Brand, Douglas H;
Brüningk, Sarah C;
Wilkins, Anna;
Naismith, Olivia;
Gao, Annie;
Syndikus, Isabel;
Dearnaley, David P;
... CHHiP Trial Management Group; + view all
(2022)
Genitourinary α/β Ratios in the CHHiP Trial the Fraction Size Sensitivity of Late Genitourinary Toxicity: Analysis of Alpha/Beta (α/β) Ratios in the CHHiP Trial.
International Journal of Radiation Oncology*Biology*Physics
10.1016/j.ijrobp.2022.08.030.
(In press).
Preview |
Text
1-s2.0-S0360301622031339-main.pdf Download (681kB) | Preview |
Abstract
PURPOSE: Moderately hypofractionated external beam intensity-modulated radiotherapy (IMRT) for prostate cancer is now standard-of-care. Normal tissue toxicity responses to fraction size alteration are non-linear: the linear-quadratic model is a widely-used framework accounting for this, through the α/β ratio. Few α/β ratio estimates exist for human late genitourinary endpoints; here we provide estimates derived from a hypofractionation trial. METHODS AND MATERIALS: The XXXXXX trial randomised 3216 men with localised prostate cancer 1:1:1 between conventionally fractionated IMRT (74Gy/37 fractions (Fr)) and two moderately hypofractionated regimens (60Gy/20Fr & 57Gy/19Fr). Radiotherapy plan and suitable follow-up assessment was available for 2206 men. Three prospectively assessed clinician-reported toxicity scales were amalgamated for common genitourinary endpoints: Dysuria, Haematuria, Incontinence, Reduced flow/Stricture, Urine Frequency. Per endpoint, only patients with baseline zero toxicity were included. Three models for endpoint grade ≥1 (G1+) and G2+ toxicity were fitted: Lyman Kutcher-Burman (LKB) without equivalent dose in 2Gy/Fr (EQD2) correction [LKB-NoEQD2]; LKB with EQD2-correction [LKB-EQD2]; LKB-EQD2 with dose-modifying-factor (DMF) inclusion [LKB-EQD2-DMF]. DMFs were: age, diabetes, hypertension, pelvic surgery, prior transurethral resection of prostate (TURP), overall treatment time and acute genitourinary toxicity (G2+). Bootstrapping generated 95% confidence intervals and unbiased performance estimates. Models were compared by likelihood ratio test. RESULTS: The LKB-EQD2 model significantly improved performance over LKB-NoEQD2 for just three endpoints: Dysuria G1+ (α/β=2.0 Gy, 95%CI 1.2-3.2Gy), Haematuria G1+ (α/β=0.9 Gy, 95%CI 0.1-2.2Gy) and Haematuria G2+ (α/β=0.6Gy, 95%CI 0.1-1.7Gy). For these three endpoints, further incorporation of two DMFs improved on LKB-EQD2: acute genitourinary toxicity and Prior TURP (Haematuria G1+ only), but α/β ratio estimates remained stable. CONCLUSIONS: Inclusion of EQD2-correction significantly improved model fitting for Dysuria and Haematuria endpoints, where fitted α/β ratio estimates were low: 0.6-2 Gy. This suggests therapeutic gain for clinician-reported GU toxicity, through hypofractionation, might be lower than expected by typical late α/β ratio assumptions of 3-5 Gy.
Type: | Article |
---|---|
Title: | Genitourinary α/β Ratios in the CHHiP Trial the Fraction Size Sensitivity of Late Genitourinary Toxicity: Analysis of Alpha/Beta (α/β) Ratios in the CHHiP Trial |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1016/j.ijrobp.2022.08.030 |
Publisher version: | https://doi.org/10.1016/j.ijrobp.2022.08.030 |
Language: | English |
Additional information: | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third-party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
Keywords: | Alpha/beta ratio, Prostate Cancer, Radiobiology, Radiotherapy, Toxicity |
UCL classification: | UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng UCL > Provost and Vice Provost Offices > UCL BEAMS UCL |
URI: | https://discovery.ucl.ac.uk/id/eprint/10154591 |




Archive Staff Only
![]() |
View Item |