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ABSTRACT
Aberrant patterns of cognition, perception, and behavior seen in psychiatric disorders are thought to be driven by a
complex interplay of neural processes that evolve at a rapid temporal scale. Understanding these dynamic processes
in vivo in humans has been hampered by a trade-off between spatial and temporal resolutions inherent to current
neuroimaging technology. A recent trend in psychiatric research has been the use of high temporal resolution im-
aging, particularly magnetoencephalography, often in conjunction with sophisticated machine learning decoding
techniques. Developments here promise novel insights into the spatiotemporal dynamics of cognitive phenomena,
including domains relevant to psychiatric illnesses such as reward and avoidance learning, memory, and planning.
This review considers recent advances afforded by exploiting this increased spatiotemporal precision, with specific
reference to applications that seek to drive a mechanistic understanding of psychopathology and the realization of
preclinical translation.

https://doi.org/10.1016/j.biopsych.2022.08.016
An important goal within cognitive neuroscience is to deter-
mine the precise neurophysiological features that contribute to
the expression of psychiatric phenomena, with the ultimate
goal to inform psychiatric diagnosis and treatment. Given the
multitude of neuroimaging tools accessible to researchers
today, it may seem surprising that neuroimaging research has
had scant impact on clinical psychiatry (1,2). Several non-
competing explanations have been put forward (3), pointing to
either the historical limitations of neuroimaging analyses and
their interpretation (4–9) or the restrictive, subjective, and
arbitrary nature of clinical diagnosis (6,8,10). Here, we focus on
the former. We argue that the utility of neuroimaging in psy-
chiatry has reached an inflection point beyond which recent
methodological advancements can now dramatically improve
the spatiotemporal precision of functional brain mapping,
opening new approaches to elucidating the neurocognitive
dynamics underlying complex human behavior and
psychopathology.

Our ability to precisely capture spatiotemporal patterns of
neural activity has, until recently, been limited by 2 primary
obstacles. One relates to a trade-off between spatial and
temporal resolutions that is inherent to a reliance on nonin-
vasive neuroimaging approaches. This limits the ability of any
single methodology to provide a complete picture of both the
where and the when of the neural processes that underlie
complex human cognition and behavior, potentially obscuring
core aspects of neural dynamics that play causal roles in the
genesis of psychiatric illnesses.

A second obstacle is the extent to which it is possible to
ascribe precise mechanistic significance to in vivo–recorded
brain activity; in other words, the what and the how of a neu-
ral process. For example, an increased blood oxygen
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level–dependent signal in the striatum after receipt of a reward
is interpreted as indicating a functional role for this structure in
reward processing, but this observation lacks specificity as to
what that functional role actually is (11). Mechanistic specificity
can be gained from designing highly controlled experiments
that attempt to isolate a precise cognitive function, usually
informed by a computational model, though this often entails
reduced ecological validity and generalizability (12,13).

The dynamic nature and real-world relevance of features
that characterize psychiatric disorders mean that both
spatiotemporal and functional precision are crucial to
improving our understanding and, ultimately, guiding devel-
opment of targeted treatments (14). In this review, we outline
current trends in human neuroimaging that advance a quest for
increased spatiotemporal precision. First, we provide an
overview of the current spatiotemporal resolution achievable in
neuroimaging. Second, we illustrate how to enhance spatio-
temporal precision by extracting meaningful state representa-
tions from neuroimaging data, as well as how to track the
dynamic reinstatement of these processes in the brain, taking
recent breakthroughs in the detection of hippocampal replay
using magnetoencephalography (MEG) as a case example.
Finally, we explore how uncovering the spatiotemporal dy-
namics of mechanistically relevant neural activity can be
combined with generative modeling of pathological behavior
and cognition, with specific relevance to the burgeoning field
of computational psychiatry (15).
SPATIOTEMPORAL PRECISION OF NEUROIMAGING

Noninvasive neuroimaging methods range from modern
ultrahigh-field magnetic resonance imaging that delivers a
f Biological Psychiatry. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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spatial resolution as fine as 0.5 mm (16), to older technologies
such as electroencephalography (EEG) and MEG that provide
measurements of mass neural activity at a millisecond reso-
lution (17,18). Each of these modalities has strengths and
weaknesses with regard to spatial and temporal resolution, in
addition to factors such as tolerance in freedom of movement
(19) and the precise physiological processes used to index
neural activity.

In psychiatry, it can be conjectured that processes under-
lying psychopathology encompass rapidly evolving and
spatially specific neural dynamics. For example, disordered
belief formation in schizophrenia has been ascribed to aberrant
activity in the prefrontal cortex and hippocampus related to
reduced synaptic gain, causing an imprecise coding of prior
beliefs, which in turn influences neural responses to surprising
stimuli as early as 50 ms post stimulus onset (11). Similarly,
depression has been thought of as a disconnection syndrome,
where connectivity between anatomically discrete brain re-
gions is reduced (20,21) but where the rapid, dynamic evolu-
tion of this connectivity (i.e., subsecond transient changes in
distinct spatial neuronal populations) differ between clinical
subtypes (22,23), providing a potential biomarker for the effi-
cacy of electroconvulsive therapy (24). Thus, despite apparent
progress using conventional approaches, it is nevertheless the
case that fundamental research questions related to neural
dynamics likely require a level of spatiotemporal precision that
has historically been extremely difficult to realize (25).

Multimodal Imaging

Considerable effort has been invested in attaining higher
spatiotemporal precision by deriving converging results from
separate neuroimaging methodologies with complementary
spatial and temporal resolutions, recorded either
Table 1. Key Terms and Definitions

Term

Machine Learning A methodological approach in which an
relationships between variables in a tra
to predict the same relationships. Ma
agnostic.

Statistical Learning A branch of machine learning in which a
and fit to a training dataset to infer re
selected model (56). The optimized m

MVPA A supervised classification problem tha
voxels and a particular experimental c
detected by applying classifiers to a t

Neural Representation A spatiotemporal pattern of neural activit
the pattern encodes the state (121).

Cognitive Map A neural representation of how different

Structural Inference The ability to infer how an environment
as any higher-order information (74). I

Replay A neurophysiological phenomenon whe
indicating their relationships within a

Computational Psychiatry A field of research in which generative m
behavior, cognition, environment, and

Reinforcement Learning A computational model describing how

CBT A talking therapy that aims to reduce sy
and their associated behaviors (124).

BOLD, blood oxygen level–dependent; CBT, cognitive behavioral therap
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simultaneously (e.g., simultaneous EEG–functional MRI [fMRI])
or in separate sessions (e.g., MEG followed by fMRI) (26). In
many cases, this multimodal approach to neuroimaging has
been informative about brain dynamics underlying psychopa-
thology (27). For instance, the amplitude of a fast-latency
signature of reward processing detected with EEG correlates
with the BOLD signal in the striatum, and together, this fast
striatal reward responsivity is reported as blunted in a subtype
of depression characterized by impaired mood reactivity (28).
Thus, multimodal imaging has the potential to enhance the
detectability of subtle neurobiological effects that would
otherwise be difficult to detect through reliance on a single
modality (26,29). Multimodal imaging studies, however,
impose a significantly higher demand on resources, and a lack
of a unifying model can lead to difficulties in interpreting
convergent or discrepant multimodal findings (27,30).

Increasing Granularity Using Statistical Learning

A recently developed approach to enhancing spatiotemporal
precision of a single neuroimaging modality involves the
exploitation of machine (or statistical) learning, which har-
nesses a range of statistical techniques to distinguish between
neural or behavioral states (see Table 1 for a list of terms and
definitions). This approach has demonstrated that even the
most nuanced fluctuations in spatiotemporal neural data may
contain relevant information (31). These nuances, such as
small differences in the angle of neighboring dipoles in the
MEG data, create statistically separable patterns that are
identifiable using multivariate pattern classification algorithms.

An early example of a machine learning approach to neu-
roimaging data involved decoding visual orientation from the
human visual cortex using multivoxel pattern analysis of fMRI
data (32). Although orientation-selective cortical columns are
Definition

algorithm (e.g., a support vector machine) is iteratively improved to capture
ining dataset (120). The optimized algorithm is then applied to a test dataset
chine learning may be supervised or unsupervised and is generally model

suitable statistical model (e.g., logistic regression) is deliberately selected
lationships between variables, in accordance with the assumptions of the
odel may then be used to predict relationships in a test dataset.

t captures the relationship between spatial patterns of BOLD signal across
ondition in a training dataset (120). These spatial patterns can then be
est dataset.

y that is reliably evoked by a specific mental or physical state, indicating that

states relate to each other (74).

is structured, given previous experience of state-to-state transitions, as well
n other words, the ability to construct, utilize, and update a cognitive map.

reby neural representations of states are reactivated in a specific order,
cognitive map (122).

athematical models are constructed to explain the relationships between
the underlying neurobiology of psychiatric disorders (11).

decision making is influenced by past experiences of reward (123).

mptoms of mental disorders by challenging dysfunctional beliefs (cognition)

y; MVPA, multivoxel pattern analysis.
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much smaller than the spatial resolution of fMRI (3 mm3),
orientation selectivity can be reliably estimated from signals
generated by entire ensembles of voxels. Remarkably, orien-
tation selectivity (33) and retinotopic maps in primary visual
cortex (34) have now been reliably estimated from MEG data
using support vector machine classifiers, despite source-
reconstructed MEG having a resolution in the order of
several millimeters at the cortical surface. This example dem-
onstrates that modern analytic approaches can exploit subtle
variations in coarse spatial or temporal information to detect
and classify neural processes that unfold at a finer scale than
the resolution of the imaging modality itself. Such a feat can be
achieved by biology-agnostic machine learning methods that
distill spatiotemporal information from rich sources of neuro-
imaging data (as just described), and also by biophysically
realistic models that use prior knowledge of neurophysiological
activity (provided by other modalities; e.g., invasive electro-
physiological recordings in animals), to capture traces of such
processes present in noninvasive human neuroimaging data
[e.g., dynamic causal modeling of fMRI and MEG/EEG (35)].
Thus, both biologically informed models and biology-agnostic
machine learning methods can be used to offset spatiotem-
poral constraints of current neuroimaging methodologies.

HIPPOCAMPAL REPLAY AS A CASE EXAMPLE

A striking example of the use of statistical learning to extract
precise spatiotemporal information from MEG data comes
from pioneering studies demonstrating hippocampal replay in
humans (36). A central tenet of this review is that noninvasive
measurement of hippocampal replay in humans is likely to
represent a major advance not only for cognitive neuroscience
but also for biological psychiatry. The approach indicates that
neuroimaging data can provide a sufficiently rich source of
spatiotemporal information to signal rapid, dynamic shifts in
mental states, thereby allowing for a more precise estimate of
when and where cognitive processes unfold in the brain.
Below, we detail this approach and discuss how it has been,
and can be, exploited to further the field of biological
psychiatry.

The Methodological Challenge of Replay

Replay was first observed in rodents in the 1990s where,
during post-task rest, hippocampal place cells indexing the
trajectory of an animal through an environment rapidly reac-
tivated in the same order in which these locations were
experienced, albeit with a pronounced temporal compression
(37–39). This spontaneous and rapid unfolding activity pattern
was subsequently shown to play a causal role in memory
consolidation (40–43) and has been linked to higher-order
cognitive functions such as reward learning (44–50) and
planning (51–55).

In humans, measuring hippocampal replay noninvasively
presents a considerable methodological challenge because
one of its putative sources (the hippocampus) is located deep
within the brain, and the speed with which replay events unfold
is extremely fast (in animals, the sequential reactivation of
place cells indexing discrete locations is typically separated by
tens of milliseconds). This challenge is shared by neuroimaging
research in psychiatry, where there is often a need for both
B

spatial and temporal precision. For example, in mood disor-
ders, fast latency activity in deep brain structures, such as the
amygdala, is believed to play a pivotal role in the genesis and
maintenance of symptoms but is notoriously difficult to mea-
sure in vivo (25). Moreover, replay by its very nature involves
reactivation of anatomically specific neural populations (e.g.,
specific place cells) that represent specific mental states (e.g.,
different locations in space). Thus, measuring replay in humans
from noninvasive neuroimaging data necessitates innovative
approaches, such as the exploitation of statistical learning to
extract fast sequential reactivation of state representations
(56,57).
Measuring Hippocampal Replay

An approach to quantifying replay from noninvasive neuro-
imaging data is temporally delayed linear modeling (56), which
estimates evidence for sequential state reactivation. Tempo-
rally delayed linear modeling capitalizes on the fact that reac-
tivation of a particular state within the hippocampus causes a
cascade of related activities across a distributed network that
includes the entorhinal cortex (58), medial temporal cortex (59),
visual cortex (60), and prefrontal cortex (61–64). Thus, while
hippocampal activity can be challenging to identify from MEG
recordings [but far from impossible; see (65,66)], information
related to a specific memory or state can be decoded from
unique spatial patterns of neural activity to uncover rapid,
sequential reactivation of prior experiences (57,67–73). This
ability to detect subtle but relevant spatial information in-
creases both temporal and representational precision (e.g.,
specific memories) even at relatively low spatial resolution.
Importantly, in psychiatry research, representational precision
might often be considered more valuable than spatial preci-
sion, such as when investigating whether a therapeutic inter-
vention instantiates a change in cognitive processes.

How can specific states be isolated and captured? In-
vestigators commonly use visual stimuli presented in a
particular order to represent distinct states. A key idea here is
that the brain organizes information—spatial or otherwise—
into cognitive maps constructed from information such as
conceptual associations or temporal-order relationships (74).
By using visually and conceptually unique images, machine
learning algorithms can accurately and reliably classify spatial
patterns of neural activity associated with viewing each image
(Figure 1A). The sheer size of the visual system in the human
brain means that visual stimuli can be classified from distrib-
uted spatiotemporal activity generated primarily from occipital
and temporal cortices, with classification accuracy typically in
the range of 37% to 50%, which is 3 to 8 times higher than
what would be expected by chance (68,70,72,75). Classifiers
are typically trained on neural activity patterns recorded during
an initial functional localizer when participants view images
before learning about task-related temporal-order relationships
(56). Hence, this constitutes a supervised machine learning
approach, where identity labels are known (e.g., whether par-
ticipants were viewing image A or image B). The associated
MEG sensor patterns then provide a reliable estimate of ac-
tivity when these states are subsequently reactivated, for
example, during a cognitive task such as planning (online) or
during a rest period (offline) (Figure 1). The hippocampus and
iological Psychiatry - -, 2022; -:-–- www.sobp.org/journal 3
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Figure 1. Capturing mental states using statistical learning. (A) Mental states, such as viewing an image, can be differentiated by the unique patterns of
evoked spatiotemporal brain activity captured with magnetoencephalography (MEG). These spatiotemporal state classifiers can then be applied to MEG data
during a task of interest (e.g., decision making), revealing the time course of state reactivation associated with specific aspects of cognition and behavior. (B)
Visual orientation can be classified from MEG and electroencephalography (EEG) sensor data due to unique configurations of angled dipoles along the cortical
surface. [Adapted from Stokes et al. (31)]. (C) Different mental states may also evoke different neural network configurations, producing unique patterns of
activity across MEG sensors.
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medial temporal lobe as well as the visual cortex have been
identified as likely sources of such replay events in humans
(68,69,72).

Overall, investigating replay in the human brain exemplifies
how a rapidly evolving neurophysiological signal can be
detected and characterized at an extremely fine temporal
resolution. More importantly, these studies provide a repre-
sentational specificity (e.g., states in a cognitive map) that is
not easily obtained using traditional neuroimaging analyses.
This implies that a representation-rich characterization of
neuroimaging data can greatly enhance the granularity of
observable neural dynamics (36), allowing exploration of more
abstract neural processes underlying complex cognition.

MECHANISTIC SPECIFICITY

Computational Modeling of Behavior

The ability to uncover hidden spatiotemporal dynamics of
cognition from neuroimaging data has the potential to unlock
crucial information about psychiatric disorders that might
otherwise be undetectable from behavior alone. As an
example, consider the cognitive processes that contribute to
planning. These include an ability to learn and retrieve a
cognitive model of the environment that captures how the
states are connected, the consequences of taking different
actions at different states, and the effective appraisal of pro-
spective reward and loss (76). Computations such as these
evolve dynamically over time, where one type of processing
(e.g., the accessibility of an aversive memory) may influence
another (e.g., the perceived probability of being punished) (77).
These dynamics are pervasive in existing computational
4 Biological Psychiatry - -, 2022; -:-–- www.sobp.org/journal
psychiatry models of behavior, which reveal information about
how specific cognitive mechanisms operate differently in
psychiatric disorders (78).

Spatiotemporally precise neuroimaging can bestow cogni-
tive models with biological plausibility, revealing how modeled
dynamics of cognition (where cognition is either a construct, as
in algorithmic models such as reinforcement learning, or a
biophysically realistic process, as in synthetic models such as
attractor network models) are supported by the temporal
profile of network activity (79). Therefore, it seems reasonable
to conjecture that clinical translation of computational psy-
chiatry may be catalyzed by approaches to neuroimaging
analysis that enhance spatiotemporal precision by 1) validating
the dynamics of theory-driven cognitive processes through
convergent biological evidence; 2) assigning a neurophysio-
logical basis to modeled cognitive mechanisms, potentially
revealing targets for treatment; and 3) enhancing the infor-
mational content of models by revealing hidden states. Below,
we describe recent studies that pair spatiotemporally precise
neuroimaging, such as sequential state reactivation during
replay, with computational psychiatry models, with a particular
focus on structural inference and reward learning.

Inferring Environment Structure

Decoded state representations shed light on how we learn,
store, and retrieve structured representations of our environ-
ment. The spontaneous reactivation of sequences—both
experienced and imagined—is implicated in constructing and
using internal representations of the environment. For
instance, an ordered reactivation of previously experienced
states during a post-task rest period has been shown to
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correspond not to an experienced structure but instead to an
inferred structure that participants abstracted based on a
learned task rule (70,72). This sensitivity of reactivated state
representations to inferred structural features implies that
MEG-decoded replay can provide a neurobiological signature
of an ability to structurally reorganize our model of the world.

A breakdown in structural inference has been conjectured to
underlie psychiatric symptoms that indicate inflexible or re-
petitive thinking, including compulsive behavior in obsessive-
compulsive disorder (OCD), detrimental drug consumption in
addiction disorders, and incoherent thought in schizophrenia
(80–84). This accords with findings of relatively stronger evi-
dence for model-free decision making (i.e., habitual behavior
that disregards environment structure), compared with model-
based control (i.e., deliberate behavior that grants flexibility
and accuracy at the cost of increased cognitive load) (84), in
these clinical populations.

In schizophrenia, we can ask whether a putative deficit in
structural inference is reflected in spontaneous neural replay.
After completing a task in which the temporal order of a
stimulus sequence needs to be inferred, even though the true
order is never experienced, patients with schizophrenia show
weaker evidence for reorganization of ordered state reac-
tivation during rest compared with healthy control subjects, an
effect that localizes to the hippocampus and corresponds
with behavior (72). This finding is consistent with the theory
of reduced synaptic gain in schizophrenia, which is thought
to significantly affect synaptic plasticity and attractor
dynamics within the hippocampus (85–87). This points to a link
between an observable cognitive process (impaired structural
inference, possibly manifesting as incoherent thought) and a
previously unobservable neurophysiological process (replay of
an inferred cognitive map in the hippocampus) that might
guide prognosis, as well as pharmacological and therapeutic
treatment (85).
Making Inferences Under Uncertainty

A feature of several psychiatric disorders is an impaired ability
to update beliefs about the structure of an environment when
something changes unexpectedly. For instance, behavioral
modeling of decision making has shown that paranoia and
delusions can be explained by having a general expectation
that stimulus-outcome contingencies will change more
frequently, resulting in poorer learning in volatile environments
(88–92). This translates to an overweighting of unlikely expla-
nations (i.e., paranoid delusions), the quality of which depends
on a complex interplay of other parameters such as mood, prior
habits, and whether beliefs pertain to social interaction (90).

Dysfunctional belief updating is a target of cognitive
behavioral therapy (CBT), which reports success in correcting
beliefs about risk and uncertainty in the context of OCD (93) as
well as in reducing negative beliefs in depression through
cognitive restructuring methods (94). There are, however, in-
stances where CBT inexplicably fails, such as with the long-
term persistence of paranoid delusions (95) and with treat-
ment resistance in specific subtypes of OCD (96), even when
administered alongside pharmacotherapy. The ability to derive
a precise neural signature of how beliefs evolve over time,
much in the same way that state representations are decoded
B

to indicate neural replay (56), can, in principle, help reveal
whether cognitive restructuring in CBT has a significant impact
on generative processes throughout the course of treatment,
potentially serving also as a posttreatment predictor of relapse
(see Table 2).

Research on healthy participants has demonstrated that
dynamic belief updating can indeed be detected via spatio-
temporal decoding of MEG data. Weiss et al. (97) investigated
the computational and neural mechanisms underlying struc-
tural inference in uncertain environments with and without an
ability to control how information was sampled. They found
that being able to choose which information to sample made
environments appear more stable, echoing beliefs people
with OCD hold about compulsive and repetitive behaviors
(98). Moreover, MEG pattern classification revealed crucial
temporal and spatial dynamics of how evidence was evalu-
ated against current beliefs during information gathering.
Specifically, activity in temporal and visual cortex encoded
how consistent each piece of evidence was with current be-
liefs, revealing changes of mind that occurred throughout a
trial prior to making a response. These changes of mind were
delayed when participants had control over information
sampling, consistent with participants reportedly viewing
these environments as being more stable. This work elegantly
demonstrates how neural pattern classification can reveal
temporally precise trajectories of beliefs with a neuroana-
tomical grounding, which could provide novel information
about such cognitive processes in conditions such as OCD
(97,99).
Tracking the Dynamics of Reward Learning

Disordered belief updating leads to dysfunctional decision
making, which is a cause of disruption to everyday life in
people with certain psychiatric disorders (83). In mood dis-
orders, a bias toward using negative information to update
beliefs (which we can consider analogous to learning) (100)
can be computationally deduced (e.g., by reinforcement
learning models) from patterns of dysfunctional decision
making, such as increased risk aversion in anxiety and
reduced reward-seeking behavior in depression (83). Neuro-
imaging can complement such computational models of de-
cision making in psychopathology by measuring a reward
prediction error signal (i.e., the difference between the reward
that was received and the reward that was expected), a key
computational component in reinforcement learning and
active inference models (101). Reward prediction error signals
localize to specific neurochemical circuitry (e.g., dopami-
nergic pathways) and are observable in both MEG/EEG
(102,103) and fMRI (104).

Reward prediction error signals, detected with fMRI, accu-
rately predict response to CBT in depression, where an
increased responsivity of the amygdala and striatum to unex-
pected rewards has been interpreted as indicating susceptibility
to subsequent belief updating during cognitive restructuring
during CBT (105). In contrast, reward prediction errors derived
from computational modeling of behavior alone have not yet
been shown to predict treatment response, highlighting the
power of mechanism-focused neuroimaging analysis for
detecting subtle but clinically relevant effects. Extending this,
iological Psychiatry - -, 2022; -:-–- www.sobp.org/journal 5
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Table 2. Outstanding Questions in Psychiatry That May Be Addressed by Using Increasing Spatiotemporal Resolution of
Neuroimaging Data

Research Question Existing Data Potential Use Cases

What are the fine-grained
neurobiological causes of
psychiatric symptoms, and
can knowledge of this assist
with prognosis and/or
treatment?

Schizophrenia: Disorganized replay suggests a
neurophysiological basis for impaired structural
inference, implying abnormal NMDA receptor
function in the hippocampus (72,86).

Schizophrenia: Multimodal imaging shows a coupling
of computationally derived belief updates with
BOLD signal in striatum that relates to dopamine
receptor functionality measured with PET (125).

Depression: Functional connectivity measured with
fMRI in depression is markedly reduced at rest
(20,21). Subsecond transient changes in the
microstates of functional connectivity detected with
EEG are significantly different between the clinical
subtypes of depression (22,23).

Schizophrenia: Replay of reorganized state sequences may be
used as an indicator of the efficacy of dopaminergic
antagonists on increasing synaptic gain in the
hippocampus, supporting structural inference capabilities.

Depression: MEG may be used as a more spatially precise
measure of rapid changes in the microstates of functional
connectivity, a measure that could help predict patient-
specific efficacy of electroconvulsive therapy (24).

How can we better estimate
the efficacy of CBT in
restructuring dysfunctional
beliefs?

Depression: Reward prediction error signals related to
learning in the amygdala and striatum (measured
with fMRI) predict response of patients with
depression to CBT (105).

General: The perceived congruence between current
evidence and prior beliefs can be decoded from
MEG activity and used to indicate the time course of
belief updating and subsequent decision making
(97).

Depression: By using decoding to track how rewarding
outcomes are neurally represented during choice
deliberation, we could assess the efficacy of CBT in
increasing the representation of reward in a manner that
relates to improved choice behavior.

OCD: Neural signatures of belief updating could indicate how
acting on an environment to sample information (as is the
case in compulsive behavior) influences beliefs about
uncertain environments, and whether this is influenced by
CBT (97).

How do thought patterns
(conscious or unconscious)
differ between clinical
subtypes, and can this guide
personalized therapy?

Anxiety: Replay supports a flexible avoidance of
potential threat by simulating inferred trajectories to
threat (126).

General: Replay reflects an ability to infer trajectories
that lead to future reward in changing environments
(68).

Anxiety: Patients with anxiety may differ in whether they
anxiously anticipate the future or ruminate on the past,
which could reflect different magnitudes of the forward
replay of paths leading to threat vs. backward replay after
outcome receipt. These signatures, if present, could
therefore serve as biological markers of anxiety subtypes.

BOLD, blood oxygen level–dependent; CBT, cognitive behavioral therapy; EEG, electroencephalography; fMRI, functional magnetic resonance
imaging; MEG, magnetoencephalography; PET, positron emission tomography.
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we might consider that belief updating occurs not only at
outcome receipt (when reward prediction errors occur) but also
in anticipation of an event (e.g., worrying about the future in
anxiety) (77) and when recollecting and reinterpreting past
events (e.g., rumination in depression or postevent processing
in social anxiety) (77,106). Uncovering hidden temporal dy-
namics of belief updating could broaden our understanding of
how events are evaluated and deliberated upon before and after
decision making, potentially enabling a closer mapping to spe-
cific symptoms such as rumination and worry (see Table 2).

In animals, understanding the temporal dynamics of
reward learning has benefited from machine learning. An
elegant example is that of Rich and Wallis (107), who used
linear discriminant analysis to capture patterns of neural
firing in the orbitofrontal cortex corresponding to 4 potential
choice options, each represented by unique images. While
the animals deliberated on their choice, neural activity
patterns in the orbitofrontal cortex alternated approximately
every 230 ms between the chosen and unchosen option at
each trial, with the chosen option becoming increasingly
decodable across deliberation time. This also corresponded
to fewer switches toward an unchosen option, as well as
faster decision making and less deliberation. Building on
this, recent studies have classified patterns of activity in the
orbitofrontal cortex that represent not only the dynamics of
outcome representations but also features such as task
structure (e.g., preconditioned associations between states,
6 Biological Psychiatry - -, 2022; -:-–- www.sobp.org/journal
predictions of upcoming states) and the expected reward
value of each state (108–110).

Tracking representations of reward over time provide added
value to the computational models of decision making. For
example, Eldar et al. (111) investigated whether a person’s
mood relates to differences in receptivity to reward, a process
thought to play a significant role in the onset of depression and
bipolar disorder (112–114). Here, reinforcement learning
models suggested 2 underlying mechanisms of reward
learning: a fast learning process that rapidly forgot and a
slower learning process that persisted across multiple days.
This model then formed the basis for a parameterized dataset
containing trial-by-trial estimates of the prediction errors pro-
duced by fast and slow learning rates and where statistical
learning analysis showed these 2 types of prediction errors
were decodable from heart rate and EEG data (recorded from a
single wearable electrode) collected over the course of the
experiment. Crucially, these physiological representations of
prediction error accurately predicted self-reported mood at
short and long timescales, revealing a relationship not evident
from behavior alone (111).

An increasing number of studies now use decoded state
representations to investigate how reward is algorithmically
processed, with considerable potential for understanding
mood disorders such as depression and anxiety (115). One
formulation of value-guided decision making is the successor
representation (116), which describes how we build a
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predictive map of state values. Recent decoding of functional
MRI data has shown that during decision making, the suc-
cessor representation predicts which states are reactivated in
the brain more accurately than other behavioral models (117).
In a similar vein, MEG investigations have shown that neural
reactivation of outcomes during choice deliberation is modu-
lated by both the subjective value and probability of an
outcome (118) and predicts subsequent choice behavior (119).

CONCLUSIONS

We highlight a recent trend in the application of statistical
learning to neuroimaging data, particularly MEG, where the
goal has been to uncover rapid reactivation of state repre-
sentations that might otherwise go undetected, either due to
spatiotemporal limitations of neuroimaging modalities or due
to the complexity of the evolving state representation. These
decoded representations can serve as rich and dynamic sup-
port for, or as latent variables within, computational models of
complex cognitive processes, allowing investigation of a range
of candidate processes that may go awry in psychiatric dis-
orders. When combined with neurophysiological recordings,
such as MEG, pattern classification provides a level of
spatiotemporal precision that is virtually impossible to gain
from behavior-only models or from conventional neuroimaging
analyses. In turn, combining neural decoding of states with
computational models of behavior or cognition provides a level
of representational precision not easily attained using con-
ventional neuroimaging analysis alone. Moreover, by classi-
fying holistic mental states, researchers can access highly
temporally resolved signatures of disorder-related represen-
tations, opening new avenues for examining cognition and
behavior in ecological contexts that involve a high degree of
representational complexity, including indexing the impact of
treatments.
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