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a b s t r a c t 

Making assortment decisions is becoming an increasingly difficult task for many retailers worldwide as 

they implement omnichannel initiatives. Discrete choice modeling lies at the core of this challenge, yet 

existing models do not sufficiently account for the complex shopping behavior of customers in an om- 

nichannel environment. In this paper, we introduce a discrete choice model called the multichannel at- 

traction model (MAM). A key feature of the MAM is that it specifically accounts for both the product 

substitution behavior of customers within each channel and the switching behavior between channels. 

We formulate the corresponding assortment optimization problem as a mixed integer linear program and 

provide a computationally efficient heuristic method that can be readily used for obtaining high-quality 

solutions in large-scale omnichannel environments. We also present three different methods to estimate 

the MAM parameters based on aggregate sales transaction data. Finally, we describe general effects of 

the implementation of widely-used omnichannel initiatives on the MAM parameters, and carry out nu- 

merical experiments to explore the structure of optimal assortments, thereby gaining new insights into 

omnichannel assortment optimization. Our work provides the analytical framework for future studies to 

assess the impact of different omnichannel initiatives. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Omnichannel retailing is a major trend in modern commerce. 

ts aim is to create a seamless customer shopping experience by 

ntegrating multiple retail channels with each other. One of the 

ost common omnichannel initiatives is buy-online-and-pick-up- 

n-store (BOPS), also called click-and-collect. It allows customers 

o use online services to reserve a product for collection in a re- 

ail store. Other examples of omnichannel initiatives include pro- 

iding online customers with in-store inventory availability infor- 

ation, and installing digital help desks in brick-and-mortar stores 

o that customers can readily access information about the re- 

ailer’s online store, such as its assortment, prices and delivery 

ptions. With regard to supply chain management, one of the 

ost prominent examples of channel integration is fulfilling a cus- 

omer’s online order from a local brick-and-mortar store in or- 
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er to best leverage available inventories or respond in a timely 

ashion. 

Modern consumers demand a variety of purchasing and deliv- 

ry options, and retailers have to adapt their services to changes 

n customer expectations in order not to lose market share. For ex- 

mple, the rivalry between Amazon and Walmart induced the lat- 

er to push the BOPS functionality in order to provide customers 

ith an option comparable in convenience to Amazon’s same- 

ay delivery but without charging for shipping ( Petro, 2020 ). Ac- 

ording to the recent Global Shopper Trends Report by iVend Re- 

ail (2019) , 81.4% of consumers reported using BOPS, which rep- 

esents a growth of nearly 30% from last year’s survey. The study 

f Sopadjieva, Dholakia, & Benjamin (2017) , which is based on a 

urvey of 46,0 0 0 customers who made a purchase between June 

015 and August 2016, found that 73% of participants used multi- 

le channels during their shopping journey compared to 20% of 

tore-only shoppers and 7% of online-only shoppers. It also re- 

ealed that omnichannel retailers are more likely to retain cus- 

omers. In fact, customers who had an omnichannel shopping ex- 

erience took 23% more repeat shopping trips to the retailer’s 

tores within 6 months after the purchase than those who shopped 
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hrough a single channel. It is therefore not surprising that the 

tate of Omnichannel Retail report ( Brightpearl, 2017 ) found that 

7% of retailers agree that omnichannel is crucial to their business 

uccess. 

However, implementing omnichannel strategies remains a dif- 

cult task for retailers, with estimating the effect of such strate- 

ies on demand being one of the key problems. Moreover, since an 

mnichannel environment is characterized by a high level of in- 

egration between retail channels, a change in assortment in one 

hannel affects the demand across all channels, which makes as- 

ortment optimization extremely challenging. At the same time, 

mnichannel retailing is a rather recent research area with a rel- 

tively small number of analytical research papers published. In 

articular, there is a lack of works which consider the problem 

f demand and choice modeling in an omnichannel environment. 

ddressing this problem is an integral part of estimating the ex- 

ected profit of a retailer, yet existing models do not account suf- 

ciently and adequately for the complex nature of omnichannel 

hopping behavior. Our paper aims to fill this gap in the extant 

iterature. 

This paper makes the following contributions. We introduce 

 discrete choice model called the multichannel attraction model 

MAM) that captures the complex shopping behavior of customers 

n an omnichannel environment. Importantly, the choice proba- 

ilities under the MAM are expressed through simple functional 

orms of the model parameters, making them easily interpretable. 

e prove that the assortment optimization problem under the 

AM can be reformulated as a mixed integer linear program. We 

ropose a heuristic method to approximate its value in case of 

arge-scale problems, and show numerically that our method is ex- 

remely efficient in terms of both computational performance and 

olution quality. We also present three different methods to esti- 

ate the MAM parameters based on sales history data, focusing on 

he case where only limited data are available. Next, we perform 

 sensitivity analysis of the model parameters in the two-channel 

ase (with online and physical channels), which leads to insights 

nto omnichannel assortment optimization. For example, we show 

hat a product with a relatively high unit profit in one of the chan-

els may not be included in the corresponding optimal assortment, 

nd vice versa – a product with a relatively low unit profit may be 

ffered. We also analyze how the sizes of optimal assortments de- 

end on the ratio of customers whose primary choice is to shop 

nline to those whose primary choice is to go to a retail store, and

n the proportion of customers willing to switch from one chan- 

el to another in case of absence of a certain product. We find 

hat implementing the BOPS initiative can be unprofitable if the 

roportion of online customers using BOPS is too large compared 

o the additional traffic attracted to the offline channel. Finally, we 

emonstrate the benefits of omnichannel assortment optimization 

s opposed to optimizing siloed assortments in a multichannel en- 

ironment. 

The remainder of this paper is organized as follows: In 

ection 2 , we review the two main streams of literature related 

o our research. In Section 3 , we present a discrete choice model 

or omnichannel retailing, referred to as the MAM, and provide 

he intuition behind it. In Section 4 , we formulate the corre- 

ponding assortment optimization problem as a mixed integer lin- 

ar program. An efficient heuristic method for solving the as- 

ortment optimization problem for very large numbers of prod- 

cts is provided in Section 5 . The subsequent section is devoted 

o estimating the parameters of the MAM. In Section 7 , we de- 

cribe the impact of implementing widely-used omnichannel ini- 

iatives on the MAM parameters and present a numerical study 

hich investigates the structure of optimal assortments. We sum- 

arize our contributions and discuss future research directions in 

ection 8 . 
r  

2 
. Theoretical background and related literature 

.1. Related discrete choice models 

Since discrete choice modeling is a vast and complex area of re- 

earch, here we review only the works most relevant to our paper. 

 good introduction to discrete choice modeling can be found, for 

xample, in Ben-Akiva & Lerman (1985) and Train (2002) . 

The multinomial logit model (MNL) formulated by McFadden 

1973) is one of the most prominent discrete choice models. For 

larity and introduction of notation, we provide a short formal de- 

cription of the MNL. The choice probabilities under this model are 

erived as follows. Let N = { 1 , 2 , . . . , n } denote a set of products,

 ⊆ N denote an offered set, and 0 denote the no-purchase alterna- 

ive. A customer selects either one product from the offered set, or 

he no-purchase alternative. Each alternative j ∈ N ∪ { 0 } has utility

 j , which is given by the sum of ˆ U j , a constant representing the 

nown part of the utility, and ξ j , which is a Gumbel-distributed 

andom variable representing the unobserved part of the utility. 

andom variables ξ j are assumed to be independent and identi- 

ally distributed (i.i.d.) for all the alternatives, and are commonly 

onsidered to be normalized so that their mean is zero and the 

ariance is π2 / 6 . Furthermore, it is assumed that each customer 

elects the alternative with the highest utility among the available 

hoices (the no-purchase alternative is available by default). Then, 

t can be shown that the probability of a customer selecting prod- 

ct j from the offered set S is 

j (S) = 

e 
ˆ U j 

e ˆ U 0 + 

∑ 

k ∈ S 
e ˆ U k 

. (1) 

The MNL can be viewed as a special case of the basic attraction 

odel (BAM) developed by Luce (1959) . Let v j represent the “at- 

ractiveness” value of product j, and v 0 represent the attractiveness 

alue of the no-purchase alternative. Under the BAM, the probabil- 

ty of a customer selecting product j ∈ S is the ratio of the attrac- 

iveness value of product j to the sum of attractiveness values of 

ll available alternatives, that is 

j (S) = 

v j 
v 0 + 

∑ 

k ∈ S 
v k 

. (2) 

learly, the MNL choice probabilities (1) take the form (2) if we 

et the attractiveness value of each product j to v j = e 
ˆ U j , and the

ttractiveness value of the no-purchase alternative to v 0 = e 
ˆ U 0 . 

Gallego, Ratliff, & Shebalov (2014) proposed a generalization of 

he BAM called the general attraction model (GAM). As noted by 

he authors, the BAM may be too optimistic in estimating recap- 

ure probabilities as it ignores the possibility that a customer can 

hoose to buy product j ∈ N \ S from another vendor or at a later

ime. For that reason, they modified formula (2) in the following 

ay: 

j (S) = 

v j 
v 0 + 

∑ 

k ∈ S 
v k + 

∑ 

i ∈N\ S 
w i 

, (3) 

here w i ∈ [0 , v i ] represents the “shadow attractiveness” value of 

etting product i ∈ N \ S from another source. The meaning of the 

hadow attractiveness is that a customer does not consider the 

pportunity of buying a product somewhere else as long as it is 

resent in the assortment. If the product is not available, how- 

ver, a customer can decide to purchase it from another source. 

ote that under the GAM, the no-purchase probability is π0 (S) = 

v 0 + 

∑ 

i ∈N\ S w i 

v 0 + 

∑ 

k ∈ S v k + 

∑ 

i ∈N\ S w i 

. Further note that the case w i = 0 ∀ i ∈ N 

esults in the BAM, and the case w = v ∀ i ∈ N leads to the inde-
i i 
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endent demand model as the choice probability of any product 

j ∈ S does not depend on S. 

Gallego et al. (2014) also formulated the sales-based linear pro- 

ram (SBLP) for network revenue management under the GAM. 

he decision variables in the SBLP are sales quantities rather than 

he offered set. In the case of infinite capacity and a single market 

egment, the SBLP takes the form of the assortment optimization 

roblem under the GAM. Below we provide the formulation of this 

roblem since we refer to it further in the text. Let r j be the gross

rofit per unit of product j and � be the total number of cus- 

omers. Then, the following linear program can be used to find the 

ptimal assortment if the choice probabilities are given by (3) : 

ax 
x 

∑ 

j∈N 
r j x j (4a) 

.t. 
˜ v 0 
v 0 

x 0 + 

∑ 

j∈N 

˜ v j 
v j 

x j = �, (4b) 

x j 

v j 
− x 0 

v 0 
≤ 0 ∀ j ∈ N , (4c) 

x 0 , x j ∈ R ≥0 ∀ j ∈ N , (4d) 

here x j is the sales quantity of product j, ˜ v j = v j − w j and 

˜ v 0 =
 0 + 

∑ 

j∈N w j . Constraint (4b) is the balance constraint, and con- 

traints (4c) are the scale constraints. 

Furthermore, the authors noted that the GAM is the limit of 

he nested logit model in which customers first select a nest con- 

tructed from offerings of the same product by different vendors 

nd then select a vendor which offers this product, while assum- 

ng that the dissimilarity parameter of products in each nest tends 

o zero. The nested logit model, introduced by Domencich & Mc- 

adden (1975) , is another well-known discrete choice model where 

ach choice probability can be decomposed into the product of 

wo standard logit probabilities: the probability that a certain nest 

s chosen and the probability that a certain alternative is chosen 

iven the nest. 

Finally, it is worth mentioning the Markov chain choice model 

n which the product substitution behavior of customers is rep- 

esented by transitions in a Markov chain. Blanchet, Gallego, & 

oyal (2016) showed that such a model provides a simultaneous 

pproximation to all random utility choice models including the 

NL, the nested logit model and mixed MNLs. They also proved 

hat this approximation becomes exact in the case of GAM choice 

robabilities. However, the number of parameters of the general 

arkov chain choice model is (n + 1) 2 , where n is the total num-

er of products, and, moreover, there are no interpretable func- 

ional forms for the choice probabilities as computing them for a 

ertain assortment requires a matrix inversion where the matrix 

ntries depend on the assortment. 

.2. Choice modeling and assortment optimization in omnichannel 

etailing 

As mentioned earlier, the problem of choice modeling in an 

mnichannel environment is underrepresented in the literature. 

ince most of the research conducted on omnichannel is either 

urely empirical or qualitative, there is a considerable lack of 

orks presenting analytical models. Most of the analytical papers 

ocus on supply chain and inventory management questions rather 

han on discrete choice modeling or assortment optimization in 

n omnichannel environment. For example, Schneider & Klabjan 

2013) analyzed when known inventory control policies are opti- 

al in the presence of two sales channels. He, Xu, & Wu (2020) de-

eloped a newsvendor model of a two-channel retailer that ac- 

ounts for cross-channel product returns. Several papers studied 
3 
he effect of ship-from-store operations on the optimal inven- 

ory policy ( Seifert, Thonemann, & Sieke, 2006 ), fulfillment policy 

 Bayram & Cesaret, 2021 ), or both policies combined ( Govindarajan, 

inha, & Uichanco, 2018 ). However, to the best of our knowledge, 

ery few papers address at least one of the following questions, 

hich we consider jointly in this paper: discrete choice model- 

ng in the presence of multiple retail channels; the impact of om- 

ichannel initiatives on demand allocation; and, ultimately, om- 

ichannel assortment optimization. 

Cao, So, & Yin (2016) proposed a theoretical framework to an- 

lyze the effect of adding the BOPS channel (called “online-to- 

tore” channel) to existing sales channels on demand allocation. 

 major limitation of their study is that it considers a single- 

roduct setup. The authors use utility functions associated with 

ifferent channels to model customers’ channel choices, where 

ach utility function is a linear function of the following param- 

ters: the product value, the price per unit of the product in 

he corresponding channel, the delivery cost (in the case of the 

nline channel), as well as certain inconvenience costs and fac- 

ors. The paper shows that it may not be profitable to imple- 

ent the BOPS functionality for some products depending on their 

haracteristics. 

Gao & Su (2016) presented a somewhat more complex approach 

o analyze the impact of the BOPS channel on demand allocation. 

imilar to the work of Cao et al. (2016) , the authors model cus- 

omers’ channel choices using utility functions associated with dif- 

erent channels, but they also account for the cross-selling effect 

nd inventory management considerations. One of the key findings 

f their paper confirms that not all products are well-suited for the 

OPS functionality. However, their model does not account for the 

roduct substitution effect in the case when a product is removed 

rom the assortment. 

More recently, Harsha, Subramanian, & Ettl (2019a) studied the 

ricing problem in an omnichannel environment with a chain of 

rick-and-mortar stores in the presence of other (online) channels. 

n their paper, the authors first consider a single-product setup 

here a customer only selects a source to buy the product from. 

t is assumed that the brick-and-mortar stores are located in geo- 

raphically distributed zones, meaning that customers’ choices in 

 zone do not depend on the parameters of other zones. At the 

one level, each customer obtains a utility for choosing a chan- 

el depending on the product’s price in this channel. The choices 

f customers are defined by a BAM where all attractiveness val- 

es are expressed through positive and strictly increasing func- 

ions of price. The price optimization problem is then formulated 

s a mixed integer linear program. The authors also extend their 

nalysis to a multiproduct setup using a nested attraction model 

here nests correspond to channels and each nest is comprised of 

roducts included in the channel assortment. For their extension, 

hey provide a mixed integer linear program to solve the price op- 

imization problem approximately. In a related paper, Harsha, Sub- 

amanian, & Uichanco (2019b) studied the omnichannel price opti- 

ization problem in a single-product setup, whilst accounting for 

oth exogenous cross-channel fulfillment flows and inventory con- 

traints. 

With regard to multichannel assortment optimization for mul- 

iple products, Bhatnagar & Syam (2014) presented an integer pro- 

ram to determine the optimal item allocation for a hybrid retailer 

hat manages both a chain of physical stores and an online store. 

hey found that the retailer’s profitability can be increased by re- 

oving products with high carrying costs from the physical stores 

nd making them available exclusively online, thereby reducing the 

nventory carrying costs. However, their model relies on a number 

f strong assumptions, including that the demand for each product 

s a fixed parameter, meaning that the product demands do not 

epend on the assortment. 
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A different angle on multichannel assortment optimization was 

rovided by Dzyabura & Jagabathula (2018) . They studied the prob- 

em of determining the subset of products from the retailer’s on- 

ine channel to offer in the offline channel in order to maximize 

he aggregate revenue. It is assumed that each product is defined 

y a set of attributes, and there is a utility associated with each 

ttribute which depends on whether the product is offered in the 

ffline channel. The intuition behind this approach is that the utili- 

ies of the attributes change when customers learn about products 

y inspecting them in a brick-and-mortar store. Their choice model 

s the MNL based on the utilities of the attributes. The paper shows 

hat accounting for the impact of the retailer’s offline assortment 

n the online sales can lead to substantial gains in expected rev- 

nue. 

Lo & Topaloglu (2022) addressed the same problem as Dzyabura 

 Jagabathula (2018) but in a different setup. The key differ- 

nce between these is that the work of Dzyabura & Jagabathula 

2018) assumes that there exists a product for every potential com- 

ination of feature values, while in the model of Lo & Topaloglu 

2022) it is assumed that the product portfolio can be character- 

zed by a features tree, where each leaf corresponds to a product, 

nd its ancestors are the features. The authors consider a mixture 

f customers: offline customers who shop in the physical store, 

nd online customers who first visit the physical store to inspect 

he products offered there and then choose a product from the full 

ssortment offered online. They showed that the assortment opti- 

ization problem in this setup is NP-hard, and leveraged the fea- 

ures tree structure to provide a fully polynomial time approxima- 

ion scheme (FPTAS) based on dynamic programming that allows 

o determine approximately optimal assortments. 

Finally, Hense & Hübner (2021) studied omnichannel assort- 

ent optimization while taking into account both in-channel and 

ross-channel demand substitution. In contrast to our work, the 

uthors consider the exogenous demand (ED) model instead of 

everaging discrete choice modeling techniques. In their approach, 

he base demands are assumed to be pairwise independent, and 

f one product is not available, then the proportion of the de- 

and that is substituted by another product is given by a param- 

ter. Such an approach has certain advantages because, in addi- 

ion to finding optimal assortments, it also allows the authors to 

etermine optimal shelf space and inventory levels across chan- 

els. However, the ED model does not allow to capture some of 

he complexity of customers’ product substitution behavior. For in- 

tance, according to this model, it is assumed that if a product is 

ot available then its demand would be shifted to another product 

n the same channel, but the associated demand is lost entirely 

f this other product is also not available. Moreover, the relatively 

arge number of parameters in their proposed approach makes the 

roblem of estimating the parameters from sales history data par- 

icularly challenging. 

. Multichannel attraction model 

.1. Model formulation 

In this subsection we present a discrete choice model that cap- 

ures the complex customer shopping behavior in an omnichannel 

nvironment. Our proposed model is a generalization of the GAM 

o a setup where a retailer can sell products across several chan- 

els. Importantly, by generalizing the GAM our model inherits a 

umber of desirable features. First of all, the GAM itself general- 

zes the basic attraction model (BAM) and the multinomial logit 

odel (MNL), which is arguably the most widely used discrete 

hoice model. At the same time, choice probabilities under the 

AM are formulated using simple closed-form expressions. We can 

lso leverage the concept of shadow attractiveness since it has an 
4 
nterpretation that is easily adaptable to the case of an omnichan- 

el retailer. We refer to the proposed model as the multichannel 

ttraction model (MAM). 

The MAM is most suitable for the case of a multichannel re- 

ailer that offers a range of substitutable products of which cus- 

omers select at most one product. For instance, a sneakers subdi- 

ision of a large apparel retailer is a useful illustration to keep in 

ind for further reading. For tractability reasons, we consider a re- 

ailer with two channels: an online store and a physical store (or a 

hain of physical stores). However, our model can easily be gener- 

lized to the case of a larger number of channels (see Appendix A ).

he main idea behind the MAM is to develop a framework which 

llows to manage assortments in both channels jointly, taking into 

ccount customers who switch from one channel to another if 

ertain products are unavailable. We therefore separate customers 

nto two groups: the first group comprises customers whose pri- 

ary choice is to purchase a product in the first channel if all 

roducts are available in both channels, whereas customers from 

he second group shop through the second channel under the same 

ondition. For both groups of customers, we model their choices 

sing our proposed generalization of the GAM, where each shadow 

ttractiveness value is divided into two parts which determine how 

ikely the customers are to switch to another channel to buy the 

orresponding product. 

Let N = { 1 , 2 , . . . , n } denote a set of products which can be

ffered in both channels, and let 0 denote the no-purchase al- 

ernative. Furthermore, let c ∈ C = { 1 , 2 } denote a channel index,

¯ = C\{ c} denote the other channel index, and S c ⊆ N denote the 

et of products offered in channel c. By type- c customers we mean 

ustomers whose primary choice would be to shop in channel c if 

ll products were available in both channels. For type- c customers, 

e use the following notation: 

• v (c) 
j 

: attractiveness value of purchasing product j ∈ S c in chan- 

nel c; 
• v (c) 

0 
: attractiveness value of the no-purchase alternative; 

• u (c) 
i 

+ w 

(c) 
i 

: shadow attractiveness value of purchasing product 

i ∈ N \ S c from another source (that is, either from channel c̄ or

from another retailer); 
• u (c) 

i 
/ (u (c) 

i 
+ w 

(c) 
i 

) : proportion of customers switching to chan- 

nel c̄ out of those willing to purchase product i outside of chan- 

nel c (if i / ∈ S c ). 

Superscript (c) indicates type- c customers’ characteristics (who 

ight shop in both channels), whereas subscript c refers to 

hannel-specific features. Note that u (c) 
i 

and w 

(c) 
i 

are not in them- 

elves attractiveness values. They provide an idea of how likely 

ustomers are to switch to another channel or to go to another 

etailer, but they do not represent utilities of different alternatives 

s such (see Subsection 3.2 for more details). 

Also, similarly to the GAM, we assume that u (c) 
j 

+ w 

(c) 
j 

∈ [0 , v (c) 
j 

]

or all products j ∈ N , meaning that the shadow attractiveness 

alue of purchasing product j from another source (including chan- 

el c̄ ) does not exceed the attractiveness value of purchasing this 

roduct in channel c. This also implies that N is a set of substi- 

utable products, and discarding a product from the assortment in 

hannel c increases the demand for the remaining products gen- 

rated by type- c customers. It is important to note that the de- 

and substitution assumption is conventional for a setup where 

ach customer purchases at most one product. The opposite effect 

when discarding a product leads to a lower demand for some 

ther products – is also possible in such a setup, e.g. if one prod- 

ct highlights the advantages of another product, thus creating a 

ynergy. A recent example of a modeling framework devoted to as- 

ortment optimization in the presence of the product synergy ef- 
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ect can be found in Lo & Topaloglu (2019) . However, accounting 

or this effect is outside the scope of our research. 

Considering customers of two types associated with two chan- 

els is rational for two main reasons. Firstly, these two types of 

ustomers are likely to have noticeably distinct shopping prefer- 

nces, which can be captured by different sets of parameters as- 

ociated with different customer types. Secondly, the two flows of 

ustomers can differ considerably in volume (e.g., the number of 

ustomers associated with the online channel can be several times 

igher or lower than the one associated with the offline chan- 

el), and this has to be taken into account when making assort- 

ent decisions. Since the MAM is inherently a mixture of models 

here each model is associated with a customer type, it would be 

traightforward to extend the model by considering more types of 

ustomers. Nevertheless, in this work we focus on two types of 

ustomers in order to keep the model tractable. 

Let us define the choice probabilities under the MAM given as- 

ortments in both channels in the following way. The probability 

hat a type- c customer buys product j in channel c is 

(c) 
c j 

(S c ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

v (c) 
j 

v (c) 
0 

+ 

∑ 

k ∈ S c 
v (c) 

k 
+ 

∑ 

i ∈N\ S c 
(u 

(c) 
i 

+ w 

(c) 
i 

) 
if j ∈ S c , 

0 otherwise; 

(5) 

nd the probability that a type- c customer buys product j in chan- 

el c̄ is 

(c) 
c̄ j 

(S c , S c̄ ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

u 

(c) 
j 

v (c) 
0 

+ 

∑ 

k ∈ S c 
v (c) 

k 
+ 

∑ 

i ∈N\ S c 
(u 

(c) 
i 

+ w 

(c) 
i 

) 
if j ∈ S c̄ \ S c , 

0 otherwise. 

(6) 

t is straightforward to check that for each customer type, the sum 

f all choice probabilities (including the no-purchase probability) 

quals one. 

Now, suppose that the total expected number of type- c cus- 

omers is �(c) = 

∫ T 
0 λ

(c) (t ) dt , where λ(c) (t ) is the arrival rate

f type- c customers at time t , and T is the time horizon. Let 

 

(c) 
c j 

(S c ) = π(c) 
c j 

(S c )�(c) denote the expected number of type- c cus- 

omers purchasing product j in channel c, and let x (c) 
c̄ j 

(S c , S c̄ ) = 

(c) 
c̄ j 

(S c , S c̄ )�
(c) denote the expected number of type- c customers 

urchasing product j in channel c̄ . Hereafter, we slightly abuse the 

otation by writing just x (c) 
c j 

and x (c) 
c̄ j 

. Note that the overall proba- 

ility that a customer (of any type) buys product j in channel c is 

s follows: 

c j (S c , S c̄ ) = 

x (c) 
c j 

+ x ( ̄c ) 
c j 

�(c) + �( ̄c ) 
. 

mportantly, we focus on the modeling setup with unlimited in- 

entories, i.e., we do not consider the possibility of stockouts. As 

 result, the shopping behavior of customers is fully determined 

y assortments offered at the beginning of the sales period. More- 

ver, it also means that terms “demand” and “sales” can be used 

nterchangeably. The assumption of unlimited inventories – which 

s common in the assortment planning literature – does not pre- 

ent our modeling framework from being applicable in a number 

f relevant and important practical situations. For example, this as- 

umption is valid in the make-to-order setting, in which a com- 

any produces a product only after receiving an order and thus 

voids carrying a lot of stock. It is also a valid assumption for com- 

anies which rarely have stockouts due to a high level of inventory. 
5 
.2. Model discussion 

In this subsection, we provide the intuition behind the formula- 

ion of the MAM. Generally speaking, when it comes to omnichan- 

el retailing, the product substitution behavior is not trivial, so 

ur MAM requires a detailed description. At a high level, we as- 

ume that under the MAM, customers are subject to the follow- 

ng product substitution behavior. Suppose that if all products were 

vailable in all channels, a certain type- c customer would purchase 

roduct j in channel c. If this product is not offered in channel c, 

hen the customer may either be determined to purchase product j

nyway (potentially in channel c̄ ), or decide to purchase another 

roduct k 	 = j instead, or leave without purchasing anything from 

his retailer. The outcomes of these three alternatives are summa- 

ized in Fig. 1 . In essence, if product j is not offered in channel c

i.e. j / ∈ S c ) and it is the first choice of a type- c customer, then this

ustomer will either purchase another product k ∈ S c , or a product 

 ∈ S c̄ \ S c , where l 	 = k but possibly l = j, or nothing at all. 

Let us consider the first two cases in more detail. First, suppose 

hat the customer decides to stick with product j. In this case, 

he customer may be willing to search for product j in channel 

¯ , or to go looking for this product somewhere else. To keep the 

odel formulation tractable, we assume that if a customer decides 

o stick with a certain product and thus switches to another chan- 

el searching for it, then the product is always purchased if it is 

vailable in that channel, or else the customer leaves without pur- 

hasing anything from this retailer (e.g., goes to a competitor). Sec- 

nd, if the customer decides to purchase another product k , then 

here are two possibilities: If product k is offered in channel c, 

hen the customer purchases it there; otherwise, the customer ei- 

her continues the search in channel c, or looks for product k in 

hannel c̄ , or looks for this product somewhere else. Similar to the 

revious case, we assume that if the customer is willing to switch 

o channel c̄ in order to look for product k , then the product is al-

ays purchased if it is available there, otherwise the customer just 

eaves without purchasing anything. 

Let us also provide additional insights into the structure of this 

roduct substitution behavior by showing the link between the 

AM and Markov chain choice model (MCCM). 

roposition 1. The MAM can be represented as a mixture of MCCMs 

here choices of type- c customers are characterized by the MCCM 

ith the following parameters: 

λ(c) 
j c 

= v (c) 
j 

, λ(c) 
j c̄ 

= 0 , 

ρ(c) 
j c i c 

= 

v (c) 
i 

(v (c) 
j 

− u 

(c) 
j 

− w 

(c) 
j 

) 

v (c) 
j 

− v (c) 
j 

(v (c) 
j 

− u 

(c) 
j 

− w 

(c) 
j 

) 
, 

(c) 
j c j c̄ 

= 

u 

(c) 
j 

v (c) 
j 

, ρ(c) 
j c i c̄ 

= 0 , 

ρ(c) 
j c 0 

= 

v (c) 
0 

(v (c) 
j 

− u 

(c) 
j 

− w 

(c) 
j 

) + u 

(c) 
j 

+ w 

(c) 
j 

v (c) 
j 

− v (c) 
j 

(v (c) 
j 

+ u 

(c) 
j 

+ w 

(c) 
j 

) 
−

u 

(c) 
j 

v (c) 
j 

, 

ρ(c) 
j c̄ i c̄ 

= 0 , ρ(c) 
j c̄ j c 

= 0 , ρ(c) 
j c̄ i c 

= 0 , ρ(c) 
j c̄ 0 

= 1 , (7) 

here j c denotes product j in channel c, λ(c) is the vector of arrival 

robabilities, and ρ(c) is the matrix of transition probabilities. 

The formal proof can be found in Appendix B . The intuition 

ehind these expressions is as follows. We leverage the fact that 

he MAM restricted to type- c customers and products in channel c

s equivalent to the GAM. Therefore, for such customers, the ar- 

ival probabilities of products in channel c as well as the transi- 

ion probabilities between such products are defined by analogy to 

he probabilities that result in the GAM (see Blanchet et al., 2016 ). 
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Fig. 1. Product substitution pattern. 
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owever, in contrast to the GAM, we split the transition probability 

rom product j c to the no-purchase alternative into two parts: one 

orresponds to choosing the no-purchase alternative directly, and 

he other one corresponds to first choosing product j c̄ , and then –

n case product j is not available in channel c̄ – choosing the no- 

urchase alternative with probability 1. Note that we impose the 

onstraint that type- c customers cannot purchase product j c̄ di- 

ectly as they attempt to purchase product j c first. This means, in 

urn, that type- c customers will never buy product j in channel c̄ 

f this product is available in channel c. We believe that this as- 

umption is not only reasonable, but also essential as it enables us 

o obtain simple analytical formulas (and thus achieve tractability 

nd ensure interpretability of the model) for the choice probabili- 

ies, which would not be the case if we used a mixture of MCCMs 

n a general setting. 

Let us also highlight the connection between the MAM and the 

andom utility theory. First, note that the GAM is a random util- 

ty model (RUM), i.e., there exists a joint distribution of random 

tilities over a certain set of alternatives such that if each cus- 

omer chooses an alternative with a maximum realization of util- 

ty, then the product choice probabilities are consistent with the 

AM choice probabilities. Indeed, the GAM can be viewed as the 

ested logit model in the limit (see Gallego et al., 2014 ), and the

ested logit model is a special case of the generalized extreme 

alue (GEV) model, which is a RUM. Now since the GAM is a RUM, 

t is straightforward to show that for each customer type, there 

xists a joint distribution of random utilities over a certain set 

f alternatives that is consistent with the MAM choice probabili- 

ies. This can be done by using the fact that the condition of exis- 

ence of a joint probability distribution of random utilities is equiv- 

lent to the condition of existence of a probability distribution over 

ankings of alternatives consistent with a given set of choice prob- 

bilities (see Block & Marschak, 1959 ). The MAM thus belongs to 

he class of RUMs and we can formulate the following proposition: 

roposition 2. The MAM is a mixture of RUMs (one model per cus- 

omer type), and as such it is also a RUM. 

The formal proof of this proposition can be found in 

ppendix C . However, note that our modelling approach is moti- 

ated by incorporating probabilistic cross-channel transitions into 

he GAM to account for the complex shopping behavior of cus- 

omers in an omnichannel environment, rather than by proposing 

 new discrete choice model through specifying random utility of 

lternatives within a random utility maximization framework. 

Finally, let us demonstrate the benefit of our formulation ap- 

roach as opposed to a more traditional, utility-based way of 
6 
eneralizing the GAM to the omnichannel setting. As mentioned 

bove, Gallego et al. (2014) showed that the GAM can be repre- 

ented as a nested logit model in a limit. Following the same logic, 

ne could have formulated the MAM so that it would emerge as 

 mixture of nested logit models (one model per customer type) 

n a limit, where each nest corresponds to a product and the dis- 

imilarity parameter of each nest tends to zero. In this case, each 

est would comprise three alternatives: purchasing the product in 

hannel c, in channel c̄ , and from another source. Then, the choice 

robabilities would take the following form: 

(c) 
c j 

(S c , S c̄ ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

v (c) 
j 

v (c) 
0 

+ ∑ 

k ∈ S c 
v (c) 

k 
+ ∑ 

i ∈ (N\ S c ) ∩ S c̄ 
max { u (c) 

i 
, w 

(c) 
i 

} + ∑ 

l∈N\ (S c ∪ S c̄ ) 
w 

(c) 
l 

if j ∈ S c , 

0 otherwise;

nd the probability that a type- c customer buys product j in chan- 

el c̄ is 

(c) 
c̄ j 

(S c , S c̄ ) = 

 

 

 

 

 

u (c) 
j 

v (c) 
0 

+ 

∑ 

k ∈ S c 
v (c) 

k 
+ 

∑ 

i ∈ (N\ S c ) ∩ S c̄ 
max { u (c) 

i 
, w 

(c) 
i 

} + 

∑ 

l∈N\ (S c ∪ S c̄ ) 
w 

(c) 
l 

0 

if j ∈ S c̄ \ S c 
and u (c) 

j 
≥ w 

(c) 
j 

, 

otherwise. 

Importantly, in the above formulas the parameters u (c) 
j 

and w 

(c) 
j 

ave a different interpretation compared to our model: for type- c

ustomers, u (c) 
j 

and w 

(c) 
j 

here represent the shadow attractiveness 

f purchasing product j in channel c̄ and elsewhere, respectively, 

hereas in our case u (c) 
j 

is defined through the proportion of cus- 

omers willing to purchase product j in channel c̄ if it is not avail- 

ble in channel c (see Subsection 3.1 ). 

However, this alternative formulation based on a mixture of 

ested logit models has important limitations. Indeed, it means 

hat if j ∈ S c̄ \ S c , then either all type- c customers that choose nest j

urchase product j c̄ (if u 
(c) 
j 

> w 

(c) 
j 

), or all of them leave the retailer

if u (c) 
j 

< w 

(c) 
j 

). Both these cases are rather extreme and hence not 

ufficiently realistic. There is also the special case when u (c) 
j 

= w 

(c) 
j 

, 

n which exactly half of the considered customers purchase prod- 

ct j c̄ and the other half leave the retailer, but this is also too re-

trictive. In contrast, our approach to formulating the MAM proba- 

ilities does not suffer from these limitations as it allows any par- 

itioning of customers’ choices between purchasing product j c̄ and 

eaving the retailer. We therefore believe that our approach is ap- 

ealing because it is not only capable of more realistically repre- 

enting omnichannel customer behaviour but it also provides for 

ore flexibility without overcomplicating the choice model. 
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. Assortment optimization problem 

The assortment optimization problem under the MAM requires 

nding offer sets such that the total expected profit is maximized, 

hat is determining the optimizers of the following problem: 

ax 
S c ,S c̄ 

∑ 

c∈C 

∑ 

j∈N 
r c j πc j (S c , S c̄ ) , (8) 

here r c j denotes the gross profit per unit of product j sold 

hrough channel c. This problem can be reformulated in terms of 

inary variables. Let z c j , c ∈ C, j ∈ N be a binary variable such that

 c j = 1 if j ∈ S c , and 0 otherwise. Then, problem (8) can be written

s follows: 

ax 
S c ,S c̄ 

∑ 

c∈C 

∑ 

j∈N 
r c j πc j (S c , S c̄ ) = 

max 
 c j ,z c̄ j 

∑ 

c∈C 

∑ 

j∈N 

r c j 

�(c) + �( ̄c ) 

( v (c) 
j 

�(c) z c j 

v (c) 
0 

+ 

∑ 

k ∈N 
v (c) 

k 
z ck + 

∑ 

i ∈N 
(u (c) 

i 
+ w 

(c) 
i 

)(1 − z ci ) 
+ 

u ( ̄c ) 
j 

�( ̄c ) z c j (1 − z c̄ j ) 

v ( ̄c ) 
0 

+ 

∑ 

k ∈N 
v ( ̄c ) 

k 
z c̄ k + 

∑ 

i ∈N 
(u ( ̄c ) 

i 
+ w 

( ̄c ) 
i 

)(1 − z c̄ i ) 

)
. 

This optimization problem is extremely difficult to solve as it 

ncludes binary decision variables and a nonlinear objective func- 

ion. However, we can formulate an equivalent mixed integer lin- 

ar program (MILP) that can be solved using standard, off-the-shelf 

ptimization software. Consider the following problem: 

ax 
x 

∑ 

c∈C 

∑ 

j∈N 
r c j 

(
x (c) 

c j 
+ x ( ̄c ) 

c j 

)
(9a) 

.t. 
˜ v (c) 

0 

v (c) 
0 

x (c) 
c0 

+ 

∑ 

j∈N 

˜ v (c) 
j 

v (c) 
j 

x (c) 
c j 

= �(c) ∀ c ∈ C, (9b) 

x (c) 
c j 

v (c) 
j 

+ 

x (c) 
c̄ j 

u 

(c) 
j 

≤ x (c) 
c0 

v (c) 
0 

∀ c ∈ C, j ∈ N , (9c) 

x (c) 
c0 

v (c) 
0 

−
x (c) 

c j 

v (c) 
j 

≤ �(c) 

˜ v (c) 
0 

(1 − z c j ) ∀ c ∈ C, j ∈ N , (9d) 

x (c) 
c j 

≤ H 

(c) 
j 

z c j ∀ c ∈ C, j ∈ N , (9e) 

x (c) 
c̄ j 

≤ K 

(c) 
j 

x ( ̄c ) 
c̄ j 

∀ c ∈ C, j ∈ N , (9f) 

x (c) 
c0 

, x (c) 
c j 

, x (c) 
c̄ j 

∈ R ≥0 ∀ c ∈ C, j ∈ N , (9g) 

z c j ∈ { 0 , 1 } ∀ c ∈ C, j ∈ N , (9h) 

here x = 

{
x (c) 

c0 
, x (c) 

c j 
, x (c) 

c̄ j 
, z c j 

}
c∈C, j∈N , ˜ v (c) 

0 
= v (c) 

0 
+ 

∑ 

i ∈N 

(
u (c) 

i 
+ w 

(c) 
i 

)
,

˜ 
 

(c) 
j 

= v (c) 
j 

−
(
u (c) 

j 
+ w 

(c) 
j 

)
, and constants H 

(c) 
j 

and K 

(c) 
j 

are given by

 

(c) 
j 

= 

v (c) 
j 

�(c) 

v (c) 
0 

+ v (c) 
j 

+ 

∑ 

i ∈N\{ j} 

(
u 

(c) 
i 

+ w 

(c) 
i 

) , 

K 

(c) 
j 

= 

u 

(c) 
j 

�(c) 

˜ v (c) 
0 

/ v ( ̄c ) 
j 

�( ̄c ) 

v ( ̄c ) 
0 

+ 

∑ 

k ∈N 
v ( ̄c ) 

k 

. 
7 
We call this problem formulation the sales-based mixed in- 

eger linear program (SBMILP) in analogy to the sales-based lin- 

ar program presented by Gallego et al. (2014) for the GAM. Con- 

traints (9b) are similar to the balance constraint in the SBLP, and 

onstraints (9c) are modified scale constraints. However, due to 

he multichannel structure of the MAM and hence a more com- 

lex product substitution behavior of customers, we need addi- 

ional constraints with binary variables. The meaning of each con- 

traint as well as the equivalence of problems (8) and (9) becomes 

vident from the proof of the following Theorem (see Appendix D ): 

heorem 1. The SBMILP is a valid formulation of the assortment op- 

imization problem under the MAM, that is, the optimal value of prob- 

em (9) is equal to the optimal value of problem (8) multiplied by the 

onstant (�(c) + �( ̄c ) ) . 

emark 1. It is straightforward to verify that constraints (9d), 

9e) and (9f) cannot be tightened, that is, the constant coefficients 

n the right-hand side of these constraints cannot be reduced. 

emark 2. The SBMILP can easily be modified to incorporate ad- 

itional constraints. For example, if there is a cost a c j associated 

ith product j offered in channel c, and the total cost induced by 

roducts offered in this channel is limited by the upper bound L c , 

hen the following constraint has to be added to the SBMILP: 
 

j∈N 
a c j z c j ≤ L c . (10) 

f channel c is the physical channel, then constraint (10) can be 

iewed as a shelf-space constraint where a c j represents the shelf 

pace required for product j to be offered in channel c, and L c is 

he total shelf space in that channel. 

Adding the shelf space constraint described in Remark 2 to the 

BMILP is of particular practical importance (typically omnichan- 

el retailers cannot offer all products in the physical channel due 

o limited shelf space), but has implications in terms of computa- 

ional complexity: 

roposition 3. The assortment optimization problem represented by 

he shelf-space-constrained SBMILP, which is given by adding con- 

traint (10) to the SBMILP formulation (9), is NP-hard. 

The proof can be found in Appendix E . It is important to note 

hat there is another modification of the assortment optimization 

roblem under the MAM that not only makes the modified prob- 

em NP-hard, but may also suggest that the original SBMILP is NP- 

ard too. In particular, if assortments in both channels have to 

e the same (i.e. S 1 = S 2 ), then this problem is equivalent to the

ssortment optimization problem under a mixture of two GAMs 

n a single channel. Such a problem is NP-hard as a generaliza- 

ion of the assortment optimization problem under a mixture of 

wo MNL models, which has been shown by Rusmevichientong, 

hmoys, Tong, & Topaloglu (2014) to be NP-hard. This well-known 

esult, formulated for the simplest illustrative case of the assort- 

ent optimization problem under a mixture of discrete choice 

odels, strongly indicates that the original SBMILP formulation (9) 

s also NP-hard since the MAM itself is essentially a mixture of 

iscrete choice models (one model per customer type). While an 

nteresting problem, formally establishing NP-hardness of the orig- 

nal SBMILP is left for future research. 

If the assortment in one of the channels is fixed and equals N 

i.e., all products are offered), then we can build upon some of the 

esults obtained for the SBLP in Gallego et al. (2014) and establish 

ertain analytical properties of the optimal assortment in the other 

hannel. Let R (c) (S c , S c̄ ) be the total profit generated by type- c cus-

omers given assortments S c and S c̄ . Suppose that the assortment 

n channel c̄ is fixed so that S = N , thus no customers of type
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¯ will switch to channel c. We can then formulate the following 

roposition: 

roposition 4. Let S c̄ = N and, without loss of generality, suppose 

hat all products are sorted in descending order of the ratio (r c j v 
(c) 
j 

−
 c̄ j u 

(c) 
j 

)�(c) / ̃ v (c) 
j 

. Then, the optimal assortment in channel c is given 

y 

 c j = 

{
1 if j ≤ m, 

0 otherwise , 
(11) 

here m = max 
{

j ∈ N : R (c) 
({ 1 , . . . , j} , N 

)
< (r c, j+1 v (c) 

j+1 
− r c̄ , j+1 u 

(c) 
j+1 

)�(c) / ̃ v (c) 
j+1 

}
. 

The proof can be found in Appendix F . The intuition behind this 

nding is clear. Even if the gross profit per unit of a certain product 

j in channel c is high and the product has a high attractiveness 

alue (i.e., the demand for product j in channel c is high compared 

o other products), it may not be profitable to include this product 

n the channel c assortment. 

Further developing the idea behind the proof of Proposition 4 , 

e can formulate the following property of the optimal assortment 

n both channels: 

roposition 5. Let (S c , S c̄ ) be the optimal combination of assort- 

ents, and suppose that k ∈ S c . Then j ∈ S c as well if F c ( j, S c , S c̄ ) ≥
 c (k, S c , S c̄ ) , where 

 c ( j, S c , S c̄ ) = 

r c j v (c) 
j 

− r c̄ j u 

(c) 
j 
1 j∈ S c̄ 

˜ v (c) 
j 

 

(
v (c) 

0 
+ 

∑ 

k ∈ S c ∪{ j} 
v (c) 

k 
+ 

∑ 

i ∈N\ (S c ∪{ j} ) 
(u 

(c) 
i 

+w 

(c) 
i 

) 
)
r c j u 

( ̄c ) 
j 

�( ̄c ) / �(c) 1 j∈N\ S c̄ 

˜ v (c) 
j 

(
v ( ̄c ) 

0 
+ 

∑ 

k ∈ S c̄ 
v ( ̄c ) 

k 
+ 

∑ 

i ∈N\ S c̄ 
(u 

( ̄c ) 
i 

+ w 

( ̄c ) 
i 

) 
)

(12

This property, whose proof is provided in Appendix G , could 

erve as a base for a heuristic algorithm that allows to determine a 

igh-quality solution if solving the SBMILP is computationally in- 

easible. In particular, F c ( j, S c , S c̄ ) could be approximated with an

xpression that depends only on product j and channel- ̄c assort- 

ent, which would allow for the approximate characterization of 

he optimal assortment in channel c given the assortment in chan- 

el c̄ . Then, the heuristic algorithm could take form of an iterative 

rocedure, where in each iteration the assortment in one of the 

hannels is determined given the assortment in the other channel. 

n this work, however, we focus on the development of a heuristic 

lgorithm based on a relaxation approach for situations in which 

irectly solving the SBMILP is computationally challenging. 

. Heuristic method 

The SBMILP formulation (9) has 2 n binary variables and 4 n con- 

traints containing binary variables. For large values of n , this prob- 

em may become more challenging to solve. Let us therefore con- 

ider the LP relaxation of the SBMILP derived from formulation (9) 

y removing binary variables z c j together with the corresponding 

onstraints (9d) and (9e) . Importantly, preliminary numerical ex- 

eriments showed that a solution to the relaxed problem satisfies 

he removed constraints for almost all c ∈ C, j ∈ N , and this is a

ey observation underlying our heuristic. We propose the follow- 

ng two-step algorithm: 

1. Solve the relaxed problem. Let 
{

ˆ x (c) 
c0 

, ˆ x (c) 
c j 

, ˆ x (c) 
c̄ j 

}
c∈C, j∈N be its op- 

timal solution, and J 

(c) be the set of indexes j ∈ N such that

either 
ˆ x (c) 
c j 

v (c) 
j 

= 

ˆ x (c) 
c0 

v (c) 
0 

or ˆ x (c) 
c j 

= 0 . 
8 
2. Solve problem (9) with the following additional constraints: 

z c j = 1 
ˆ x (c) 

c j 
> 0 

∀ c ∈ C, j ∈ J 

(c) , (13) 

where 1 represents the indicator function. The obtained solu- 

tion is the heuristic output. 

To gain insights into the computational performance of the pro- 

osed heuristic method, we generate the parameters of the om- 

ichannel assortment optimization problem in the following way: 

(i) r 1 j = u (0 , 1) + ε, r 2 j = r 1 j (1 + u (0 , 0 . 5)) ∀ j ∈ N ; 

(ii) v (1) 
j 

= u (0 , 1) + ε, v (2) 
j 

= u (0 , 1) + ε ∀ j ∈ N ∪ { 0 } ; 
(iii) u (1) 

j 
= u (0 , 0 . 5) v (1) 

j 
, u (2) 

j 
= u (0 , 0 . 5) v (2) 

j 
∀ j ∈ N ; 

(iv) w 

(1) 
j 

= u (0 , 0 . 5) v (1) 
j 

, w 

(2) 
j 

= u (0 , 0 . 5) v (2) 
j 

∀ j ∈ N , 

here u (a, b) denotes a value sampled from the uniform distri- 

ution U(a, b) , and ε = 0 . 01 . Also, we normalize the attractiveness

alues so that v (c) 
0 

+ 

∑ 

j∈N 
v (c) 

j 
= 1 ∀ c ∈ C. While the generated values

f the parameters may not necessarily be representative of a real- 

orld example, they are well-suited for the purpose of evaluating 

he computational effort required to solve the problem instance. 

he only meaningful restriction we impose is that the gross profit 

er unit of a product is higher for the online channel than for the 

ffline channel, which can be justified by the difference in holding 

osts. Lastly, we fix the values of parameters �(1) and �(2) at 10 4 

nd 3 · 10 4 , respectively. 

We use the SBMILP as a benchmark to evaluate the com- 

arative performance of our heuristic method. The computational 

tudy was carried out on a laptop with Intel Core i7-8650U CPU 

1.90 GHz), 8 GB RAM and 64-bit Windows 10 OS. To solve our 

ILPs we used Gurobi (version 8.0.1). We ran 100 experiments for 

ach value of n ∈ { 10 0 , 20 0 , 30 0 } . The results showed that, on av-

rage, the SBMILP can be solved to optimality in 0.29 seconds if 

 = 100 , in 1.48 seconds if n = 200 , and in 10.72 seconds if n =
0 0 . However, running 10 0 experiments for n = 400 turned out to

e not particularly feasible, as some instances took up to 500 sec- 

nds to solve (even though some other instances were solved in 

ess than 7 seconds). This highlights the strong need for a compu- 

ationally efficient heuristic method to solve the assortment opti- 

ization problem. 

Our proposed heuristic method allows to drastically reduce 

oth the number of binary variables and the number of constraints 

ontaining binary variables in the SBMILP formulation. This is be- 

ause each binary variable z c j such that j ∈ J 

(c) turns into a pa-

ameter. The numerical results in terms of reduction in the num- 

er of binary variables and solving time for different values of n 

re shown in Fig. 2 (a) and (b), respectively (note that the x -axis is

og-scaled with base 2). The results are averaged over 100 gener- 

ted instances. It can be seen that the reduction in the number of 

inary variables is more than 93% and this is independent of the 

ctual value of n . As a consequence, the optimization problem (9) 

ith additional constraints (13) is computationally much easier to 

olve than the original one. The heuristic still requires solving a 

ILP whose size grows linearly in n , so the solving time grows ex- 

onentially in n . However, even if n is of order 10 4 , the heuristic

olution can be found in a matter of seconds, making this method 

ttractive for most practical applications. 

For moderate values of n – in the range from 50 to 300 – we 

lso compared the output and the solving time of the heuristic to 

hose of the SBMILP. The results, which again represent averages 

ver 100 generated instances, are given in Table 1 . As can be seen, 

n average, the profit yielded by the heuristic is around 0.99997 

f the optimal profit, and the proportion of mismatched assort- 

ent decisions (i.e., the proportion of z c j values which are differ- 

nt for the heuristic output and for the optimal output) is almost 
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Fig. 2. Computational performance of the heuristic method as a function of the product set size ( n ). 

Table 1 

Comparative performance of the heuristic method. 

n ratio of solving times ratio of optimal values proportion of mismatched decisions 

50 8.95 0.999984 0.003400 

100 39.76 0.999975 0.003950 

150 86.17 0.999979 0.003400 

200 138.61 0.999960 0.003925 

250 218.32 0.999974 0.003540 

300 595.31 0.999966 0.004050 
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lways less than 0.004. At the same time, the ratio of the solving 

ime of the original formulation to the solving time of the heuris- 

ic is around 9 if n = 50 , and around 595 if n = 300 . These results

emonstrate that the developed heuristic method yields close-to- 

ptimal assortments whilst generally being substantially superior 

n terms of solving time, especially as n grows. 

Finally, for large values of n , we verified numerically that our 

euristic method yields close-to-optimal solutions. For each n ∈ 

 50 0 0 , 10 0 0 0 , 150 0 0 , 20 0 0 0 , 250 0 0 } , we generated 10 0 random

AM instances. Then, we compared the heuristic outputs with 

he solutions to the linear relaxations of the corresponding SB- 

ILPs, which provide upper bounds on the true optimal values. 

or each problem instance, we computed the value of (ob j rel −
b j heur ) / ob j heur , where ob j rel is the value of the linear relaxation 

f the SBMILP and ob j heur is the value of the heuristic. As can be 

een in Fig. 3 , the value of these gaps never exceeded 0.2%, with

he average gap between 0.15% and 0.16%, confirming the high so- 

ution accuracy of the proposed heuristic. 

Note that since the MAM is a regular choice model – i.e., 

dding a product to an assortment in one of the channels cannot 

ead to an increase in the probability of customers choosing any 

ther product – the revenue-ordered heuristic algorithm (see, e.g., 

erbeglia & Joret, 2020 ) can be used to solve the assortment op- 

imization problem under the MAM. In particular, if all products 

in both channels simultaneously) are ranked in ascending order 

f the price, and the heuristic solution is determined by finding 

he best cutoff in this ranking, then this solution approximates the 

ptimum revenue within a factor of 1 
1+ ln (r max /r min ) 

, where r max and 

 min are the maximum and the minimum price, respectively. This 

ethod can prove to be very useful if prices are sufficiently close 

o each other. By contrast, the quality of our proposed heuristic 

ethod, which is very promising in terms of computational time 

nd solution accuracy, does not rely on the closeness of prices of 

roducts, meaning it is readily applicable in a general setting. 

. Parameter estimation 

We start with describing a basic method to estimate the pa- 

ameters of the MAM. Recall that πc j (S c , S c̄ ) is the probability that

 customer buys product j in channel c given assortments S c and 
9 
 c̄ in channels c and c̄ , respectively. Suppose that for all i, j ∈ N ,

 ∈ C the probabilities πc j (N , N ) , πc j (N \{ i } , N ) and πc j (N , N \{ i } )
re known along with the respective values of �(c) and �( ̄c ) . Such 

nformation can be obtained from data comprising the aggregate 

emand values (or, equivalently, the aggregate sales, assuming that 

here are no shortages) for the corresponding assortments together 

ith the shares of customers of each type who chose the no- 

urchase alternative if all the products from N had been offered 

n both channels. The latter means that the ratios v (c) 
0 

/ 
∑ 

j∈N v 
(c) 
j 

 c ∈ C are estimated exogenously. While the assumption of having 

hese exogenous estimates is fairly restrictive, it is in line with the 

xisting literature (see Vulcano, van Ryzin, & Ratliff, 2012 ). 

Without loss of generality, we can assume v (c) 
0 

+ 

∑ 

j∈N v 
(c) 
j 

= 1 

 c ∈ C. For all c ∈ C, j ∈ N , the MAM parameters can then be de-

ermined using the following expressions: 

v (c) 
j 

= πc j (N , N ) 
�(c) + �( ̄c ) 

�(c) 
, v (c) 

0 
= 1 −

∑ 

j∈N 
v (c) 

j 
, 

u 

(c) 
j 

= 

πc̄ j (N \{ j} , N ) − πc̄ j (N , N ) 

πck (N \{ j} , N ) 
v (c) 

k 
, 

 

(c) 
j 

= 

πck (N , N ) 

πck (N \{ j} , N ) 
+ v (c) 

j 
− u 

(c) 
j 

− 1 , (14) 

here k ∈ N is any product different from j. Expressions (14) can 

e verified by straightforward calculations. This method, however, 

equires specific information on the product demands for a cer- 

ain set of assortments, which may be difficult to obtain in prac- 

ice. Therefore, there is a need for more general parameter estima- 

ion methods for situations in which only limited data about prod- 

ct demands is available. The two most common parameter esti- 

ation techniques for discrete choice models are maximum likeli- 

ood estimation (MLE) and least squares estimation. In their recent 

mpirical study, Berbeglia, Garassino, & Vulcano (2021) compared 

he estimation results produced by these two standard estimation 

echniques and, considering a range of prominent discrete choice 

odels, found that the quality of estimates of these two methods 

s very similar. Importantly, least squares estimation requires only 

ggregate sales data (i.e., how many units of each product were 

old during each period with a fixed assortment), whereas MLE 

s typically used when the information about all individual sales 
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Fig. 3. Heuristic performance bounds for large numbers of products. 
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ransactions is available. In this work, we focus on the limited set- 

ing of aggregate sales transaction data (i.e. only sales quantities 

nd product availability in each period are observed) in which di- 

ect maximization of the (log-)likelihood function is computation- 

lly unappealing (see Vulcano et al. 2012 ), so we resort to an es-

imation based on least squares which is readily applicable in in- 

omplete data situations. 

Suppose that product demands which arise from the MAM are 

bserved in both channels for T periods. In other words, we im- 

licitly assume customers make choices according to an MAM in 

 homogeneous market (i.e. preferences of customer are homoge- 

eous across the selling horizon, meaning their choice behaviour 

an be modelled by a single MAM). Note that although this as- 

umption is standard in the estimation of discrete choice models, 

t can be straightforwardly relaxed (see, for example, the discus- 

ion in Vulcano et al. 2012 ). For each period t , we denote the as-

ortment in channel c by S ct and the observed demand for prod- 

ct j in channel c by d c jt . We also assume that the demand rate is

onstant for both channels, i.e. �(c) 
t = �(c) ∀ t ∈ { 1 , . . . , T } and that

he market size is sufficiently large (i.e. observed historical sales 

re representative of expected sales). If the available data is com- 

osed solely of the demand values and the corresponding assort- 

ents, we can obtain estimates of the MAM parameters by mini- 

izing the sum of squared residuals, i.e., by solving the following 

ptimization problem: 

min 
v (c) , �(c) 

u (c) ,w (c) 

T ∑ 

t=1 

∑ 

c∈C 

∑ 

j∈N 

( v (c) 
j 

�(c) 1 j∈ S ct 

v (c) 
0 

+ 

∑ 

k ∈ S ct 

v (c) 
k 

+ 

∑ 

i ∈N\ S ct 

(u (c) 
i 

+ w 

(c) 
i 

) 
+ 

u ( ̄c ) 
j 

�( ̄c ) 1 j∈ S ct \ S c̄ t 
v ( ̄c ) 

0 
+ 

∑ 

k ∈ S c̄ t 
v ( ̄c ) 

k 
+ 

∑ 

i ∈N\ S c̄ t 
(u ( ̄c ) 

i 
+ w 

( ̄c ) 
i 

) 
− d c jt 

)2 

s.t. u (c) 
j 

+ w 

(c) 
j 

≤ v (c) 
j 

∀ c ∈ C, j ∈ N , 

v (c) 
0 

+ 

∑ 

j∈N 
v (c) 

j 
= 1 ∀ c ∈ C, 

�(c) , v (c) 
0 

, v (c) 
j 

, u (c) 
j 

, w 

(c) 
j 

∈ R ≥0 ∀ c ∈ C, j ∈ N . 

(15) 

Importantly, despite the fact that problem (15) is nonconvex, 

ome off-the-shelf solvers are able to cope with this problem 

uite well. In particular, the IPOPT package developed by Wächter 

 Biegler (2006) for nonlinear optimization shows a surprisingly 

ood performance. Following Vulcano et al. (2012) and Gallego 

t al. (2014) , we illustrate the performance of the above parameter 

stimation method by considering an exemplary setup with n = 5 
10 
nd T = 15 . We simulate 100 instances of demand arising from the 

AM with fixed parameters (which are randomly generated in the 

ay described in Section 5 ), with each instance corresponding to 

 set of randomly simulated assortments S ct , c ∈ C, t ∈ { 1 , . . . , T } .
e consider two cases: in the first case, we assume that the val- 

es of the ratios v (c) 
0 

/ 
∑ 

j∈ N v 
(c) 
j 

∀ c ∈ C (or, equivalently, the values

f v (c) 
0 

if 
∑ 

j∈N v 
(c) 
j 

= 1 ) are given exogenously, whereas no such 

nformation is available in the second case. The least squares es- 

imates obtained by solving problem (15) and averaged over 100 

nstances are presented in Table 2 . It can be seen that these esti- 

ates are particularly close to the true values of the parameters if 

he values of v (c) 
0 

are known, which highlights the importance of 

nformation availability. Indeed, if a firm has access to accurate ex- 

genous estimates of the attractiveness of the no-purchase option 

e.g., by keeping track of the no-purchase outcomes), then the ac- 

uracy of parameter estimation is shown to improve dramatically. 

An alternative way to estimate the MAM parameters is to build 

pon the Expectation Maximization (EM) algorithm which was 

eveloped by Vulcano et al. (2012) for estimating the parame- 

ers of the BAM when only aggregate sales data are available, 

hich makes the standard MLE approach extremely computation- 

lly challenging. Their algorithm was later adapted by Gallego et al. 

2014) to estimate the parameters of the GAM. The idea behind 

hese algorithms is to estimate the model parameters iteratively 

sing estimates of the first-choice demand. For large-scale prob- 

ems, such an approach can be more effective than solving the 

east squares problem. However, similar to the algorithm presented 

y Gallego et al. (2014) , the method based on an adaptation of 

he EM algorithm to the MAM suffers from an important limita- 

ion: its convergence is not theoretically guaranteed. We provide 

 detailed description and performance examples of this method 

n Appendix H of the supplementary appendix material. 

. Impact of omnichannel initiatives and sensitivity analysis 

.1. General effects of omnichannel initiatives 

In this subsection, we consider widely used omnichannel ini- 

iatives and discuss general effects of their implementation on the 

AM parameters. Importantly, we do not account for implementa- 

ion and maintenance costs associated with these initiatives – our 

oal is to estimate and explore the demand evolution. In the fol- 

owing, we assume that channel 1 is the retailer’s offline channel 

i.e., a physical store or a chain of physical stores) and channel 2 is 

he online channel. 
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Table 2 

Least squares estimates of the MAM parameters. 
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The most straightforward effect takes place when customers 

ave in-store access to information about the availability of online 

nventory, e.g., through in-store digital help desks. In this case, val- 

es of u (1) 
j 

, j ∈ N have to increase as ratios u (1) 
j 

/ (u (1) 
j 

+ w 

(1) 
j 

) de-

ermine the probability that customers are willing to switch from 

he offline to online channel when looking for the desired prod- 

ct, and offline customers have an additional incentive to check 

he online assortment. In other words, if product j is not avail- 

ble in the offline channel but it is available in the online channel, 

hen the demand for product j in the online channel is expected to 

ncrease due to the fact that more customers switch from the of- 

ine to online channel when looking for this product. At the same 

ime, one can expect that the shadow attractiveness values of pur- 

hasing products from another source, u (1) 
j 

+ w 

(1) 
j 

, should remain 

onstant for all j ∈ N since there should be no impact on choices

f customers who select products which are offered in the offline 

hannel. That is, the increase in demand for products in the on- 

ine channel caused by this omnichannel initiative takes place on 

ccount of type-1 customers who would otherwise go to a differ- 

nt retailer. However, note that parameters u (1) 
j 

may not increase 

onsiderably because nowadays customers have an option to access 

he retailer’s online store using their smartphones. It is also rea- 

onable to assume that the effects on all other parameters is neg- 

igible as no additional customers are drawn to the store, and cus- 

omers willing to buy something from the in-store assortment are 

ot likely to switch to the online channel looking for other prod- 

cts. Therefore, the benefits of this initiative may be outweighed 

y its implementation costs. It would thus be interesting for future 

tudies to compare the additional revenue generated by increased 

ross-channel demand with the implementation costs of this ini- 

iative through real-world case studies. 

We now investigate the effect of BOPS, which is arguably the 

ost prevalent omnichannel initiative. We assume that BOPS or- 

ers are fulfilled from the physical store inventory. Otherwise, if 

 customer is only allowed to pick up a product after it is deliv-

red from a warehouse to the store, there is no substantial differ- 

nce between regular online transactions and BOPS transactions. 

he main distinction is in the delivery cost – if the delivery is car- 

ied out by the retailer and it is not paid separately for by cus- 

omers, then the delivery cost in the latter case should at least not 

e higher than in the former because deliveries to the store can 

e organized in batches. Thus, the major issue for the retailer is 

o compare the benefits generated by attracting new online cus- 
11 
omers through introducing the BOPS functionality with the asso- 

iated implementation costs (including those for adjusting the sup- 

ly chain). This is, however, outside the scope of our research. 

Within the framework of our research, it is more interesting to 

tudy the effect of BOPS if orders have to be fulfilled from the 

hysical store inventory. This is also a common practice for om- 

ichannel retailers, usually due to the need to have items ready 

or collection shortly after the order was placed (see Gallino & 

oreno, 2014 ). In general, the overall traffic of customers should 

ncrease because customers who do not want to wait for a deliv- 

ry have an additional convenient way to receive a product. How- 

ver, even if we do not consider implementation costs, introduc- 

ng BOPS can be unprofitable. Despite counting purchases made 

hrough BOPS as online transactions, the empirical analysis car- 

ied out by Gallino & Moreno (2014) revealed that the introduc- 

ion of the BOPS functionality generally leads to a reduction in on- 

ine sales and an increase in offline sales. They explained this phe- 

omenon by the impact of sharing reliable inventory availability 

nformation on customers’ decisions. If it is guaranteed that a cer- 

ain product is available in-store, customers may choose to go to 

he store (even without reserving the product using BOPS) rather 

han order it online. A similar effect can take place if the retailer 

rovides online information about the current stock level of each 

roduct in each store. As a consequence, the retailer may lose part 

f its online customers while attracting more in-store customers 

nstead. This can lead to losses under the assumption that the 

ross profits per unit of each product in the online are higher than 

hose in the offline channel. 

Based on these assertions, we can describe the general effects 

f implementing the BOPS functionality on the MAM parameters 

s follows: Firstly, one can expect an increase in the expected 

umber of customers visiting at least one of the retail channels, 
(1) + �(2) , together with a decrease in the number of online 

ustomers �(2) . Secondly, since online customers now have infor- 

ation about the in-store assortment, parameters u (2) 
j 

should go 

p, while the shadow attractiveness values of purchasing products 

rom another source, u (2) 
j 

+ w 

(2) 
j 

, should remain constant (similar 

o the impact of in-store information about online inventory avail- 

bility). Note that in this case, we count purchases made through 

OPS as in-store purchases. 

A more rigorous way to study the effect of BOPS on customer 

hoices would be to introduce a separate channel for BOPS trans- 

ctions, and suitably adjust the parameters related to other chan- 
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Fig. 4. Relation between the optimal assortments and r c j for channels 1 (left) and 2 (right). 

Fig. 5. Relation between the optimal assortments and v (c) 
j 

for channels 1 (left) and 2 (right). 
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els. This approach would also allow us to formulate an optimiza- 

ion problem for finding optimal assortments in all three channels, 

hereby determining the products for which it is profitable to im- 

lement the BOPS functionality. Future research should focus on 

tudying the impact of this and other omnichannel initiatives in 

rder to gain a better understanding of, and novel insights into the 

rofitability of adopting such initiatives. 

.2. Numerical analyses and managerial insights 

For the first part of our numerical analyses, we generate the 

AM parameters as described in Section 5 and keep them fixed 

hroughout the numerical experiments. More specifically, we con- 

ider the case n = 30 in order to be able to clearly visualize the

ptimal assortments. In the below figures, we indicate products 

hat belong to the optimal assortment of both channels by black 

quares, products that belong to one optimal channel assortment 

xclusively by blue squares, and the remaining products – i.e. those 

ot offered at all – by white squares (similar to Fig. 1 ). Each fig-

re consists of two plots, with the plot(s) on the left- and right- 

and side corresponding to channel 1 (offline) and channel 2 (on- 

ine), respectively. 

It is important to recall that the generated parameter values are 

onvenient for carrying out this analysis, but they are not neces- 

arily realistic. For example, one can expect that if the gross profit 

er unit of a certain product j is high compared to other products, 

hen the proportion of the demand for product j to the total de- 

and in the corresponding channel is probably small, i.e., there is 

 negative correlation between the values of r c j and v (c) 
j 

. Moreover, 
12 
e assume that the values of r c j and v (c) 
j 

are uniformly distributed, 

hich is unlikely to be the case in practice. However, our goal is 

o study the relationship between the parameters values and the 

ptimal solution to the SBMILP, rather than to investigate a real- 

orld case study, and using such generated data ideally fits this 

urpose. 

First, let us explore the relation between the gross profit per 

nit of each product and the optimal assortments given by the 

ptimal solution of the SBMILP (see Fig. 4 ). We observe that the 

igher the gross profit per unit of a product, the more likely it is 

hat this product belongs to the optimal assortment. However, such 

 relation is not always evident, i.e., a product with a relatively 

igh unit profit in one of the channels may not be included in the 

orresponding assortment, whereas a product with a relatively low 

nit profit may be offered. Moreover, the relationship between unit 

rofits and optimal assortments seems to be more pronounced in 

hannel 2 than in channel 1. It can possibly be explained by the 

act that we set the total number of type-2 customers to be con- 

iderably higher than that of type-1 customers ( �(1) = 10 4 and 

(2) = 3 · 10 4 ), which could reflect a situation where channel 2 

epresents an online channel. Also, note that if a product is not in- 

luded in the assortment in one channel, and the profit per unit of 

he product is low in both channels, it can still be profitable to of- 

er this product in the other channel due to demand generated by 

ustomers who switch to that channel and those who shop there 

n the first place. 

Next, we create a similar visualization but for the attractive- 

ess values v (c) 
j 

instead of the gross profit values, with the results 

hown by Fig. 5 . Unlike Fig. 4 , it can be observed that there is no
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Fig. 6. Optimal assortments for different values of �(1) / �(2) for channels 1 (left) and 2 (right). 
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pparent relation. To further analyze the structure of optimal as- 

ortments, recall the finding formulated in Proposition 5 . Based on 

 c ( j, S c , S c̄ ) , we can derive a more tractable expression that approx-

mately characterizes the optimal assortment in one channel given 

he assortment in the other channel. Indeed, consider the follow- 

ng expression: 

f c j (S c̄ ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

r c j v (c) 
j 

− r c̄ j u 

(c) 
j 

˜ v (c) 
j 

if j ∈ S c̄ , 

r c j v (c) 
j 

+ r c j u 

( ̄c ) 
j 

�( ̄c ) / �(c) 

˜ v (c) 
j 

otherwise. 

(16) 

he values of f c j (S c̄ ) ∀ c ∈ C, j ∈ N for the optimal assortments

re illustrated by Fig. 6 a. We observe that unlike the attractive- 

ess values, these expressions do provide an approximate charac- 

erization of the optimal assortments. Indeed, as can be seen, if 

f c j (S c̄ ) > f ck (S c̄ ) and product k belongs to the optimal assortment
13 
n channel c, then product j tends to belong to the optimal assort- 

ent as well. In the following, we use the values of f c j to produce

ore illustrative plots. 

To study how the optimal assortments are being affected by a 

hange in the ratio �(1) / �(2) , we consider two additional cases: 
(1) = �(2) = 10 4 and �(1) = 3 · 10 4 , �(2) = 10 4 . The results are

ummarized in Fig. 6 b and 6 c. Interestingly, it can be seen that 

ith an increase in the ratio �(1) / �(2) from 1 / 3 to 1, the opti-

al assortment in channel 1 becomes smaller in size, whereas the 

ptimal assortment in channel 2 becomes larger. However, with a 

urther increase in the ratio �(1) / �(2) from 1 to 3, the optimal as- 

ortments in both channels do not change. To sum up, the smaller 

he ratio of customers whose primary choice is to shop online to 

hose whose primary choice is to go to a retail store, the smaller 

he optimal assortment in the physical channel and the larger the 

ssortment in the online channel (up to a certain limit). This is 

ntuitively clear given that an online purchase is generally more 
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Fig. 7. Optimal assortments for different values of u (c) 
j 

and w 

(c) 
j 

for channels 1 (left) and 2 (right). 
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rofitable for the retailer than the in-store purchase of the same 

roduct, so the retailer is interested in a high online traffic and 

herefore increases the online assortment. 

We now investigate the effect of the values of u (c) 
i 

/ (u (c) 
i 

+ w 

(c) 
i 

)

n the optimal assortments. These ratios determine how willing 

ustomers are to switch to another channel when looking for the 

esired product. We therefore fix the values of all parameters ex- 

ept for the values of u (c) 
j 

and w 

(c) 
j 

, and also set u (c) 
j 

+ w 

(c) 
j 

=
 . 5 v (c) 

j 
. We then consider the following three cases: u (c) 

j 
= 0 . 01 v (c) 

j 
,

 

(c) 
j 

= 0 . 25 v (c) 
j 

and u (c) 
j 

= 0 . 49 v (c) 
j 

∀ c ∈ C, j ∈ N . The optimal as-

ortments are displayed in Fig. 7 . It is interesting to note that a

imilar effect to the one described above for different values of 
(1) / �(2) can be observed when increasing the ratio u (c) 

j 
/ (u (c) 

j 
+ 

 

(c) 
j 

) : given a fixed sum u (c) 
j 

+ w 

(c) 
j 

∀ c ∈ C, j ∈ N , the optimal as-
14 
ortment in channel 1 becomes smaller in size, whereas the op- 

imal assortment in channel 2 becomes larger. In other words, 

he larger the proportion of customers willing to switch from 

ne channel to another in case of absence of a certain product, 

he larger the optimal assortment in the online channel and the 

maller the optimal assortment in the physical channel. Trivially, 

n the case when 100% of in-store customers are willing to switch 

o the online channel if their primary-choice product is not avail- 

ble, the optimal assortment in the physical channel is the empty 

et. 

Next, we investigate the extent to which the implementation of 

he BOPS functionality affects the total profit of the retailer. To this 

nd, we use the initially generated values of parameters u (c) 
j 

and 

 

(c) 
j 

∀ c ∈ C, j ∈ N . Recall that the impact of introducing the BOPS

unctionality on the MAM parameters can be described approxi- 
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Fig. 8. Effect of ratio of physical to online traffic (left) and of proportions of customers switching channels (right) on both the average size of assortments ( | S 1 | , | S 2 | ) and 

the degree of assortment overlap ( | S 1 ∩ S 2 | ). 

Table 3 

Different im pacts of the BOPS implementation on total profit. 

change in �(1) change in �(2) change in u (2) 
j 

objective value 

– – – 24025.16 

7500 −60 0 0 – 23489.87 

9000 −60 0 0 – 24133.95 

10500 −90 0 0 – 22362.52 

12000 −90 0 0 – 22931.03 

13500 −90 0 0 – 23499.54 

13500 −90 0 0 0 . 2 w 

(2) 
j 

23514.09 

13500 −90 0 0 0 . 5 w 

(2) 
j 

23582.26 

13500 −90 0 0 0 . 8 w 

(2) 
j 

23723.54 

15000 −90 0 0 – 24068.05 
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ately as follows: the sum �(1) + �(2) increases, �(2) decreases, 

nd u (2) 
j 

increases under the condition that the sum u (2) 
j 

+ w 

(2) 
j 

oes not change ∀ j ∈ N . We carried out several numerical experi-

ents considering different degrees of such impact and report re- 

ults in Table 3 . Based on these results, the following key observa- 

ions can be made. The implementation of the BOPS functionality 

an be unprofitable if the proportion of online customers using this 

ption is too large compared to the additional traffic attracted to 

he offline channel. Furthermore, the primary effect on total profit 

s due to the change in the parameters �(1) and �(2) , whereas the 

ffect of an increase of u (2) 
j 

-values is less pronounced. This is not 

urprising since u (2) 
j 

-values only reflect the cross-channel demand 

olume generated by customers switching from channel 2 to chan- 

el 1, while �(1) + �(2) represents the total number of customers 

isiting the retailer. Ultimately, our results indicate that the prof- 

tability of adopting the BOPS functionality needs to be evaluated 

n a case-by-case basis, which is in line with the empirical find- 

ngs of Gallino & Moreno (2014) . 

Unlike the above analyses, which were carried out for illustra- 

ive purposes for one problem instance, we now analyze the effect 

f the considered parameter changes on both the size of assort- 

ents and the degree of assortment overlap for a large number of 

roblem instances (simulated in the same way). First, we simulate 

0 0 0 problem instances, and for each problem instance, we fix all 

he parameters except for �(1) and �(2) . We then consider sev- 

ral cases with different values of the �(1) / �(2) -ratio. Note that 

he absolute values of �(1) and �(2) are irrelevant since the ob- 

ective function in the SBMILP can be divided by the constant �(2) 

leaving the optimal solution unchanged), which makes it a func- 

ion of �(1) / �(2) . Subsequently, we solve the SBMILP in each con- 

idered case and record the size of assortments in both channels 

nd the degree of assortment overlap. The aggregated results are 
15 
hown in Fig. 8 (a) (note that the x -axis is log-scaled). We observe

hat the average assortment sizes follow the same trends as the 

nes described earlier for one problem instance: with an increase 

n the ratio �(1) / �(2) , on average the size of assortment in chan- 

el 1 (physical channel) decreases while the size of assortment in 

hannel 2 (online channel) increases. Interestingly, we also observe 

hat on average, the degree of assortment overlap remains virtually 

onstant. This can be explained by fact that the trend lines are al- 

ost symmetric, that is the absolute values of their slopes are very 

lose to each other. 

Next, we study the effect of the values of u (c) 
i 

/ (u (c) 
i 

+ w 

(c) 
i 

) on

oth the size of assortments and the degree of assortment overlap. 

s previously, we simulate 10 0 0 problem instances. For each prob- 

em instance, we fix all parameters except for u and w . Similar to

he analysis of one problem instance, we set u (c) 
i 

+ w 

(c) 
i 

= 0 . 5 v (c) 
i 

nd consider several cases with the ratio u (c) 
i 

/ (u (c) 
i 

+ w 

(c) 
i 

) taking

alues from 0 to 1. The results are summarized by Fig. 8 (b). We

an see that if u (c) 
i 

/ (u (c) 
i 

+ w 

(c) 
i 

) tends zero – that is if there is no

ross-channel demand – then the average sizes of assortments in 

oth channels are the same. This is not surprising because if there 

s no cross-channel demand, then each assortment can be opti- 

ized independently. Since the parameters related to each channel 

re simulated randomly, on average the assortment sizes are virtu- 

lly identical, i.e. | S 1 | ≈ | S 2 | . Also, we can observe that on average,

n increase in u (c) 
i 

/ (u (c) 
i 

+ w 

(c) 
i 

) leads to an increase in the size of

hannel 1 assortment ( | S 1 | ) and a decrease in the size of channel 2

ssortment ( | S 2 | ). This is consistent with our previous observations 

or one problem instance. Lastly, we observe that the line repre- 

enting the average overlap degree closely follows the line repre- 

enting the average size of channel 1 assortment – in other words, 

here are hardly any products that belong to channel 1 assortment 

ut not to channel 2 assortment. This might be explained by the 

act that since channel 2 assortment comprises almost all prod- 

cts, the few products that are not part of it are characterized by 

ery low unit gross profits. In this case, their unit gross profits are 

lso low in channel 1 (due to the parameter simulation procedure), 

aking them also less likely to be part of the optimal assortment 

n that channel. 

Finally, let us evaluate the revenue benefits of solving the om- 

ichannel assortment problem as opposed to optimizing the two 

ssortments in siloed channels, which is often referred to as mul- 

ichannel assortment optimization. To this end, we consider several 

roblem sizes with the number of products, n , ranging from 30 to 

00. For each n , we simulate 10 0 0 problem instances in the way

escribed at the beginning of Section 5 . Then, for each problem 

nstance, we compute two revenues: one that corresponds to om- 

ichannel assortment optimization; and one that corresponds to 
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Fig. 9. Profitability of omnichannel assortment optimization and assortment optimization in siloed channels. 
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ssortment optimization in siloed channels. The former is obtained 

y solving the SBMILP, whereas the latter is determined in the fol- 

owing way: First, we solve the assortment optimization problem 

nder the GAM for each channel separately, using the fact that 

he MAM restricted to choices of type- c customers in channel c

s equivalent to the GAM. Once assortments in the two channels 

re identified, we compute the corresponding total expected rev- 

nue assuming that the customers make their choices according to 

he MAM. Importantly, by doing this we do not neglect the cross- 

hannel demand – even though the assortments are optimized in 

iloed channels, the underlying demand model is the same as in 

he omnichannel case. Fig. 9 shows that there is a clear benefit of 

olving the omnichannel assortment optimization problem as op- 

osed to optimizing assortments in siloed channels. In fact, for the 

 -values under consideration, the omnichannel solution turned out 

o between 1.8% and 1.9% more profitable on average than the so- 

ution obtained for siloed channels, with maximum improvements 

f up to 6.7%, highlighting the considerable revenue gains that may 

e achieved by omnichannel assortment planning. 

. Conclusions and future work 

In this paper, we have developed an analytical framework for 

oth modeling product demand and making assortment decisions 

n an omnichannel environment. In particular, we have introduced 

 discrete choice model referred to as the multichannel attraction 

odel (MAM) that specifically accounts for the complex nature of 

mnichannel shopping behavior. Compared to the single-channel 

etup – which corresponds to the general attraction model (GAM) 

the multichannel structure of our choice model substantially in- 

reases the complexity of associated problems. For example, the 

ssortment optimization problem under the GAM can be formu- 

ated as a linear program, and the optimal assortment can actually 

e found analytically. For the MAM, on the other hand, we have 

ormulated the sales-based mixed integer linear program (SBMILP) 

a tight MILP formulation of the corresponding assortment opti- 

ization problem – and proved that the optimal assortment in one 

hannel can be found analytically if all products are available in the 

emaining channel. We have proposed a computationally efficient 

euristic method to approximately solve the SBMILP, and showed 

umerically that its output is extremely close to the optimal solu- 

ion. We have also presented three different methods to estimate 

he parameters of the MAM, and demonstrated that if product de- 

ands are only known for a limited number of assortments in 
16 
ach channel, the MAM parameters can be estimated fairly accu- 

ately by simply solving a least squares problem. 

We have analyzed general effects of the implementation of 

idely-used omnichannel initiatives on the MAM parameters, and 

ave carried out numerical experiments to investigate the struc- 

ure of optimal assortments. We demonstrated that in an om- 

ichannel environment, optimal assortments cannot be character- 

zed by a single factor alone as they are affected by a combina- 

ion of several factors. In fact, in our experiments we identified 

 relation between the sizes of optimal assortments and the fol- 

owing two factors: the ratio of customers whose primary choice 

s to shop online to those whose primary choice is to go to a re-

ail store, and the proportion of customers willing to switch from 

ne channel to another in case of absence of a certain product. We 

lso showed numerically that implementing the buy-online-and- 

ick-up-in-store (BOPS) initiative is not always profitable, which 

upports previous findings in the omnichannel literature. Finally, 

e evaluated the benefits of omnichannel assortment optimization 

s opposed to optimizing siloed assortments (also known as mul- 

ichannel assortment optimization) and showed that the former 

an result in substantial revenue gains for omnichannel retailers. In 

act, our numerical analysis showed that the omnichannel solution 

s 1.8%-1.9% more profitable on average than the solution obtained 

or siloed channels, with maximum gains of up to 6.7%. These find- 

ngs are encouraging and demonstrate that our framework can be 

eneficially used for omnichannel assortment planning as well as 

or exploring the profitability of implementing different omnichan- 

el initiatives, which should be of great interest to decision-makers 

n the retailing industry. 

The proposed framework can be the basis for a range of im- 

ortant further developments. Firstly, a better understanding of 

he structure of optimal assortments in each channel could be ob- 

ained through an extensive numerical analysis based on values of 

he MAM parameters estimated using a real-world dataset. Sec- 

ndly, additional theoretical results related to the assortment opti- 

ization problem under the MAM could be derived, with the ques- 

ion of NP-hardness of the SBMILP being of particular interest. In a 

imilar vein, the possibility of developing an FPTAS (e.g. along the 

ines of the recent work of Désir, Goyal, & Zhang (2022) ) may be

xplored. Also, the MAM could be subject to multiple extensions. 

or example, the MAM could be calibrated on the product features 

evel. In this case, it would be very interesting to compare the re- 

ults obtained using such a modified version of the MAM to those 

btained by Dzyabura & Jagabathula (2018) and Lo & Topaloglu 
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2022) . Another promising research direction would be to formu- 

ate and explore a stochastic version of the SBMILP for the case 

f uncertain demand in each channel. It would also be beneficial 

o study the effects of BOPS on customer choices by introducing 

 separate channel for BOPS transactions. Such an approach would 

llow to investigate not only whether but also for which specific 

roducts it is profitable to implement the BOPS initiative. Finally, 

eriving analytical properties of solutions to the SBMILP should 

ead to additional managerial insights and result in a more efficient 

BMILP formulation. 
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ppendix A. The MAM Formulation in the General Setup 

Suppose that C = { 1 , . . . , K} is the set of channels with K > 2 .

e adjust and extend the notation presented in Section 3 in the 

ollowing way. Let u (c) 
di 

/ v (c) 
i 

be the proportion of type- c customers 

illing to purchase product i ∈ N \ S c in channel d ∈ C\{ c} if it is

ot available in channel c, and let u (c) 
i 

denote the sum 

∑ 

d∈C\{ c} u (c) 
di 

. 

n other words, u (c) 
i 

/ v (c) 
i 

is the proportion of type- c customers will- 

ng to purchase product i in any of the retailer’s channels if it is not

vailable in channel c. 

Then, the choice probabilities under the MAM given assort- 

ents in all channels can be defined by analogy to the two- 

hannel case. The probability that a type- c customer buys product 

j in channel c is 

(c) 
c j 

(S c ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

v (c) 
j 

v (c) 
0 

+ 

∑ 

k ∈ S c 
v (c) 

k 
+ 

∑ 

i ∈N\ S c 
(u 

(c) 
i 

+ w 

(c) 
i 

) 
if j ∈ S c , 

0 otherwise; 

nd the probability that a type- c customer buys product j in chan- 

el d is 

(c) 
dj 

(S c , S d ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

u 

(c) 
dj 

v (c) 
0 

+ 

∑ 

k ∈ S c 
v (c) 

k 
+ 

∑ 

i ∈N\ S c 
(u 

(c) 
i 

+ w 

(c) 
i 

) 
if j ∈ S d \ S c , 

0 otherwise. 

ppendix B. Proof of Proposition 1 

First, note that the MAM restricted to type- c customers and 

roducts in channel c is equivalent to the GAM for products in 

his channel. At the same time, Blanchet et al. (2016) provided the 

et of MCCM parameters under which the choice probabilities can 

e expressed as the GAM probabilities. Suppose that we only con- 

ider choices of type- c customers in channel c. Then, the MCCM 

arameters that result in the GAM probabilities are as follows 

see Blanchet et al., 2016 ): 

λ(c) 
j c 

= v (c) 
j 

, ρ(c) 
j c i c 

= 

v (c) 
i 

(v (c) 
j 

− u 

(c) 
j 

− w 

(c) 
j 

) 

v (c) 
j 

− v (c) 
j 

(v (c) 
j 

− u 

(c) 
j 

− w 

(c) 
j 

) 
, 

ρ(c) 
j c 0 

= 

v (c) 
0 

(v (c) 
j 

− u 

(c) 
j 

− w 

(c) 
j 

) + u 

(c) 
j 

+ w 

(c) 
j 

v (c) 
j 

− v (c) 
j 

(v (c) 
j 

+ u 

(c) 
j 

+ w 

(c) 
j 

) 
. 

(B.1) 

Now, let us also take into consideration products in channel S c̄ . 

e therefore split the transition probability from product j c to the 
17 
o-purchase alternative into two parts: one corresponds to switch- 

ng to the no-purchase alternative directly, and the other one cor- 

esponds to first purchasing product j c̄ , and then – in case this 

roduct is not available – selecting the no-purchase option with 

robability 1. Formally, let us define 

ρ(c) 
j c 0 

= 

v (c) 
0 

(v (c) 
j 

− u 

(c) 
j 

− w 

(c) 
j 

) + u 

(c) 
j 

+ w 

(c) 
j 

v (c) 
j 

− v (c) 
j 

(v (c) 
j 

+ u 

(c) 
j 

+ w 

(c) 
j 

) 
−

u 

(c) 
j 

v (c) 
j 

, 

(c) 
j c j c̄ 

= 

u 

(c) 
j 

v (c) 
j 

, ρ(c) 
j c̄ 0 

= 1 , 

nd leave λ(c) 
j c 

= v (c) 
j 

and ρ(c) 
j c i c 

unchanged as in (B.1) . 

Finally, let us set the remaining parameters λ(c) 
j c̄ 

, ρ(c) 
j c i c̄ 

, ρ(c) 
j c̄ i c̄ 

, ρ(c) 
j c̄ j c 

nd ρ(c) 
j c̄ i c 

to be zero, which gives us exactly the set of parame- 

ers shown in (7) . By construction, if type- c customers make their 

hoices according to the MCCM with this set of parameters, then 

he probability that such a customer buys product j in channel c

s exactly the MAM probability (5) . What remains to be proven is 

hat the probability of such a customer purchasing product j in 

hannel c̄ is the MAM probability (6) . 

Suppose that product j is offered in channel c̄ . Note that type- 

customers interested in this product consider alternatives only 

n channel c before switching to channel c̄ . Therefore, in order to 

btain probability π(c) 
c̄ j 

(S c , S c̄ ) , we can consider a subchain of our 

onstructed Markov chain comprising all products in channel c, 

roduct j in channel c̄ , and the no-purchase alternative. Follow- 

ng Blanchet et al. (2016) , let B denote the transition probability 

ubmatrix from alternatives that are not in the assortment to al- 

ernatives from the assortment (or to the no-purchase alternative), 

nd let C denote the transition probability submatrix among the 

lternatives that are not in the assortment. Furthermore, let ˆ λ be 

he vector of arrival probabilities to alternatives that are not in the 

ssortments. Finally, let e j c̄ be the standard unit vector such that 

he product Be j c̄ corresponds to the vector of transition probabili- 

ies from alternatives that are not in the assortment to product j in 

hannel c̄ . Then, using the formula for Markov chain choice proba- 

ilities (see Blanchet et al., 2016 ), we obtain the following: 

(c) 
c̄ j 

(S c , S c̄ ) = 0 + ̂

 λT (I − C ) −1 Be j c̄ = 

ˆ λT 
( ∞ ∑ 

q =0 

C q 
)

Be j c̄ 

= 

( ∞ ∑ 

q =0 

( ∑ 

i ∈N\ S c 
v (c) 

i 
−

∑ 

i ∈N\ S c 
(u 

(c) 
i 

+ w 

(c) 
i 

) 
)q )

ˆ λT Be j c̄ 

= 

ˆ λT Be j c̄ 

1 −
(∑ 

i ∈N\ S c v 
(c) 
i 

− ∑ 

i ∈N\ S c (u 

(c) 
i 

+ w 

(c) 
i 

) 
)

= 

v (c) 
j 

ρ(c) 
j c j c̄ 

v (c) 
0 

+ 

∑ 

k ∈ S c v 
(c) 
k 

+ 

∑ 

i ∈N\ S c (u 

(c) 
i 

+ w 

(c) 
i 

) 

= 

u 

(c) 
j 

v (c) 
0 

+ 

∑ 

k ∈ S c v 
(c) 
k 

+ 

∑ 

i ∈N\ S c (u 

(c) 
i 

+ w 

(c) 
i 

) 
, 

which concludes the proof. 

ppendix C. Proof of Proposition 2 

Recall that the GAM can be viewed as a limited case of the 

ested logit model where the dissimilarity parameter of each nest 

oes to zero (see Gallego et al., 2014 ). In this model, each nest cor-

esponds to a product, and alternatives within the nest correspond 

o different sources where this product can be bought. Since the 

issimilarity parameter of each nest tends to zero, it can be as- 

umed that each nest comprises only two sources: The retailer it- 

elf (with the highest utility overall) and the outside source (with 
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he highest utility among other available sources). Since the nested 

ogit model is a RUM, the GAM is a RUM as well and it can be

epresented through a distribution over rankings (permutations) of 

lternatives. Readers are referred to Block & Marschak (1959) , who 

howed how to construct the distribution over rankings from the 

oint distribution of random utilities, and vice versa. Importantly, if 

he number of products is n , then each ranking comprises 2 n + 1

lternatives since each product can be bought either from the re- 

ailer or from the outside source (and there is also the no-purchase 

lternative). 

We can use the distribution over rankings that is consistent 

ith the GAM to construct the distribution over rankings that 

s consistent with the MAM choice probabilities for one cus- 

omer type. First, note that the choice probabilities of type- c cus- 

omers selecting alternatives from channel c are exactly the same 

s the GAM choice probabilities defined over this set of prod- 

cts. Let us consider the corresponding distribution over rank- 

ngs. One can insert the alternative of buying a certain prod- 

ct j from channel c̄ into the rankings and modify the distri- 

ution in such a way that the probabilities of choosing prod- 

cts from channel c do not change while the probability of 

hoosing product j from channel c̄ is exactly the same as the 

AM choice probability. Indeed, let us consider a ranking r = 

r 1 , r 2 , . . . r 2 n +1 ) with P (r) = p. Suppose that r k corresponds to the

ption of buying product j from the outside source (which is al- 

ays available). Let s denote the alternative of buying a certain 

roduct j from channel c̄ . Then, let us replace ranking r with 

wo rankings r ′ = (r 1 , r 2 , . . . , r k −1 , s, r k , r k +1 . . . , r 2 n +1 ) and r ′′ =
r 1 , r 2 , . . . , r k −1 , r k , s, r k +1 . . . , r 2 n +1 ) , such that P (r ′ ) = pu (c) 

j 
/ (u (c) 

j 
+

 

(c) 
j 

) and P (r ′′ ) = pw 

(c) 
j 

/ (u (c) 
j 

+ w 

(c) 
j 

) . Note that u (c) 
j 

/ (u (c) 
j 

+ w 

(c) 
j 

)

s exactly the probability of type- c customers switching to chan- 

el c̄ given that they are willing to purchase product j outside of 

hannel c. If we do this for each ranking, then the probabilities of 

hoosing products from channel c will not change by construction 

f rankings r ′ and r ′′ and since P (r ′ ) + P (r ′′ ) = P (r) for all rankings

. At the same time, the probability of choosing product j ∈ S c̄ will

e defined as the probability of choosing the outside option ac- 

ording to the GAM multiplied by the coefficient u (c) 
j 

/ (u (c) 
j 

+ w 

(c) 
j 

) ,

hat is 

(u 

(c) 
j 

+ w 

(c) 
j 

) 1 j∈N\ S c 
v (c) 

0 
+ 

∑ 

k ∈ S c 
v (c) 

k 
+ 

∑ 

i ∈N\ S c 
(u 

(c) 
i 

+ w 

(c) 
i 

) 
·

u 

(c) 
j 
1 j∈ S c̄ 

u 

(c) 
j 

+ w 

(c) 
j 

= 

u 

(c) 
j 
1 j∈ S c̄ \ S c 

v (c) 
0 

+ 

∑ 

k ∈ S c 
v (c) 

k 
+ 

∑ 

i ∈N\ S c 
(u 

(c) 
i 

+ w 

(c) 
i 

) 
, 

hich is exactly the MAM choice probability π(c) 
c̄ j 

(S c , S c̄ ) . If we re-

eat this procedure n times for all products in channel c̄ , then we 

btain the distribution over rankings that is consistent with the 

AM choice probabilities. The MAM is thus a mixture of RUMs. 

Finally, note that a mixture of RUMs is also a RUM. Indeed, 

rom the distributions over rankings of alternatives consistent with 

ach individual model in the mixture, one can straightforwardly 

onstruct a distribution over rankings corresponding to the mix- 

ure model. In the case of the MAM, suppose that the distribu- 

ion over rankings that corresponds to choice probabilities of type- 

customers is as follows: 

 

(c) = { (r 1 , p (c) 
1 

) , (r 2 , p (c) 
2 

) , . . . , (r h , p (c) 
h 

) } , 
here each r i is a ranking and p (c) 

i 
is the associated probability. 

imilarly, let 

 

( ̄c ) = { (r 1 , p ( ̄c ) 
1 

) , (r 2 , p ( ̄c ) 
2 

) , . . . , (r h , p ( ̄c ) 
h 

) } 

18 
e the distribution over rankings of alternatives that corresponds 

o choice probabilities of type- ̄c customers. Note that both distri- 

utions D 

(c) and D 

( ̄c ) are defined over the same set of rankings of 

lternatives which is composed of all permutations of all possible 

urchase outcomes (including the no-purchase option). In partic- 

lar, each ranking r i contains 3 n + 1 alternatives (the no-purchase 

ption together with products in channel c, channel c̄ , and the out- 

ide source) and h equals the total number of permutations of al- 

ernatives, i.e., h = (3 n + 1)! . Then, it is easy to see that the fol-

owing distribution corresponds to the MAM choice probabilities: 

 = { (r 1 , ωp (c) 
1 

+ (1 − ω) p ( ̄c ) 
1 

) , (r 2 , ωp (c) 
2 

+ (1 − ω) p ( ̄c ) 
2 

) , . . . , 

(r h , ωp (c) 
h 

+ (1 − ω) p ( ̄c ) 
h 

) } , 
here ω = �(c) / (�(c) + �( ̄c ) ) . Thus, the MAM is also a RUM. 

ppendix D. Proof of Theorem 1 

In order to prove the theorem, we need to show the following: 

1) Let S c , S c̄ be arbitrary subsets of N . If x (c) 
c j 

, x (c) 
c̄ j 

correspond to

robabilities (5) , (6) multiplied by �(c) , z c j take the corresponding 

inary values, and x (c) 
c0 

satisfy 

 

(c) 
c0 

= 

v (c) 
0 

�(c) 

v (c) 
0 

+ 

∑ 

k ∈ S c 
v (c) 

k 
+ 

∑ 

i ∈N\ S c 
(u 

(c) 
i 

+ w 

(c) 
i 

) 
, 

hen 

{
x (c) 

c0 
, x (c) 

c j 
, x (c) 

c̄ j 
, z c j 

}
c∈C, j∈N is a feasible solution to the SBMILP.

2) If 
{

x (c) 
c0 

, x (c) 
c j 

, x (c) 
c̄ j 

, z c j 

}
c∈C, j∈N is an optimal solution to the SB-

ILP, then there exist offer sets S c , S c̄ ⊆ N such that x (c) 
c j 

, x (c) 
c̄ j 

cor-

espond to probabilities (5) , (6) multiplied by �(c) , and z c j take the 

orresponding binary values. 

The first part can be shown straightforwardly by substituting 

x (c) 
c0 

, x (c) 
c j 

, x (c) 
c̄ j 

, z c j 

}
c∈C, j∈N into the SBMILP constraints. For the sec- 

nd part, note that from constraints (9e) and the form of the ob- 

ective function it follows that z c j = 1 if and only if x (c) 
c j 

> 0 (since

 c j are binary and x (c) 
c j 

are nonnegative). Furthermore, from con- 

traints (9c) and (9d) we can see that 

x (c) 
c j 

v (c) 
j 

= 

⎧ ⎨ 

⎩ 

x (c) 
c0 

v (c) 
0 

if z c j = 1 , 

0 otherwise . 

(D.1) 

Let us set S c = { j ∈ N : z c j = 1 } . Substituting (D.1) into con-

traints (9b) , we obtain the following: 

˜ v (c) 
0 

v (c) 
0 

x (c) 
c0 

+ 

∑ 

j∈N 

˜ v (c) 
j 

v (c) 
j 

x (c) 
c j 

= 

˜ v (c) 
0 

v (c) 
0 

x (c) 
c0 

+ 

∑ 

k ∈ S c 

˜ v (c) 
k 

v (c) 
0 

x (c) 
c0 

= �(c) . 

ence, 

 

(c) 
c0 

= 

v (c) 
0 

�(c) 

˜ v (c) 
0 

+ 

∑ 

k ∈ S c 
˜ v (c) 

k 

= 

v (c) 
0 

�(c) 

v (c) 
0 

+ 

∑ 

k ∈ S c 
v (c) 

k 
+ 

∑ 

i ∈N\ S c 
(u 

(c) 
i 

+ w 

(c) 
i 

) 
. (D.2) 

Subsequently, by combining (D.1) and (D.2) , we obtain the de- 

ired values of x (c) 
c j 

. Finally, note that constraints (9c) and (9f) im- 

ly that x (c) 
c̄ j 

	 = 0 if and only if x (c) 
c j 

= 0 and x ( ̄c ) 
c̄ j 

	 = 0 . In that case,

 

(c) 
c̄ j 

attains its maximum value at 

 

(c) 
c̄ j 

= 

u 

(c) 
j 

�(c) 

v (c) 
0 

+ 

∑ 

k ∈ S c 
v (c) 

k 
+ 

∑ 

i ∈N\ S c 
(u 

(c) 
i 

+ w 

(c) 
i 

) 
, 

hich concludes the proof. 
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ppendix E. Proof of Proposition 3 

Let all shadow attractiveness values together with all parame- 

ers related to channel c̄ be zero. Then, the assortment optimiza- 

ion problem under the MAM with shelf space constraint (10) takes 

he following form: 

max 
 c j ∈{ 0 , 1 } n 

∑ 

j∈N 
r c j v (c) 

j 
z c j 

v (c) 
0 

+ 

∑ 

k ∈N 
v (c) 

k 
z ck 

s.t. 
∑ 

j∈N 
a c j z c j ≤ L c . (E.1) 

roblem (E.1) is essentially the shelf-space-constrained assortment 

ptimization problem under the MNL, which has been shown by 

ésir et al. (2022) to be NP-hard. Indeed, suppose that r c j = 1 

or all j ∈ N and, following Désir et al. (2022) , note that function

f (x ) = 

x 

v (c) 
0 

+ x 
is increasing in x , meaning that the objective func- 

ion of problem (E.1) can be replaced by 
∑ 

j∈N v 
(c) 
j 

z c j . The result- 

ng problem is equivalent to the knapsack problem. Therefore, the 

helf-space constrained SBMILP – i.e. the SMBILP formulation (9) 

ith additional constraint (10) – is NP-hard by reduction from the 

napsack problem. 

ppendix F. Proof of Proposition 4 

First, let us show that R (c) (S c ∪ { j} , N ) can be expressed as a

onvex combination of R (c) (S c , N ) and (r c j v 
(c) 
j 

− r c̄ j u 
(c) 
j 

)�(c) / ̃ v (c) 
j 

.

onsider the following: 

= 

˜ v (c) 
j 

v (c) 
0 

+ 

∑ 

k ∈ S c ∪{ j} 
v (c) 

k 
+ 

∑ 

i ∈N\ (S c ∪{ j} ) 
(u 

(c) 
i 

+ w 

(c) 
i 

) 
. 

ote that α ∈ (0 , 1) . Then, it is easy to verify that 

(r c j v (c) 
j 

− r c̄ j u 

(c) 
j 

)�(c) 

˜ v (c) 
j 

+ (1 − α) R 

(c) (S c , N ) = R 

(c) (S c ∪ { j} , N ) . 

his fact is sufficient for showing that the assortment given 

y (11) is optimal for channel c. Indeed, suppose that there is 

n optimal assortment S c such that q ∈ S c and p / ∈ S c for some

p < q . Then, since S c is optimal, R (c) (S c \{ q } , N ) ≤ R (c) (S c , N ) ≤
r cq v (c) 

q − r c̄ q u 
(c) 
q )�(c) / ̃ v (c) 

q . At the same time, since p < q and hence

r cq v (c) 
q − r c̄ q u 

(c) 
q )�(c) / ̃ v (c) 

q < (r cp v (c) 
p − r c̄ p u 

(c) 
p )�(c) / ̃ v (c) 

p , it follows

hat R (c) (S c , N ) < (r cp v (c) 
p − r c̄ p u 

(c) 
p )�(c) / ̃ v (c) 

p . Therefore, R (c) (S c ∪
 p} , N ) is greater than R (c) (S c , N ) as a convex combination of

 

(c) (S c , N ) and (r cp v (c) 
p − r c̄ p u 

(c) 
p )�(c) / ̃ v (c) 

p , which contradicts the

ssumption that S c is optimal. It means that the optimal alloca- 

ion has to be in descending order of (r c j v 
(c) 
j 

− r c̄ j u 
(c) 
j 

)�(c) / ̃ v (c) 
j 

.

inally, the fact that the optimal assortment has to be of the 

orm (11) with index m specified in Proposition 4 follows from the 

ame convex combination observation. 

ppendix G. Proof of Proposition 5 

Let (S c , S c̄ ) be the optimal combination of assortments. Consider 

hannel c and suppose that all products in that channel are sorted 

n descending order of the value of expression (5) . Suppose that 

he proposition does not hold, i.e., for some p < q we have that

 ∈ S c and p / ∈ S c . First, note that the total revenue generated by

ype- c customers is as follows: 

 

(c) (S c , S c̄ ) = 

( ∑ 

k ∈ S c 
r ck v 

(c) 
k 

+ 

∑ 

i ∈ S c̄ \ S c 
r c̄ i u 

(c) 
i 

)
�(c) 

v (c) 
0 

+ 

∑ 

k ∈ S c 
v (c) 

k 
+ 

∑ 

i ∈N\ S c 
(u 

(c) 
i 

+ w 

(c) 
i 

) 
, 
19
nd the revenue generated by type- ̄c customers purchasing prod- 

ct j in channel c is: 

 

( ̄c ) 
c j 

(S c , S c̄ ) = 

r c j u 

( ̄c ) 
j 

�( ̄c ) 1 j∈ S c \ S c̄ 
v ( ̄c ) 

0 
+ 

∑ 

k ∈ S c̄ 
v ( ̄c ) 

k 
+ 

∑ 

i ∈N\ S c̄ 
(u 

( ̄c ) 
i 

+ w 

( ̄c ) 
i 

) 
. 

Given that q ∈ S c and p / ∈ S c , one can check that 

1 �
(c) F c (p, S c , S c̄ ) + (1 −β1 ) R 

(c) (S c , S c̄ ) = R 

(c) (S c ∪ { p} , S c̄ ) 
+ R 

( ̄c ) 
cp (S c ∪ { p} , S c̄ ) (G.1) 

nd 

2 �
(c) F c (q, S c , S c̄ ) + (1 − β2 ) R 

(c) (S c \{ q } , S c̄ ) = R 

(c) (S c , S c̄ ) 

+ R 

( ̄c ) 
cq (S c , S c̄ ) , (G.2) 

here 

1 = 

˜ v (c) 
p 

v (c) 
0 

+ 

∑ 

k ∈ S c ∪{ p} 
v (c) 

k 
+ 

∑ 

i ∈N\ (S c ∪{ p} ) 
(u 

(c) 
i 

+ w 

(c) 
i 

) 

nd 

2 = 

˜ v (c) 
q 

v (c) 
0 

+ 

∑ 

k ∈ S c 
v (c) 

k 
+ 

∑ 

i ∈N\ S c 
(u 

(c) 
i 

+ w 

(c) 
i 

) 
. 

Since (S c , S c̄ ) is assumed to be the optimal combination of as- 

ortments, it holds that R (c) (S c \{ q } , S c̄ ) < R (c) (S c , S c̄ ) + R ( ̄c ) cq (S c , S c̄ ) .

herefore, from relation (G.2) it follows that �(c) F c (q, S c , S c̄ ) >

 

(c) (S c , S c̄ ) + R ( ̄c ) cq (S c , S c̄ ) ≥ R (c) (S c , S c̄ ) . Since p < q and products are

orted in descending order of the value of expression (5) , we ob- 

ain that �(c) F c (p, S c , S c̄ ) > R (c) (S c , S c̄ ) . Thus, from relation (G.1) it

ollows that R (c) (S c ∪ { p} , S c̄ ) + R ( ̄c ) cp (S c ∪ { p} , S c̄ ) > R (c) (S c , S c̄ ) . This

eans that the combination of assortments (S c ∪ { p} , S c̄ ) is more

rofitable than (S c , S c̄ ) , which contradicts the initial assumption 

nd thereby concludes the proof. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2022.08.002 . 
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