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Unsupervised Knowledge-Transfer for Learned Image
Reconstruction®
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Abstract

Deep learning-based image reconstruction approaches have demonstrated impressive empirical
performance in many imaging modalities. These approaches usually require a large amount of
high-quality paired training data, which is often not available in medical imaging. To circumvent
this issue we develop a novel unsupervised knowledge-transfer paradigm for learned reconstruction
within a Bayesian framework. The proposed approach learns,a reconstruction network in two
phases. The first phase trains a reconstruction network with A set of ordered pairs comprising
of ground truth images of ellipses and the corresponding simulated measurement data. The
second phase fine-tunes the pretrained network to more realistic measurement data without
supervision. By construction, the framework is,capable of delivering predictive uncertainty
information over the reconstructed image. We presentiextensive experimental results on low-dose
and sparse-view computed tomography.showing that the approach is competitive with several
state-of-the-art supervised and unsupervised reconstruction techniques. Moreover, for test data
distributed differently from the training data, the proposed framework can significantly improve
reconstruction quality not enly visually, but also quantitatively in terms of PSNR, and SSIM,
when compared with learned methods trained on the synthetic dataset only.

Keywords: Unsupervised Learning, Test-Time Adaptation, Pretraining, Image Reconstruction,
Bayesian Deep Learning, Computed Tomography

N
1 Introduction

In this work we develop amovel unsupervised knowledge-transfer framework for image reconstruction.
The reconstruction efian image s often formulated through a (linear) inverse problem

y = Ax + oy,

where y € Y is a corrupted. measurement, dy is the additive noise, x € X is the image to be recovered,
and the data acduisition is described by a linear forward map A : X — Y, where X and Y are
suitable finite-dimensional vector spaces.
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In the past few years, deep learning (DL)-based image reconstruction techniques have demon-
strated remarkable empirical results, often substantially outperforming more conventional methods
in terms of both image quality and computational efficiency [7, 44]. In DL-based approaches,
image reconstruction can be phrased as the problem of finding a deep neural network (DNN)

9+ Y — X such that Fy(y) ~ z, where the neural network Fy is parametriséd by a parameter
vector 6. In supervised learning the optimal parameter vector 6* is learned from a set of ordered
pairs B = {(n, yn)}Y_; of ground truth images and the corresponding (noi§y) measurement data
by minimising a suitable loss

1N
= 2 ol ) (11)
B ~
where ¢(Fy(yy),z,) measures the discrepancy between the network prediction Fy(y,) and the
corresponding ground truth image x,, and is often taken to be théxmean squared error. Supervised
learning has been established as a powerful tool to improve reconstruction quality and speed, rapidly
becoming a workhorse in several imaging applications [56].

In order to deliver competitive performance, supervisedrlearning may require many ordered
pairs (zn,yn), n = 1,..., N, which are unfortunately often met available in medical imaging
applications since clean ground truth images are either too costly or impossible to collect. Meanwhile,
reconstruction methods learned in a scarce-data regime oftennfail to generalise on instances which
belong to a different data distribution [12, 48]. Mareoyer, evenl small deviations from the training
data distribution can potentially lead to severe reconstruction artefacts (i.e., supervised models can
exhibit poor performance even for a small distributional shift). This behaviour is further exacerbated
by the presence of structural changes such as rare pathologies; thereby significantly degrading the
performance of supervisedly learned reconstruction methods [5]. To make matters worse, such forms
of deviation from the training data distributionrare ubiquitous in medical imaging, owing to factors
such as the change in acquisition protocolsy For example, in magnetic resonance imaging (MRI),
these factors include echo time,repetition time, flip angle, and inherent hardware variations in the
used scanner [31]; in computed tomography (CT), they include the choice of view angles, acquisition
time per view, and source-target separation.

Therefore, there is an imperative need to develop learned image reconstruction techniques that
do not rely on a large amount of\high-quality ordered pairs of training data. In a recent review
[56], this issue has been identified as one of the key challenges in the next generation of learned
reconstruction technigues. To address this outstanding challenge, in this work we develop a novel
unsupervised knowledge-transfer (UKT) strategy to transfer acquired “reconstructive knowledge’
across different datasetsmusing,the Bayesian framework. It comprises of two phases. The first phase
is supervised and is tasked with pretraining a DNN reconstructor on data pairs of ground truth
images and corresponding measurement data (which can be either simulated or experimentally
collected). The goal of thiS step is to capture inductive biases of the given reconstruction task using
simulated or experimental data. The second phase is unsupervised. It fine-tunes the reconstructor
learned in_the first phase on clinically-realistic measurement data, using a novel regularised Bayesian
loss. This fine-tunes the network to the target reconstruction task while maintaining the prior
knowledge learned in the first step. Note that unlike supervised or semi-supervised learning, the
proposed framework does not assume any ground truth data from the target domain, and hence it is
an/unsupervised learning method. Extensive numerical experiments with low-dose and sparse-view
CT'on two datasets, i.e., FoamFanB [47] and LoDoFanB [37], indicate that the proposed approach is
competitive with state-of-the-art methods both quantitatively and qualitatively, and that test-time
adaptation can significantly boost performance.

In summary, the development of an unsupervised knowledge-transfer framework for learned

)
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image reconstruction, and its validation on clinically realistic simulated measurement data, represent
the main contributions of this work. To the best of our knowledge, this is the first work to
propose Bayesian unsupervised knowledge-transfer for test-time adaptation of a learned image
reconstruction method. Furthermore, the use of the Bayesian framework allows, capturing predictive
uncertainty of the obtained reconstructions. Our framework has the following distinct features: (i)
adapting to unseen measurement data without the need for ground truth images; (ii) leveraging
reconstructive properties learned in the supervised phase for effective feature representation; (iii)
providing uncertainty estimates on the reconstructed images. These features make the framework
very attractive for performing learned reconstruction without ordered pairs from ghetarget domain,
as confirmed by the extensive numerical experiments in Section 4. ‘The Bayesian nature of the
framework is noteworthy in the emerging field of scalable uncertainty quantification for image
reconstruction, where the heavy computational cost is often deemed as©ne of the major hurdles [9].
In contrast, the approach presented in this work is highly scalable; by, building upon recent advances
in variational inference [23], and hence holds significant potential for medical image reconstruction.

1.1 Related Work

The lack of (a sufficient amount of) reference training, data has only recently motivated the
development of deep learning-based image reconstruction approaches that do not require ground
truth images. We identify two main groups of currentdearned approaches: test-time adaptation,
and unsupervised approaches.

Test-time adaptation focuses on learning under differing training and testing distributions. It
often consists of fine-tuning a pretrained DNN for,a single datum at a time, or for a small set
of test instances. In [26, 18] this paradigm is used for MRI reconstruction, where reconstructive
properties acquired by a network that has been pretrained on a task for which a large dataset is
available, are transferred to a different taskmwhere the supervised data is scarce (but still available).
The proposed approach extendséthe aforementioned work from the supervised target reconstruction
task to an unsupervised one. In the eontext of object recognition, Sun et al. [51] propose to adapt
only a part of a convolutional weural network (CNN) according to a self-supervised loss defined
on the given test image to address distributional shift. The model is then trained via multi-task
learning, where shared features are-learned jointly over supervised and self-supervised data. Gilton
et al. [25] adapt a pretrained im@ge reconstruction network to reconstruct images from a perturbed
forward model using only a'small collection of measurements, by enforcing the data fidelity while
penalising the deviationof the network parameters from the parameters of the pretrained model.
Conceptually speakingpour study is complementary to these studies. The proposed approach can
be interpreted as conducting unsupervised test-time adaptation for distributional shift of the image
data, but within‘a Bayesian framework. Furthermore, the use of the Bayesian framework brings
several distingt advantages: (i) it allows deriving the training loss in a principled manner; (ii) it
can boost reconstructive performance; (iii) it simultaneously delivers the predictive uncertainty
information associated with the reconstructions.

Meanwhile, deep image prior (DIP) is a representative unsupervised image reconstruction
method, which achieves sample-specific performance using DNNs to describe the mapping from
latent"wariables(to high-quality images [53]. During inference the network architecture acts as
a regulariser for reconstruction [21, 8]. Similarly, Zhang et al. [60] use a U-Net model as the
reconstruction network and propose to adapt the model through backpropagation by updating the
parameters of a pretrained U-Net under the guidance of data fidelity for each individual test data vy,
with.no supervision, and showcase the approach on under-sampled MRI reconstruction. Despite
strong performance, it suffers from slow convergence (often requiring thousands of iterations), and
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the need for a well-timed early stopping, otherwise the network may overfit to the noise in the data.
The latter issue has motivated the use of an additional stabiliser [8].

Test time adaptation and DIP represent only two approaches that are most closely related to
the present work. In recent years, there have been significant advances in unsupervised,biomedical
imaging reconstruction techniques and we refer interested readers to a recent review [4] on other
approaches and references therein, which discusses many promising unsupervised methods.

The rest of the paper is structured as follows. In Section 2 we describe the setting and discuss
deep unrolled methods for image reconstruction and Bayesian DL. In Seetion 3, we develop the
proposed two-phase UKT paradigm. In Section 4 we present experimental results, for low-dose and
sparse-view CT, including several supervised and unsupervised benchmarks, and discuss the results
obtained with the two-phase learning paradigm. In Section 5 we add some-eoncluding remarks.

2 Preliminaries

In this section we describe the fundamentals of how unrolled metworks are used for image recon-
struction. We then describe the Bayesian approach for DNNs; based on which we shall develop the
proposed unsupervised knowledge-transfer strategy.

2.1 Unrolled Networks 7S

Unrolling is a popular paradigm for construeting a network Fy for image reconstruction. The idea
is to mimic well-established iterative optimisation algorithms, e.g., (proximal) gradient descent,
alternating direction method of multipliers, and primal-dual hybrid gradient method. Namely,
unrolled methods use an iterative precedure to reconstruct an image x from the measurement y
by combining analytical model compenents (&g, the forward map A and its adjoint AT) with
data-driven components that are parameterised by the network parameters 6 and learned from the
training data. The unrolled nature of the network allows seamlessly integrating the underlying
physics of the data acquisition process into the design of the network Fy, which can enable the
development of high-performance reconstructors from reasonably sized training datasets [41]. More
specifically, given an initial guess @p (e.g., the Filtered Back-Projection (FBP) in CT reconstruction),
we recursively compute iterates

xk:FHk (.Tk;_l,vpk_l), k=1,... K,

with .
VDk:—l = V§HA1']€,1 — yH2 = AT (A.%'kfl — y) y

being the gradient of the data fidelity term, where K > 1 is the total number of iterations, Fy, is
the sub-network used at'the k-th iteration, and 6, is the corresponding weight vector. The overall
iterative process can then be written as

i = Fg (z0, VDy),

where x gis the final reconstruction, and Fy is the overall network, with parameters 0 = (61,...,0k),
constructed asa concatenation of sub-networks Fy,,...,Fg, . In practice, the parameters 6, of each
sub-network Fy, can be shared across different blocks (i.e., #; = --- = 0), a procedure known as
weight-tying or weight-sharing. This allows to reduce the total number of trainable parameters,
so as to facilitate the training process. By slightly abusing the notation, we denote the shared
parameter by 0. In this work, we only consider the case of weights shared across the blocks, but the
proposed framework extends straightforwardly to the general case.
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2.2 Bayesian Neural Networks

We briefly describe Bayesian neural networks (BNNs), in which network parameters'§ are treated
as random variables and are learned through a Bayesian framework so as to facilitate uncertainty
quantification of the network prediction. Bayesian learning provides a principled yet. flexible
framework for knowledge integration, and allows quantifying predictive uncertaintiesiassociated,with
a particular point estimate [23, 9]. Bayesian learning is ideally suited for deriving a proper training
loss for combining the knowledge across different “domains”, to which the framework proposed in
Section 3 belongs. Nonetheless, the use of BNNs for medical imaging is still not widespread due to
the associated computational challenge.

In a BNN, by placing a prior distribution p(6) over the network parameters.6 (which is commonly
taken to be the standard Gaussian distribution), and by combining it With a likelihood function
p(B|@) of the data B using Bayes’ formula, we obtain a posterior distribution p(f|B) over the
parameters 0, given the data B

p(8B) = Z~ ' p(B|6)p(0)s
where Z = {p(B|#)p(6)d6 is the normalising constant. The'likelthoodp(B|0) is fully specified upon
properly modelling the data noise statistics and the datalgeneration process (e.g., forward operator
A). The posterior distribution p(6|B) represents the complete Bayesian solution of the learning task.

The posterior p(8|B) is often computationally intractable; since the computation of the nor-
malising constant Z involves a high-dimensional integral. To eircumvent this computational issue,
we adopt variational inference (VI) [30], which employs the Kullback-Leibler (KL) divergence to
construct an approximating distribution ¢(¢). Reeall that the KL divergence KL[q(0)|p(6)] between
q and p is defined by

KL [o@lni@],~ [ (0) 105 L) 0.
p(0)
VI looks for an easy-to-compute approximateposterior distribution g, parametrised by variational
parameters ¢. The approximation gy () is most commonly taken from a variational family consisting
of products of independent Gaussians

D
Q:= {qwfﬂ) ~ HN(QJ‘;M,UJZ)W € (R x R?O)D} )
j=1

where the notation N(65; 17, 0]2-) denotes a Gaussian distribution with mean j; and variance JJQ-,
P = ((Mj,ajz))?zl are‘the variational parameters, and D is the total number of parameters in
Fy. In the literaturé this,is commonly known as the mean field approximation. VI constructs an

approximation gy#(6) within the family Q by

gy (6) € argmin KL [,(6) [p(61B)]. (2.1)
qy(0)€Q

Given a learned approximate posterior gy« (6), the predictive distribution gy« (x|y,) of the target
image xfor a new query measurement y, is given by

qy*(zyq) = jp($|yq, 0)qy+(0)do.

A point estimate of the image z can then be obtained via Monte Carlo (MC) sampling as

T
1
E[z] = quw*(aﬂyq)dx ~ T ;th (4,0, VDq0),
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with 7" Monte Carlo samples 6", with ¢ = 1,..., 7T, distributed according to gy« (6).
When the network densities are shared across the iterates, we have

Fqu%K(G) = F9K~q¢(9) O-:--0 F91~(I¢(9)7
with the superscript ® K denoting the K-fold product, and the overall iterative proeess reads
T = FQngK(Q) ($0, VDQ) .

Note that the standard mean field approximation doubles the number of trainable parameters,
which brings significant computational challenges. In practice, the training of fully Bayesian models
is often non-trivial, and the performance of the resulting network i§ ofteninferior to non-Bayesian
networks [45]. BNNs are thus still not widely used in learned image reconstruction [9]. To make
our approach competitive with non-Bayesian methods, while retainingithe benefits of Bayesian
modelling, we can adopt the strategy of being Bayesian only.a little bitr[11, 19]. That is, we use
VI only on a subset of the parameters 6, and use point estimates for the remaining parameters
(or equivalently, a Dirac distribution). This can reduce ghe number of trainable parameters, and
hence greatly facilitate the training process, while maintaining the Bayesian nature of the learning
algorithm.

Remark 2.1. Apart from VI there are other approximate inﬁ;"ence schemes, such as MC dropout
[24] and Laplace approximation [40, 19]. MGdropout has been widely used for modelling uncertainty,
and has also found application in the medical imaging community (e.g., segmentation [52]), due to
its computational efficiency and easy implementation, but its approximation accuracy tends to be
inferior to VI. For example, MC dropoutstends to severely underestimate predictive uncertainty [35].
Laplace approzimation [40] has started tonattractrenewed interest, but has not been explored within
medical image reconstruction so far, since the computational cost of approrimating the Hessian
of the loss with respect to the network parameters 0 is often prohibitively high in the context of
1mage reconstruction and a scalable and yet accurate approximation of the Hessian is still under
development.

Remark 2.2. In light of theé decoder-encoder structure of the U-Net that is used below (cf. Fig.
1(b) for a schematic illustration), theé idea of “being Bayesian a little bit” resembles a hybridisation
of an autoencoder [55] and @ variational autoencoder [34], which are used for the decoder and
encoder parts, respectively. However, there is a magjor difference between the two approaches: the
formulation we employsfor image reconstruction is conditional on the measurement, whereas the
standard autoencoder and wariational autoencoder formulations are unsupervised in that they access
only samples of images.

3 Two-Phase Learning

In this gection we describe our novel two-phase UKT strategy aimed at addressing the challenges
associated,with the lack of sufficient supervised training data in the target reconstruction task. We
systematicallyrdevelop the learning strategy within a Bayesian framework with a sub-network Fg,
being a downscaled version of a residual U-Net [50] (cf. Fig. 1(b) for a schematic illustration), which
is a'pepular choice in learned image reconstruction [29], and will be used in the experiments in
Section 4. The network adopts a multi-scale encoder-decoder structure consisting of an encoding
component and a decoding component, whose parameters are denoted respectively by 6. € RP¢ and
0q € RP4, and 6 = (0.,64). In the derivation of the proposed UKT framework below, we use VI

Page 6 of 28
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only on the network parameters 6. of the encoder component, which can be interpreted as cheosing
an approximate posterior gy« (.) for the encoder p(6.|B) ~ gy (f.). The decoder parameters fg
remain deterministic, and are treated as point-estimates. The adaptation of the UKT! framework to
other network architectures is straightforward.

Now we briefly describe the two phases of the proposed learning strategys, The first phase
is supervised, and employs a given training dataset BS = {(x5,v%)}"", whete eachypair (z53y5)
consists of a ground truth image z} and the corresponding (noisy) measuretnent datum’y;, which
can be either simulated or experimentally collected (if available). Thesgoal ofithis phase is to
pretrain a reconstruction network Fy by learning the (approximate) posterior distribution gy« (6.)
for the parameters 6, of the encoder, and the optimal deterministic parameters 3 of the decoder,
in order to assist the unsupervised phase. Specifically, we aim to achieve two-objectives: (i) identify
a sensible region for the network parameters; (ii) learn robust representations that are not prone to
overfitting. Ideally, to facilitate the reconstruction quality this phase should mimic the setting of
the target reconstruction task as close as possible in terms of the geometry of image acquisition
(e.g., size of images and distribution of image features), and the noise statistics (e.g., distribution
and noise level). This phase would allow learning adequaté inductivesbiases and task-specific priors
so as to enable successful subsequent unsupervised learned image zeconstruction.

The second phase is unsupervised, and has access to a dataset B" = {y! 7];[:1 which consists of only
a few measurements (e.g., clinically-realistic CT sinograms), but with no access to corresponding
ground truth images. Moreover, the distribution, of the measurement data in B" may differ
significantly from that in B®. The aim ofythis phase is/to fine-tune the parameters 6 of the
reconstruction network Fy so that it performs well on the data B" from the target domain. This
is achieved by initialising the parameters (1, 8g) of the reconstruction network Fy to the optimal
configuration (¢*, §3) found in the first,phase, and then minimising a novel loss function, which
we shall derive below in the Bayesian framework., Through this phase we address the need for
adaptivity to the target reconstruction task due to a potential distributional shift of the data and
effectively use the inductive bids te assist the reconstruction of the target task.

3.1 Pretraining via Supervised Learning

In this first phase, we have acéess to-atraining dataset BS = {(z5, y5)}2_, of ordered pairs (which can
be either simulated or experimentally collected), and we employ the Bayesian framework described
in Section 2.2 to find,the optimal distribution qu* (0o) for the parameters 6, of the encoder, which
approximates the true posterior p(f.|B°) and the optimal decoder parameters 3. To construct
the posterior p(0.|B*)pwe first set the prior p(6,) over the encoder parameters 6, to the standard
Gaussian N (6,; 0, I), which. is a standard practice in the Bayesian DL community. Following the
heteroscedastic neise model [43], the likelihood p(z5|y5, 0) is set to

P393, 0) = N (97: F5 (25,.0) Sn). (3.1)

with Fl) (2355) =Ej (#4,0, VDn,0, M) and X, = diag (F§ (x5 ). Analogously, note that F§ (a5, ) =
F§ (2n,05 VDh o, mn0). Note that the network Fy has two outputs: the mean Fg , and the variance
Fg. Herewa; , denotes the initial guess used by the learned reconstruction method for the n-th
training pair (5, v, ). For example, in CT reconstruction, we customarily take Ty, o to be the FBP.
We refer readers to Fig. 1(a) for a schematic illustration, where x; and mj denote the mean and
varianee estimates at the k-th iteration, respectively. Up to an additive constant independent of the
arguments, we can write

S|, s 1l a3 S s 1 S
log p(an|yn, 0) = —5[1%n* (2 — Fy (25,0 * — 5 log(det(2n)).

7
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(a) Diagram of the reconstructive pipeline. Each sub-network Fy, receives|as input zg 1, VDi_1, mg_1, and
outputs zx and my. The gradient of the data fidelity term VDy (coldur-coded in/green) is not an output
of the sub-network, and is instead computed using the refined estimate @, (dfid the forward and adjoint
operators), and then passed as input to the subsequent sub-network together with z; and my.

xk;'l ) )
P 32 1 x
VD1 ) > 10+
1 B 64 W 64-------- 128 W 64
Mh—

\ 4 4
640 128 "mp 128

= (3 x 3)BConv + GN'+ LR = Maxpool(2 x 2)

= (3 x 3)Conv + GN + LR ReLU

B (2 x 2)Convt+ GN + LR = Copy & Concatenation
= (1 x 1)Conv o Scaling & Addition

(b) The architecture of Fy, is a dowmscaled version of a residual U-Net with two scales of 64 and 128 channels.

Each box corresponds to a malti-channel feature map, with the number of channels indicated inside. The
inputs xx_1, VDyi_1, and mg_; go through a contractive path of repeated applications of two Bayesian
convolutional layers (BConv), each followed by group normalisation (GN) [58] and leaky ReLU (LR), with
a maxpool operation in/ between. Maxpool halves the feature channels resulting in a coarser scale. The
expansive path consistsofa, transpesed convolution (Convt) with stride length 2, which doubles the number of
feature channels. The resulting feature map is then concatenated with the feature map from the contracting
path, which is further processed through a convolutional pipeline. The architecture then bifurcates into
two identical convolutional pipelines with feature maps reduced to a single channel. The output of the first
pipeline is added ag'a residual update to the initial input iterate, and projected onto the positive set to
produce a new iterate k. The second output is the intermediate estimate of the variance. At the final
iteration, werthave w < F, and mg — F§. The arrows denote different operations, and the ones which
have a symbol “x2” next to the arrow imply that the operation in question is repeated twice.

Figurenl: (a) Schematic illustration of the overall iterative reconstructive process, and (b) the
architecturesof each sub-network.

The minimisation of KL divergence in (2.1) can be recast as the minimisation of the following
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loss over the admissible set RPd x O

1 &
L(0a: ap(0e)) = =775 D Equ0n) Mogp (25145, 0)] + BKL [gy (0e) [ p(0e )y

n=1

where 5 > 0 is a regularisation parameter. This loss coincides with the negative, value of,the
Evidence Lower BOund (ELBO) in VI (when § = 1). Upon expanding the tetms, fixing the prior at
p(0e) = N(6c;0,1), and ignoring additive constants independent of 64 andsg, (), we can rewrite
the loss as (recall that D, denotes the dimensionality of the encoder patameter 6 )

NS
s 1 1 &3 s S 1 S
£600.00(00) = 32 23 By |50 0t~ Pt o) [ + om0t 5,) |
n=1
De 1
+8 ), [—logoj + 5 (0] + 1)), (3.2)
j=1

where the vector ¢ = ((u;, 032))?:‘31 refers to variational parameters of the approximate distribution
qyp(6e), where p; and 032' are respectively the mean and the variance of the j-th component of the
encoder parameters .. Note that the term KL [gy(0e)|p(6e)] gffects only the encoder parameters
0, whereas the decoder parameters 6, are treated deterministically (without any explicit penalty).
In order to minimise the loss £° with respectito the variational parameters 1, we need to compute
the gradient V,L® of the loss £° with respect to 1. This can be done efficiently using the local
reparametrisation trick [33], which employs a deterministic dependence of the ELBO with respect
to 1.

The combination of the unrolled network with Bayesian neural networks allows quantifying the
uncertainty over the reconstructed image bysunrolling methods, and we have termed the resulting
approach (when trained in a greedy manner) as'Bayesian deep gradient descent (BDGD) in prior
works [11, 10]. BDGD provides_natural means to quantify not only the predictive uncertainty
associated with a given reconstruction, butralso to disentangle the sources from which the predictive
uncertainty arises. Uncertainty isstypically categorised into aleatoric and epistemic uncertainties
[32, 9]. Epistemic uncertainty arises'from the uncertainty over the network parameters, and is
captured by the posterior gy(6q) [13,132]. Aleatoric uncertainty is instead caused by the randomness
in the data acquisition process., Tofaccount for this, in the loss (3.1) we employ a heteroscedastic
noise model [43], which gets the likelihood p(z5 |y}, 0) to be a Gaussian distribution, with both
its mean Fg and vatiance Fg predicted by the network Fy. Accordingly, we adjust the network
architecture by bifurcating\the decoder output. Namely, sub-network outputs ng are used to
update the estimatex;, whilst the intermediate term my, which embodies a form of “information
transmission’4 is given by F7 . At the final iteration mg provides an estimate of the variance
component of theflikelihoodjsee Fig. 1(a) again for a schematic illustration on the overall workflow
of the network Fp.

Following [20], we can decompose the (entry-wise) predictive variance Var[z] into a sum of
aleatoric (Aa[y,]) and epistemic (Ag[y,]) uncertainties using the law of total variance as follows

Var[z] = Eqw*(ge)[Var(ﬂyq, 0)] + Varqw*(ge)[E(ﬂyq, 0)] =: Aalyq] + Arly,l-

Upon denoting the initial guesses for the mean and the variance for a query data y,; by z,0 and
Mg, respectively, and abbreviating Fg, (24,0, VDg 0, mq0) as F§ (z4,0), and th (24,0, VDg0,mqp) as
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F1.(zq0), we estimate Aa[yq] and Agly,] by T = 1 Monte Carlo samples {6£}/_, ~ q%,f{(ﬁe) as

qu) )

!

\Mﬂ

T
1 1
al ~ T Z Fgi(xq0) and Agly,| ~ T Z th xq,o (
t=1 t=1 =

where all the operations on vectors are understood entry-wise.
Remark 3.1. There are at least two alternative loss functions that can be derived,from the Bayesian

loss (3.2). The first option is to set the parameters 6 as fully deterministic, which gives rise to the
following non-Bayesian loss

1 NS 1 p . ) 1 ~ \ﬁ )
D LIS - B o)l? + L oSl + £ a2

n=1

£5(0) =

Note that this loss does not penalise the decoder parameters. 04, as i the Bayesian formulation,
whereas it penalises the encoder parameters 0, by the standardwweight decay, which corresponds
directly to the standard Gaussian prior p(6.) = N(0e;0,T) on. the encoder parameters 6.. The
presence of the log-determinant log(det(in)) is due tovheteroscedastic noise modelling [43], and
accordingly the network Fg has two outputs, one for the.mean and the other for the variance. The
second option is to fix the output noise variance as S, = o2l (with known o) in the heteroscedastic
noise modelling. This leads to the following loss

1 &1

£0) = 55 25 5,20

S (25,0 + *||9e||2-

This is essentially identical to the loss wm(1.1) (modulo weight decay), which is arguably the most
popular loss for obtaining supervised end-to-emnd DL-based image reconstruction algorithms.

3.2 Unsupervised Knowledge-Transfer

In the second phase we use the Bayesian framework to integrate the knowledge learned in the first
phase to new imaging data for whiehiwe'don’t have access to paired training data but only to noisy
observations. Note that the knowledge of the trained network (on the supervised data B®) is encoded
indirectly in the posterior distribution g (6e) and in the optimal parameters §;. The goal of the
second phase is to approximate the true posterior p(f.|B% B"), and to find the updated optimal
decoder parameters#@jigiven the measurement data B" and the supervised data B® from the first
phase. This can be achieved,as follows. By Bayes’ formula, the posterior distribution p(f.|B*, B") is
given by
p(0.[B*, BY) = (2°) ' p(B"[6.)p(60c[B°).

Here p(B"|6,) is the likelihood at test-time (i.e., the likelihood of the measurement data B" from the
target regonstructionstask), and the normalising constant Z" = { p(B"|0.)p(6e|B*)db, is the marginal
likelihood of the'total observed data (BS,B"). We approximate the posterior p(6e|B%) (from the
supervised.phase) by the estimated optimal posterior qu* (0e), which is learned in the first phase,
thu§ encapsulating the “proxy” knowledge we have acquired from the supervised dataset BS. An
approximation g (0e) to the true posterior p(f.|B*, B") for the combined data (B®, B") can then be
obtained using VI as

(eda qu* (96)) € argmin ‘Cu(eda qu(ee)),
HdERDd dvy (Ge)eQ

10
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where the objective function is given by

L%(Ba, 4y (0e)) := KL [qy(8e) [ (Z") " p(B"|6e) a3 (6e)] (3-3)

The approximate posterior qz* (6c) over the supervised dataset B® is by construction usedras.a prior
in the second phase. It remains to construct the likelihood p(B"|f.) for the unsupervised dataset
B". For any measurement datum y" € B", the likelihood p(y"|f.) is set to

p(y"|0e) = N (y"; AFj (), 0°1).
Upon letting y* = AFj(zf), we have

u 1 ~u u m
log p(y"*|0e) = — = 17" — y"|* — Elog(27r02).

202
Note that unlike in (3.2), this likelihood would exert no influence omythe component Fj of the
network output Fy (arising from the heteroscedastic modelling). To address this, we shall, inspired by
the bias variance decomposition, replace the log-likelihood logp(y"|6g) with a suitable modification.
For p(z") = N (:U“; Fp(zf), E), using the standard bias-variance décomposition, we obtain

Ep(en) [| AT — y"|*] = | AEpu)[2"] — g2+ By iyl | AEp 30 [27] — Az"?).

By the definition of ¢%, the first term can be rewritten as'|y* — y*|?. Meanwhile, for a random
vector w with mean E[w] = 0 and covariance Coy(w), wethave

E[|w]?] = E[w "w] = trace(Cov(w)).
Since Az" — AE,;zu)[Z"] is a zero mean tandom vector with covariance Cov(w) = AS AT, we have
Ep(ju)[”AEp(ju)[fiu] - AJNZUHQ] = trace(AfJAT).
Consequently,
E, o) |AZ" — g =4z~ ") + trace(ADAT),  with &" = Fj(zf)

This will be used in the loss funétion in the modified log-likelihood. In practice, the term trace(Aﬁ)AT)
can be approximated using randomised trace estimators (e.g., the Hutchinson’s estimator [15]). The
computation of the optimalyvariational parameters 1)* and the optimal decoder parameter 6} by
minimising the negative value of the ELBO proceeds analogously to the supervised phase, but with
the key changes outlined above.

In additionsto enforcing data fidelity, we also include a regularisation term to the loss in (3.3),

LY (04,45 (0e) = L£"(0a, 4 (0c)) + VEqy 0.) [TV(Ff ()],

where a§ a regulariser we take the total variation seminorm TV(u) = ||[Vu|;, and v > 0 is the
regularisation parameter. This incorporates prior knowledge over expected images by penalising
unlikely or‘undesirable solutions. TV is widely used in image reconstruction, due to its edge-
preserving properties [14], and has also been applied to learned reconstruction [8, 16]. Intuitively,
without the TV term, optimising the loss is akin to minimising the fidelity, and thus the training
process 1S prone to overfitting, especially when the neural network is over-parameterised, necessitating
the use, of early stopping (which also has a regularising effect). The numerical experiments
indicate that incorporating this term can help stabilise the training process and lead to improved

11
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reconstructions, which agrees with earlier observations [8, 16]. In summary, the loss at the second
phase reads

L84, 4y (0e)) = —Eqy 0.) [log p (B%[6c) — YTV (Fly (z8))] + BKL [qy (6e ) ¢(Be)] ,
which upon expansion, relabelling, and the aforementioned modifications, leads tosthe loss

. 1 M

L%(0a, qy(0:)) = Nu

n=1

+ BKL [y (0c) | gy (6e)] - (3.4)

Since gy (fe) and gj« (6e) are constructed as the products of independent @aussians (i.e., mean field
approximation), the term KL[qy (fe)]|qj« (e)] has a closed-form expression given by

1 .
Eq, (005190 — AFG (5.0)[1* + trace(ASAT )y TV(FY (7 0)) ]

De oS 0'2. 44 . 8)2 1
KL [1001d30(0)] = 33 |10 2 + 2SI )
j=1 J

where ¢ = ((uj,aj))jD:el refers to variational parameters,of the approximate distribution gy (6.),
where f1; and o; are the mean and the variance of the j<th eomponent of 0., and o7 and pj are the
optimal variational parameters learned in the first phase (andfhus fixed during the second phase).
Note that the loss in (3.4) represents only one possibility for unsupervised knowledge transfer, and
there are alternatives. In the appendix, we derive an altérnative training loss, by constructing the
likelihood p(y*|fe) differently, which also allowsiinterpreting the loss L" as an approximate Bayesian
loss.

It is instructive to interpret the terms ifinthe loss £" in the lens of more familiar variational
regularisation [22, 28]. The first term in (3:2) enforces data fidelity, which encourages the learned
network Fy to be close to theaight-inverse ofyA (i.e., the action of the forward map A on the
output of F(z}) is close to the measurement data ). The second term, trace(AXAT), controls the
growth of the variance component, and along with the first term arises naturally when performing
approximate VI (with a Gaussian likelihood) on the posterior distribution p(6.|B°, B"); see the
appendix for further discussions.™Note‘that this term does not appear if one considers only the
usual maximum a posteriori (MAP)estimator to the posterior distribution p(6e|B*, B"). The third
term, the TV regularisers plays a crueial role in stabilising the learning process [8]. The fourth term
KL[gy (e ) (fe)] forees the posterior gy (6e) to be close to the prior gj« (fe) of the unsupervised
phase (which is the posterioriebtained during the supervised phase). These properties together give
rise to a highly flexible UKT paradigm: the adaptation can be done individually for each query
image datum (which is natural for streaming data) or for a whole batch of measurement data. The
regularisationdparameters™y > 0 and S > 0 control the strength of the related penalty terms. In
practice, it is important te ehoose the regularisation parameters 8 and ~ suitably, as in any inverse
technique. In‘our experiments § and - are chosen on a validation set.

Remark 3.2. The loss L in (3.4) can be viewed as a generalisation of the more conventional
non-Bayesian approaches for domain adaptation

1 M

= o

n=1

u 1 u u u /3 S
£%(0) [§||yn — AFg(ay, 0)* + 7TV (Fo (a3 0))] + 5 16e — 02, (3.5)

wherend; is the optimal encoder network parameter learned at the supervised phase. This loss
éncourages the network output Fo(xy) to be close to piece-wise constant, and meanwhile, the
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Figure 2: Representative ground truth images from Ellipses (left), FoamFanB (middle) and LoD-
oFanB (right) datasets. The window of the LoDoFanB dataset is set tora Hounsfield unit (HU)
range ~ [-1000, 400].

corresponding network should not deviate too much from 05. Due to the use of the Bayesian
framework, the UKT loss (3.4) involves extra terms that arexrelated to the variance of the parameters.
Formally, the loss in (3.5) can also be obtained by consideringythe MAP estimator of the posterior
distribution p(0.|B°, B"Y), concurring with the well-known comnection between the MAP estimator
and the posterior distribution. Nonethelessgeven if considering the loss (3.5) alone, the Bayesian
framework elucidates the standing assumptions for obtaining the loss. The loss in (3.5) is closely
connected to the loss

1

:ﬁ

n=1

1

u u u /B S
£2(0) Sl ARy (23 0) 2 + 20— 01, (36)

which also penalises the deviation of decoder parameters 0q from the pretrained parameters 65. This
is essentially the training loss employed im, [25]. The other major difference between (3.5) and (3.6)
lies in use of the TV penalty on the network output Fo(zf).

It is also worth notingdhat 3 affetts the loss L in (3.4) only via the term trace(ASAT),
controlling the covariance (of the estimate, but not via the data fidelity term. This is due to the
simplified derivation of the loss. The genuine Bayesian loss in (A.1) to be derived in the appendiz
does incorporate S indo moise covariance and consequently it does enter into the noise weighting
matriz in the data fidelity. See the appendiz for further discussions.

4 Experiments and Results

In this section we present numerical experiments on simulated data to showcase the performance of
the proposed UKT framework.

4.1 _Experimental Settings
First we deseribe the experimental setting, including datasets, data generation, benchmark methods
and training details.

Datasets. In the experiments we use three datasets: Ellipses, FoamFanB and LoDoFanB. The
Ellipses, dataset consists of random phantoms of overlapping ellipses, and is commonly used for
inverse problems in imaging [2]. The intensity of the background is taken to be 0, the intensity

13
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of each ellipse is taken randomly between 0.1 and 1, and the intensities are added up‘in regions
where ellipses overlap. The phantoms are of size 128 x 128; see Fig. 2 for a representative phantom.
The training set contains 32 000 pairs of phantoms and sinograms, while the test set, consists of 128
pairs. This dataset is used for the training of all the methods that involve supervised training./ The
FoamFanB dataset is constructed using a cylindrical foam phantom containing{100 000 randomly-
placed non-overlapping bubbles. The phantom consists of 100 slices of size¢ 1024 %, 1024 and is
generated with the open-source foam ct_phantom package [47]. Analytic projection images of the
phantoms were also computed using the package. Each slice is then cropped inte four 256 x 256
square sections, which are zero padded with 50 pixels in all four directions. Out of the resulting
400 slices, we randomly retain half; see Fig. 2 for a representative slices, The intensity of the pixels
are either 0 or 0.5, which allows retaining finer structures in the images.-.Fhe'T.oDoFanB dataset
[37] is more medically realistic, and consists of 223 human chest CTs,.ift which the (original) slices
from the LIDC/IDRI Database [6] have been pre-processed, and the resulting images are of size
362 x 362; see Fig. 2 for a representative slice. The FoamFanB and LeDoFanB datasets are used in
the unsupervised phase, where we assume to know only the sinograms. The ground truth images
are only used to evaluate the performance of all the studiéd methods; unless otherwise specified.

Data generation. For the forward map A, taken to be the Radon transform, we employ a two-
dimensional fan-beam geometry with 600 angles for.the low-dose CT setting, and 100 angles for
the sparse-view CT setting. Source-to-axis and axis-to-detectop distances are both set to 500 mm.
For both datasets we apply a corruption process given by \exp (—uAx), where A € RT is the mean
number of photons per pixel and is fixed at 8000 (corresponding to low-dose CT), and p € RY is the
attenuation coefficient, set to 0.2. We linearise the forward model by applying the transformation
—log(+)/p. We can then use 1| Az — y|? as the datafidelity term since post-log measurements of
low-dose CT approximately follow a Gaussian distribution [57, 38].

Benchmark methods. We compare the proposed BDGD+UKT approach with several unsuper-
vised and supervised benchmarks. Unsupervised methods include FBP (using a Hann filter with a
low-pass cut-off 0.6), (isotropic) TViregularisation, and DIP4+TV [8]. Supervised methods include
U-Net based post-processing (EBP+U=Net) [17], two learned iterative schemes: learned gradient
descent (LGD) [2] and learned primal dual (LPD) [3], and BDGD (i.e., without UKT) [11, 10].
U-Net is widely used for post=pregessing (e.g., denoising and artefact removal), including FBPs
[29], and our implementation follows{8] using a slightly down-scaled version of the standard U-Net.
LGD and LPD are widely used; with the latter often seen as the standard benchmark for supervised
deep tomographic reconstructioniiBDGD exhibits competitive performance while being a Bayesian
method [11, 10].

Training, hyper-parameters, and implementation. All supervised methods are first trained
on the Ellipses dataset, and then tested on Ellipses, FoamFanB and LoDoFanB datasets separately.
Unless otherwise stated;«the learned models are not adapted to the FoamFanB and LoDoFanB
datasets, but/ perform reconstruction directly on a given sinogram. The methods were implemented
in PyTorch, and(trained on a GeForce GTX 1080 Titan GPU. All operator-related components (e.g.,
forward @perator, adjoint, and FBP) are implemented using the Operator Discretisation Library [1]
with the astra_gpu backend [54].

Forrall the unsupervised methods (FBP, TV, DIP+TV), the hyperparameters (frequency scaling
in FBP andaregularisation parameter in TV and DIP+TV) are selected to maximise the PSNR on a
subset of the dataset consisting of 5 images. DIP+TV adopts a U-Net architecture proposed in
[8] (aceessible in the DIVal library [36]): a 5-scale U-Net without skip connections for the Ellipses
dataset, and a 6-scale U-Net with skip connections only at the last two scales for FoamFanB and
LioDoFanB datasets. For both architectures the number of channels is set to 128 at every scale. In
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Table 1: Reconstruction methods used in this work. For each method, the number of learnable
parameters is indicated, as well as approximate runtime for both low-dose CT and spatse=view CT
on the LoDoFanB dataset, is reported.

Methods Parameters Runtime
FBP 1 38ms/Tms
Unsupervised vV 1 20s/10s
DIP+TV 2.9-10°  20min/18min
FBP+U-Net  6.1-10% 5ms
, LGD 1.3-10% 89ms/34ms
Supervised .
LPD 2.5-10° 180ms/55ms
BDGD 8.8-10° 7s/6s
BDGD+UKT 8.8-10° 78)/6s

Table 1 we report the number of parameters used for the LoDoFanB dataset.

All learned reconstruction methods were trained until convergence on the Ellipses dataset.
FBP+U-Net implements a down-sized U-Net architecture with 4 scales and skip connections at each
scale. LGD is implemented as in [3], where the parameters of the reconstructor are not shared across
the iterates, and we use K = 10 unrolled iterations. [LPD/follows the implementation in [3]. We train
FBP+U-Net, LGD and LPD by minimising the loss in (1.1) using the Adam optimiser and a learning
rate schedule according to cosine annealing [39]s All models‘are trained for 30 epochs. BDGD uses a
multi-scale convolutional architecture (cf. Figi 1), with K = 3 unrolled iterations. Furthermore, the
UKT phase is initialised with parameters (¢, 03), which are obtained at the end of the supervised
training on the Ellipses dataset. For4he FoamFanB dataset, the regularisation parameter ~ is set
to 5-107° for the low-dose setting and tolk.- 10~* for the sparse-view setting. Analogously, for the
LoDoFanB dataset, the regularisation parameter v is set to 1-10~* for the low-dose setting and to
5-107* for the sparse-view setting.3On both datasets, 3 is set to 1- 1074 for both settings. 7' = 10
Monte Carlo samples are used t0 recomstruct the point estimate, and to compute the associated
uncertainty estimates. A Pytorch implementation of the proposed approach is publicly available
at https://github.com/rb376/unsupervised_knowledge_transfer to reproduce the numerical
experiments.

4.2 Experimental Results

In Table 2 we report PSNR, and'SSIM values for the studied datasets. We observe that unsupervised
methods give higher PSNR and SSIM values on FoamFanB and LoDoFanB datasets than on the
Ellipses dataset,-withoFBP/on FoamFanB being the exception. The converse is true for supervised
methods. Moreover, TV, and DIP+TV outperform supervised reconstruction methods in both
low-dose and sparse-view CT settings for FoamFanB and LoDoFanB datasets. The results for
BDGD+UKT and BDGD indicate that adapting the parameters on the given dataset allows
achieving a notigeable improvement in reconstruction quality in both low-dose and sparse-view CT
settings.. Note also that BDGD+UKT outperforms all supervised reconstruction methods, while
performing en'par with DIP+TV (but the corresponding computation time is only a small fraction
of that for the latter). This last observation is not surprising, since the test data (FoamFanB and
LoDeFanB) are distributed differently from the synthetic training data (Ellipses). As a result, the
performance of supervised reconstruction methods deteriorates significantly.

Table 1 reports also the approximate runtime for all the methods under consideration. All
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Table 2: Comparison of reconstruction methods for the Ellipses, FoamFanB, and LoDoFanB datasets
by average PSNR and SSIM. All supervised methods are trained on the Ellipses dataset. Learned
models are then tested on the FoamFanB and LoDoFanB datasets. In the table, the two best
performing methods are highlighted in bold case.

Low-Dose CT Sparse-View CT
Methods Ellipses FoamFanB  LoDoFanB Ellipses FoamFanB " LoDoFanB
FBP 28.50/0.844 20.73/0.629 33.01/0.842  26.74/0.718 _16.34/0.174 29.10/0.593
Unsupervised TV 33.41/0.878 36.39/0.939 36.55/0.869  30.98/0.869 27.53/0.832 34.74/0.833

DIP+TV 34.53/0.957 38.42/0.997 39.32/0.896 32.02/0.931,31.99/0.987 36.80,/0.866
FBP+U-Net 37.05/0.970 30.26/0.723 32.13/0.820  32.13/0.936 _20:09/0.347 27.22/0.694
LGD 40.73/0.985 31.37/0.909 33.42/0.862  33.72/0.952  22.86/0.687 28.49/0.507

Supervised
LPD 44.27/0.994 28.09/0.918 33.21/0.866 36.19/0.970 24.86/0.886 34.60/0.838
BDGD 43.60/0.994 30.72/0.974 35.91/0.877 35.36/0.971 19.44/0.406 34.16/0.824
BDGD+UKT - 40.72/0.997 38.40/0.899 - 30.07/0.966 35.67/0.855

Table 3: “Upper-bounds” obtained via supervised

fine-tuning on LoDoFanB. Tabled: Comparison between BDGD+UKT and

Ulx

Methods Low-Dose CT Sparse-View CT & -
Methods Low-Dose CT Sparse-View CT

FBP+U-Net  36.05/0.879 34.47/0.828
BDGD4UKT 38.33/0.895  35.67/0.853

LGD 38.33,/0.894 36.00,/0.855
UKT w/o TV 27.65/0.549 22.86/0.354

LPD 39.85/0.914  37.59/0.876

U-BDGD 36.64,/0.870 35.68/0.852

BDGD+SKT 40.14/0.909 37.714/0:877

learned methods (i.e., LGD, LPD, BDGD) require multiple calls of the forward operator A, and
thus they are slower at test time than the methods that do not (e.g., FBP+U-Net, which only
post-processes the FBP reconstruction)s In addition, BDGD and BDGD+UKT use 10 Monte
Carlo samples to obtain a single reconstruction, leading to a slightly longer reconstruction time of
approximately 7s per image. JHowever;.all learned methods are found to be significantly faster than
the TV reconstruction. Meanwhilef DIP4TV is much slower than TV taking approximately 20
minutes to reconstruct assingle instance of the LoDoFanB dataset. The runtimes for the FoamFanB
dataset were almost identical and are thus not included.

Example reconstructed images are shown in Figs. 3 and 4, for the sparse-view FoamFanB and
the low-dose LoDoFanB CT settings, respectively. We observe that BDGD+UKT significantly
reduces background noise in the reconstructions while faithfully capturing finer details, particularly
in the low-dose setting:nOverall, DIP+TV and BDGD+UKT produce reconstructions with similar
properties. Howeyer, DIP+1V, LPD and BDGD+UKT tend to suffer from slight over-smoothing.
Meanwhile, T'Vatreconstruction suffers from patchy artefacts, which is a well-known drawback of the
TV penalty [14], and also retains more background noise.

The sparse-view setting in Fig. 3 is numerically more challenging and the reconstructions are
susceptible to.streak artefacts, which are especially pronounced in the FBP but are still discernible
in reconstructions obtained by other methods. Nonetheless, best performing methods (DIP+TV
and BDGD4UKT) can achieve an excellent compromise between smoothing and the removal of
streak artefacts. Interestingly, in Fig 4, the learned methods, including BDGD+UKT, suffer from
some _undesirable over-smoothing inside the lung cavity.

BDGD+UKT is good at recovering fine structures that are present in the FoamFanB data, which
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are poorly reconstructed by BDGD. For example, in the last row of Fig. 3, the smaller‘cir¢les are
smoothed out and thus not discernible in BDGD reconstructions, but they are well réconstructed
with BDGD+UKT. Similarly, Fig. 4 shows that BDGD+UKT better captures fine details in the
human torso; for example the zoomed-in region shows an improvement ovemthe overly-smoothed
reconstruction produced by BDGD. These observations clearly indicate that{the unsupervised
fine-tuning is highly beneficial in improving the quality of the reconstructed image.

We further evaluate the learned methods by first pretraining them onrthe Ellipses dataset,
and then fine-tuning them on one half of the LoDoFanB dataset but_with ground truth data
included. The remaining half of the LoBaFanB dataset is used for testing. 4/We thus operate
under the assumption that we have access to only one half of the ground truth images from the
LoDoFanB dataset. This is intended to benchmark the reconstructive propertiesof the unsupervised
fine-tuning against a more popular supervised adaptation, and may serve as the “upper-bound” on
the reconstructive performance of the proposed method. The quantitative résults of this controlled
setting are presented in Tables 3 and 4. The notation SKT stands for,the supervised knowledge-
transfer: the fine-tuning is conducted via (3.2) on one half'of.the LoDoFanB dataset including
ground truth data. Unsupervised (U)-BDGD refers toBDGD trained via (3.4) by completely
omitting the pretraining in the first phase. It is observed that U-BDGD shows subpar reconstructive
properties only for the low-dose CT setting, but surprisingly, it matches the performance obtained
by BDGD+UKT for the sparse-view CT setting. However, we observe that pretraining helps to
considerably speed up the convergence of BDGD+UKT. It takes only a few epochs to converge,
whilst U-BDGD leads to a more unstable andilengthy learning (up to 100 epochs). This behaviour is
also observed with the fine-tuning of other learned benchmark methods. This indicates the need of
an adaptation phase, in the presence of distributional.shift, and the beneficial effect of pretraining.
Moreover, Table 3 shows that using supervised data pairs from the target domain to adapt the
network to the target task can significantly improve the reconstructive properties of all the learned
methods. Nonetheless, the degree of improvement depends strongly on both the used method and
the problem setting. The proposed, BDGD+UKT approach dramatically improves the performance
and mitigates the performance drop-due to the distributional shift. Table 4 also shows the influence
of the TV in the fine-tuning stage. Setting v = 0 leads to overfitting to the noise after 10 epochs
(i.e., approx. 2000 gradient updates), and even with careful early stopping the performance is still
subpar when compared with the approach employing TV regularisation. Therefore, the TV term
plays an important role in the proposed framework.

It is worth notingithat BDGD+UKT also provides useful predictive uncertainty information on
the reconstructions. In Figs. 5 and 6, we present the uncertainty estimates along with pixel-wise
errors for the FoamFanBrand LeDoFanB CT settings, respectively. The overall predictive uncertainty
largely concentrates aroundithe edges: the reconstruction of sharp edges exhibits a higher degree
of uncertainty. Thisiagrees well with the intuition that edges are more challenging to accurately
resolve than smooth regions, and thus are more prone to reconstruction errors. Note that aleatoric
and epistemic uncertainties have different sources, one is due to inherent data noise, and the other
due to thesmodel uncertainty, arising from the lack of a sufficient amount of training data. To
ascertain the sources, we apply the decomposition (3.1). Interestingly, we observe that in both
the low-dose and the sparse-view CT settings, epistemic uncertainty appears to be dominating
within the (overall) predictive uncertainty. Nonetheless, the two types of uncertainty share a similar
shape, and‘in either case, the overall shape closely resembles the pixel-wise error, indicating that
the uncertainty estimate can potentially be used as an error indicator, concurring with existing
empirical measurement data [52]. It is also instructive to compare the uncertainty estimates obtained
by BDGD and BDGD+UKT. Figs. 5 and 6 show that the estimates obtained by BDGD result
in larger magnitudes, with the aleatoric component overshadowing the epistemic one. Visually,
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Foam Ground Truth FBP TV DIP+TV
PSNR: 15.94, SSIM: 0.183 PSNR: 27.18, SSIM: 0.862 PSNR: 31.37, SSIM:0.986

FBP+U-Net LGD LPD
PSNR: 20.02, SSIM: 0.605 PSNR: 22.11, SSIM: 0.649 PSNR: 24.42, SSIM: 0.880

BDGD BDGD+UKT
PSNR: 19.07, SSIM:0.386 PSNR: 29.32, SSIM: 0.963

Figure 3:.Sparse-view reconstruction of the FoamFanB dataset along with a zoomed-in region
indicated by a small square.

the unsupervised adaptation phase ameliorates the epistemic estimate: the pixel-wise predictive
epistemic uncertainty obtained with BDGD+UKT is better at capturing the edges of the anatomical
structures'present in the reconstructed image.

18
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Human Chest CT FBP TV DIP+TV
PSNR: 33.97, SSIM: 0.892 PSNR: 37.71, SSIM:.0.912 PSNR: 43.16, SSIM: 0.971

30 FBP+U-Net LGD LPD
31 PSNR: 33.19, SSIM: 0.900 PSNR: 34.78, SSIM: 0.929 PSNR: 34.68, SSIM: 0.937

44 BDGD BDGD+UKT
45 PSNR: 37.27, SSIM: 0.951 PSNR: 41.97, SSIM: 0.970

Figure 4: Jsow-dose liiman chest CT reconstruction within the LoDoFanB dataset along with a
zoomedAn region indicated by a small square. The window is set to a HU range of ~ [-1000, 400].

4.3 Discussion

53 The experimental results in Tables 2 and 4 have several implications for image reconstruction.
>4 First, they show that while supervised iterative methods (FBP+U-Net, LGD, and LPD) can deliver
impressive results when trained and tested on imaging datasets that come from the same distribution,
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but fail when applied directly to data from a different distribution. Specifically, on the Ellipses
dataset they vastly outperform the traditional FBP and TV, but on the LoDoFanB’ dataset the
difference between learned methods and FBP nearly vanishes (particularly in the low=dose setting),
and the standard TV actually outperforms the supervised methods. Thig,behaviour might be
due to a form of bias-variance trade-off, where training with a large dataset allows improving the

performance in the supervised case, but which has a negative effect on the gefieralisation property.

The performance degrades significantly when the distribution of the testing measurement data
deviates from that of the training data. This results in a loss of flexibility; and,underwhelming
performance, when reconstructing an image of a different type. Thus, adjusting thetraining regiment,
or further adapting the network parameters to data from a different distribution, can be beneficial
for improving the reconstruction quality. The results in Table 3 indicate thatwall learned methods,
including BDGD+UKT, can benefit greatly from the supervised datadfrom the target domain.

Overall, the results show that Bayesian neural networks with “VIcan deliver strong performance
that is competitive with deterministic reconstruction networks, when equipped with the strategy of
being Bayesian only a little bit. This can be first observed on the Ellipses dataset. Table 1 shows that
BDGD performs on par with (or often better than) all the unsupervised and supervised methods
under consideration, which is in agreement with previous experimental findings [10]. The results
also show the potential of the Bayesian UKT framework for medical image reconstruction in the
more challenging setting where ground truth imagesfare not available. Namely, adapting the model
through the described framework allows achieving, a Significant performance boost on both the
FoamFanB and LoDoFanB datasets. Moreover, BDGD+UKT shows roughly the same performance
as DIP4+TV, while being significantly faster in terms of runtime, cf. Table 1. This observation is
consistent with existing studies using pretraining in other contexts [27, 49]. Indeed, all the learned
methods are significantly faster than TV.and DIP4+TYV reconstructions. In addition, BDGD+UKT
can deliver uncertainty estimates on the reconstructions, with their sources quantified into aleatoric
and epistemic ones. It is observed that for the studied settings, the epistemic uncertainty dominates
the aleatoric one, and both unecertainty estimates correlate well with the pixel-wise error of the
reconstructions. Nonetheless, the calibration of these estimates remains to be validated, like nearly
all DL-based uncertainty quantification teehniques [9].

The extensive experimental results indicate that UKT shows great promise in the unsupervised
setting. The results clearly show the need for adapting data-driven approaches to structural changes
in the data, its distribution and size, and for incorporating the insights observed in the available
supervised data to update the reconstruction model [46, 42]. Though only conducted on labelling
tasks, recent studies show'that transfer learning through pretraining exhibits good results when the
difference between data distributions is small [59]. Moreover, one needs to ensure that pretraining
does not result in overfitting the data from the first task. Both requirements seem to be satisfied
in the studied setting. Further investigation is needed to examine how does the performance of a
reconstruction’ network change with respect to the size and type of data that the pretraining dataset
consists of, as well as with respect to changes in the physical setting (e.g., forward operators and
noise statisties).

5 _Conecluding Remarks

The use of a full Bayesian treatment for learned medical image reconstruction methods is still largely
under development, due to the associated training challenges [9]. The proposed BDGD+UKT is
very promising in the following aspects: (i) it is easy to train due to the adoption of the strategy
being Bayesian only a little bit; (ii) the performance of the obtained point estimates is competitive
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with benchmark methods; (iii) it also delivers predictive uncertainty. In particular, the‘numerical
results indicate that the predictive uncertainty can be visually used as a reliable errordndicator. \In
this work we have presented a novel two-phase learning framework, termed UKT, for addressing the
lack of a sufficiently large amount of paired training data in learned image recenstruction, techniques.
The framework consists of two learning phases, both within a Bayesian frameworks It first pretrains
a learned iterative reconstructor on (simulated) ordered pairs and then at test-time, it fine-tunesythe
model to realise sample-wise adaptation using only noisy clinically realistic measurements.” Extensive
experiments on low-dose and sparse-view CT reconstructions show that thesapproach is indeed very
promising. It can achieve competitive performance with several staterof-the-art supervised and
unsupervised approaches both qualitatively and quantitatively.
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A Alternative Loss for Unsupervised Knowledge-Transfer

The derivation of the training loss (3.4) is not very pfineipléd in the sense that the trace term
trace(ASAT) does not arise naturally from the likelihood function p(y“|fe) using Bayes’ rule. One
can though derive alternative losses by slightly modifyingithe construction of the likelihood p(y*|fe).
Below we give one such construction based on hierarchical modelling. For any measurement datum
y" € B", corresponding to the unknown image %, thelikelihood p(y"|z") is set to

p(y" |2t = N (% Az", 0°1),

where o2 dictates the strength of the measurement noise. The likelihood p(y"|z") can be obtained
under the standard assumption that the noise corruption to the exact data Az" (for the unknown
image z%) follows a Gaussian distribution with zero mean and variance o2I. Meanwhile, under the
heteroscedastic noise modelling;the unknown image z" (which in turn depends on the network
parameter ) is assumed to follow a_Gaussian distribution

plz"|6c) = N (2 Fy (af), 2),

with the mean F} (z}) and,covariance 3 being the two outputs of the neural network Fy. Consequently,
assuming that the 'data noise and the unknown image z" are independent, combining the last two
identities using Bayes’ rule/leads to

p(y"[0e) = N (y"; AFp (af), ASAT + 0°1).
Upon letbing §" ="AF} (x3), we then have
1 - 1 A
log Py )= (4" — Yy T(ASAT 4+ 627t — ") — 3 log(det(ASAT + o21)) — % log(2m).

In addition/to enforcing data fidelity, we may also include the total variation penalty into the loss
(to stabilise the training process). Finally, after expanding, relabelling, and ignoring the constant

21



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - IP-103399.R1

terms (in 6), we obtain the following alternative loss at the second phase

Nll
u 1 1 u u S — u u
L%(0a, qy(0e)) = nu Z Eq, 0e) [g(AFZ(me) -y )T(AEnAT +0°0) 1(AF5(37n,0) —y")
n=1
1 S u S
+ 5 log(det(AS, AT + 02 1) + A TV(E (o)) | + KT [g (Vg (0 .1

Note that the term KL[qy (0e)]q;,«(fe)] has a closed-form expression.

The loss in (A.1) differs from that in (3.4) only in the construction’of the likelihood p(y"|fe).
However, the former is computationally less convenient, due to the presence of the factor (AilAT +
o)~ in the data consistency term, as well as the log-determinant 16g(det(A%A” + o21)). Indeed,
in view of the following well-known matrix directional derivative formulas

dx-1
dx

dlog(det(X))

e [H] = trace(X 'H) and

[H] ==X 'HX

for any symmetric positive definite X, and admissible direction, /', the gradient evaluation requires
solving multiple linear systems, with the matrices given only impligitly. This can be computationally
demanding for large-scale image restoration tasks such as CT reconstruction. In practice, the
derivative of the log-determinant can be efficiently approximated using randomised trace estimators
(e.g., the Hutchinson’s estimator [15], which again involves mu’tiple linear solves).

The next result shows that the loss imn(3.4) is actually a computationally more tractable
approximation to the genuine Bayesian loss in (A.1), under the condition AV AT « o2 (i.e., the
matrix 0 2A% AT has a small operator norm): This result provides a more principled Bayesian
interpretation of the loss (3.4).

Proposition A.1. Under the condition A AT <021, the loss in (3.4) is an approzimation to the
Bayesian loss in (A.1).

Proof. Let r = AF}(xf) —y" be the'residual. It follows directly from the preceding matrix derivative
formulas that

rT(ASAF 0277_17' ~rlo 2 r—rTo T AS ATy,
log(det(ANAH 021)) = log(det(c?1)) + log(det(I + 0 2ALAT))

~ mlogo? + trace(c 2AZAT).

Note that the approximatien is good under the given conditions. Then substituting these approxi-
mations into (A.1), ignoring the constant term and relabelling, we obtain the loss in (3.4). This
shows the desiredrassertion. O
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52 Figure 5: Qualitative uncertainty analysis on the FoamFanB dataset. The pixel-wise absolute
reconstruction error, (max-min normalised across low-dose and sparse-view CT settings) pixel-wise
predictive uncertainty, and its decomposition into the aleatoric and epistemic constituent components
for low=dose and sparse-view CT obtained by BDGD and BDGD+UKT.
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Figure 6: Qualitative uncertainty analysis on the LoDoFanB dataset. The pixel-wise absolute
reconstruction error, (max-min normalised across low-dose and sparse-view CT settings) pixel-wise
predictive uncertainty, and its decomposition into the aleatoric and epistemic constituent components
for low=dose and sparse-view CT obtained by BDGD and BDGD+UKT.
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