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Fractional anisotropy (FA) is a quantitative map sensitive to microstructural

properties of tissues in vivo and it is extensively used to study the healthy

and pathological brain. This map is classically calculated by model fitting

(standard method) and requires many di�usion weighted (DW) images for

data quality and unbiased readings, hence needing the acquisition time of

several minutes. Here, we adapted the U-net architecture to be generalized

and to obtain good quality FA from DW volumes acquired in 1minute.

Our network requires 10 input DW volumes (hence fast acquisition), is

robust to the direction of application of the di�usion gradients (hence

generalized), and preserves/improves map quality (hence good quality maps).

We trained the network on the human connectome project (HCP) data using

the standard model-fitting method on the entire set of DW directions to

extract FA (ground truth). We addressed the generalization problem, i.e., we

trained the network to be applicable, without retraining, to clinical datasets

acquired on di�erent scanners with di�erent DW imaging protocols. The

network was applied to two di�erent clinical datasets to assess FA quality

and sensitivity to pathology in temporal lobe epilepsy and multiple sclerosis,

respectively. For HCP data, when compared to the ground truth FA, the FA

obtained from 10 DW volumes using the network was significantly better (p

< 10−4) than the FA obtained using the standard pipeline. For the clinical

datasets, the network FA retained the same microstructural characteristics

as the FA calculated with all DW volumes using the standard method. At

the subject level, the comparison between white matter (WM) ground truth

FA values and network FA showed the same distribution; at the group

level, statistical di�erences of WM values detected in the clinical datasets

with the ground truth FA were reproduced when using values from the
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network FA, i.e., the network retained sensitivity to pathology. In conclusion,

the proposed network provides a clinically availablemethod to obtain FA froma

generic set of 10 DW volumes acquirable in 1minute, augmenting data quality

compared to direct model fitting, reducing the possibility of bias from sub-

sampled data, and retaining FA pathological sensitivity, which is very attractive

for clinical applications.

KEYWORDS

deep learning, fractional anisotropy, di�usion weighted MRI, reduced acquisition

time, temporal lobe epilepsy, multiple sclerosis

Introduction

Diffusion weighted (DW) imaging is a magnetic resonance

(MR) method sensitive to the movement of water molecules

within the tissue, thus providing information about the integrity

of brain microstructure in vivo. This technique is largely

employed for investigating microstructural changes in the brain

caused by, e.g., neurodegenerative or neurological diseases

(Jones, 2011).

From DW images, several computational models have been

proposed to investigate the microstructure of the brain. The

simplest model is the diffusion tensor (DT) (Basser et al., 1994;

Lope-piedrafita, 2018), which has been used to extract metrics

to quantify microstructural changes in the tissues, particularly

white matter (WM) (Fortin et al., 2017). The DT models the

diffusion process as a symmetrical second-order tensor for each

voxel. Theoretically, to measure the full DT, six non-collinear

diffusion-encoding directions are needed, i.e., six DW volumes,

each obtained with a different DW gradient direction, plus one

non-DW volume (b0). In practice, it has been demonstrated that

such a limited number of DWdirections may introduce biases in

the maps and that increasing the number of DW volumes (e.g.,

to 35 or 60) (Landman et al., 2007; Zhan et al., 2011) results

in less noisy and biased DT estimates. This inevitably leads to

longer acquisition times of the order of several minutes, which

limits the clinical adoption of DT imaging. Several quantitative

maps can be obtained from the DT, with fractional anisotropy

(FA) (Basser, 1995) being widely used due to its sensitivity

to changes in tissue microstructure (Alexander et al., 2007;

Giannelli et al., 2010).

Previous studies showed that deep learning (DL) can be a

valid method to reduce the number of DW volumes required

to generate quantitative diffusion maps (Golkov et al., 2016; Li

et al., 2019). In these studies, the input to the model was either a

single voxel or cubes of 3 x 3 x 3 voxels. Our model, instead, used

as input all the brain voxels within a slice to capture the global

context. It is worth noting that an alternative method that can

provide FA maps with a short acquisition time uses anatomical

T1-weighted (T1-w) images as input of a generative adversarial

network (Gu et al., 2019). This method, however, generates a

completely synthetic FA map that has not been shown to be

sensitive to pathology.

A similar recent study (Aliotta et al., 2021) used DL to

map FA from three DW volumes acquired with a consistent

acquisition scheme, fixed b-values and diffusion-encoding

directions, on a single scanner, and was not tested on existing

datasets, different from the training one, in the presence

of pathologies.

In our study, we aimed to jump a step forward by

implementing a U-net DL network that can: (1) map from a

small number of DWvolumes (i.e., 10, equating to an acquisition

time of 1min) to FA, a microstructural map well known

in clinical context; (2) take advantage of datasets with high-

geometrical and DW angular resolution with corresponding

high-quality FA maps for training the network, e.g., using the

Human Connectome Project (HCP) data (Van Essen et al.,

2013); (3) tackle the generalization problem given a network

trained with a specific dataset and offer applicability to clinical

datasets from different scanners without retraining; and (4)

retain sensitivity to pathology. We validated the network with

unseen data from the HCP dataset and with two datasets

from temporal lobe epilepsy (TLE) and multiple sclerosis (MS)

studies, acquired with different protocols on different scanners.

Methods

Subjects

HCP dataset

Pre-processed images of 100 healthy controls (HC) scanned

for the HCPwere downloaded from the ConnectomeDB (http://

db.humanconnectome.org) (Van Essen et al., 2013). After a

visual quality check, 24 of these subjects were discarded because

of severe artifacts, such as phase-encoding EPI distortions in the

cerebellum, not corrected by the standard HCP pre-processing

pipeline. The remaining 76 subjects (43 women, 29.41 ± 3.62

years) were used to develop the network.
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TLE dataset

A first retrospective dataset was used to test the performance

of the network. Eighty-four subjects were selected within those

recruited for an Italian multi-center research project on TLE.

Subjects were divided, clinically into three groups: 34 HCs

(16 women, 31.97 ± 7.73 years), 21 TLE patients with the

epileptogenic zone in the left hemisphere (LTLE; 13 females,

33.13± 11.28 years), and 29 TLE patients with the epileptogenic

zone in the right hemisphere (RTLE; 17 females, 37.97 ± 9.86

years) (Gaviraghi et al., 2021).

MS dataset

A second retrospective dataset, collected at the University

College London, was also used to test the performance of

the network. The dataset included images of 29 HCs (19

women, 34.58± 10.23 years), 18 patients with clinically isolated

syndrome (CIS; 12 women, 49.01± 7.16 years), 63 patients with

relapsing–remitting multiple sclerosis (RRMS; 48 women, 47 ±

7.58 years), and 13 patients with secondary progressive multiple

sclerosis (SPMS; 9 women, 47.83 ± 7.79 years) (Brownlee et al.,

2019).

MR acquisition and pre-processing

HCP dataset

MR images were acquired using a customized Siemens 3T

Connectome Skyra scanner with a dedicated gradient insert

(W. U. Minn Consortium Human Connectome Project, 2017).

The DW acquisition included a spin-echo EPI sequence with

TR = 5520ms and TE = 89.5ms. We downloaded DW data

with minimal pre-processing (EPI distortion, eddy current,

and subject motion correction plus realignment to standard

Montreal Neurological Institute (MNI) space) at a resolution of

1.25 x 1.25 x 1.25 mm3 and a matrix size of 145 x 174 x 145.

The DW acquisition included 288 volumes: 18 volumes acquired

with b-value b= 0 s/mm2 (b0) and 270 volumes acquired with b

= 1000/2000/3000 s/mm2 (90 non-collinear DW directions for

each b-value). The acquisition time of the diffusion protocol was

calculated to be over 27min based on the repetition time and the

number of volumes acquired.

The T1-w data were acquired with a 0.7 x 0.7 x 0.7 mm3

resolution and co-registered to the DW data (to obtain a

resolution of 1.25 x 1.25 x 1.25 mm3).

TLE dataset

MR images were acquired using a Siemens 3TMAGNETOM

Skyra scanner with standard gradients. The DW imaging

protocol included a spin-echo EPI sequence with TR= 8400ms

and TE= 93ms, 96 DWvolumes with b= 1000/2000 s/mm2 (48

non-collinear DW directions per b-value), and 13 b0 volumes.

The spatial resolution was 2.24 x 2.24 x 2.2 mm3, and the matrix

size was 100 x 100 x 96. The acquisition time of the diffusion

protocol was around 16 min.

The scanning protocol also included a high-resolution 3D

T1-w volume (resolution 1 x 1 x 1 mm3).

MS dataset

MR images were acquired using a 3T Philips Achieva MRI

scanner. The DW imaging protocol included a spin-echo EPI

sequence with TR = 14000ms, TE = 82ms, 60 volumes with

b = 300/711/2000 s/mm2 (8/15/30 DW per b-value), and 7 b0

volumes. The spatial resolution was 2.286 x 2.286 x 2.5 mm3,

and the matrix size was 96 x 96 x 60. The acquisition time of the

diffusion protocol was around 16 min.

The scanning protocol also included a volumetric T1-w

imaging sequence (resolution 1× 1× 1 mm3).

For the clinical datasets, TLE and MS, the pre-processing

steps included denoising, Gibbs ringing artifact, EPI distortion,

eddy current, and subject motion correction.

For all datasets, we computed the ground truth (GT) FA,

using all DW volumes (from here referred to as STANDARD

method) fitted with the diffusion kurtosis model (Ades-Aron

et al., 2018) because this model has a better accuracy than

the DT model (Veraart et al., 2011). We also calculated FA,

considering only 10 volumes, using the DT model (from here

referred to as the Reduced STANDARDmethod) (Behrens et al.,

2003). All fitting procedures were based on weighted linear

least-squares algorithms.

Network design

To train our network, we used the HCP dataset. The 76

subjects were divided as follows: 54 for the training set, 11 for the

validation set, and 11 for the test set. Each slice of each subject

was considered separately from the rest of the data, but all slices

of a subject were used only in the set they belong to (training,

validation, or test).

The network input consisted of a set of 10 DW images of

each slice, where each DW image was used as one of 10 input

channels, with a single output channel corresponding to the FA

map of the same slice. Details of how the input–output pairs

were constructed are given here below.

Input

We reduced the number of DW images from 288 to 10: one

b0 and nine with b= 1000 s/mm2 (Jensen and Helpern, 2010).

We selected the 10 DW by randomly sampling one volume

of the 18 b0 and nine volumes out of the 90 DWdirections with b

= 1000 s/mm2, using the Camino toolkit (Cook et al., 2005). We

used the command “subsetpoints” to divide the 90 points in DW
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space, i.e., the b-vector coordinates, into subsets that are equally

spread over the sphere using simulated-annealing optimization

to search for the best configuration.We split the 90 DW volumes

with b = 1000 s/mm2 into 10 different subsets, hence providing

10 different possible input datasets for each slice of each subject.

We aimed to create a network that is independent of the

DW directions used for training so that it can be applied to any

dataset with nine DW directions and one b0, independent of the

exact b-vector coordinates. We, therefore, trained the network

with different combinations of DW subsets as explained later in

the training section.

We cropped the image background around the brain to

have a slice matrix size of 128 x 160 voxels. We normalized the

intensity of the data of each subject separately, considering each

input set of 10 DW volumes together. We then set the voxels

outside the brain to zero.

Output

As ground truth (GT), we used the FA map calculated

from 288 DW volumes, i.e., STANDARD method. The same

cropping and background nulling performed to the input images

were applied.

We adapted the 2D U-net architecture (Ronneberger et al.,

2015) implemented in TensorFlow (Keras). The convolutional

layers in the network were set to 20. The number of filters was,

respectively, 64, 64, 128, 128, 256, 256, 512, 512, 256, 256, 128,

128, 64, and 64.

Network training

Tuning of hyperparameters

We selected the best set of hyperparameters as the

combination that minimized the mean root mean square error

(RMSE) on the validation set.

These included batch normalization (Ioffe and Szegedy,

2015), dropout (Srivastava et al., 2014), activation function, loss

function, λ of the L2 regularization method, and batch size

(Keskar et al., 2017):

• Batch normalization—We evaluated the network without

any batch normalization layer and then added a batch

normalization layer after each convolution layer.

• Dropout—We evaluated the network without any dropout

layer and we added a dropout layer with a probability of 0.5

after the last two convolution layers of the encoder (4 e 5).

• Activation function—We evaluated sigmoid against

rectified linear unit (ReLU) (Glorot et al., 2011; Maas et al.,

2013) activation functions in the output layer; the ReLU

activation function was used on all other layers.

• Loss function—We considered three different functions:

1. The Mean Square Error (MSE)

LMSE =
1

n

n
∑

i=0

(Ŷi − Yi)
2

2. The Root Mean Square Error (RMSE)

LRMSE =

√

√

√

√

1

n

n
∑

i=0

(Ŷi − Yi)
2

3. The sum of RMSE and the Structural Dissimilarity Index

(DSSIM) (Hou et al., 2021).

L = LRMSE + LDSSIM

The DSSIM, derived from the structural similarity index

measure (SSIM) (Wang et al., 2004), compares local

patterns of pixel intensities that have been normalized for

luminance and contrast. We tested whether adding DSSIM

enhanced the performance of the network by taking into

account the structural detailed information of neighboring

voxels. The range of DSSIM is [0, 1] and larger values

indicate greater differences.

LDSSIM =
(1 − SSIM )

2

in which SSIM can vary between −1 and 1 and is defined

as follows:

SSIM(y, ŷ) =
(2µy µŷ + c1) (2 σyŷ + c2)

(µ2
y + µ

2
ŷ
+ c1) (σ

2
y + σ

2
ŷ

+ c2)

where y and ŷ are two input patches to compare; µy and µŷ

are the mean pixel intensities of the patches that estimate

luminance; σ
2
y and σ

2
ŷ

are the respective variances that

measure contrast; and σyŷ is the covariance of y and ŷ

indicating the structure. The variables c1 = (k1L)
2 and c2

= (k2L)
2 ensure numerical stability, and L is the dynamic

range of the pixel values, while k1 and k2 are constants. We

used L= 1, k1 = 0.01, and k2 = 0.03.

• λ of the L2 regularization method—We added a

regularization term to the loss function, choosing the

L2 regularization method to avoid overfitting. We

considered three different values for the coefficient λ =

0.0001, 0.001, and 0.01.

• Batch size—We evaluated performance with batch sizes of

16, 24, 50, 64, and 128.

We used the Adam optimizer (Kingma and Ba, 2017) with

a small initial learning rate of η =0.001 for setting the network

parameters (weight and bias). We used an early stopping rule for

terminating training if the loss function did not improve after 10

consecutive epochs.
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Training on di�erent number of DW subsets

The choice of DW input images is crucial for estimating

FA (Hasan et al., 2001). We therefore trained the network, after

setting the hyperparameters, four times by changing the network

inputs, that is, by increasing the number of DW subsets per slice

per subject from 1 to 2, 4, or 7 subsets, each subset being entered

as an independent input and associated with the same FA output.

This resulted in four trained networks to evaluate against the

GT FA maps. When assessing the performance of each network

on all test subjects (all unseen by the training), we selected as

input, in turns, each of the 10 DW subsets, therefore testing

results either on subsets included or not included in the network

training, assessing generalizability.

Quantitative evaluations on network
performance and network selection

We selected the RMSE, mean absolute error (MAE), and

SSIM (Wang et al., 2004) calculated between the GT FA and the

network FA output within the brain as performance metrics.

For each test subject, we provided each one of the 10 subsets,

one at a time, as input to the network and thus obtained the

estimated network FA; this step was performed for each of the

four trained networks.

We assessed whether one of the networks demonstrated less

dependency from the choice of the input DW volumes, that is,

whose performancemetrics had similar values when tested using

either DW subsets included in the training or not.

In order to evaluate the advantages of the network FA in

terms of fidelity to GT FA and image quality in general, we also

calculated the FA from one subset of 10 DW images using the

standard model-fitting method.

We calculated the performance metrics for the brain and for

WM only, between:

• the GT FA and the FA calculated with the network;

• the GT FA and the standard FA calculated from the reduced

(10) DW images.

We performed a statistical test (Mann–Whitney U-test)

comparing for each subject the RMSE obtained between GT

and network FA with the RMSE obtained between GT and FA

calculated in the standard method with only 10 volumes.

Clinical adoption potential

Data curation of clinical studies datasets

Our ultimate aim was to assess whether our best network,

as evaluated on the HCP data, can be used clinically,

on data acquired with a limited number of DW volumes

and with a limited resolution compared to the HCP data;

moreover, we wanted to test whether our network maintains

or improves the quality of FA compared to datasets with

more DW directions and whether it retains sensitivity to

pathological changes.

We used two different existing datasets of neurological

conditions, i.e., TLE andMS, to assess the network performance.

These two independent datasets have a spatial resolution

that is much lower than that of the HCP dataset. DW

images were resampled to match the HCP resolution

using FSL FLIRT with sinc interpolation (FMRIB’s

Linear Image Registration Tool) (Jenkinson and Smith,

2001; Jenkinson et al., 2002). After resampling, the

images were then pre-processed in the same way as the

HCP dataset.

The total number of DW directions was different for

each dataset, according to the diffusion protocol used.

Using Camino (command “subsetpoints”), we selected a

single subset of nine most non-collinear DW directions

for each dataset that minimized the electrostatic energy

of the points in the DW subset (Jansons and Alexander,

2003). We then randomly selected a b0 volume to add

to the nine DW volumes and created our input for the

network. For the TLE dataset, the nine DW volumes were

chosen from those with a b-value equal to 1000 s/mm2,

while for the MS dataset, the b-value was equal to

711 s/mm2.

With these subsets of 10 DW volumes from each clinical

study, we obtained network FA maps for each subject. We also

calculated FA from the full DW dataset and for the subset of 10

volumes using the standard model-fitting methods.

To qualitatively evaluate the FA obtained with the different

methods, we showed images of each FA. In addition, we

calculated histograms of the STANDARDmethod FA values and

the FA obtained with 10 DW in the two methods. This was

used to assess whether the FA calculated with the 10 volumes

had systematic biases compared to the FA used as reference

(STANDARD method).

Network FA performance on clinical tasks

To assess whether the network FA maintains sensitivity

to pathology, we compared FA values in WM, given that FA

changes in neurological conditions are mostly reported in WM

(e.g., Yap et al., 2013).

For the HCP data (test subjects only), the T1-w images

were already co-registered with the respective DW images;

consequently, we obtained theWMmask from the T1-w volume

using MRtrix3 (Tournier et al., 2019) and applied it to the

FA map.

In subjects with TLE and MS, we first segmented the WM

mask from the T1-w volume, registered the T1-w volume to

DW space, and then applied the transformation to the WM

mask to be able to overlap it to FA. This chain of operations
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was performed with MRtrix3 (Tournier et al., 2019) and FSL

FLIRT (FMRIB’s Linear Image Registration Tool) (Jenkinson

and Smith, 2001; Jenkinson et al., 2002). In patients with MS,

FA was calculated in the normal-appearing WM (NAWM)

by excluding lesions from the WM mask where it is well

known that diffusion anisotropy is altered (Cercignani and

Gandini Wheeler-Kingshott, 2019). Lesions were considered as

a separate mask also used for extracting metrics. We separated

the contributions as the comparisons were made on the averaged

FIGURE 1

Plot of the spatial coordinates of the b-vectors for the 90 points

of b = 1000 s/mm2 of the HBP dataset. Each point in the plot

represents a di�erent b-vector; the points in red are the

b-vectors of one subset selected with Camino.

values of each subject; in this pathology, the amount of lesions

and the size of them vary greatly from subject to subject.

We then compared WM FA obtained with the network

with WM FA obtained in the standard method from all DW

directions. Analyses were conducted at two levels: individual

subject level and group level.

At the individual subject level, we compared histograms of

the distribution of WM FA values between the two methods.

For the group-level analyses, we calculated the mean value of

WM (or NAWM) FA for each subject and performed between-

group statistics to test whether the network FA maintained

sensitivity to pathology.We then performed theMann–Whitney

U-test for pairs of clinical sub-groups between the mean values

of WM FA either calculated in the standard way or with the

network. For the TLE dataset, the comparisons were between

HC and LTLE, HC and RTLE, and LTLE and RTLE. For the

MS dataset, the comparisons were between HC and CIS, HC

and RRMS, HC and SPMS, CIS and RRMS, CIS and SPMS, and

RRMS and SPMS. For theMS dataset, we considered NAWM for

the patients and also calculated the mean FA value in the lesion

mask of subjects with one or more lesions. For each dataset, we

performed the Bland–Altman analysis to describe the agreement

between the mean WM FA values of the two methods.

Results

Network design and training

Figure 1 shows the spatial coordinates for the different

diffusion gradient directions, i.e., the b-vectors, for the 90 b =

FIGURE 2

Network architecture used. Conv, convolution.
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FIGURE 3

In each of the plots are reported the mean and standard deviation of the three metrics root mean square error (RMSE), mean absolute error

(MAE), and structural similarity index measure (SSIM) of the test subjects for each of the 10 DW subsets. Each di�erent color indicates the

number of DW subsets (1, 2, 4, 7) used for training the network.
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1000 s/mm2 of the HCP data; an example of nine points of a

DW subset selected with Camino is highlighted in red.

We successfully obtained FA maps from training the

proposed U-net. Training took between 24 and 120 h, depending

on the number of training subsets, on anNVIDIATesla T4GPU.

The network provided the best results with this

set of hyperparameters: including batch normalization,

dropout, with ReLU as the activation function for

the last layer, using the sum of LRMSE and LDSSIM

as loss function, λ = 0.001 for the L2 regularization,

and a batch size of 64. The number of epochs

was 76.

The network architecture is shown in Figure 2.

Quantitative evaluation on network
performance and network selection

Figure 3 shows the plots of the three metrics: RMSE,

MAE, and SSIM. In each figure, the mean and the standard

deviation across the 11 test subjects, for each of the 10 DW

subset, are shown for each of the four networks obtained

with an increasing number of training subsets (1, 2, 4, and

7).

We observed that, for all performance metrics, the

gap between metrics calculated when using the same

DW volumes as the training subset/s and when using

any of the DW subsets decreases with the increase

in the number of DW subsets used for training. We

selected the best performing network as that trained with

seven DW subsets. The code for the network is publicly

available at https://github.com/marta-gaviraghi/diffusion_

FA.

Table 1 shows the three metrics: the RMSE, the MAE, and

the SSIM on the test set for the best performing network when

considering all DW subsets (all), only the DW subsets with DW

directions equivalent to those used for training (training), and

only the subtests that were different from the DW directions

used for training (test).

Table 2 shows the performance metrics calculated for the 11

HCP test subjects between FA GT and both the FA obtained

with the standard model-fitting method from a subset of 10

DW volumes (Reduced STANDARD) and FA obtained with the

network (NETWORK).

The RMSE between GT and NETWORK FA and the RMSE

obtained between GT and Reduced STANDARD FA were

significantly different (p= 8 x 10−5).

Clinical adoption potential

Figures 4–6 show FA maps for a random subject from the

HCP, TLE, and MS datasets, respectively. In each figure, the first

row shows the FA calculated with all the DW volumes using the

standard model-fitting method. The second row shows the FA

calculated from only 10 DW volumes: on the left, there is FA

obtained with the standard model-fitting method, and on the

right, the FA is obtained with the best performing network. The

third row shows the difference image between the first two rows.

The fourth row shows the histogram of the difference between

TABLE 1 Performance metrics in HCP dataset.

10 SUBSETS (all) 7 SUBSESTS (training) 3 SUBSETS (test)

RMSE 0.047± 0.002 0.046± 0.002 0.048± 0.003

MAE 0.031± 0.001 0.031± 0.001 0.033± 0.002

SSIM 0.851± 0.008 0.853± 0.007 0.845± 0.009

For eachmetric, root mean square error (RMSE), mean absolute error (MAE), and structural similarity indexmeasure (SSIM), mean and standard deviations of all test subjects are reported

for (1) FA estimated using all the DW subsets, in turns, as input (all); (2) the DW subsets with b-vectors equivalent to those used for training (training); and (3) the DW subsets with

b-vectors different from those used for training (test).

TABLE 2 Table reporting each performance metric’s mean and standard deviation on fractional anisotropy (FA) values of test subjects.

RMSE MAE SSIM

GT vs. Reduced STANDARD (Whole Brain) 0.325± 0.012 0.247± 0.012 0.242± 0.014

GT vs. Reduced STANDARD (White Matter) 0.245± 0.015 0.189± 0.013 0.379± 0.018

GT vs. NETWORK (Whole Brain) 0.046± 0.002 0.031± 0.001 0.854± 0.009

GT vs. NETWORK (White Matter) 0.046± 0.002 0.035± 0.002 0.904± 0.084

The first two rows show metrics between ground truth (GT) FA and FA from 10 diffusion-weighted (DW) volumes using the standard model-fitting method (Reduced STANDARD); the

first row refers to whole brain while the second row refers to white matter (WM) voxels only. The last two rows show performance metrics between GT and FA from 10 DW volumes using

our network (NETWORK); the third row refers to the whole brain while the fourth to WM voxels only.
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FIGURE 4

For a random subject from the Human Connectome Project (HCP), each fractional anisotropy (FA) map is shown: the standard FA map

calculated with model fitting from all di�usion weighted (DW) volumes [STANDARD method−288 volumes (GT)], the standard FA map calculated

with model fitting from a DW subset of 10 volumes (Reduced STANDARD method-10 volumes), and the network FA map from a DW subset

(NETWORK-10 volumes). The “di�erence” shows the voxel-wise di�erence between GT FA and either the (Reduced STANDARD methods−10

volumes) FA or the (NETWORK−10 volumes) FA maps. At the bottom, there is the histogram of the di�erences. All color bars have arbitrary units

(a. u.).

the first two rows (GT FA minus Reduced STANDARD FA from

only 10 DW volumes).

Histograms and heatscatter plots are shown in Figure 7.

On the left-hand side for each dataset (HCP, TLE, and MS),

we showed for a single random subject the overlap of the

WM FA histogram obtained with the STANDARD method

with the histogram of the NETWORK WM FA. On the right-

hand side, heatscatter plots are reported for each dataset to

see how similar pairs of WM voxels values are when extracted

from the two FA maps i.e., how close the points are to

the bisector.

For performing group-level analysis and assessing clinical

sensitivity, Figure 8 shows boxplots of WM FA values for

each dataset. For the HCP dataset, they are calculated on

the 11 test subjects either with GT (STANDARD method-

−288 volumes) or with the network with a subset of 10

DW volumes used as input (NETWORK−10 volumes). For

the TLE dataset, we found the same difference (p < 0.05)

between HC and LTLE and between HC and RTLE when

using either standard WM FA (STANDARD−109 volumes) or

the network (NETWORK−10 volumes). For the MS dataset,

we found the same differences (p < 0.05) in NAWM FA

when comparing HC and CIS, HC and RRMS, HC and

SPMS, CIS and RRMS, and CIS and SPMS using either

standard FA (STANDARD−60 volumes) or the network

(NETWORK−10 volumes).

For the MS dataset, a boxplot of FA in lesions is reported

in Figure 9. We found significant differences (p < 0.05) between

mean lesion values when comparing CIS and SPMS or RRMS

and SPMS with network FA. No significant differences were

found in the lesion FA calculated using the standard method of

model fitting using all volumes.
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FIGURE 5

For a random subject from the temporal lobe epilepsy (TLE) study, each fractional anisotropy (FA) map is shown: the standard FA map calculated

with model fitting from all di�usion-weighted (DW) volumes (STANDARD method−109 volumes), the standard FA map calculated with model

fitting from a DW subset of 10 volumes (Reduced STANDARD method-10 volumes), and the network FA map from a DW subset of 10 volumes

used as input (NETWORK-10 volumes). The “di�erence” shows the voxel-wise di�erence between the (STANDARD method−109 volumes) FA

and either the (Reduced STANDARD methods−10 volumes) FA or the (NETWORK−10 volumes) FA maps. At the bottom, there is the histogram

of the di�erences. All color bars have arbitrary units (a. u.).

Figure 10 shows the Bland–Altman plots of the mean values

of WM FA between the STANDARD method and NETWORK

for each dataset.

Discussion

We implemented a DL network capable of obtaining

FA from a reduced set of 10 DW volumes, which could

be acquired in 1min, while retaining or enhancing image

quality thanks to the fact that a DL network trained on

high-quality data can contribute to image quality transfer

when applied to a lower input (Alexander et al., 2017).

We also generalized our network to be independent of the

DW scheme acquired. We demonstrated generalizability

by applying it to existing clinical datasets, acquired on

different scanners from different vendors, with different

geometry parameters, different DW directions, and

one dataset with a different b-value than that of the

training dataset.

During training, we only input diffusion images with b-

values equal to 1000 s/mm2 because this is the value suggested

for optimal white matter DT sensitivity (Basser and Jones, 2002;

Jensen and Helpern, 2010). We also wanted our method to be

applied in clinical settings to reduce the acquisition time for

calculating the FA and fitting the diffusion tensor, where the

most common b-value is 1000 s/mm2.

Our network was trained on a high-resolution dataset and

applied to two completely different datasets from two clinical

research studies in TLE and MS. In order to create a generalized

network that is as independent as possible from the diffusion-

encoding directions of the data used for training, we gave the

network several different subsets of DW volumes as input.

For model fitting, the choice of diffusion gradient directions is
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FIGURE 6

For a random subject from multiple sclerosis (MS) study, each fractional anisotropy (FA) map is shown: the standard FA calculated with model

fitting from all di�usion weighted (DW) volumes (STANDARD method−60 volumes), the standard FA calculated with model fitting from a DW

subset of 10 volumes (Reduced STANDARD method−10 volumes), and the network FA from a DW subset of 10 volumes used as input

(NETWORK−10 volumes). The “di�erence” shows the voxel-wise di�erence between the (STANDARD method−60 volumes) FA and either the

(Reduced STANDARD methods−10 volumes) FA or the (NETWORK−10 volumes) FA maps. At the bottom, there is the histogram of the

di�erences. All color bars have arbitrary units (a. u.).

important: the optimal selection is the one that provides the

most uniform sampling of the DW 3D spherical space (Mori and

Tournier, 2014). If we were to train the network only on a single

subset of the same nine DWdirections, there would be a risk that

the network would depend on these specific directions.

For the HCP test subjects, the NETWORK FA (RMSE =

0.046) wasmuch closer to the GT than the Reduced STANDARD

method FA (RMSE = 0.325), indicating that the network

provides a clear advantage over the simple DT model fitting

of data acquisition with a reduced DW protocol. Qualitatively,

the NETWORK FA maps calculated using independent clinical

datasets show less noisy images than the FA calculated using

the STANDARD method FA (Figures 5, 6) and it provides a

clear benefit from a simple model fitting of the reduced 10 DW

volume dataset. It is to note, however, that, if only 10 diffusion

volumes are used, a constrained fitting with non-linear least

squares, such as log-Cholesky, could potentially lead to better

results compared to weighted least squares, at the cost of a longer

processing time (Koay, 2011).

The histograms of the difference between the FA calculated

with the STANDARD method and NETWORK FA, for all

three datasets, have a symmetrical distribution, meaning that

the network FA shows that the negative and positive values

are random (Figures 4–6). There is a clear improvement when

considering the distribution of the HCP data with respect to

Reduced STANDARD method FA from just the 10 volumes.

At the individual subject level, the distribution of FA in

WM voxels was maintained when using the network FA for all

datasets, whether they were acquired with the identical DW and

geometrical protocol as the training data or on different scanners

with different spatial resolution and DW schemes (Figure 7).

Indeed, the histograms ofWM voxels from the FA obtained with
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FIGURE 7

On the left are reported the histograms of fractional anisotropy (FA) distributions in white matter (WM) for the three used datasets [Human

Connectome Project (HCP), temporal lobe epilepsy (TLE), and multiple sclerosis (MS)]. On the right are reported the heatscatter plots showing

pairwise voxel correspondence between FA maps calculated in di�erent ways (STANDARD method and NETWORK); the bisector of the

scatterplots, for reference, is shown in pink.
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FIGURE 8

Boxplots of white matter (WM) fractional anisotropy (FA) mean values for each dataset. In the first plot, the boxplots refer to the Human

Connectome Project (HCP) test subjects. Plots show the average of WM FA calculated with the standard model-fitting method on the entire DW

dataset as ground truth (STANDARD method−288 volumes) and of WM FA values obtained with the network and a subset of 10 DW volumes as

input (NETWORK−10 volumes). In the second plot, the boxplots refer to the temporal lobe epilepsy (TLE) subjects divided by groups: Healthy

Control (HC), Left TLE (LTLE), and Right TLE (RTLE), considering the mean value of white matter fractional anisotropy of the ground truth

(STANDARD method−109 volumes) and of the network (NETWORK−10 volumes). Significant di�erences are indicated with an asterisk

(p < 0.05). The boxplots of the WM FA (or NAWM) refer to multiple sclerosis (MS) subjects divided by group healthy control (HC), clinical isolated

syndrome (CIS), relapsing—remitting MS (RRMS), and secondary progressive MS (SPMS) considering the mean value white matter fractional

anisotropy of the ground truth (STANDARD method−60 volumes) and of the network (NETWORK−10 volumes). Significant di�erences are

indicated with an asterisk.
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FIGURE 9

Boxplot of mean fractional anisotropy (FA) values in lesions for MS patients: subjects divided by group clinical isolated syndrome (CIS),

relapsing—remitting MS (RRMS), and secondary progressive MS (SPMS) considering the mean value lesion FA of the ground truth (STANDARD

method−60 volumes) and of the network (NETWORK−10 volumes). Significant di�erences are indicated with an asterisk (p < 0.05).

the network follow the same distribution as the WM GT FA.

This is also confirmed when looking at the data with pairwise

voxels as the heatscatter plots show that the WM FA values are

distributed close to the bisector (Figure 7). It is worth noting

that, when we extracted the subset of nine DW b-vectors from

the TLE and MS data, we did not try to match the directions

of one of the HCP DW subsets, but we simply extracted it

from the TLE and MS DW scheme files the most uniformly

distributed DW scheme of 9 b-vectors, using Camino (Cook

et al., 2005). These results are very promising as they show a high

generalizability of our chosen trained network.

Most importantly, the network FA retained, and possibly

enhanced, the properties of the standard FA calculated with all

DW volumes, including sensitivity to pathology.

At the group level, the significant pathological differences

between TLE and MS sub-groups found when comparing

standard FA values remained significant when using the FA

estimated by the network.

In both datasets, there is a reduction of WM FA (or

NAWM FA) in patients compared to controls, which is

in line with previous literature on TLE and MS diseases

(Horsfield, 2001; Saksena et al., 2008; Gross, 2011). Moreover,

the network FA can find statistically significant differences

between lesion FA in different MS sub-groups: lesions of

patients with SPMS have a reduced FA compared to lesions

of CIS and lesions of RRMS. These group differences

are also present in the FA calculated in the standard

way with all DW volumes, although here they do not

reach statistical significance. This could be because the

network introduces a sort of bias in the lesions as the

network was trained only on healthy tissue or it could

be because the network creates a higher resolution FA

map that is more sensitive to pathology. This could be

validated in future studies assessing the clinical relevance

of the network lesion FA in terms of its correlation with

neurological scores.

However, the significance found with the network is in line

with the clinical data: SPMS represents the most advanced stage

of MS, and therefore, their lesions are also more disrupted in

terms of their microstructure than in other stages of the disease

(Preziosa et al., 2011). The FA calculated with the network seems

to be able to find these differences.

One limitation is that, in order to give DW volumes as input

to the network, they must always have the same geometrical

properties (input and output matrix size), and therefore, it is

necessary to resample the images of the dataset of interest

to the resolution with which the network was trained (HCP).

Future studies should consider incorporating a pre-processing

DL network that could learn to perform this operation.

Here, we have adapted a 2D U-net architecture because

diffusion weighted images of brain slices already include

all possible combinations of tissue types and microstructure

architecture that define the FA contrast. Besides, 2D data

are much easier to handle and 2D U-net is faster to train;
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FIGURE 10

For each data set, the corresponding Bland–Altman plot is

shown; each blue dot corresponds to a subject. The yellow line

indicates the mean of the di�erence between the white matter

(WM) fractional anisotropy (FA) STANDARD method and

NETWORK WM FA. The red lines indicate the limits of agreement

(average di�erence ± 1.96 standard deviation of the di�erence).

nevertheless, future studies could be extended to a 3D

architecture that also takes into account neighboring voxels in

the third spatial dimension. We can also try to explore different

architectures such as pix2pix (Isola et al., 2017) or CycleGAN

(Zhu et al., 2017). Notably, recent work by Li et al. (2020)

found that CT to MRI/MRI to CT image synthesis using U-net

produced images with more favorable MAE, SSIM, and PSNR

compared with CycleGAN.

Acquiring only 10 DW volumes greatly reduces acquisition

time. In our case, considering the three datasets, the acquisition

of 10 volumes took less than a minute for an HCP subject,

about 1:50min for a TLE subject, and about 2:30min for a

MS subject. In our clinical datasets, the TR was longer than

for the HCP protocol because multiband excitation was not

available. Using a multiband protocol, TR could be set to TR

< 6s, and the acquisition time could be shorter than 1min;

therefore, reconstructing FA with our network could enable the

adoption of FA in a clinical setting, while retaining sensitivity

to pathology.

For example, in traumatic head injuries, FA has been

reported to change rapidly in the acute, subacute, and chronic

phases after the injury and may correlate with cognitive

impairment (Veeramuthu et al., 2015); currently, FA is not used

clinically because of the longer acquisition time compared to

DW scans, but our network could provide an appealing method

for assessing FA clinical validity.

When no DW acquisitions are possible, Gu et al. (2019)

approach to calculate FA from the T1-w scans may be the only

available option, but it is possible to acquire 1min of extra

images, and we believe that acquiring DW data for our network

could provide better pathological sensitivity.

Future works will aim to train the network to reconstruct

the full DT, or other diffusion-derived maps, for a complete

assessment of tissue microstructure and anisotropy.

Conclusion

The proposed network can extract FA from a reduced set of

10 DW volumes, not only on test data with identical acquisition

properties as the training data but also on test data with

different diffusion-encoding directions and, most importantly,

on data acquired on different scanners, with different DW

directions and different b-values. The network FA retained the

properties of the standard FA calculated with model fitting using

all available DW volumes and retained, possibly enhancing,

sensitivity to pathology. With our network, a 1-min FA protocol

could be adopted as the standard for brain MRI protocols in

clinical settings, generating data that could then be assessed

radiologically for clinical indications.
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