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a b s t r a c t

In this paper, we employ the decomposition of a directed network as an undirected
graph plus its associated node meta-data to characterise the cyclic structure found
in directed networks by finding a Minimal Cycle Basis of the undirected graph and
augmenting its components with direction information. We show that only four classes
of directed cycles exist, and that they can be fully distinguished by the organisation
and number of source–sink node pairs and their antichain structure. We are particularly
interested in Directed Acyclic Graphs and introduce a set of metrics that characterise the
Minimal Cycle Basis using the Directed Acyclic Graphs meta-data information. In partic-
ular, we numerically show that transitive reduction stabilises the properties of Minimal
Cycle Bases measured by the metrics we introduced while retaining key properties of the
Directed Acyclic Graph. This makes the metrics a consistent characterisation of Directed
Acyclic Graphs and the systems they represent. We measure the characteristics of the
Minimal Cycle Bases of four models of transitively reduced Directed Acyclic Graphs and
show that the metrics introduced are able to distinguish the models and are sensitive
to their generating mechanisms.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Hierarchy is a landmark of complexity [1], and can take multiple forms, e.g. ‘‘order’’, ‘‘level’’, ‘‘control’’ or ‘‘inclusion’’ [2].
unifying feature of all types of hierarchy is that they can be represented as a partially ordered set (poset) that represents

he relationships between elements of the system. The term ‘‘partial’’ reflects the fact that not all pairs of elements need
o be directly ordered. Directed Acyclic Graphs (DAGs) do not contain directed closed paths and can thus be used to
epresent the relationships between the elements of a poset. A key distinguishing feature between a poset and a DAG
epresentation of a poset is that each relationship encoded in a poset may be represented by either an explicit edge in
he DAG or implicitly by a path within the DAG. If every directed edge in the DAG defines a relationship in the equivalent
oset, then we find from the transitivity condition of the poset that any nodes linked by a path in the DAG must also
efine a relationship in the poset, whether or not there is an edge representing a direct connection. A good example is a
itation network where each node is a paper and directed edges represent citations. As citations are always from newer
o older papers, a citation network is a DAG. We can look back in time from one chosen publication following paths in
he citation network to see which earlier papers influenced it. However, most of these earlier papers will not be listed
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n the bibliography of the chosen paper so most relationships are indirect, encoded only by paths of length two or more.
hese indirect path-only connections in the DAG are always explicit relationships in the corresponding citation poset.
DAGs are thus ‘‘doubly-complex’’ systems. The first level of complexity lies in the order relationship underlying the

AG, and the second comes from the ‘‘missing information’’, relationships in the poset which are not realised as explicit
dges in the DAG. In this paper, we characterise the mesoscopic structures present in DAGs that are carved in the
nderlying poset by the unobserved transitive edges.
Mesoscopic structures are rich descriptors helping us to understand the organisation of complex systems, and the

haracterisation of connectivity patterns is one of the pillars of the study of complex networks. These structures are
sually defined in terms of ‘‘over-connectivity’’ and the notion of more densely connected subsets of nodes is at the centre
f the definition of many mesoscopic organisation patterns. Such structures can take the form of core–periphery [3,4],
ommunity [5–11], or clique [12–14]. Cliques, cores, and communities are important examples of emergent organisational
atterns that can be interpreted as capturing beyond pairwise node organisation. The representation of higher-order
nteraction and their formalisation in terms of hypergraphs or simplicial complexes has recently seen a surge of
nterest [15,16].

While over-connectivity can be used to define mesoscopic or higher order structures, it is not ideal for DAGs. In this
ase, it is more appropriate to define structures by the absence of connectivity. The notion of antichains—generalised
‘anti-paths’’— which group together nodes that do not share direct connectivity, are relevant in DAGs, as they are
omposed of nodes at the same hierarchical level [17]. Another example are cycles: they can be described as a subset
f nodes that have exactly two neighbours in their induced subgraph. A cycle can be seen as the boundary of a potential
lique in a thresholded graph, or a hole in the fabric of a network. Cycles are also examples of structures that encode
esoscopic information as they form organised motifs.
In this paper we show that, despite their name, cycles do play a role in the analysis of DAGs and that directed trees are

he only DAGs with no cycles. Our starting point is the following, albeit informal, definition of a network: a network is a
raph with something more. This definition clearly highlights that graphs, being pure combinatorial objects, do not encode
ll the nuances and constraints of the complex systems that they represent. We formalise this definition by considering a
AG to be a combination of two elements: (1) an undirected graph and (2) the meta-data associated with its nodes and
dges.
The idea at the centre of our work is to use meta-data to give interpretability and contextualisation to the Minimal Cycle

asis associated with the undirected graph underlying a DAG. We then introduce metrics characterising the properties
nd organisation of generalised directed cycles forming said basis. In particular, we use transitive reduction on DAGs and
how that the metrics we introduce differentiate between four different DAGs generating models; two deterministic ones:
he lattice and Russian Dolls DAGs and two random: Erdős–Rènyi and Price model DAGs. Transitive reduction on edges
eveals the tree-ness of the graph underlying a DAG by removing non-essential cycles. We introduce a new compartment
or ‘‘acyclic’’ network analysis in the rich topological data analysis toolbox.

This paper is organised as follows. In Section 2 we first formally describe Directed Acyclic Graphs and transitive
eduction. Then, we define and describe the generalised directed cycles and cycle bases and conclude by discussing the
esirable properties transitively reduced DAGs have with respect to cycles bases. In Sections 2.3 and 2.4, we discuss
he procedures used to compute the transitively reduced minimum cycle basis. In Section 2.5 we introduce metrics for
haracterising cycle bases. And finally, in Section 3, we study the differences between Minimum Cycle Bases in several
AGs models, and show that our proposed metrics can differentiate and characterise network families.

. Methods

In this section, we review the basic properties of Directed Acyclic Graphs (DAGs), define four classes of generalised
ycles in DAGs and introduce Minimal Cycle Bases (MCB), and discuss the effect of Transitively Reduction on the MCB.

.1. Graphs, hierarchy, and order

For many data sets, an undirected graph G is an excellent way to capture important relational information. The set V of
V| = N objects of interest form the nodes, and the existence of a relationship between a pair of nodes is encoded by an
ndirected edge, gives us the edge set E with |E| = E edges. For instance, the nodes could be documents and we connect
odes by an edge if one document cites another giving us an undirected network representation of what is known as a
itation network.
We are interested in the cycles in our networks, which are simply paths between vertices that run along the edges

n a graph, as long as they end where they started without any other vertex being visited twice. Formally, a path is a
equence of nodes in the network, {v0, v1, v2, . . . , vℓ}, where every consecutive pair of nodes is an edge in the graph
vi, vi+1) ∈ E1 [19]. A cycle is then a path that starts and ends at the same vertex (v0 = vℓ, giving a closed path) but

1 Note in some contexts, for example section 4.2.5 of [18], what we call a path is known as a ‘walk’ while our self-avoiding paths are what
others call a ‘path’.
2
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therwise does not intersect itself, therefore a cycle can be treated as a subgraph C in which all nodes have a degree of
wo.

However, in many cases we can go further as additional information in the meta-data gives a natural direction to the
airwise relationships. In our citation network example, the edge could point from the document whose bibliography
ontains the second document. The set of nodes in the directed graph representation of the data is the same V . The edges
n the directed case are also the same pairs of nodes as the edges in the undirected case but are now endowed with a
irection, Edir. That is if (vi, vj) is an edge from vi to vj in the directed case we know that (vi, vj) = (vj, vi) is also an edge
n the undirected representation. The paths in a directed graph must respect the direction of each edge so that in the
ormal definition (vi, vi+1) must be an edge, it is not sufficient for (vi+1, vi) to be an edge of a path in directed graph D.
losed directed paths are called directed cycles.
We are interested in a special case where there are no directed cycles in the directed network representation so that

e have a Directed Acyclic Graph. This lack of directed cycles reflects an order implicit in our system, typically encoded
n some additional information available in our data set. The simplest origin of such an order is a natural hierarchy. For
nstance, in some contexts it might be useful to direct the links in our citation network from high impact to lower impact
apers (see journal ranking [20] or code prerequisites [17] for further examples). Another common form of this order is
erived from time stamped nodes. For instance each publication has a publication date and we can only cite from newer
o older documents. Thus in the directed graph representation of a citation network, the directed paths in the network
ill never form a directed cycle because that would require at least one document to cite a document published later in
ime.2 A couple of points are worth noting. The meta-data may not always be able to order every pair of nodes. Equally,
ust because two nodes can be placed in a certain order by the meta-data does not mean that there must be an edge
etween that pair of nodes. In our DAG citation network, two papers can have the same publication date and papers do
ot cite all papers published before them.
An undirected graph G = (V, E) can thus be turned into a directed graph D = (V, Edir) if its nodes are endowed with

eta-data such that any edge can be assigned a direction based on the order between its nodes and form a directed edge
et Edir. In this work, we do not allow multiple edges between nodes and only consider simple graphs with no self-loops.
sing some meta-data, we consider a local order for each pair of nodes that are connected by an edge in G. This order is a
elation operator ⪯ that possesses reflexivity: u ⪯ u, and antisymmetry: if u ⪯ v and v ⪯ u then u = v, while transitivity
s implicit, since the relations concern only a pair of nodes. However, if the collection of local orders O applied to the set
f all nodes V also possesses transitivity: where u ⪯ v and v ⪯ w implies u ⪯ w for all u, v, w ∈ V , then the set of order
elations O together with V form a partially ordered set — a poset, while O itself is known as a partial order.

We define a function Fdir that takes an undirected graph G and all available pairwise order relations between nodes in
and yields a directed graph D:

Fdir(G,O) = D. (1)

dir maps the nodeset onto itself, Fdir(v ∈ V,O) → v ∈ Vdir for all nodes in V , whereas for edges, Fdir maps each undirected
dge (u, v) ∈ E onto one directed edge in Edir, based on how the pairs of nodes are ordered in O:

Fdir((u, v),O) =

{
(u, v) ∈ Edir if u ⪯ v in O
(v, u) ∈ Edir if u ⪰ v in O.

(2)

n the case when O is a partial order, Fdir maps G onto a Directed Acyclic Graph D.
Furthermore, we define a function Fundir that maps a directed graph D to its underlying undirected G by striping its

dges from their direction, see Fig. 1(a) for an illustration of both functions. Fdir can be applied to any graph or subgraph
nd thus to cycles. In the next section, we will study in detail the images of cycles obtained by Fdir and show that they
an be classified into four general classes.
In this paper, we will focus our attention on a subclass of DAGs: transitively reduced DAGs, or reduced DAGs for

hort. Transitive reduction is an operation that, when applied to a Directed Acyclic Graph, removes all edges representing
ransitive relationships and thus only keeps the edges that are essential to maintain connectivity. Specifically, if for an edge
u, v) there is another, longer path which connects nodes u and v, the edge (u, v) is not essential and can be ‘‘reduced’’,
hat is such an edge is not present in the reduced DAG. This operation amounts to keeping the longest path(s) between
very pair of nodes and thus the reduced DAG is a pruned version of a DAG that preserves nodes and the partial order
tructure of O [22] while keeping the least number of edges (see Fig. 1a). Moreover, transitive reduction of a DAG yields
unique reduced DAG, contrary to general directed graphs. A reduced DAG is thus a well-defined sparsified version of

he original DAG. Transitive reduction has been applied to study citation networks, which form DAGs, to characterise the
ypes of citations received by papers [23].

2 Of course, in practice data is never perfect. In our example, documents can be produced in different versions at different times so the directed
citation network may produce a few directed cycles, less than one percent in some examples [21]. However, the order encoded in the meta-data,
here the time-stamp of the vertices, gives us several ways to produce a pure DAG representation.
3
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Fig. 1. (a) Illustration of the central idea of the paper, a directed network is a combination of an underlying graph and meta-data associated with
directionality. The functions Fdir and Fundir map between the undirected and directed versions of a graph. Transitive reduction can be used to simplify
AG and their corresponding underlying graph. (b) The undirected wedge has three possible images: the source wedge, the sink wedge and the
eutral wedge. The wedge contraction operation transforms a neutral wedge which has at most one non-neutral node as boundaries into an edge;
he edge extension operation transforms an edge into a neutral wedge. (c) An undirected triangle can only be mapped onto two classes of generalised
irected cycles: feedback and shortcut. (d) Size four undirected cycles can be mapped into four generalised cycles classes: feedback, shortcut, diamond
nd mixer. Antichains are shown in blue. Shortcut, diamond and mixer generalised cycles can be present in DAGs, but only diamonds and mixers
an be present in transitively reduced DAGs. (e) Undirected cycles of any size larger than four can be mapped onto the same four generalised cycles
lasses as in (d). Each class is fully characterised by its antichain structure in its contracted form, see (d), and the relative positions and number
f source and sink nodes pairs, see Table 1. Dashed line represent chains of nodes of arbitrary length. For feedback, shortcut and diamonds cycles,
he dashed line can only be chains of neutral nodes pointing to a set direction. For mixers, dashed lines can be made up of neutral nodes, but may
lso contain additional source and sink wedges attached to neutral nodes in coherent direction.

.2. Generalised directed cycles

Our definition of a graph G and its directed counterpart D means that for every cycle in the undirected graph, we
an trace out the same set of vertices in the DAG, while retaining the sequence of directions of the edges. Since each
ycle C is a proper subgraph of G, we can apply Fdir to obtain all possible directed cycle images. We will call these cycles
generalised directed cycles, a term we prefer to oriented cycles [24,25] as it shows that they include cycles that are directed
losed paths and also avoids confusion with the notion of orientation in algebraic topology. We will use the uniqueness
f the undirected graph underlying each directed and directed acyclic graph to give new insights into the organisation of
ata with a hierarchy by considering generalised directed cycles and the information they contain about the mesoscopic
rganisation of directed graphs in general and DAGs in particular.
In this section, we will show that the directional organisation of generalised cycles of any size is well structured and

an be organised into four classes. Each class has a natural interpretation in terms of information processing. We will
uild our argument by inspecting directed motifs of size 3, then 4 and show that no other category appears for larger
ycles.
First, let us note that nodes in a generalised directed cycle can be of three types, based on the way the orientation of its

dges: (i) a source node: both edges point outwards, (ii) a sink node: both edges point inwards, (iii) a neutral node: one
dge points inwards and the other outwards. These nodes naturally induce wedges (see Fig. 1(b)): (i) the source wedge

, (ii) the sink wedge , (iii) the neutral wedge . Closing a wedge by adding a third edge produces the
mallest possible cycles. Let us close each wedge by adding an edge, giving in total 6 possibilities. It is easy to see by
nspection that out of these 6 possibilities, there are in reality only two distinct types: directed cycles, comprising only
eutral nodes, and shortcut triangles comprising one node of each type, see Fig. 1(c). Moreover, one can be turned into
he other using the edge reversal operation that flips the direction of an edge.

We now define the edge-wedge extension operation that increases the size of a cycle by one by transforming an edge
nto a neutral wedge by adding a node . First, let us consider the three node directed feedback cycle. By adding

a neutral node via edge-wedge extension we obtain a cycle of the form which remains a feedback cycle, as all its
nodes remain neutral. The edge reversal operation applied to a feedback cycle produces a shortcut cycle: reversing the
4
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irection of any one edge in a four node feedback cycle produces a four node shortcut cycle: . This cycle can also
e obtained from the shortcut triangle by extending the arc that does not directly connect the source and sink nodes.
lthough at the three node scale, there are no other directed cycle images that can be distinguished, two more classes
f cycles emerge when considering cycles of four nodes. Starting from a four node shortcut cycle, reversing the direction
f an edge adjacent to the first one reversed yields a new type of cycle, the diamond: . Finally, if we reverse the

edge opposite to the first one instead of an adjacent one in the four nodes shortcut cycle, we obtain another type of cycle,
the mixer: . All other edge reversals lead back to a cycle isomorphic to one these. We note that the directed and
shortcut types do not exist in transitively reduced DAGs, while the two new types, the diamond and mixer do. We will
show below that no new classes appear as the size of a cycle increases.

First let us characterise these four classes of generalised cycles using the number of source–sink node pairs and their
antichain composition. We then show that no larger cycles can create a structure that falls outside this classification. The
way we constructed each class directly tells us the number of source–sink nodes pairs: 0 for the directed cycles, 2 for
the mixer and 1 both for the shortcut and diamond cycles. While the shortcut and diamonds cycles both have one pair,
they differ by the connection of the nodes in the pair: direct in the shortcut cycle, and indirect in the diamond. We also
observe that a diamond can be contracted into a shortcut. However, shortcuts are transitively reducible, while diamonds
are not. The contraction of a diamond into a shortcut therefore fundamentally alters its properties, justifying the existence
of two distinct classes. The differentiation between shortcuts and diamonds is made absolutely clear when considering
the second property we use to organise the generalised directed cycles classes: antichains.

An antichain A is a mesoscopic structure that can be defined on an ordered set (and therefore on an ordered set that
escribes the reachability in a graph) and is a subset of elements of an order in which all elements are incomparable.
o formally define an antichain, we first note that reachability relationship in any graph gives rise to a preorder, where
≺ v in the preorder if and only if there is a path from u to v in the graph. Conversely, every preorder is the reachability

relationship of a graph. However, many different graphs may have the same reachability preorder as each other. For
example, reachability in a directed graph gives rise to an equivalence relation for nodes linked by paths in both directions
and so the classes of this relation define the strongly connected components. It is easy to see that many topologically
different undirected graphs with the same vertex set may have the same equivalence relation, based on the reachability
criterion. In the same way, reachability in directed acyclic graphs gives rise to partially ordered sets, where a relation
u ≺ v, which indicates that a directed path from u to v exists, implies that v ≺ u cannot occur and that a directed path
from v to u does not exist.

Therefore, reflecting upon the order imposed by the reachability criterion, an antichain is a subset of nodes in a graph,
such that none of the nodes are pairwise connected with edges or paths:

A = {u, v ∈ V|∀u, v ∈ A : d(u, v) = ∞, d(v, u) = ∞}, (3)

with d(u, v) a length of the shortest path from u to v.
We highlight two types of antichains: (i) a maximal antichain is not a proper subset of any other antichain, (ii) a unitary

antichain is formed of a single node. The generalised cycles of length four can thus be characterised by their composition
in terms of antichains, see Fig. 1(d): directed and shortcut cycles are comprised of four unitary antichains, diamond cycles
of two unitary and one non-unitary antichains and the mixer of two non-unitary antichains. The characterisation of the
four classes is summarised in Table 1.

All that remains for us to do is to show that these two properties, the antichain structure and node characterisation,
are enough to uniquely classify generalised directed cycles of any size. To do so, we will show (i) that a cycle of any
size can be grown starting from the class minimal size representatives, 3 for feedback cycles and shortcuts and 4 for
diamonds and mixers, while preserving the class properties and (ii) that any cycle of arbitrary length larger than or equal
to 4 can be contracted into one and only one of the four classes. From the edge direction manipulation in the directed
cycles of size 4, we observe two key facts: first, reversing the direction of an edge bounded by two neutral nodes creates
a pair of source/sink nodes and therefore reversing the direction of an edge bounded by a pair of source and sink nodes
annihilates that pair and transforms both source and sink nodes into neutral nodes. Second, reversing the direction of an
edge bounded by a source or sink node and a neutral node moves the source/sink node along the cycle. These imply that
the edge-wedge extension operation preserves the number of source–sink pairs.

The edge-wedge extension operation can thus be used to grow these cycles types to an arbitrary size while conserving
the number of source–sink pairs. We thus only need to show that no source–sink node arrangements other than those
covered in Table 1 can appear in larger cycles. In a cycle of length four, it is not possible to have more than two source–sink
pairs, but growing a mixer of size 4 twice with the edge extension operation can provide one edge with two neutral
boundary nodes, which can be reversed to create a new source–sink nodes pair. In general, a cycle of length L can
have at most L/2 pairs of source–sink nodes. However, we show that any generalised cycle with more than two pairs
of source–sink nodes are mixers as they can be contracted into two non-unitary antichains.

We define the edge-wedge contraction operation that reduces a neutral wedge into an edge by removing
he neutral node if at most one of the wedge boundary node is a source or a sink, ensuring no source nor sink nodes
isappear in the contraction process, thus preserving the number of source–sink pairs as well as their fundamental relative
rganisation, e.g. a diamond cannot be turned into a shortcut. Moreover, it is clear that iterating the contraction process on
5
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Table 1
Each cycle class is uniquely characterised by their number of source and sink pairs combined with their maximal antichain composition. Cycles of
any size can thus be attributed a unique class and role based on the characteristics listed in the table below. Cycle classes are here represented in
their most contracted forms with the nodes at each end of the dashed edges identified. Directed and Shortcut cycles of any size can be contracted
into cycles of size 3, while diamond can be contracted into cycles of 4 nodes and mixers into cycles of size twice the number of source and sink
pairs. For Directed, Shortcut and Diamond cycles, dashed lines represent chains of neutral nodes of arbitrary length. For Mixer cycles, dashed lines
can represent any combination of neutral nodes and source/sink pairs.
Class Number of source/sink pairs Number of maximal antichains Interpretation

Directed 0 S unitary Feedback loop

Shortcut 1 (connected) S unitary Transitively reducible

Diamond 1 (disconnected) 2 unitary, 1 or more non-unitary Resilience of information transfer

Mixer 2 or more 2 or more non-unitary Mixing of information

any cycle with more than two pairs of source–sink nodes leads to a contracted form made of two non-unitary antichains,
see Fig. 1e. We consider mixers of any size to fall into the same class as they perform the same function as the size
four mixer that is mixing into one sink node information coming from two independent ancestors. This explicitly puts
more emphasis on the antichain organisation than on the number of source/sink pairs. Further investigation is needed to
discover whether the number of source/sink nodes warrants the introduction of sub-classes for the mixer class, as this
might be relevant to the evolution of dynamical processes for example. Thus any generalised cycle can be contracted into
a form that falls into one of the four classes we defined.

Each cycle class can be interpreted from a node information processing point of view that underlies our classification.
irected cycles can be seen as feedback/reinforcement of information loops. Shortcut cycles are transitively reducible,
eflecting the redundancy of the reducible edge in the context of message modification. Since no nodes exist on the
ransitive edge, no new information is created and there is no information mixing at the sink wedge of such cycle and
herefore removal of this edge leads to no loss of topological information, nor no loss of information processing. Notably,
educible edges also reflect a network’s resilience, as they ensure that when longer paths are corrupted, some information
s retained through transitive edges. Diamond cycles encode both resilience, as information set from one source has
wo paths to reach its destination, and diversity of information processing as the intermediary nodes might modify the
nformation they receive. Finally mixers are providing information from two independent sources to each sink.

The characterisation of the four generalised directed cycle classes we define and their interpretation are summarised in
able 1. The illustrations of each class are of their minimal representation: directed and shortcut cycles can be maximally
ontracted into cycles of length 3, while diamond are of minimal size 4 and mixer cycles have a minimal size of twice
heir number of source and sink pairs, i.e. size 4 for the most minimal mixer. Directed cycles do not exist in DAGs by
efinition, and shortcut cycles are killed by transitive reduction, leaving only diamonds and mixer cycles in transitively
educed DAGs, emphasising that these two classes are the key organising structures in DAGs.

We conclude this section by noting that the definitions presented here generalise similar definitions introduced in
he context of network motifs, i.e. cycles of a given length. The motifs introduced in [26] can be translated into our
omenclature: a ‘‘bi-parallel’’ motif is a diamond, a ‘‘bi-fan’’ is equivalent to the simplest contracted mixer of length 4,
‘feed-forward’’ loop is a triangle/shortcut, and a feed-back motif is a feed-back cycle. We emphasise that there is no notion
f path-wedge contraction in motifs, as they are of fixed size: a cycle of a size larger that 4 would be a different motif,
hereas we see cycles of all sizes as belonging to the same class, if, after path-wedge contraction, they share the same
roperties. Such motifs were also studied in DAGs in [27,28], where authors emphasised importance of strict triangles in
cyclic graphs.

.3. Minimum cycle bases in undirected graphs

The cycle space of an undirected graph is the vector space of the set of its Eulerian cycles endowed with the symmetric
ifference, or equivalently with the element-wise addition over F2 when representing cycles with an edge-cycle incidence
atrix. The result of this operation is another subgraph that consists of edges that appear an odd number of times in

he cycles taken as arguments, see [29] for more details. It is well-known that the number of independent cycles of an
ndirected graph is the rank of the cycle-edge incidence matrix (6), the circuit rank [30], and is equal to:

d = E − N + n , (4)
c

6
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here nc is the number of connected components in the graph.
Except in cases where no pairs of cycles overlap, i.e. the cycles are independent, the cycle basis is in general not unique.
strategy to reduce the number of possible cycle bases is to impose constraints on its elements. A simple constraint is

o require minimality of the representation of the cycle basis. A Minimum Cycle Basis (MCB) is defined as a cycle basis
in which the total length of the cycles in the cycle basis is minimal. While the minimality criterion reduces the possible
choice of cycles in the MCB, there is no guarantee that it is unique.

Many types of cycle bases exist, an extensive study of the hierarchy of such bases is given in [31]. In particular it is
possible to define Minimal Directed Cycle Bases, see [32]. We nevertheless decided to consider the MCB of undirected
cycles underlying DAGs and then characterise them with directionality. Our decision was motivated on the one hand by
our general approach to consider a DAGs as a combination of an undirected graph and meta-data encoding directionality,
and on the other hand by computational considerations: directed MCB algorithms typically run in O(E3N), against O(E2N)
for MCB, and codes to compute MCB are readily available in standard graph packages, e.g. networkx, which is not the
case for Directed MCB algorithms. In particular, we used de Pina’s algorithm that finds one type of MCBs in undirected
networks, called fundamental cycle bases. We review the algorithm in detail in Appendix A, while here we note that a
cycle basis C is fundamental if the following holds [33]:

Cα ̸⊂ Cβ ∀ Cα, Cβ ∈ C. (5)

To compute a fundamental MCB, one considers a minimum spanning tree T along with the set of edges EB of G that are
not present in T [34], where each fundamental cycle is a path in T whose endpoints are connected by one e ∈ EB.

2.4. Transitive reduction of DAGs and minimum cycle basis

In this paper, we are particularly interested in the properties of the MCBs of transitively reduced DAGs. The MCB of
a network is not unique, but transitive reduction makes them defined well-enough that their characteristics are robust
descriptors of reduced DAGs.

The procedure to obtain the directed cycle images of the MCB of a reduced DAG is illustrated in Fig. 2. We apply Fundir
to the transitively reduced DAG DTR to obtain the underlying undirected graph GTR. We then compute an MCB of that
graph and apply Fdir to each cycle of the MCB to determine its properties.

Transitive reduction limits the types of generalised cycles that can be present in the cycle basis to diamond and mixers,
as all shortcut cycles are removed as they represent transitive closure. This brings a natural interpretation of transitive
reduction in terms of information processing on a DAG: transitive reduction removes all structures that do not modify
information nor are essential for information transfer in the network. Transitive reduction therefore has a non-trivial
effect on the dimension of cycle basis of the undirected graph underlying D and reduces its dimension following (4). We
also note that although the MCB of a transitively reduced DAG will in general be composed of both diamonds and mixers,
it is possible to modify an MCB finding algorithm, Horton’s algorithm [30], to obtain an MCB which is composed of only
diamonds: a Minimal Diamond Basis. The details of this variation of Horton’s algorithm is presented in Appendix B.

MCB algorithms are sequential and stochastic in nature, and as MCBs are in general not unique, the MCB obtained
will be run-dependent. Another effect of transitive reduction is the reduction of choices for the representative of cycles
in the MCB as it greatly reduces the overlaps between cycles, and in some cases, the MCB is even unique, see Fig. 2 for
the difference between the MCBs obtained when transitive reduction is employed before applying Fundir and when it is
not. To ensure that the MCBs found in reduced DAGs are stable and well-defined representatives of the underlying cycle
space and therefore that their properties are true characterisations of the systems under study, we studied the statistics
of the MCB statistics obtained for two transitively reduced DAGs model over n runs. We considered four different types
of networks of size N = 300: two Erdős–Rényi DAGs with edge probabilities p = 0.1 and p = 0.8, and two Price models
with out-degree m = 3 and m = 5, see Section 3 for precise definitions of these models. We used four different Cycle
Basis statistics whose definitions we give in the following subsection: the standard deviation in edge participation Ep, the
leading eigenvalue λC

max of the cycle adjacency matrix M (7), the average cycle balance ⟨b⟩ from (9), and the average of
cycle stretch ⟨s⟩, defined in (11). Fig. 3 shows the mean values and standard deviations of those statistics for each type
of network considered. The results vary little for each type of DAG.

We now have a stable and consistent way to represent the cyclic structure underlying directed graphs in general and
in particular transitively reduced DAGs. With this, we introduce a series of metrics that can be used to characterise the
topological and geometrical properties of MCBs.

2.5. Cycle metrics

Defining and finding cycles in reduced DAGs provides a representation of mesoscopic and higher-order structures. We
can now explicitly use the meta-data associated with DAGs to characterise cycle bases, and by extension characterise
reduced DAGs themselves. We introduce simple, intuitive and yet insightful metrics to characterise cycle bases at three
levels: cycle, cycle interactions and cycles embedding in the reduced DAG. Some of these measures can be computed for
any cycle basis, while others are specific to DAGs. A summary of the metrics presented in this section can be found in
Table 2.
7
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Fig. 2. This figure compares the two routes to obtain the directed image of a Minimal Cycle Basis (far right column) of a DAG (far left column).
In this paper, we follow the bottom route, that Transitively Reduce the DAGs, with the effect of limiting the directed images of cycles to mixers
and diamonds. In large networks, it also has the effect of significantly reducing the dimension of the MCB and stabilising it, making its properties
measured by the metrics introduced in Section 2.5 appropriate descriptors to characterise the cyclic structure of DAGs.

Cycle-edge incidence matrix. A fundamental object is the undirected edge-cycle incidence vector c for a cycle C

ci =

{
1 if ei ∈ C,

0 otherwise.
(6)

The information about all cycles can thus be represented by an E×d edge-cycle incidence matrix C, with E the number
of edges and d the number of cycles, see (4), that has the edge-cycle incidence vectors as its row. We can then define the
matrix M:

M = C C
T

(7)

with entries Mαβ = |{e ∈ Eα} ∩ {e ∈ Eβ}|, where Eα is the set of edges of the cycle Cα . Its off-diagonal entries measure the
overlap between two cycles and its diagonal elements measure the size of a cycle. This matrix M can be interpreted in at
least two ways: a cycle covariance matrix or a weighted cycle adjacency matrix with self loops. The spectral properties
of the Laplacian matrix LC = M − diag(M) are also relevant for characterising cycle interactions and the organisation of
cycles: the dimension of the nullspace of LC , null(LC ) is equal to the number of cycle connected components. For a basis
where there is no overlap between cycles, this is equal to the dimension of the basis.

Characteristics of isolated cycles. Let us introduce some basic cycle statistics. The only purely topological statistic we are
going to introduce is the size Sα of a cycle Cα , which is equal to the number of edges, equivalently of nodes, that it
comprises:

Sα = Mαα = |Cα| =

∑
β

Cα,β =

∑
α

cα. (8)

In a Minimum Cycle Basis, the distribution of Si, as well as its mean are minimal by definition. All other metrics are going
to be defined using the meta-data associated with the DAGs.

The meta-data allows to study the paths (rather than walks) that constitute cycles. The length of a path ℓ is the number
of edges between a source and a sink node. A cycle composed of paths that have equal length can be thought to be
maximally ‘‘balanced’’, where balance reflects on the variation in the lengths of paths in the cycle. For example the
diamond cycles in Fig. 1 are maximally balanced. The balance of the paths contained in a cycle Cα , bα , can be defined
using the coefficient of variation:

bα =
σα(ℓ)
⟨ℓ⟩α

, (9)

where ⟨ℓ⟩ is the average length of the paths in C and σ (ℓ) is their standard deviation.
α α α

8
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Table 2
Measures which characterise an individual cycle (first block), cycle interaction with other cycles (second block), and the network as a whole (third
bock) for transitively reduced DAGs.
Measure Notation Explanation

Cycle size Sα = Mαα = |Cα | =
∑

α cα Size of a cycle.
Cycle type type = diamond if nsrc = nsnk = 1, mixer

otherwise.
Classifies cycles into three types, mixers, diamonds, and
triangles.

Balance σα (ℓ)
⟨ℓ⟩α

Variation in lengths of the paths l that make up a cycle.
Height (1/|Cα |)

∑
u∈Cα

hu. Average height of the nodes comprising a cycle.
Stretch max({hu|u ∈ Cα}) − min({hu|u ∈ Cα}) Maximal height difference of the nodes comprising a cycle.

Eigenvalues of M λC
α ‘‘Effective’’ cycle size: trade-off between the actual cycle

size and the sizes of cycles it is adjacent to.

Statistics of cycles in MCB ⟨·⟩, σ (·), ·max , where · = S, b, s, h These statistics describe a characteristic cycle within a
network; the maximum of characteristics defines an
‘‘extremal’’ cycle.

Number of cycle connected
components

null(LC ) Number of connected components of cycles.

Largest eigenvalue of M λC
max The largest effective cycle size.

Edge participation Ep =
1
E

∑
e∈E |{Cα ∈ C|e ∈ Eα}| Mean edge participation in cycles. If Ep is small, a network

is tree-like, whereas if it is large—it is lattice-like.
Variation in Ep σ (Ep) Variation in edge participation. If there is large variation

σ (Ep), it indicates that there are denser and less compact
cycle regions.

In a DAG, each node v also has a height h(v), which is defined as the length of the longest path from any source node
o v [17]. Heights of nodes can be used to localise cycles them with a ‘‘vertical’’ coordinate. We define the height of a
ycle Cα as the average height of its nodes:

hα =
1

|Cα|

∑
v∈Cα

h(v). (10)

cycle in a reduced DAG would always have σ 2(h) > 0, as they are formed of at least three distinct maximal antichains.
To characterise the relative localisation of a cycle, it is interesting not only to consider its average position in the DAG,

ut also to capture its spread. We define the stretch of cycle Cα as the largest difference between the heights of any two
nodes in Cα:

sα = max({hu|u ∈ Cα}) − min({hu|u ∈ Cα}). (11)

f a cycle is treated as a subgraph, the stretch is then simply the maximal height of the cycle. The stretch cannot be smaller
han one for mixers and two for diamonds and shortcuts. The largest height in a cycle always belongs to one of the sink
odes, whereas the smallest height always to one of the sources.

ycle interactions. Cycles are adjacent if they share one or more edges. Mαβ measures the overlap, i.e. the number of
common edges, between two cycles Cα and Cβ , and the diagonal entry Mαα = Sα the size of a cycle, as a cycle shares
all edges with itself. The spectral properties and eigenvectors of M thus reveal the relative organisation of cycles in a
DAG: the extent of cycle pairwise overlap/interaction. An in-depth interpretation and analysis of such covariance matrix
is beyond the scope of this study, but we note that potentially interesting insights about their interconnectivity of cycles
can be obtained from the structure of M and that results relating to the spectral properties of covariance matrices apply.
In this study, we will look at one metric from the matrix spectra — the largest eigenvalue of M, λC

max. A large maximal
eigenvalue of a covariance matrix indicates strong variance direction in the data the matrix represents, meaning that a
subspace spanned by few eigenvectors of the matrix can be used to describe the data [35].

Another pertinent indirect measure of cycle interactions is the average number of cycles per edge, Ep:

Ep =
1
E

∑
e∈E

|{Cα ∈ C|e ∈ Eα}| . (12)

This quantity is directly related to the ‘‘treeness’’ of a DAG: Ep = 0 if and only if there are no cycles in a DAG, in
which case the DAG is a tree. Let us qualitatively explain the structure of a DAG for important parameters ranges: for
0 < Ep < 1, there are edges in the network which do not participate in any cycle and the DAG is still locally a tree and
cycles are clustered in branches, like grapes. When Ep ≥ 1 branches might still exist, but σ (Ep) must be considered as
well to determine the statistical treeness of a DAG as, on average, each edge participates in one cycle. When Ep ∼ 2 and
σ (Ep) ∼ 0, we find a regime equivalent to a lattice DAG that we will discuss in Section 3.

Characterisation of a cycle basis. The statistics of the metrics defined above for individual cycles naturally describe
properties of the global network structure. For instance, the standard deviation of the height of cycles indicates how
9
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Fig. 3. Statistics for the standard deviation in the edge participation Ep (12), the leading eigenvalue λC
max of the cycle adjacency matrix M (7), the

verage cycle balance ⟨b⟩ (9), and the average cycle stretch ⟨s⟩ (11), obtained from running De Pina’s algorithm n = 10 times on four types of
etworks. The abscissa indicates a network model, the ordinate — obtained values of several statistics of MCBs. The four different models considered
re: random DAGs of Section 3.3 with p = 0.1 and p = 0.8, and the Price model with m = 3 as well as m = 5. All networks have N = 300 nodes.

scattered or lumped together within a network cycles are, larger value indicating that cycles span all heights. On the
other hand, a largely stretched-out cycle can have a height close to half of the largest height hmax/2, and yet this cycle
is arguably different from a cycle whose all nodes have heights close to the average height of a cycle — the latter cycle
is much less stretched-out. Combinations of metrics can distinguish such differences between cycles organisation, as we
show for two random DAG models in Section 3.

Many properties of a cycle basis are also encoded in M. The leading eigenvalue of M contains information about the
effective size of the largest cycle component, or in variance terms captures most of the interconnectedness of cycles.
Intuition can be gained by observing that when two cycles share one or more edges, their ‘‘corresponding’’ eigenvalues
shift: one eigenvalue increases, while the other is reduced, the magnitude of the shift corresponding to extent of the
overlap. Thus a large eigenvalue of M can indicate that it represent a small, highly interconnected cycle, or a large
independent cycle: the localisation of the corresponding eigenvector deciding which case it is.

3. Transitively reduced DAG network models are characterised by different cycle statistics

We use the transitively reduced versions of four network models to show the usefulness and explanatory power of the
metrics described in Section 2.5. To determine the directed images of the MCB underlying the reduced DAG, we follow
the procedure detailed in 2.4 and illustrated in Fig. 2. Unless otherwise stated, we considered networks with N = 500
nodes, and for stochastic network models, we generated n = 20 realisations for each parameter value and computed one
MCB for each realisation, see Section 2.3 for a justification to use a single MCB as a representative of the ensemble of
MCBs. An example of each type of network is given in Fig. 4. The code used to generate the results reported here can be
found on Zenodo [36].

3.1. Lattice model

The first network model we discuss is a finite lattice graph turned into a DAG by giving each edge a direction.
Specifically, to build our lattice DAG we assign a coordinate (xi, yi) to each node ui, where xi, yi are non-negative integers
less than some fixed size parameter L. We then have edges from ui to two nodes (xi +1, yi) and (xi, yi +1) provided these
are allowed coordinates. See Fig. 4 for an illustration. This model is naturally transitively reduced.
10



V. Vasiliauskaite, T.S. Evans and P. Expert Physica A 596 (2022) 127097

P
e

r

t
b
l
s
i

s

w

a

3

D
u

Fig. 4. Illustrations of the four network models considered. From left to right: lattice (L = 4), Russian doll (k = 6), Erdős–Rènyi DAG (p = 0.5),
rice model (m = 4, δ = 0.8). All networks are transitively reduced, so the cycles seen are those considered in Section 3. In all cases, the direction
ncoded in the DAGs is such that all arrows point up the page.

Fig. 5. λC
max as a function of a number of nodes in lattice DAGs (blue), and Russian doll DAGs (orange). Analytical results overlap with numerical

esults.

The MCB is unique and its features are analytically tractable. Clearly, for our lattice DAG all cycles are diamonds of
he same size Cα = ⟨C⟩ = 4 so there is no variance, σ (C) = 0, and so our balance statistic (9) of each cycle is also zero,
α = 0 ∀α. The mean stretch of cycles (11) is always 2. By symmetry, the mean cycle height is half the total height of the
attice DAG, ⟨h⟩ = ℓmax/2 where ℓmax = 2(L− 1). The variation in the height of the cycles, σ (h) increases with a network
ize, since in a lattice all cycles are evenly distributed across a network. The mean edge participation limN→∞⟨Ep⟩ = 2. It
s also clear that null(LC ) = 1.

The eigenvalues of M for this lattice model can be solved exactly because of its symmetry, see Appendix C. We can
how that

λα = 4 + 2 cos
(πm

L

)
+ 2 cos

(πn
L

)
, (13)

ith α = (m − 1) + (n − 1) (L − 1), m, n ∈ {1, . . . , (L − 1)} .
Therefore the largest eigenvalue of M converges limN→∞ λC

max = 8 for a large lattice. Fig. 5 shows that λC
max does

pproach the infinite lattice value 8 rapidly.

.2. Russian doll

The Russian doll DAG Rd has N = (1+ 3d) nodes, {u0, u1, . . . , u3d}, and 4d edges. We start from R0 which is the trivial
AG with one node and no edges. To grow the Russian Doll DAG Rd we take the DAG Rd−1 and add the three nodes u3d−2,
3d−1 and u3d. Four new directed edges as also included: (u3d−2, u3d−5), (u3d−2, u3d−1), (u3d−1, u3d), and (u3d−3, u3d). This

ensures that the Russian doll DAGs Rd are transitively reduced by construction. This construction shows that u3d−2 is the
source and u3d is the sink node for Rd. Since the new edge (u3d−2, u3d−5) links the new source node in Rd to the source
node in the previous DAG Rd−1, we see this edge is part of the longest path in Rd. Likewise, the new edge from the sink
node u3d−3 of Rd=1 to the new sink node u3d of Rd is also part of the longest path in Rd. Thus the height of the Russian
doll DAG grows by two for each step of this iterations giving us a network height of 2d for Rd.

Note also how this iterative construction shows that we are adding one more cycle to those already in Rd−1. For a
minimal cycle basis, we can define this to be the cycle C formed by the four edges added when creating R and two
d d

11
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f the edges added a step earlier when creating Rd−1, namely (u3d−5, u3d−4) and (u3d−4, u3d−3). The d cycles defined by
this iterative process form the unique Minimal Cycle Basis. The cycles in the MCB of the Russian doll DAG only contains
diamond cycles and the properties of the MCB are analytically tractable.

All the cycles in this MCB, except one, have size 6. The ‘first’ cycle, the one equivalent to R1 containing {u0, u1, u2, u3},
as size 4. Thus limN→∞⟨S⟩ = 6, limN→∞ σ (S) = 0. Each cycle is a diamond with balance (9) b = 1/2 except for the first
ycle, thus asymptotically, ⟨b⟩ = 1/2. The cycles are arranged symmetrically so the height of all cycles hα (10) is identical
nd equal to half the height of the whole DAG, so hα = d.
However, the stretch (11) will increase with N . To see this, consider the extra cycle added when constructing Rd from

d−1 discussed above. As this contains the sink and source nodes for Rd the stretch of this new cycle in the MCB is equal
o 2d, the height of Rd. By induction we see that the d cycles in this MCB have heights equal to the positive even numbers
p to 2d so the mean value is simply (1 + d) and grows linearly as the size of the DAG.
Let us move from the statistical features of the Russian doll MCB to its spectral properties. First, it is clear that

ull(LC ) = 1. The M cycles overlap matrix of (7) is a simple tridiagonal matrix for which the eigenvectors and eigenvalues
an be found. In particular, the eigenvalues are given by

λα = 6 + 4 cos
(

2πα

(2d + 1)

)
(14)

ith α = 1, 2 . . . , d, as Fig. 5 shows, see also Appendix D. The largest eigenvalue has the limiting value of limd→∞ λ1 =
C
max = 10. To intuitively understand the origin of this value, we first observe that all but one cycle are of size 6, giving the
ycles size contribution. Moreover, the largest eigenvalue of M gets a contribution of 2 from each overlapping cycles as
they share 2 edges in the MCB. Since each cycle, besides the first and last, have two neighbours, we obtain 10 = 6+2+2.

.3. Erdős–Rényi DAG

The Erdős–Rényi network model [37] is probably the simplest random network model: each pair of nodes are connected
ith a probability p to give a simple graph. We obtain an Erdős–Rényi DAG similarly to an Erdős–Rényi graph. We assign
ach node u an unique integer iu, and add a directed edge between each pair of nodes (u, v) with probability p, with the
irection of each edge going from the node with the smaller-valued integer to the larger-valued index, iu < iv . In what
ollows, we will call the transitive reduction of these random DAGs ‘‘reduced Erdős–Rényi DAGs’’.

The statistics of the minimal cycle basis of reduced Erdős–Rényi DAGs are richer than the previous simple models. Given
he edge density parameter p it is straightforward to estimate the expected number of cycles of a regular undirected
andom graph using (4). We note that in Erdős–Rényi DAGs, transitive reduction has the following suppression effect:
he larger p is, the more edges will be reduced by transitive reduction: the density of reduced Erdős–Rényi DAGs is
onotonically decreasing with p, and consequently, there are more cycles at low p than there are at high p, as is clear

rom Fig. 6. For instance, at p = 1, we have a complete DAG which after transitive reduction is reduced to a single path
hat follows the order prescribed by the iu, with one pair of source and sink nodes, all other nodes being neutral. Therefore
the reduced graph has the lowest possible density and no cycles.

We can further explain the behaviour we see in the cycle statistics of reduced Erdős–Rényi DAGs. Every cycle found
at low p in the reduced Erdős–Rényi DAG is a subgraph of a possible clique in the original undirected Erdős–Rényi graph,
he clique which shares the same nodes as the cycle. As p rises, the number of cliques and the size of typical cliques in
he Erdős–Rényi graph is increasing so it becomes more likely that the cycle found at low p has become a subgraph of
clique in the Erdős–Rényi graph. However, transitive reduction means any clique is reduced to a single path with no

oops. So we can understand the fall in the number of cycles in the reduced Erdős–Rényi DAGs seen in Fig. 6.
In the large p regime, we see that the number of cliques, and their size, become so large that cycles are segregated

n the reduced Erdős–Rényi DAG, as indicated by the behaviour of null(LC ) in Fig. 7. Since a clique of any size is always
ransitively reduced to a path element, it does not contain any cycles, and thus does not contribute to the circuit rank of
he graph. If a network initially contains many large cliques, we are left with little space where cycles can ‘‘form’’. We
xpect cycle sizes and the number of edges shared between cycles to reduce as p increases in the reduced DAG.
The largest eigenvalue λC

max follows that same pattern as Ep: large for small p and decrease linearly with p, see Fig. 7
top left). On the contrary, the average cycle size ⟨Si⟩ decreases with p, see Fig. 8 (top centre). Taken together, this indicates
hat the high value of λC

max is driven by the interconnectedness of the cycles. This is supported when the full eigenspectrum
s considered, see Fig. 7. For large p the eigenvalues follow a ‘‘flat’’ distribution, i.e. there is no isolated large eigenvalue,
whereas for small p the distribution is steeper, with one significantly dominant eigenvalue. This can be understood if
e consider the cycle overlap matrix M as the adjacency matrix of some effective cycle graph. For small p, the matrix is

dense with high value entries. If used to describe a broadcast process inherent in the definition of eigenvalue centrality,
the process will spread fast, one highly dominant eigenvalue, and will reach equilibrium quickly due to the large gap
between dominant and other eigenvalues. For large p, while the original network is dense, after transitive reduction we
are left with a relatively small and empty cycle matrix M with mostly low value entries. The Perron–Frobenius theorem
tells us that the bound on the largest eigenvalue goes down with increasing p.
12
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F

Fig. 6. Number of cycles of mixers and diamonds in transitively reduced Erdős–Rènyi DAGs and transitively reduced Price model (top) and the
corresponding average edge participation Ep (bottom). We considered networks with N = 500 nodes, generated n = 20 realisations for each
parameter value and computed one MCB for each realisation, and δ = m(1 + m) for the Price Model.

3.4. Price model

The Price model is one of the oldest models of citation networks [38] and naturally defines a DAG with a fat-tailed
distribution for the number of papers with a given citation count.

The Price model is a growing network model and nodes are labelled with a discrete time t which represents the step
at which a node was introduced to a network. The network growth starts from a seed network D(t). The graph D(t + 1)
is obtained by first adding one new vertex, labelled with (t + 1). This new vertex is connected to m vertices {v} chosen
with probability Π (t, v) from the set of vertices in D(t). Our convention is that the edge runs from node v to node (t +1).

In this model, Π (t, v) is composed of two terms. With probability δ, the node (t +1) is connected to a vertex v chosen
with a probability proportional to the number of edges kout(t, v) leaving v at the time t . Price called this cumulative
advantage and, after normalisation, we have that the probability of choosing v is kout(t, v)/E(t). The second process
(random attachment) happens with probability (1 − δ) and in this case we choose the source vertex v uniformly at
random from the set of vertices in D(t), i.e. with probability 1/N(t). So the probability of connecting the vertex (t + 1) to
an existing vertex v is Π (t, v) where

Π (t, v) = δ
kout(t, v)

E(t)
+ (1 − δ)

1
N(t)

if t ≥ v ≥ 1 . (15)

or simplicity, we always chose δ such that δ = m/(1+m), the choice originally made by Price.3 The result of this choice
is that for larger values of m the amount of preferential attachment increases, and the amount of random attachment
decreases. For an in-depth discussion of Price model see [39]. Let us now consider the minimal cycle bases of the DAGs
obtained from this Price model. Our first remark is about the effect of transitive reduction. The number of edges after
transitive reduction, ETR, increases with m in the Price model, as Fig. 6 (bottom right) shows. Since edge participation
increases with m, together with the decrease of the average cycle sizes, we can conclude that networks tend to have an
increasing number of cycles with increasing m. It is important to note that even for small m, Ep > 1 indicates that, on

3 The undirected version of this model with δ =
1 is the original Barabási–Albert model, see [19] for a discussion.
2
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Fig. 7. Spectral properties: dominant and normalised dominant eigenvalue, full spectrum for MC and size of nullLC - of matrices derived from the
inimal Cycle Bases of the reduced Erdős–Rènyi DAG model (left) and reduced Price model (right). We considered networks with N = 500 nodes,
enerated n = 20 realisations for each parameter value and computed one MCB for each realisation, and δ = m(1 + m) for the Price model.

verage, each edge participates in more that one cycle. Although on average each edge participates in at least one cycle,
here are edges which are ‘‘more active’’ than others, as the average value of Ep shows on the bottom right figure of Fig. 6.
hus transitively reduced Price model creates networks that are ‘‘more lattice-like’’ as the density parameter m increases.
Interestingly, the eigenvalues of M for the reduced Price model DAGs are independent of m, contrary to the eigenvalues

f the reduced Erdős–Rènyi DAGs which depend on p. The largest eigenvalue λC
max also does not fluctuate significantly

ith m. One plausible explanation of this phenomenon is that a large value of λC
max can be a result of either strong

nterconnectedness of a cycle with other cycles, or its large size. In Fig. 6 we saw that Ep increases with m, whereas ⟨C⟩

ecreases, indicating that cycles tend to be more interconnected, but smaller with increasingm. Thus the quasi-stationarity
f λC

max indicates that a balance between edge participation Ep and average cycle size ⟨Si⟩ must exist. In Fig. 10 we consider
C
max of Price DAGs with fixed m and varied parameter c which relates to the amount of random attachment of edges.
ere we see that as randomness is increased in Price DAGs, the largest eigenvalue λC

max decreases, indicating that the
uasi-stationarity between the size and cycle interconnectedness is broken. Since ⟨S⟩ varies by a small amount as c is
14
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Fig. 8. Collected cycle basis statistics — σ (S), ⟨S⟩, Smax , ⟨s⟩, ⟨b⟩ and ⟨h⟩, see Section 2.5 for the definitions — for transitively reduced Erdős–Rènyi
DAGs (top panel) and transitively reduced Price model (bottom panel). We considered networks with N = 500 nodes, and for stochastic network
odels, we generated n = 20 realisations for each parameter value and computed one MCB for each realisation.

aried, and ⟨h⟩ increases, it means that random attachment allows for cycles to occur in more varied areas of a network
thereby suppressing λC

max.
Finally, we see that in the reduced Price model DAGs, unlike the reduced Erdős–Rènyi DAGs, diamonds are as prevalent

as mixers, see Fig. 6.

3.5. Comparing DAG models

We now turn to the question of the utility of the metrics to differentiate the MCBs for the DAG models and therefore the
model themselves, and particularly their added values with respect to purely topological metrics. To make comparisons
fair, the networks produced should have, at least approximately, similar properties. We split our comparison into two
groups: deterministic and random DAG models. We match deterministic models on the number of cycles and the random
models on the density of edges post transitive reduction, which is a natural choice when trying to understand the effect
of the generating mechanisms on the properties and organisation of the MCBs.

The Lattice and Russian doll models have a lot of similarities but are also clearly differentiated by key metrics. While
some difference are size independent and fixed features of the models, e.g. λC

max and balance, other are size dependent
nd the difference will increase with the respective size of the DAGs, e.g. the stretch and height. We note that some of
hese differences depend on the choice of the root node in the Russian doll model.
15
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Fig. 9. Comparison of the density of reduced DAGs from the Price model (green symbols, top abscissa) and Erdős–Rènyi DAGs (yellow symbols,
bottom abscissa), values averaged over n = 10 realisations for networks of size N = 500 and δ = m(1 + m) for the Price model. The densities
statistically coincide at approximately p = 0.3 for Erdős–Rènyi DAGs, and m = 4 for Price DAG. We compare MCB statistics for these parameter
values in Table 3.

Let us now turn to the randommodels. To obtain transitively reduced DAGs with similar densities, we first scan through
the parameter values p and m to determine a target density value post transitive reduction, see Fig. 9. As the density is
computed post transitive reduction, it is a random variable, hence the error bars and the impossibility of matching exactly
the densities of the transitively reduced DAGs. The value of the metrics obtained for 1 realisation of each network models
at their target density are presented in Table 3. First we remark that the standard errors of the mean are always small
comparatively to the value of the average, showing that the MCBs obtained have well-defined characteristics. The MCB
of two random models also share similarities with metrics having overlapping standard errors of the mean, such as the
maximum cycles size, the stretch. Average cycle size and edge participation are also fairly close. transitively reduced
Price DAGs tend to have a balance mixture of diamonds and mixers, while transitively reduced Erdős–Rènyi DAGs have
a clear majority of diamonds. Mixers being more prevalent in transitively reduced Price DAGs can be understood from
the generating mechanism, as a more intricate structure is due to the attachment constraint. Another very significant
difference due to the preferential attachment of the Price model is the much higher interconnectedness of cycles, reflected
by a much higher value for the leading eigenvalue of M.

The MCB thus reflects specificities of DAG models and the metrics we introduced naturally capture them. As expected,
while the metrics are correlated, none is enough to capture the complexity of the organisation of MCBs when considered
in isolation to the others. We also conjecture that their usefulness generalises to other DAG models, as well as to real
world DAGs, thus providing objects capable not only of characterising DAGs but also differentiating them. Our results also
show that pure topological metrics, i.e. not using any meta-data information, are not enough to differentiate the different
models and that localising the topological features using meta-data is necessary to uncover differences, similarly to what
is done in [15] with persistent homology.

4. Conclusion

In this paper, we defined four general classes of directed cycles by considering the underlying undirected graph and
augmenting it with the meta-data associated with edge directionality. We then presented a principled way to define,
characterise and interpret cycles and Minimal Cycle Bases in Directed Acyclic Graphs (DAGs) by computing an MCB on the
underlying undirected graph and augmenting it with the meta-data associated with DAGs. We then focused on transitively
reduced DAGs.

We simplified the representation of a DAG via transitive reduction to consider the minimal amount of information
needed to retain causal connectivity with the aim to reduce the variance in the composition of the MCB and thus a
stable characterisation of network models once enriched with the meta-data. The simplification also gives the potential
to only consider specific types of cycle bases based purely on diamonds. Moreover, we have shown numerically that
this simplification does not reduce the discriminatory power of the metrics we introduced, as we were able to clearly
differentiate and characterise DAG models. Moreover, the comparison between the MCB for the reduced Erdős–Rènyi DAG
16
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Fig. 10. From left to right: dominant and normalised dominant eigenvalue, average cycle size, average cycle height of MCBs of the Price model
DAGs generated with fixed m = 7 and varied c = m(1− δ). Here large c values relate to networks in which many edges are attached due to random
attachment as opposed to preferential attachment.

Table 3
Comparison of the MCB characteristics between the Lattice, Russian doll, the transitively reduced Erdős–
Rènyi DAG and transitively reduced Price model; with respective parameters p = 0.3 and m = 3 for the
random models, see Fig. 9. Values for the two random models are averaged over the cycles comprising
the MCB. Errors are standard error of the mean over n realisations.
Measure Lattice Russian doll Random

p = 0.3
Price
m = 4

σ (C) 0 0 0.7 ± 0.0(1) 0.8 ± 0.01
⟨C⟩ 4 6 4.6 ± 0.0(1) 5.0 ± 0.04
Cmax 4 6 8.5 ± 0.2 7.6 ± 0.1
⟨s⟩ 2 2 + d/2 4.5 ± 0.04 4.8 ± 0.1
⟨b⟩ 0 1/3 0.086 ± 0.0 0.13 ± 0.00(3)
⟨h⟩ d 5d

6 +
1
3 −

1
6d 97.3 ± 1.4 5.6 ± 0.2

#Diamonds d d 385.6 ± 7.2 261.7 ± 10.8
#Mixers 0 0 127.9 ± 2.8 232.5 ± 8.4
Ep 2 2 2.3 ± 0.01 2.5 ± 0.0(2)
λC
max 8 10 18.3 ± 0.2 61 ± 3

λC
max/C 2 1.66 4.0 ± 0.1 15 ± 0.8

null(LC ) 1 1 1.65 ± 0.2 1±0

and the reduced Price model DAG, and also between the lattice and Russian doll models, clearly shows that topological
features are not enough to pinpoint differences, particularly the ones linked to the generating mechanisms, between
systems and localising the topological features of cycles.

Some of the metrics we defined are not reduced DAG-specific and can be used to characterise any cycle basis, and
an thus be applied to any directed network. The measures which are DAG-specific, i.e. that require the notion of order,
eight, antichain, and longest path, may still be the most interesting: they can literally be used as ‘‘coordinates’’ of cycle,
llowing their geometrical embedding and localisation.
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ppendix A. De Pina’s algorithm to obtain a fundamental MCB

De Pina’s algorithm (see [40,41]) finds fundamental cycle bases—cycle bases that are computed from a minimum
panning tree of a graph [34]. To obtain a fundamental MCB, a spanning tree of a graph T is considered along with the
et of edges EB of G that are not present in T . A fundamental cycle is defined as a cycle that consists of a path in T whose
ndpoints are connected by one e ∈ EB. A cycle basis C is fundamental if the following holds [33]:

Cα ̸⊂ Cβ ∀ Cα, Cβ ∈ C (A.1)

De Pina’s algorithm begins by initialising a set of support vectors Si = {ei}, one for each edge in EB, i.e. there is a
on-zero entry ei, otherwise the vector is zero. Two procedures are then iterated until a set of d linearly independent

cycles of size is obtained.
An iteration i begins with computing a set of vectors Cα , each an equivalent representation of an ith cycle that is

constructed by considering an edge ei (this step is explained in the following paragraph). From this set of cycles, the
shortest cycle Cα for which ⟨Cα, Si⟩ = 1 holds is added to the cycle basis. Then each vector Sj, j > i is updated, such that
j → Sj + Si if ⟨Cα, Sj⟩ = 1. This step ensures that the set of {Sj, . . . , Sd} is orthogonal to {C1, . . . , Cα} (α = j − 1), Cα is
rthogonal to the set {C1, . . . , Cα−1}.
To find Cα , a new graph Gα is constructed. It contains two copies of each node, v+, v− for all v ∈ V . The resulting

etwork can be thought of as a multilayer network, where nodes are placed in three layers: nodes with positive sign
v+), nodes with negative sign (v−), and nodes that are neutral (v). To add edges to Eα , the edgeset of Cα and therefore
he representation of a vector Cα , for each edge ei = (u, v) ∈ E we check the following: if Si ̸= 1, then add edges (u+, v+)
nd (u−, v−) to the edge set of Gα . If Si = 1, then add edges (u+, v−) and (u−, v+) to the edge set of Gα . Within each
ayer, we have edges ei which have Si = 0. Between the layers we have edges ej which have Sj = 1. Any v+ to v− path
in Gα corresponds to a cycle in G once positive/negative edges in Gα are matched to their neutral counterparts in G. If
an edge e ∈ G occurs multiple times we include it if the number of occurrences of e modulo 2 is 1. In order to find the
shortest cycle, we need to find the shortest path from v+ to v− for all v ∈ V . There can be more than one such path. The
shortest of those paths (and therefore the shortest cycle in G) for which ⟨Cα, Si⟩ = 1 is then appended to the current. This
concludes an iteration of De Pina’s algorithm. The algorithm finishes after d such iterations.

Appendix B. Description of Horton’s algorithm for minimum diamond basis

Horton’s algorithm [30] is the first proposed polynomial time algorithm for finding a fundamental MCB. The algorithm
first produces O(EN) of fundamental cycles H, called Horton cycles. Horton showed that H contains at least one
fundamental cycle basis, and the goal of the algorithm is to sift the Horton set to find it.

To find the shortest paths in each tree, Dijkstra’s shortest path search algorithm can be used. Then, Gaussian elimination
is performed to find a Minimum Cycle Basis from H. A variation of Horton’s algorithm was proposed in [42], where authors
suggested to replace Gaussian elimination by an iterative construction of a cycle basis. To find an MCB in this way, one
uses support vectors in order to retrieve MCB from H. These support vectors are described in description of De Pina’s
algorithm.

It is possible to adapt Horton’s algorithm to DAGs to obtain a cycle basis composed solely of diamonds. To proceed,
suppose that we have a directed acyclic graph with a single global source node, a root. Such DAG can be reduced to
an arborescence, a directed tree which has one source node that has paths to every other node [12]. If we consider the
directionality of edges while building H, all directed paths must originate at a node with a smaller height and end at a
node with larger height. In other words, for each v and edge (u, v) a Horton cycle with nodes SP(v, u), SP(v, w), {u, v}

can be constructed. Such a cycle is always a diamond. There is also no need for building N arborescences (composed of v

as a source node as well as its descendants), as each such arborescence is contained within the arborescence grown from
the global root. Since we build a single tree, we reduce the size of H from O(NE) to O(E), minimising both temporal and
memory demands of the algorithm. Of course, such cycle basis must not be minimum, as it is not able to detect mixers.
We will also achieve a heuristic speedup at node level, as the paths are searched for only in its descendant list which is

(heuristically) smaller than N . Let us call this algorithm for minimum diamond basis (MDB) detection.
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ppendix C. Lattice model spectral properties

Here we give more details on the spectral properties of the Lattice model of Section 3.1. Consider a network which is
quivalent to a square lattice of L by L nodes. The MCB is unique and can be visualised as an (L−1)× (L−1) square ‘cycle’
attice (in fact the dual of the original lattice). In this lattice each cycle is a lattice point and each cycle has one edge in
ommon with the cycle represented by the nearest neighbour nodes in this cycle lattice. The dimension of the basis is
L − 1)2. We find this we find the M for L = 5 is of the form

4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 4 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 4 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 4 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 4 1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 4 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 4 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 4 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 4 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 4 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 4 1 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1 4 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 4 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 4 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 4 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 4

(C.1)

If we consider the entry Mαβ with indices α, β ∈ {0, 1, . . . , (L − 2)2 − 1} then we can think of label α as representing
the cycle placed at (x, y) in the cycle lattice where x, y ∈ {1, 2, . . . , (L − 1)} and α = (x − 1) + (y − 1) ∗ (L − 1) so
x, y ∈ {1, . . . , (L − 1)}. The nodes of the original lattice are then at (X, Y ) where X, Y ∈ {1, 2, . . . , L} with the cycle (x, y)
running between nodes of the original network at (X, Y ) = {(x, y), (x + 1, y), (x, y + 1), (x + 1, y + 1)}. If we write the
eigenvectors as vα ≡ vx,y then the eigenvalue equation is

λvx,y = 4vx,y + vx+1,y + vx−1,y + vx,y+1 + vx,y−1 , (C.2)

with v0,y = vx,0 = vL,y = vx,L = 0. This can be solved by assuming the eigenvectors take the form vx,y =

sin(πmx/L) sin(πny/L) which gives the eigenvalues as

λ(ω)
= 4 + 2 cos

(πm
L

)
+ 2 cos

(πn
L

)
, (C.3)

with ω = (m−1)+ (n−1) (L−1), m, n ∈ {1, . . . , (L−1)}. Note that the solution shows that the constant 4 comes from
he number of edges each cycles shared with itself, i.e. the size of each cycle, while each of the four cos factors comes
rom one edge shared with each neighbouring cycle. Once again we notice in the large system limit, L → ∞, the largest
igenvalue is 8 (the Peron–Frobenius theorem tells us the largest eigenvalue is between five and eight inclusive) with 4
oming from the size of the cycle, and the remaining contribution of four is the number of edges shared with other cycles.
For example, for the square lattice with L = 5, 4 shows numerical results to three decimal places for the eigenvalues

and eigenvectors for cycle overlap matrix M.
Note that the index on the eigenvectors in Table C.1, φ, is assigned in some unspecified order by the numerical routine

but is in a one-to-one map with the ω labels used in (C.3). The eigenvalues are in the row λ(ω) while e(ω)
α gives the αth

entry of the eigenvector ω, that is

λ(ω)e(ω)
α =

∑
α

Mαβe
(ω)
β . (C.4)

The symmetry group, D4, ensures that some eigenvalues are repeated in pairs and in that case the eigenvectors given are
just two examples from a two-dimensional subspace. Accidental degeneracy is also present, e.g. in the eigenvectors 12 to
15 (see Table C.1).

Appendix D. Russian doll model spectral properties

Here we give more details on the spectral properties of the Russian Doll model of Section 3.2. Suppose we label the
cycles so that Cd is the largest cycle in the MCB (minimal cycle basis) of Rd described in Section 3.2. The matrix M of (7)
escribing cycle overlap is a symmetric tridiagonal matrix and here it has a 6 on the diagonal, 2 on the leading (non-zero)
ff-diagonals, with the exception that M = 4 as the first cycle, C , the only cycle in R , is the only one of size 4. That is
00 1 1
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1 3 8 7 1

2.764 1.764 1.764 0.764

0.010 0.362 −0.005 0.316 0.138

.358 −0.224 0.164 −0.354 −0.224

0.358 −0.224 −0.356 0.158 0.224

.010 0.362 0.316 0 −0.138

0.348 −0.224 −0.152 −0.354 −0.224

.010 0.138 −0.005 0.316 0.362

0.010 0.138 0.316 0 −0.362

.348 −0.224 −0.351 −0.158 0.224

.348 −0.224 0.351 0.158 0.224

0.010 0.138 −0.316 −0 −0.362

.010 0.138 0.005 −0.316 0.362

0.348 −0.224 0.152 0.354 −0.224

.010 0.362 −0.316 −0 −0.138

0.358 −0.224 0.356 −0.158 0.224

.358 −0.224 −0.164 0.354 −0.224

0.010 0.362 0.005 −0.316 0.138

20
Table C.1
Numerical results for eigenvalues of a square lattice with L = 5.
φ 0 5 4 2 6 9 12 13 15 14 10 1

λ(φ) 7.236 6.236 6.236 5.236 5 5 4 4 4 4 3 3

e(φ)0 0.138 0.002 0.316 0.362 −0.316 −0.033 −0.548 0.008 −0.055 −0.008 −0.316 −

e(φ)1 0.224 −0.155 0.354 0.224 −0.158 −0.368 −0 −0.119 0.297 0.356 0.158 0

e(φ)2 0.224 −0.352 0.158 −0.224 −0.158 −0.368 0.183 0.079 −0.282 0.244 −0.158 −

e(φ)3 0.138 −0.316 0 −0.362 −0.316 −0.033 0 −0.412 −0.195 −0.240 0.316 0

e(φ)4 0.224 0.161 0.354 0.224 −0.158 0.335 0 0.119 −0.297 −0.356 0.158 −

e(φ)5 0.362 0.002 0.316 0.138 0.316 0.033 0.365 −0.087 0.337 −0.236 0.316 0

e(φ)6 0.362 −0.316 0 −0.138 0.316 0.033 0 0.531 −0.102 −0.117 −0.316 −

e(φ)7 0.224 −0.355 −0.158 −0.224 −0.158 0.335 −0.183 −0.079 0.282 −0.244 −0.158 0

e(φ)8 0.224 0.355 0.158 −0.224 −0.158 0.335 0.183 0.079 −0.282 0.244 −0.158 0

e(φ)9 0.362 0.316 0 −0.138 0.316 0.033 −0 −0.531 0.102 0.117 −0.316 −

e(φ)10 0.362 −0.002 −0.316 0.138 0.316 0.033 −0.365 0.087 −0.337 0.236 0.316 0

e(φ)11 0.224 −0.161 −0.354 0.224 −0.158 0.335 −0 −0.119 0.297 0.356 0.158 −

e(φ)12 0.138 0.316 0 −0.362 −0.316 −0.033 0 0.412 0.195 0.240 0.316 0

e(φ)13 0.224 0.352 −0.158 −0.224 −0.158 −0.368 −0.183 −0.079 0.282 −0.244 −0.158 −

e(φ)14 0.224 0.155 −0.354 0.224 −0.158 −0.368 0 0.119 −0.297 −0.356 0.158 0

e(φ)15 0.138 −0.002 −0.316 0.362 −0.316 −0.033 0.548 −0.008 0.055 0.008 −0.316 −
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eneral we have a matrix of the form

M = bI +

⎛⎜⎜⎜⎜⎜⎜⎝

−c a 0 0 · · · 0 0 0
a 0 a 0 · · · 0 0 0
0 a 0 a · · · 0 0 0
...

...
...

... · · ·
...

...
...

0 0 0 0 · · · a 0 a
0 0 0 0 · · · 0 a 0

⎞⎟⎟⎟⎟⎟⎟⎠ (D.1)

ith a = 2, b = 6, c = 2 in our case. Following [43] we find the eigenvalues satisfy

λ(ω)
= 6 + 4 cos

(
2πω

(2d + 1)

)
, ω ∈ {1, . . . , d} . (D.2)

here the 6 comes from the size of the majority of cycles.
For example, d = 4 we have

M =

⎛⎜⎝ 4 2 0 0
2 6 2 0
0 2 6 2
0 0 2 6

⎞⎟⎠ (D.3)

nd we find approximately that the eigenvalues and eigenvectors are

ω 1 2 3 4
λ 9.064 6.695 4.000 2.241

e(ω)
0 0.228 −0.429 0.577 0.657

e(ω)
1 0.577 −0.577 0.000 −0.577

e(ω)
2 0.657 0.228 −0.577 0.429

e(ω)
3 0.429 0.657 0.577 −0.228

where 9.064 ≈ 6 + 4 cos(2π/9), 6.695 ≈ 6 + 4 cos(4π/9), 4 = 6 + 4 cos(6π/9), and 6.695 ≈ 6 + 4 cos(8π/9).
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