies “trust” and the magnitude of the score de-
notes the degree of “distrust” or “trust” . Since Bitcoin users are
anonymous, there is no explicit user information that may be used
to assess whether a user is trustworthy, and we rely solely on the
rating score between users to evaluate a user’s reputation. A user
with a sizable proportion of negative edges is likely to be malicious,
and thereby other users may seek to avoid trading with them. We
aim to generate a high-quality embedding of each user node that
could be used to precisely model its reputation, thus facilitating
a variety of downstream applications such as fraud detection. To
evaluate the quality of generated node embeddings, we mask a
part of edges and perform edge weight prediction tasks with the
obtained embeddings.

4.2 Negative Edges and Degradation of
Traditional GNN Performance

Traditional GNNs are designed based on the homophily (or assor-
tativity) assumption that the representation of a node should be
similar to its neighbors [56]. Through iterative neighbor aggrega-
tion, the representation of each node becomes close to its neighbors.
When a node 𝑖 at the 𝑙-th layer updates its representation, its desir-
able representation at the next layer should minimize its distance
to its neighbors, which can be defined as:

𝐷 (𝑣𝑖 ) =
∑︁
𝑗∈𝑁𝑖

∥ℎ𝑙+1𝑖 − ℎ𝑙𝑗 ∥
2
2 (7)

where 𝑁𝑖 is the first-order neighbors of node 𝑖 and ℎ𝑙+1
𝑖

is the
representation of node 𝑖 at 𝑙 + 1-th layer. Here for simplicity, we
set the edge weight to 1. Incorporating a self-loop, each node is
expected to approach its neighbors and keep close to its original
representation simultaneously. As such, the distance is transformed
to:

𝐷 (𝑣𝑖 ) = ∥ℎ𝑙+1𝑖 − ℎ𝑙𝑖 ∥
2
2 +

∑︁
𝑗∈𝑁𝑖

∥ℎ𝑙+1𝑖 − ℎ𝑙𝑗 ∥
2
2 . (8)

Therefore, to obtain the desirable representation ℎ𝑙+1
𝑖

, the objective
is to minimize 𝐷 (𝑣𝑖 ). It is intractable to regard all the nodes as
dynamic objects in the graph. Based on the mean-of-field approx-
imation, we can fix other nodes and merely focus on the update
of 𝑣𝑖 . Hence, 𝐷 (𝑣𝑖 ) may be further transformed to a multi-variable
Gaussian distribution which is a convex function. By setting its
derivative as 0, we can get the closed-form solution of ℎ𝑙+1:

ℎ𝑙+1𝑖 =
ℎ𝑙
𝑖
+∑

𝑗∈𝑁𝑖
ℎ𝑙
𝑗

1 +∑
𝑗∈𝑁𝑖

=
ℎ𝑙
𝑖
+∑

𝑗∈𝑁𝑖
ℎ𝑙
𝑗

1 + 𝑑𝑖
(9)

which is in the form of neighborhood aggregation.
So far, we have shown that in a graph with all positive edges,

neighborhood aggregation strengthens the graph homophily. Now,
we incorporate negative edges and rethink what neighborhood
aggregation does in graphs with negative edges (for simplicity,
we set positive edge weight as 1 and negative edge weight as -1).
Furthermore, we incorporate the intuition that a node should keep
away from its negatively connected neighbors. For instance, in
the bitcoin rating network, a user is likely to avoid approaching
another user that it distrusts and tends to assign high scores to
users with a similar reputation. Based on this intuition, to obtain
the representation ℎ𝑙+1, the objective is to minimize the distance of
the node to its positively connected neighbors while maximizing
the distance to its negatively connected neighbors, which amounts
to minimizing the following 𝐷 (𝑣𝑖 ):

𝐷 (𝑣𝑖 ) = ∥ℎ𝑙+1𝑖 −ℎ𝑙𝑖 ∥
2
2 +

∑︁
𝑗∈𝑁𝑖+

∥ℎ𝑙+1𝑖 −ℎ𝑙𝑗 ∥
2
2−

∑︁
𝑗∈𝑁𝑖−

∥ℎ𝑙+1𝑖 −ℎ𝑙𝑗 ∥
2
2 (10)

where 𝑁𝑖+ is the positively connected first-order neighbors of node
𝑖 and 𝑁𝑖− is the negatively connected ones. By setting its derivative
as 0, we can also get the update rule:

ℎ𝑙+1𝑖 =
ℎ𝑙
𝑖
+∑

𝑗∈𝑁𝑖+ ℎ
𝑙
𝑗
−∑

𝑗∈𝑁𝑖− ℎ
𝑙
𝑗

1 + 𝑑+
𝑖
− 𝑑−

𝑖

. (11)

where 𝑑+
𝑖
is the positive degree of node 𝑖 and 𝑑−

𝑖
is the negative

degree. However, we cannot guarantee the convexity of 𝐷 (𝑣𝑖 ) in
this case. The second-order derivative of 𝐷 (𝑣𝑖 ) is 1+𝑑+𝑖 −𝑑

−
𝑖
, which

can be positive or negative. If it is positive, then 𝐷 (𝑣𝑖 ) is convex
and following the above update rule, it would approach the mini-
mum value. If the second-order derivative is negative, then 𝐷 (𝑣𝑖 )
is concave and following the above update rule, it would approach
the maximum value, which contradicts the above intuition. There-
fore, the neighborhood aggregation is unstable in the graph with
negative edges. The effectiveness of neighbor aggregation depends
on the ratio of positive and negative links of a node. Neighborhood
aggregation does not help a node if it has more negative linkages
than positive edges.
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4.3 The Framework
As discussed in the preceding sections, there are two main chal-
lenges that our approach needs to address to be able to effectively
model Bitcoin rating networks: 1) the lack of available node fea-
tures; 2) the presence of negative ratings which may reduce the
performance of traditional GNNs.

To address the first challenge, we separately generate node em-
beddings before feeding them into the GNN. A common solution
is to represent each node with one-hot encoding, however, this
ruins the permutation equivariance of GNNs by encoding sequen-
tial node ids and dramatically increases the dimensionality of the
problem. Other alternatives such as random initialization or degree
encoding are not able fully to exploit the structural information of
the graph. Instead, we employ efficient node embedding methods
that incorporate topological information before training a GNN.

Note that although GNNs can produce node embeddings that
are topologically aware, we still use a separate embedding step
for two main reasons. First, traditional GNNs may suffer from an
over-smoothing problem, which limits the optimal depth of GNN
networks to 2 or 3 layers [7]. Hence, the output representation of
each node merely learns the 2 or 3-order local structural knowl-
edge. It is beneficial to integrate global or high-order topological
information into the input node embeddings of GNNs. Second, is
that because the performance of GNNs is perturbed by negative
edges. We may normalize the edge weights to a positive interval
such as [0, 1] following the work [23], however, this approach may
induce information loss as we treat all the negative links as positive
ones. Through neighborhood aggregation, the network would also
narrow the discrepancy between one node with another one that it
distrusts by not fully exploiting the negative signals. Therefore, it
is also beneficial to incorporate the negative signals into the input
node embeddings of the GNNs.

As such, we require a node embedding method that can integrate
the global (higher-order) topological information and the negative
edge weights. Global topological information requires that each
node be capable of observing all the other nodes in the graph. Based
on the messaging passing mechanism, it amounts to sending the
information of a node to all the other nodes and incorporating the
information of all the other nodes into each node. The message
passing process among a graph with feature matrix 𝑋 may be ab-
sorbed into the multiplication between the random walk adjacency
matrix R = D−1Ã and 𝑋𝑘 = R𝑘𝑋 , where 𝑋𝑘 denotes the node rep-
resentation after 𝑘 messaging passing. Suppose that R is a full rank
matrix with 𝑛 eigenvalues {_1, _2, ..., _𝑛} and 𝑛 corresponding unit
eigenvectors {𝑢1, 𝑢2, ..., 𝑢3}. The attribute 𝑋 can be decomposed as
the sum of their projections to these eigenvectors: 𝑋 =

∑𝑛
𝑖=1 𝑥𝑖𝑢𝑖 .

Then we can represent R𝑘𝑋 as:

R𝑘𝑋 = R𝑘
𝑛∑︁
𝑖=1

𝑥𝑖𝑢𝑖 =

𝑛∑︁
𝑖=1

𝑥𝑖R𝑘𝑢𝑖 =
𝑛∑︁
𝑖=1

𝑥𝑖_
𝑘
𝑖 𝑢𝑖

= _𝑘𝑖 (𝑥1𝑢1
𝑥∑︁
𝑖=2

(
_𝑘
𝑖

_𝑘1
)2𝑥𝑖𝑢𝑖 )

. (12)

Here we set |_𝑖 | > |_𝑖+1 |, and therefore, as 𝑘 increases, items with
smaller magnitude eigenvalues would fade gradually. And the eigen-
vectors of the surviving items can be regarded as the high-order

features of the node. We select eigenvectors with top-𝑘 largest
eigenvalues as the node embeddings, which can also be adapted to
adjacency matrices with negative edges.

Figure 2 illustrates the framework’s architecture, consisting of
three components: pre-embedding module, GNN module, and pre-
diction module. The pre-embedding module computes eigenvectors
with top-𝑘 largest eigenvalues (magnitude) and treats the eigenvec-
tors as the pre-embeddings of the node. Then we perform standard
normalization on the eigenvectors and normalize the edge weights
to the interval [0, 1]. Subsequently, the GNN layers receive the
normalized graph with topology-aware node embeddings and fur-
ther update the node representation with messaging passing. After
obtaining the updated node representation, the prediction module
predicts an edge’s weight by taking the dot product of its connected
node representation.

5 DATA
To evaluate our framework we use two different datasets containing
trust rating scores from the Bitcoin OTC (over-the-counter) and
Bitcoin Alpha platforms [21, 22]. See Table 1 for a summary of the
two datasets. We use this to create a signed directed graph with
a node representing a Bitcoin user and an edge representing the
ratings between two users. The edge weights represent the degree
of trust assigned from one user to another, and they are valued
from -10 to 10 indicating respectively the highest distrust to the
maximum trust level. The significance of these edge weights is
discussed in section 4.1. Note, that since the users are anonymous,
no additional user features are available.

Table 1: Data summary.

Bitcoin OTC Bitcoin Alpha
# of nodes 5,881 3,783
# of edges 35,592 24,186
% of positive edges 89% 93%

6 EXPERIMENTS, RESULTS, AND ANALYSIS
We evaluated our framework with three different variants of GNNs:
GCN [20], SGC [49], and GraphSAGE [14].

The propagation rule of GCN is defined by:

H𝑙+1 = 𝜎 (D− 1
2 ÃD− 1

2H𝑙𝑊 𝑙 ) .
The propagation rule of SGC is a simplified version of the one used
by the GCN that eliminates the activation:

H𝑙+1 = D− 1
2 ÃD− 1

2H𝑙𝑊 𝑙 .

For GraphSAGE we use “mean aggregation”, and we import edge
weights into the aggregation process. For a node 𝑖 , the GraphSAGE
propagation rule is defined by:

ℎ𝑙+1𝑖 = 𝜎 (𝑊 𝑙 ·MEAN(𝑒𝑖𝑖 · ℎ𝑙𝑖 ∪ 𝑒𝑖 𝑗 · ℎ𝑙𝑗 ,∀𝑗 ∈ 𝑁𝑖 ))
where 𝑒𝑖 𝑗 denotes the weight of the link from node 𝑖 to node 𝑗 .

For all the GNNs, we stack two layers, with the input feature
dimension as 64, the hidden feature dimension as 32, and the output
feature dimension as 16. The learning rate is 0.001, weight decay
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Figure 2: A schematic view of the proposed framework. 𝑢𝑘 is the eigenvectors with 𝑘-th largest eigenvalues.

is 0.00001. Training epoch is 6000 on bitcoin Alpha and 6500 on
bitcoin OTC. For DeepWalk and node2vec, the corpus is constructed
by sampling 16 ten-walk-length paths from each node. The window
size is 5 and the training epoch is 100. For node2vec, the likelihood
of immediately revisiting a node is 0.1 and the control parameter
between breadth-first strategy and depth-first strategy is 0.5. The
model is trained with MSE loss between the predictions and the
actual edge weights.

Through our experiments, we aimed to answer four underlying
questions: (1) Does the presence of negative edges degrade GNN
performance? (2) Does positive normalization improve embedding
quality in GNNs? (3) Which adjacency matrix is optimal for extract-
ing the eigenvectors? (4) Does pre-embedding based on the largest
eigenvector-based outperform other embedding methods?

6.1 The Impact of Negative Edges on GNN
Performance

To test whether negative edges degrade a GNNs performance, we
normalize the edge weights restricted to the interval [−1, 1]. Since
with the symmetric normalized adjacency matrix, D− 1

2 ÃD− 1
2 , the

degree cannot be negative, we modify the node degree to be the
sum of the magnitude of its connected edge weights such that
𝑑𝑖 =

∑
𝑗∈𝑁𝑖

|𝑒𝑖 𝑗 |. We then evaluated the influence of negative edges
with two kinds of pre-embeddings: random initialization and top-𝑘
largest eigenvectors (which we refer to as Eigen-embedding). In
Table 2, we observe that in both datasets, all the GNNs exhibit a
decrease in predictive accuracy after introducing negative edge
weights in neighborhood aggregation. Furthermore, it can be ob-
served that the Eigen-embedding significantly improves the predic-
tive performance for graphs with positive edges. We also observe
that in spite of negative edges, in some cases GCNs with Eigen-
embedding perform worse than the GCNs with random-initialized
embedding. For instance, in Bitcoin Alpha, incorporating Eigen-
embeddings increases the test loss of the GCNmodel from 0.0548 to
0.5665. This result may indicate that negative links introduce noise
into message passing, which may ruin the inherent topological in-
formation in the eigenvectors. However, overall, our experimental

results strongly indicate that negative edges deteriorate message
passing in GNNs.

6.2 Positive Normalization and Enhancement of
Embedding Quality in GNNs

In the previou section, we demonstrated the negative effect of neg-
ative edges on neighborhood aggregation. To mitigate these effects,
one approach may be to normalize the edge weights restricted
to the interval [0, 1]. These negative edges, however, may hold
rich semantic information such as “distrust” or “dislike” and map-
ping them to a positive interval would reduce the power of these
semantic signals (i.e., weaken “distrust” to “little trust”), causing
information loss. Therefore, it is necessary to investigate whether
positive neighborhood aggregation learns adequate topological
knowledge and improves prediction performance. Since GNNs con-
sist of neighborhood aggregation and non-linear transformation,
we eliminate the neighborhood aggregation module and degener-
ate the GNNs to a two-layer MLP. According to Table 3, it can be
observed that in Bitcoin Alpha, all the GNNs outperform MLP and
GraphSAGE performs significantly better than other models. In
Bitcoin OTC, with randomly initialized embeddings, all the GNNs
perform superior to MLP. However, MLP has made great progress
with Eigen-embeddings, overtaking GCN and SGC. GraphSAGE
is still the best model. It can be safe to conclude that neighbor-
hood aggregation plays a positive role since all GNNs significantly
outperform MLP with randomly initialized embeddings.

Now we explain why eigen-embedding enhanced MLP outper-
forms GCN and SGC from an intuitive perspective. Both GCN and
SGC employ the normalized symmetric adjacency matrices, while
GraphSAGE multiplies the positively normalized edge weight with
the node representation. Therefore, GCN and SGC perform sec-
ondary processing (minimax normalization to [0,1] and symmetric
degree normalization) on edge weights. Symmetric degree nor-
malization assumes that the high-degree node would suppress the
weight of the edge connecting it. The assumption is valid in the
graph with all positive edges. However, when taking negative edges
into account, this assumption is questionable, given a high-degree
node with nine positive links and one negative link. Intuitively
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Table 2: The prediction loss of GNNs with and without negative edges.

Datasets Bitcoin Alpha Bitcoin OTC
Models GCN SGC GraphSAGE GCN SGC GraphSAGE

Positive-random 0.02144 ± 0.00045 0.02238 ± 0.00012 0.01556 ± 0.00027 0.02601 ± 0.00047 0.02904 ± 0.00018 0.02019 ± 0.00020
Negative-random 0.05480 ± 0.00020 0.05519 ± 0.00012 0.03655 ± 0.00028 0.06696 ± 0.00036 0.06856 ± 0.00019 0.04845 ± 0.00065
Positive-eigen 0.01763 ± 0.00017 0.01773 ± 0.00013 0.01129 ± 0.00044 0.01867 ± 0.00019 0.01881 ± 0.00016 0.01390 ± 0.00006
Negative-eigen 0.05665 ± 0.00045 0.05664 ± 0.00037 0.03321 ± 0.00075 0.06191 ± 0.00034 0.06169 ± 0.00014 0.04145 ± 0.00036

the negative link should be paid much attention to (assign higher
weight) since it challenges the majority opinions, which indicates
the node pointed by the negative link is likely to hold unique proper-
ties. However, when performing normalization, all the edge weights
are suppressed by the degree. The importance of the only negative
link is underestimated.

6.3 Adjacency Matrix Selection for Extracting
the Eigenvectors

In Section 3.2, we introduced other two versions of the adjacency
matrix: the symmetric normalized adjacency matrix and the ran-
dom walk adjacency matrix. Each of these is widely used in GNN
literature and as such, we used our experiments to assess which
one is better suited for eigenvector extraction. The result of these
experiments is shown in Table 4, and it can be observed that the
performance with eigenvectors extracted from the raw adjacency
matrix is associated with significant performance compared to other
matrices. This is consistent with our hypothesis in the previous
subsection that normalization would ruin negative signals.

6.4 The Effect of Pre-embedding (Based on the
Largest Eeigenvector-based) on the
Performance

We compared Eigen-embedding from two classical node embedding
methods: DeepWalk and node2vec. We sample sixteen ten-length
paths from each node using these two methods to generate the
corpus and set the window size to five. For node2vec, the trade-off
parameter for BFS and DFS is 0.5. A comparison of the performance
of these methods is shown in Table 5. Across both the Bitcoin OTC
andAlpha datasets, the Eigen-embedding enhanced SGC andGraph-
SAGE outperform the other methods, whereas Eigen-embedding
enhanced GCN performs better than DeepWalk but worse than
node2vec. However, given that DeepWalk and node2vec both re-
quire expensive network training procedures, Eigen-embedding
which does not require training may be considered a better solution
in practice.

7 CONCLUSIONS AND FUTUREWORKS
In this work, we explore different approaches of using GNNs to
support financial crime detection in networks of bitcoin users. We
propose a solution to mitigate the effect of negative edges on the
GNNs performance and compensate for the weaknesses of GNNs
in learning high-order topological information in modeling the
rating network among bitcoin users. Our proposed solution employs
the eigenvectors with the top-𝑘 largest eigenvalues of the raw
adjacency matrix for the pre-embedding of the nodes which are

then fed alongside the positively normalized adjacency matrix to
the GNN layer to obtain high-quality node embeddings, These
embeddings may be used to support a variety of downstream tasks
such as fraud detection. Our experiments also illustrate the adverse
influence of negative edges in the neighborhood aggregation of
GNNs and demonstrate the superiority of GNNs to MLP approaches
as well as the superiority of Eigen-embedding. Furthermore, we
also investigate the optimal choice of various adjacency matrices
and GNNs. This work also provides a constructive reference for
future research using advanced graph analysis technology such as
GNN to enhance the supervision of financial networks.
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