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a b s t r a c t   

In this work, we address a production and inventory routing problem for a liquid oxygen 

supply chain comprising production facilities, distribution network, and distribution re

sources. The key decisions of the problem involve production levels of production plants, 

delivery schedule and routing through heterogeneous vehicles, and inventory strategies 

for national stock-out prevention. Due to the problem complexity, we propose a two-level 

hybrid solution approach that solves the problem using both exact and metaheuristic 

methods. At the upper level, we develop a mixed-integer linear programming (MILP) 

model that determines production and inventory decisions and customer allocation. In 

the lower level, the original problem is reduced to several multi-trip heterogeneous ve

hicle routing problems by fixing the optimal production, inventory, and allocation deci

sions and clustering customers. A well-recognised metaheuristic, guided local search 

method, is adapted to solve the low-level routing problems. A real-world case study in the 

UK illustrates the applicability and effectiveness of the proposed optimisation framework. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of Institution of Chemical 

Engineers. 
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1. Introduction 

COVID-19 is a disease caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) (Lai et al., 2020). Some 
COVID-19 patients admit to the hospital where they are very 
likely to need breathing support due to severe respiratory 
symptoms (Higgins et al., 2021). Oxygen is a critical compo
nent in treating such patients. Thus, the COVID-19 pandemic 
is compelling oxygen suppliers to seek opportunities to im
prove operational efficiency and reduce costs of supply 
chains while maintaining a high quality of service. One 
widely acknowledged method to achieve this goal is the in
tegrated supply chain optimisation, which simultaneously 
considers multiple activities in the supply chains such as 

production, inventory, and distribution (Fahimnia 
et al., 2013). 

In a conventional approach, each element of the supply 
chain is often treated individually and optimised sequen
tially. For instance, production and inventory decisions are 
made in order to minimise the production cost; then, such 
decisions provide inputs for the distribution planning pro
blem. Solving the supply chain planning problems in this 
way can avoid computational difficulties (Thomas and 
Griffin, 1996); however, it may lead to suboptimal or even 
infeasible solutions. Then again, as presented in some recent 
studies, an integrated approach to supply chain planning 
problems can result in a substantial amount of cost savings 
(Brown et al., 2001; Çetinkaya et al., 2009). The production, 
inventory, routing, and distribution problem (PIRP) is a type 
of integrated problem that involves simultaneously de
termining production, inventory, routing, and distribution 
decisions. In the PIRP, the decision-maker must decide on the 
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production level at each plant and each time period. The 
production decisions are made based on the production costs 
associated with the produced amount of product and the 
production capacity. The product deliveries from the plants 
to customers are being fulfilled by a set of capacitated ve
hicles considering the unit transportation costs. Regarding 
inventory at customer sites, the PIRP considers a vendor- 
managed inventory (VMI) paradigm. In the VMI policy, the 
product orders from customers are not given as they are in 
the traditional approach. In the VMI system, the supplier 
monitors the customer inventory levels and plans when and 
how much of the product to deliver to ensure that the in
ventory levels never fall under security levels (Waller et al., 
1999). The PIRP also involves vehicle routing decisions in 
which the order of customer visits is determined. The first 
work on the PIRP dates back to the research conducted by  
Thomas and Griffin (1996). They considered the production at 
a single plant and distribution of multiple products via a fleet 
of vehicles. Two approaches were used, one in which the 
production planning and routing problems were decoupled 
and solved independently, and the other in which both 
problems were solved simultaneously. Solutions from these 
approaches were compared, and the coordinated approach 
showed a cost reduction ranging from 3 % to 20 %. A similar 
study was conducted by Fumero and Vercellis (1999), and an 
average improvement of 10 % was seen with the use of the 
integrated approach. 

The PIRP has incurred high combinatorial complexities 
from routing decisions; therefore, many studies have focused 
on developing solution methods. Lei et al. (2006) developed a 
two-phase solution approach for the PIRP involving several 
plants and a fleet of vehicles with different capacities. In the 
first phase, the problem was solved without considering the 
consolidation of less than the transporter loads (LTL). The 
resulting inefficiencies in routing decisions were improved in 
the second phase. An extended optimal partitioning proce
dure was also proposed for an efficient routing heuristic.  
Boudia et al. (2006), (2007) developed a model for the PIRP 
consisting of a single facility, a set of identical vehicles, and 
customers. To handle the computational difficulty of the 
model, they proposed both a memetic algorithm with po
pulation management (MAPA) and a reactive greedy rando
mised adaptive search procedure (GRASP) improved by the 
path-relinking procedure. The MAPA was further improved 
by Boudia and Prins (2009), and the efficiency of these algo
rithms was addressed by randomly generated instances in
cluding 50, 100, and 200 customers. Bard and Nananukul 
(2009a), (2010) first investigated models previously developed 
and then introduced a heuristic based on a branch-and-price 
algorithm to solve a single-plant a homogeneous fleet PIRP. 
The algorithm iteratively solves the sub-pricing problems 
using a tabu search to generate feasible routing. Archetti 
et al. (2011) proposed a solution method for solving a problem 
with a facility and a set of customers based on a hybrid 
heuristic. The method first determines the delivery quan
tities and routes by assuming an unlimited production ca
pacity at the facility. Then, the problem that considers only 
the production part is solved. Finally, the solution obtained 
from the previous steps is improved by iteratively removing 
and inserting two customers. Absi et al. (2015) worked on a 
single-item production routing problem. They introduced a 
two-phase iterative approach in which production and 
routing problems are solved in a sequential fashion. In phase 
I, a solution to a lot-sizing problem is established by 

simplifying the routing part. The routing decisions are de
termined in phase 2; then, the routing solution is used to 
update the corresponding costs for the next iteration.  
Cóccola et al. (2020) developed a two-stage solution proce
dure to solve the PIRP considering production facilities, 
multiple products, customers, and homogeneous multi- 
compartment trucks. In the first stage, multi-period routes 
are generated using a column generation method, and then 
production schedules, inventory profiles, and distribution 
routes are determined in the second stage. 

When a problem involves vehicle routing decisions but 
not production decisions, it is referred to as an inventory 
routing problem (IRP), which is a relaxation of the PIRP. A 
review of the relevant literature can be found in Campbell 
et al. (1998); Bertazzi et al. (2008) and a more recent paper by  
Coelho et al. (2014). Concerning the solution method to the 
IRP, Campbell and Savelsbergh (2004) presented a two-phase 
solution approach that decouples a set of inventory and 
routing decisions. The first phase solves integer program
ming by clustering customers to reduce the number of 
routes, whereas the second phase focuses on finding routing 
schedules heuristically. In Savelsbergh and Song (2008), the 
authors studied an IRP with continuous moves where the 
repeated distribution of a product to a set of customers is 
considered. Etebari and Dabiri (2016) proposed a quadratic 
mixed-integer programming model for a multi-period IRP 
under the dynamic regional pricing problem. They developed 
a hybrid heuristic approach comprising five phases and being 
embedded in a simulated annealing framework. The first 
initialisation phase determines the time periods that cus
tomer inventories are potentially replenished; then, cus
tomer demands are generated and adjusted in the second 
and third phases. The fourth phase solves the reduced IRP by 
previous phases, and the solutions of the IRP are improved 
using the simulated annealing algorithm in the final phase. 
In addition, Dong et al. (2017) presented a solution technique 
that uses a preprocessing algorithm and a decomposition 
method for upper and lower-level subproblems. In the upper 
level, vehicle routing and scheduling subproblems. In the 
vehicle routing subproblem, routes are generated to fulfil the 
demands of customers selected by the preprocessing algo
rithm. On the other hand, detailed schedules for vehicles and 
drivers are determined in the lower level. More recently,  
Karakostas et al. (2019) studied an IRP in which location de
cisions, inventory profiles, vehicle routing, and distribution 
outsourcing decisions are integrated. They proposed a solu
tion approach that uses a general variable neighbourhood 
search (GVNS) scheme to address the computational com
plexity of the problem. The proposed solution method con
sists of initialisation and improvement phases. In the 
initialisation phase, location and allocation decisions are 
constructed in addition to the inventory-routing decisions; 
then, the decisions are improved in the second phase. The 
efficiency of the proposed approach is illustrated with dif
ferent-sized instances. This work was extended in  
Karakostas et al. (2020) by considering the environmental 
impact on the supply chain activities. 

Despite the growing emphasis dedicated to the PIRP, such 
an integrated problem for the chemical process industry has 
received relatively little attention. An extensive survey of the 
literature regarding the integrated problem for the process 
industry was provided by Barbosa-Povoa and Pinto (2020); 
Ramaswamy et al. (2020). Glankwamdee et al. (2008) devel
oped a linear programming (LP) model for coordinated 
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optimisation of the production-distribution of industrial 
gases. In the model, routing decisions are disregarded; in
stead, they are approximated via constraints on the re
sources of trucks and drivers. You et al. (2011) addressed an 
industrial gas supply chain problem that considers distribu
tion and inventory planning, except for production planning. 
An MILP model was formulated by combining short-term 
vehicle routing decisions with long-term inventory and cus
tomer-tank sizing decisions. Two computational strategies 
were also proposed. The first strategy relies on the decom
position of the full-space MILP model. By contrast, the 
second one is a continuous approximation that can predict 
the distribution cost without taking rigorous routing deci
sions into account. Marchetti et al. (2014) proposed a multi- 
period MILP model. The model was formulated by con
sidering the production at multiple plants and distribution to 
multiple depots. A heuristic was applied to construct dis
tribution routes; then, the routes were used in the MILP 
model. Zamarripa et al. (2016) extended the work by  
Marchetti et al. (2014). They introduced a rolling horizon 
decomposition method with two aggregation strategies to 
improve computational efficiency. In the first aggregation 
strategy, the discrete variables of the model were relaxed, 
whereas the distribution part was simplified in the second 
strategy. Different sizes of case studies examined the com
putational advantage of the developed method. However, 
when solving large-size industrial cases, both Marchetti et al. 
(2014) and Zamarripa et al. (2016) simplified the distribution 
model in which a detailed routing schedule could not be 
provided. In the paper presented by Zhang et al. (2017), a 
multigrid MILP model was proposed for a multiscale pro
duction routing problem involving plants, customers, multi- 
products, and homogeneous vehicles. In addition, an itera
tive heuristic-based method that dynamically updates the 
set of routes was introduced. Misra et al. (2018) studied a 
short-term planning problem for the cryogenic air separation 
industry. They developed an MILP model that can simulta
neously establish the production and distribution plans. The 
model includes a simplistic distribution model that cannot 
provide detailed truck schedules but sufficiently rigorous 
solutions at the planning level. Furthermore, Lee et al. (2021) 
proposed an optimisation framework for the integrated de
cisions in industrial gas supply chains. They formulated the 
problem as an MILP. The model considered multiple features, 
including business contracts for the raw material and pro
duct, production, inventory control, and delivery through 
multimodal transportation. Rigorous truck scheduling was 
considered in the model; however, decisions on the tuck 
routing were disregarded. They also presented an efficient 
hierarchy-based solution approach to address the computa
tional complexity of the model. 

This work aims to develop an optimisation framework 
incorporating production, inventory, and routing decisions in 
oxygen supply chains during the COVID-19 pandemic. We 
propose a hybrid solution method that consists of two levels 
to efficiently solve the integrated problem. First, we develop 
an upper-level MILP model that solves the problem by dis
regarding the consideration of multiple customers on each 
route. The distribution part of the model considers compli
cating features, transportation by heterogeneous vehicles, 
multiple trips and multiple visits, restriction on the customer 
visit according to the vehicle type, and both fixed and 
quantity-plant- or quantity-vehicle-dependent loading/un
loading times. At the lower level, we employ a metaheuristic 

approach to solve the detailed routing problem with the 
same complicating features. To the best of our knowledge, 
the production and inventory routing problem with this level 
of detail has not been investigated, especially for industrial 
gas applications. Furthermore, solution methods using me
taheuristics have rarely been reported to solve this problem. 

The main contributions of this work are the following: 

1. Propose a mathematical framework that integrates pro
duction, inventory control, and distribution decisions. The 
framework considers a high level of detail on the dis
tribution side, including a heterogeneous fleet of vehicles, 
customer-vehicle suitability, and fixed and quantity- 
plant- or quantity-vehicle-dependent loading/unloading 
times.  

2. Develop a hybrid solution method that combines the exact 
method using mathematical programming with a meta
heuristic approach for solving industrial-size problems.  

3. Conduct a computational study on a real-world supply 
chain planning problem during the COVID-19 pandemic in 
the UK to test the applicability and capability of the pro
posed model and solution strategy. 

The remainder of this paper is organised as follows. In  
Section 2, the problem statement is described. Then, Section 
3 presents solution approach as well as the MILP formulation 
for this problem. In Section 4, the computational results of a 
case study in the UK and discussion are presented. Finally, 
the concluding remarks are provided in Section 5. 

2. Problem statement 

In this work, we consider a liquid oxygen supply chain net
work consisting of three echelons, production plants (i ∈ I), 
third-party suppliers (m ∈ M), and a number of customers 
(k ∈ K), as illustrated in Fig. 1. 

The overall planning horizon of the problem is divided 
into multiple time periods (t ∈ T). Each plant can produce the 
product in a time period (Pit) to its capacity (Pi

max) and store it 
in the storage tank. The third-party suppliers can also be 
sources of the product. 

Heterogeneous vehicles (v ∈ V) are used to transport the 
product from the plants to the customers. Each vehicle is 
designated to a specific plant or third-party supplier over the 
planning horizon (i.e., Vi or Vm) and defined with its capacity 
(CAPv), fixed loading/unloading times (αLT/αUT), variable 
loading/unloading times (γi or γm/βv), and variable cost per 
unit of travel distance (Cv

veh). The variable loading time (γi or 
γm) is dependent on both the loading quantity and loading 
location (i.e., plant i or third party m), while the variable 
unloading time (βv) is dependent on the product quantity and 
vehicle v. The vehicles can perform multiple routes during a 
time period. We assume that each vehicle that leaves the 
plant or third-party supplier must return to the origin on 
completion of each route. In this problem, the routes are 
categorised into single- and multi-customer routes. Each 
vehicle visits one customer at most per trip in the single- 
customer route, while one or more customers can be visited 
in the multi-customer route. Further, there is a restriction on 
the customer visits according to the vehicle type, and this 
customer-vehicle suitability (Kv) is pre-specified. On the de
mand side, we consider two types of customers, industrial 
customers and hospitals. It should be noted that there is no 
particular distinction between industrial customers and 
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hospitals. However, such a categorisation is common prac
tice since the hospital demands might be more critical during 
the COVID-19 pandemic. The product being transported is 
stored in tanks at the industrial customer and hospital sites, 
and their inventories (Ikt) are controlled by the VMI metho
dology. Therefore, under the VMI, companies need to de
termine the delivery quantities and times of the product to 
satisfy customer demands (Dkt). 

Overall, the considered optimisation problem is described 
as follows: 

Given are:  

• Plants: locations, maximum production capacity (Pi
max).  

• Third-party suppliers: locations, limitations on product 
supplies (UBm).  

• Customers: locations and demand profiles (Dkt).  

• Heterogeneous vehicles: vehicle-customer suitability (Kv), 
fixed loading/unloading times (αLT, αUT), variable loading/ 
unloading times (γi, γm, βv), loading capacities (CAPv), 
available quantities (Vi, Vm).  

• Inventories at plant and customer sites: initial (Ii
ini, Ik

ini), 
minimum (Ii

min, Ik
min), and maximum (Ii

max, Ik
max) levels.  

• Cost data (i.e., production (Celec, λi), third-party (Cm
third), unit 

transportation (Cv
veh) costs) 

To determine:  

• Liquid oxygen production levels.  

• Inventory levels at customers and plants.  

• Demand allocation to plants and third parties.  

• Optimal routes and delivery schedules. 

So as to: 
Minimise total operating cost, including production, third- 

party, and transportation costs. 

3. Solution strategy 

The problem described in the previous section includes the 
decision on the vehicle routes, which is regarded as NP-hard. 

Given the NP-hardness, solving the full PIRP with exact 
methods might require expensive computational costs, 
especially when large-size problems are considered (Bard 
and Nananukul, 2009b). For instance, Bard and Nananukul 
(2010) attempted to solve small PIRP instances involving 30 
customers and three vehicles for up to eight time periods in a 
monolithic way, and the reported average optimality gap 
after 1 h was 34 %. In addition, the instances that considered 
more than 40 customers and four vehicles were not solvable 
within 1 h. The computational difficulty of the PIRP arises 
from the vehicle routing decisions when accounting for the 
multi-customer routes. For example, the problem, including 
eight plants, 700 + customers, 30 + vehicles, and 30 time per
iods, involves more than 1 billion discrete variables. To ad
dress the computational challenge, we introduce a two-level 
solution strategy. 

The upper level of the solution strategy focuses on finding 
optimal production and inventory decisions and customer 
allocation to plants and third-party suppliers. At this level, 
the decision on the multi-customer vehicle routing is dis
regarded. Instead, only single-customer routing is con
sidered. By accounting for only the single-customer routes, 
not only can the computational burden arising from the 
combinatorial nature of the routing decisions be reduced, but 
efficient production and inventory plans can still be estab
lished. Section 3.1 describes the upper-level problem re-de
fined by the solution method. The lower level takes the 
multi-customer routing decisions into account. The upper- 
level production and inventory decisions are fixed, and the 
customers are clustered based on the optimal allocation ob
tained from the upper level. After this procedure, the original 
PIRP is transformed into several multi-trip heterogeneous 
vehicle routing problems (MTHVRPs), which can be defined 
for each cluster. The problem description for each MTHVRP is 
given in Section 3.2 then mathematical models are proposed 
subsequently. 

3.1. Upper-level problem 

The upper-level problem constitutes the same description as 
the original PIRP presented in Section 2. However, the fol
lowing additional assumption needs to be introduced.  

• On each route, only one customer can be visited at most. 

3.2. Lower-level problem 

At the lower level, the original PIRP is transformed into sev
eral MTHVRPs, and each MTHVRP is described as follows: 

Given are:  

• Location of a plant or third-party supplier.  

• Location of customers.  

• Customer demands need to be delivered.  

• Vehicle capacities and available quantity at a plant or 
third-party supplier.  

• Limitation on the vehicle operation times.  

• Vehicle restriction on the customer visits.  

• Unit transportation cost per distance. 

To determine:  

• Vehicle allocation to each customer.  

• Optimal routes. 

Fig. 1 – Liquid oxygen supply chain network.  
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So as to: 
Minimise total vehicle routing cost. 

3.3. Upper-level model 

First, we formulate the mathematical model used in the 
upper level as an MILP. The upper-level model is denoted as 
PIRP-L throughout the paper, and the notation used in the 
model is as follows:   

Notation   

Indices  
i production plant 
k customer 
m third-party supplier 
t time period 
v vehicle 
Sets  
I set of plants 
K set of customers 
M set of third-party suppliers 
Ki set of customers initially assigned to 

plant i 
Km set of customers initially assigned to third 

party m 
Kv set of customers that vehicle v can visit 
Kiv set of customers initially assigned to plant 

i and can be served by vehicle v, Kiv  

= {k ∣ k ∈ Ki ∩ Kv} 
Kmv set of customers initially assigned to third 

party m and can be served by vehicle v, 
Kmv = {k ∣ k ∈ Km ∩ Kv} 

T set of time periods 
Vi set of vehicles at plant i 
Vm set of vehicles at third party m 
Parameters  
Celec electricity price (£/kWh) 

Cm
third unit purchasing cost of third party 

m (£/kg) 

Cv
veh unit transportation cost of vehicle 

v (£/mile) 
CAPv capacity of vehicle v (kg) 
Dkt product demand of customer k in time 

period t (kg/day) 

Ii
ini initial inventory level at plant i (kg) 

Ii
max maximum inventory level at plant i (kg) 

Ii
min minimum inventory level at plant i (kg) 

Ik
ini initial inventory level at customer k (kg) 

Ik
max maximum inventory level at customer 

k (kg) 

Ik
min minimum inventory level at customer 

k (kg) 
Lik distance of a round trip between plant i 

and customer k (mile) 
Lmk distance of a round trip between third 

party m and customer k (mile) 

Pi
max production capacity of plant i in each time 

period (kg) 
UBm maximum product amount that can be 

sourced from third-party supplier m in 
each time period (kg) 

αLT fixed loading time (day) 

αUT fixed unloading time (day) 
γi variable loading time at plant i (day/kg) 
γm variable loading time at third party m 

(day/kg) 
βv variable unloading time of vehicle v 

(day/kg) 
Δt length of time period t (day) 
θik duration of a round trip between plant i 

and customer k (day) 
θmk duration of a round trip between third 

party m and customer k (day) 
λi unit specific power for plant i (kWh/kg) 
Integer vari

ables  
Aikvt number of deliveries from plant i to cus

tomer k executed by vehicle v during time 
period t 

Amkvt number of deliveries from third-party 
supplier m to customer k executed by 
vehicle v during time period t 

Continuous 
variables  

Iit inventory level of plant i at the end of time 
period t (kg) 

Ikt inventory level of customer k at the end of 
time period t (kg) 

Pit production rate of plant i in time period t 
(kg/day) 

Qikvt amount of product transported from plant 
i to customer k by vehicle v during time 
period t (kg) 

Qmkvt amount of product transported from 
third-party supplier m to customer k by 
vehicle v during time period t (kg) 

TOC total operating cost (£) 
TP production cost (£) 
TS third-party supplier cost (£) 
TT transportation cost (£)  

3.3.1. Objective function 
The objective of this problem is to minimise the total cost of 
the liquid oxygen supply chain, and the total cost comprises 
production, third party, and transportation costs. 

minimise TOC (1)    

= + +TOC TP TS TT (2)  

where TOC denotes the total cost; TP is the production 
cost; TS is the third-party cost; and TT refers to the trans
portation cost of vehicles. 

3.3.2. Production and third party costs 
The production cost is calculated based on the electricity 
price (Celec), unit specific power (λi), the production rate (Pit), 
and duration of each time period (Δt) as follows: 

=TP C P
i I t T

elec
i it t (3)  

The third-party cost is defined based on the unit pur
chasing cost from the third party (Cm

third) and the quantity of 
product transported from third party m to customer k. 

=TS C Q
m M k K v V t T

m
third

mkvt
mv m

(4)  
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3.3.3. Transportation cost 

=

+

TT C L A

C L A

i I k K v V t T
v
veh

ik ikvt

m M k K v V t T
v
veh

mk mkvt

iv i

mv m

(5) 

Eq. 5 calculates the total transportation cost of vehicles that 
leaves the plants or third-party suppliers. The transportation 
cost is defined based on the distance-dependent unit transfer 
cost (Cv

veh), the distance to make a round trip from plant i or 
third party m to customer k (Lik and Lmk), and the number of 
trips each vehicle performs during time period t (Aikvt and 
Amkvt). where Kiv and Kmv are the sets of customers initially 
assigned to plant i and third party m based on their geo
graphical locations and can be served by vehicle v, and Vi and 
Vm denote the sets of vehicles allocated to plant i and third- 
party supplier m, respectively. 

3.3.4. Production constraints 
The production capacity of each plant must be considered. 
Eq. 6 establishes the upper bound (Pi

max) for the production 
amount at plant i during time period t (Pit). 

P P i I t T,it t i
max

(6)  

In addition, the product amount that can be purchased 
and delivered from third-party supplier m to any customers 
in time period t is limited by the upper bound (UBm). 

Q UB m M t T,
k K v V

mkvt m
mv m

(7)  

3.3.5. Vehicle constraints 
The product amount delivered by vehicle v from plant i or 
third-party supplier m is limited by the vehicle capacity and 
the number of trips. 

Q CAP A i I v V k K t T, , ,ikvt v ikvt i iv (8)    

Q CAP A m M v V k K t T, , ,mkvt v mkvt m mv (9)  

Eqs. 8-9 pose the delivery amount and it must be less than 
or equal to the number of deliveries (Aikvt and Amkvt) multi
plied by the capacity of the vehicle (CAPv). 

+ + + +A Q Q

i I v V t T

( ) ( )

, ,

k K
ik

LT UT
ikvt

k K
v ikvt i ikvt

t i

iv iv (10)    

+ + + +A Q Q

m M v V t T

( ) ( )

, ,

k K
mk

LT UT
mkvt

k K
v mkvt m mkvt

t m

mv mv (11)  

Eqs. 10-11 pose the operation time that each vehicle can 
perform. The operation time of each vehicle includes the 
travelling time between locations (θik and θmk), fixed loading 
time at the plant (αLT), fixed unloading time at the customer 
(αUT), and quantity-dependent variable loading and un
loading times. Here, the quantity-dependent loading time (γi) 
is dependent on the plant, whereas the unit unloading time 
(βv) depends on the vehicle. The total operation time of ve
hicle v during time period t cannot exceed the length of each 
time period (Δt). 

3.3.6. Inventory constraints 
The inventory level of each plant at the end of the time 
period is defined as the inventory level in the previous time 
period plus the production amount during the time period 
minus the amount delivered to customers. 

= + +> =I I I P Q

i I t T,

it i t t i
ini

t it t
k K v V

ikvt, 1 1 1
iv i (12)  

Similarly, the inventory level of each customer at the end 
of the time period is the inventory level in the previous time 
period plus the incoming product amount from any plants/ 
third-party suppliers minus its demand. 

= + +

+

> =I I I Q

Q D k K t T,

kt k t t k
ini

t
i k K v V

ikvt

m k K v V
mkvt kt t

, 1 1 1
:

:

iv i

mv m

(13)  

The inventory level in each time period must not fall 
below the minimum level and can not exceed the maximum 
capacity. 

I I I i I t T,i
min

it i
max (14)    

I I I k K t T,k
min

kt k
max (15)  

Additionally, it is assumed that the inventory level at the 
end of the planning horizon is equal to the initial inventory 
level. 

= =I I i I t T,i t i
ini

, (16)    

= =I I k K t T,k t k
ini

, (17)  

3.4. Lower-level model 

As aforementioned, at the lower level, the original PIRP is 
reduced to the MTHVRP after fixing the variables for pro
duction and inventory levels (Pit, Iit, and Ikt). In addition, the 
customers can be clustered to each plant and each time 
period based on the optimal customer allocation gained from 
the upper level. Each cluster can be defined based on the 
optimal values of the integer variables (denoted as A*ikvt and 
A*mkvt). For instance, if customer k received the product from 
plant i during time period t by any vehicle at the plant (i.e., 

A* 1v k K ikvt: iv
), then the customer is clustered to the plant 

and time period. By clustering the customers, the MTHVRP 
can be solved for each plant and time period. 

In the MTHVRP for each cluster, we set an additional as
sumption that each customer must be visited exactly once. 
Therefore, to allow only a single visit per customer, we fix the 
upper-level single-customer routing solution for customers 
who need multiple visits during a time period and for which 
the delivered amounts to the customers are the same as the 
vehicle capacities before solving the lower-level MTHVRPs. 
The upper-level single-customer routes, which are not fixed 
during this step, are part of the lower-level optimisation. 
Consequently, the upper-level solution guarantees a feasible 
solution to the lower-level problem. In addition, the worst 
solution (i.e., upper bound) that the lower-level problem can 
get is the single-customer routing solution obtained from the 
upper level. The detailed procedure and example for fixing 
the single-customer routes and calculating the values of the 
input parameters used for the MTHVRP are presented in 
Appendix A. 

The mathematical framework for the MTHVRP is pre
sented in the following section. Note that the indices for 
plant i, third-party suppliers m, and time period t are omitted 
from the model as the MTHVRP is solved for each plant/third 
party and each time period. 
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Notation   

Indices  
n n, echelon node (i, k, m), where 0 represents 

the plant or third-party node 
r route 
Sets  
Nc set of customer nodes 
Nv set of nodes that can be visited by ve

hicle v 

Nv
c set of customer nodes that can be visited 

by vehicle v 
R set of routes 
Parameters  
γ loading time at the plant or third- 

party node 

nn travelling time from node n to node 
n (day) 

τv operation time limit for vehicle v in each 
time period (day) 

Lnn distance between node n and n (mile) 

Dn
new product amount must be delivered to 

customer node n (kg) 
TTfix transportation cost of fixed single-cus

tomer routes (£) 
Binary vari

ables  
Evrn 1 if vehicle v visits node n on route r; 0 

otherwise 
Xvrnn 1 if vehicle v travels from node n to node n

on route r; 0 otherwise 
Continuous 

variables  
AQvrn accumulation of delivered product 

amount before visiting node n on route 
r (kg)  

= +minimise TT TT C L Xfix

v V r R n N n N
v
veh

nn vrnn
v v

(18)  

=E n K1
v n N r R

vrn
c

: v
c (19)  

X v V r R1 ,
n K

vr n0
v

(20)  

X v V r R1 ,
n K

vrn0
v

(21)  

= =X X E v V r R n K, ,
n N

vrnn
n N

vrn n vrn v
c

v v
(22)  
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+ +
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+ +AQ D AQ CAP X

v V r R n K n N

(1 )

, , ,
vrn n

new
vrn v vrnn

v
c

v
(24)  

AQ CAP v V r R n N, ,vrn v v (25)  

Eq.18 is the objective function of the lower-level problem, 
and it is the single-customer routing cost fixed from the 
upper-level plus the routing cost. Eq.19 poses the number of 
visits for each customer node. Each customer node must be 

visited exactly once. Eqs.20-21 ensure at most one departure 
from a plant/third party and one arrival to a plant/third 
party. Eq.22 ensures the trip integrity in which there is ex
actly one precedent and following nodes if customer node n 
is visited by vehicle v on route r. Similar to Eqs.10-11, Eq.23 
sets the limitation of the operation time for each vehicle. Eqs.  
24-25 are the vehicle capacity constraints. where the AQvrn 

denotes the cumulative product amount delivered by vehicle 
v on route r before serving customer node n. These capacity 
constraints also eliminate the subtours. 

Because the vehicle routing problem with heterogeneous 
vehicles is an NP-hard problem, solving such a problem with 
the MILP model is still a non-trivial task. Thus, we solve the 
problem by adapting the guided local search (GLS) method 
using the open-source tool, Google-OR tools. The GLS is a 
penalty-based metaheuristic algorithm that sits on top of 
other local search algorithms (Voudouris et al., 2010). The 
corresponding details are omitted for brevity, and the reader 
is referred to Voudouris and Tsang (1999); Beullens et al. 
(2003); Voudouris et al. (2010) for the details. 

Finally, the overall structure of the two-level solution 
strategy is illustrated in Fig. 2. 

4. Case study 

4.1. Input data 

To illustrate the applicability of the proposed model and 
approach, we solve a real-world case of oxygen supply chain 
planning during the COVID-19 pandemic in the UK. The case 
was provided by Linde/BOC, the largest oxygen provider in 
the UK. In the following, we present a brief introduction to 
the input data and assumptions. Note that detailed in
formation regarding actual locations of production plants, 
third-party suppliers and customers, plant capabilities, and 
customer demands cannot be disclosed for confidentiality 
reasons. Therefore, in the remainder of this paper, costs are 
given in the monetary unit (MU), and numerical values are 
normalised, if necessary. In the UK oxygen supply chain 
network, there are eight production plants and third-party 
suppliers, over 700 customers, including hospitals and in
dustrial customers, and dozens of heterogeneous vehicles. 
The vehicles are categorised into five types which take dif
ferent unit transportation costs. The planning horizon is one 
month and the time discretisation is one day. In addition, we 
account for the oxygen demand during the first wave of the 
pandemic in the UK (i.e., April 2020). With respect to the 
hospital demands during the pandemic, it is mutually related 
to the number of COVID-19 inpatients. Thus, we calculate 
their daily demands based on historical data regarding de
livery quantities and times provided by the industrial com
panies and the hospitalisation cases reported by the NHS 
England, Public Health Scotland, and Wales health boards. 
Graphs (A), (B), and (C) in Fig. 3 highlight the oxygen demand 
of hospitals in Scotland, Wales, and England, respectively. 
Each bar represents the cumulative oxygen demand of hos
pitals at each time period. The oxygen demand of each 
hospital is calculated based on the national demand profile 
so that the dynamic behaviour of the demand during the 
COVID-19 pandemic can be captured. The detailed method 
for calculating the hospital daily demands is presented in 
Appendix B. We use the estimated daily oxygen demand 
obtained from the method as the input parameters in the 
case study. 
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4.2. Results and discussion 

First, we solved the problem using the PIRP-L model. The 
upper-level model (PIRP-L) was implemented in GAMS 34.3.0 
on an Intel 3.00 GHz, 128 GB RAM desktop and solved using 
Gurobi 9.1.1 solver. The optimality and time limit were set to 
5 % and 3600 s, respectively. Table 1 reports the model sta
tistics with the optimal solution. The upper-level model in
cludes 177,663 equations, 176,674 continuous variables, and 
155,040 discrete variables. The PIRP-L model can solve the 
integrated supply chain planning problem within a reason
able time of 1470 s. This is because the number of discrete 
variables is considerably reduced by considering only single- 
customer routes at this level. Fig. 4 provides the breakdown 
of the total cost gained from the PIRP-L model. The trans
portation cost accounts for almost half of the total cost 
(41 %), whereas the production and third-party costs account 
for 52 % and 7 %, respectively. Fig. 5 shows the inventory 
profiles and product flows at hospital k17 and industrial 
customer k565, respectively. In the figures, the left y-axis 
represents the inventory levels, while the right y-axis re
presents the product flows going in/out from the storage tank 
of the customer. The negative value of the right y-axis re
presents the product amount going out from the tank. The 
blue and green bars represent the amount of the product 
delivered from the plants to the customer. These bars can 
also be interpreted as the vehicle’s load. For instance, the 
blue bar on day 2 in Fig. 5 for hospital k17 represents that a 
vehicle delivered the product from plant i1 to the hospital, 
and the vehicle load, i.e., delivered amount, is 6550 kg. In 
addition, the red bar shows the remaining load capacity in 
the vehicle, which is the vehicle capacity minus the load on 
the vehicle. As depicted, the frequency of the product de
liveries for hospital k17 is relatively high, although its tank 
capacity is larger than that of industrial customer k565. This 
is because of the high security level of the hospital’s tank. 
The security level, which is more than 75 % of the maximum 

capacity, limits the maximum amount of product to be de
livered by vehicles. In addition, the delivered product 
amounts to hospital k17 are relatively small compared to the 
vehicle capacity. For example, a vehicle with the capacity of 
13,004 kg delivered the product of 3670 kg from plant i1 to 
hospital k17 on day 12. The result indicates the necessity of 
re-optimising the single-customer routes obtained from the 
upper-level model. 

After solving the upper-level problem, the customers 
were clustered for each plant/third-party supplier and each 
time period. Furthermore, the original PIRP was transformed 
into an independent MTHVRP for each cluster by fixing the 
production and inventory decisions. Each MTHVRP at the 
lower level was implemented in Python 3.8.10 and solved 
using the GLS in Google OR-Tools. The termination criterion 
of the GLS algorithm for each cluster was a time limit of 300 s  
Table 2 compares the transportation costs obtained from the 
upper and lower levels. The table also shows the vehicle 
capacity utilisation calculated based on the optimal values 
from the upper and lower levels. The values of the capacity 
utilisation are the average numbers. The capacity utilisation 
for each vehicle at each time period was calculated based on 
the number of trips, its capacity, and total product amount 
delivered to customers. As shown in Table 2, the transpor
tation cost shows a 38 % improvement in the lower level 
when considering the multi-customer routes. In addition, the 
capacity utilisation can also be improved dramatically, and it 
shows an improvement between 3 % and 46 %. None of the 
vehicles in type 5 is used in both the upper and lower levels 
as the vehicles have the most expensive unit transportation 
cost. The improvement in the vehicle capacity utilisation of 
more clearly depicted in Fig. 6. In the figure, the bar graph 
represents the product amount delivered from plant i1 to 
customers and line graphs compare the vehicle capacity 
utilisation gained from upper and lower levels. As the de
livery quantity and time are fixed after solving the upper- 
level problem, there is no difference in the delivered product 
amount (blue bars). On the other hand, the capacity utilisa
tion of the vehicles at plant i1 is improved considerably at the 
lower level. Fig. 7 visualises the optimal routes of two clus
ters solved in the lower level. The figure also includes the 
information regarding the delivery amount and travelling 
distance. The single-customer routes are re-optimised, and 
detailed vehicle routing that considers multi-customer 
routing is determined. In addition, the vehicles utilise their 
capacities as much as possible. 

To analyse the general performance of the GLS and ex
amine the quality of their optimal solutions, we conducted a 
sensitivity analysis on the metaheuristic algorithm and ter
mination criteria (i.e., CPU time limit). We applied three ad
ditional metaheuristic techniques, which are provided as 
solvers in the open-source tool (i.e., Google OR-Tools): tabu 
search (TA), simulated annealing (SA), and greedy descent 
method (GD). Note that the description of each metaheuristic 
solver can be found in Perron and Furnon (2022). In addition, 
we used four different CPU time limits for each cluster, in
cluding 30 s, 60 s, 300 s, and 3600 s 

For the additional runs, we selected the clusters allocated 
to two different plants, plant i1 and i4, based on the solution 
from the upper-level model in the case study. We denoted 
the clusters related to plant i1 and i4 as C1 and C2. In C1, 
there are eight vehicles, whereas four vehicles are involved 
in C2. In each cluster for plant i1, different numbers of cus
tomers ranging from five to 27 are allocated. The average 

Fig. 2 – Structure of the two-level solution strategy.  
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number of customers in each cluster for plant i1 is 21. On the 
other hand, customers from 11 to 21, on average 18 custo
mers, are allocated to the clusters associated with plant i4. 
Note that we solved 60 independent problems, i.e., MTHVRPs 
for 60 clusters (2 plants × 30 days), as each cluster is defined 
by each plant each time period. 

The results are presented in Fig. 8. In the figure, the y-axis 
shows the total transportation cost of the clusters related to 

each plant, while the x-axis indicates the CPU time limit that 
was set to solve the MTHVRP for each cluster. First, we 
compared the performance of the GLS with that of other 
metaheuristic algorithms. Focusing on the 300 s of CPU time 
limit that was used for the case study in the previous section, 
the GLS has a much better performance than other 

Fig. 3 – National oxygen demand profile of the hospitals (A) in Scotland; (B) in Wales; and (C) in England.  

Table 1 – Model statistic of the PIRP-L model (upper 
level).    

model PIRP-L  

no. of equations 177,663 
no. of continuous variables 176,674 
no. of discrete variables 155,040 
optimal solution (MU) 1496,000 
optimality gap ( %) 3.6 
CPU s 1470   

Fig. 4 – Breakdown of total cost obtained form the PIRP-L 
model (upper level). 

Fig. 5 – Inventory profile at (A) hospital k17 and (B) 
industrial customer k565 (upper level). 
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metaheuristics, whereas the performance of the SA and GD 
are not satisfactory. For C1 and C2, the total transportation 
costs from the GLS are 6.1 % and 10.8 % less than the costs 
from the SA and GD, on average. Although the TS has a 
higher transportation cost in both C1 and C2, the differences 
between the solutions are within 0.6 %. It is noticeable that 
the GLS shows a better performance in all cases, except for 
C1 with 3600 s time limit. The results show that the GLS 
outperforms other metaheuristic approaches, and it is a good 
option for solving the MTHVRPs. 

Additionally, we investigated the trade-off between 
computational time and optimal solution. In case of C1, the 
GLS, TS, and SA improve the solutions by 4.8 %, 4,4 %, and 
1.8 %, respectively, when the CPU time limit is increased 
from 30 s to 300 s. The metaheuristic approaches, except for 
the GD, with 3600 s of CPU time limit still show a small im
provement of 0.9 %, on average, compared with the solutions 
gained after 300 s. For C2, the SA and GD do not show any 
noticeable improvement in the solutions with the increased 
CPU time. This might be due to existence of multiple local 
minima. Since the GD accepts only cost-reducing neighbours 
(i.e., better solutions than the current local solution) during a 
search process, it would be stuck at local minima and unable 
to improve the solution despite the increased CPU time limit. 
In case of the SA algorithm, there are a lot of tuneable 
parameter values, and these values are sensible (Weyland, 
2008). These facts often make the SA fail to explore better 
solutions continuously (Voudouris and Tsang, 1999). By 
contrast, the optimal solutions gained from the GLS and TS 
after 300 s show 3.7 % and 3.5 % of improvement compared 
with the solutions gained in 30 s. In addition, the increased 
CPU time limit from 300 s to 3600 s results in only 0.3 % and 
0.4 % fewer transportation costs for the GLS and TS, respec
tively. Fig. 9 depicts more detailed comparison of the solution 
quality across the clusters related to plant i1 and i4. Each row 
represents the metaheuristic methods with different CPU 
time limits and each column represents the time period, i.e., 

Table 2 – Comparison of the transportation cost and capacity utilisation.          

vehicle type average 
capacity (kg) 

unit transportation 
cost (MU/mile) 

upper level lower level improvement  

transportation cost (MU)    611,198 378,033 38 % 
capacity utilisation type 1 12,800 2.4 35 % 81 % 46 %  

type 2 16,000 2.7 48 % 78 % 30 %  
type 3 20,200 3.0 85 % 88 % 3 %  
type 4 23,700 3.3 65 % 82 % 17 %  
type 5 25,700 3.6 – – –   

Fig. 6 – Comparison of the capacity utilisation of the 
vehicles at plant i1. 

Fig. 7 – Optimal routing decisions gained from the lower level.  
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each cluster. The value in each cell was calculated based on 
the optimal solution gained from each metaheuristic ap
proach with different CPU time limits and the best solution 
identified in each cluster. The cells also contain colours that 
is blended based on a colour scale given in the figure. By 
observing how cell colours change across the y-axis, we can 

see how the solution quality changes when using different 
metaheuristic and CPU time limits for each cluster. The 
pattern in cell colours across the time periods shows that 
time limit of 300 s with the GLS provides a reasonable bal
ance between the computational time and the changes in 
solutions. 

Fig. 8 – Comparison of the results from the sensitivity analysis.  

Fig. 9 – Variation of the solution quality from the sensitivity analysis.  
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5. Concluding remarks 

In this study, we addressed the integrated production and 
inventory routing planning of liquid oxygen supply chains 
during the COVID-19 pandemic. To overcome the computa
tional difficulty of the problem, we proposed a two-level 
hybrid solution strategy that solves the problem via both the 
mathematical framework and metaheuristic method. At the 
upper level of the approach, we developed an MILP model in 
which only single-customer routes were considered. At the 
lower level, the problem was reduced to an MTHVRP by fixing 
the production and inventory decisions. Further, the 
MTHVRP was disaggregated into several independent pro
blems by clustering customers based on the customer allo
cation results obtained from the upper level. We adapted the 
GLS approach to solve the MTHVRPs. The validity and effi
ciency of the proposed mathematical model and approach 
were tested in a case study on a real-world oxygen supply 
chain problem in the UK. The results showed that the de
veloped MILP model and the proposed solution approach 
have a computational advantage. Further work could be di
rected at addressing the uncertainty of input parameters 
such as customer demand and transportation time and 
considering other solution techniques (e.g., rolling horizon 
and MILP decomposition methods) to enhance the compu
tational efficiency of the proposed solution strategy. 
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Appendix A. Appendix: procedure for fixing the 
single-customer routes 

In this section, we present the procedure for fixing single- 
customer routes obtained from the upper level. We fix the 
single-customer routes when the number of deliveries per 
customer in each time period is more than one. 

First, we denote the optimal values of Qikvt and Aikvt, as 
Q *ikvt and A*ikvt, respectively. Then, we define the binary and 
integer parameters as follows:  

Aikvt
fix fixed single-customer route in which vehicle v deliv

ered the product from plant i to customer k in time period t   
NDikt the number of deliveries from plant i to customer k in 
time period t   
NTikt the number of vehicles travel from plant i to customer 
k in time period t   
Yikvt 1 when customer k received the product from plant i 
by vehicle v in time period t 

The binary and integer parameters are calculated based on  
Algorithm 1. As presented binary parameter Yikvt is equal to 1 
when the vehicle v visits customer k in time period t (i.e., 
A* 1ikvt ). Then, the number of vehicles used for serving the 
product to customer k in time period t (NTikt) is calculated based 
on the binary parameter Yikvt. In addition, the number of de
liveries to the customer is based on the optimal value of A*ikvt

obtained from the previous level. Now, we fix the single-cus
tomer routes based on the parameters. For customer k who re
ceived the product from plant i more than once in time period t, 
there are two different types of deliveries: (i) served by the same 
vehicle; and (ii) served by different vehicles. The first case is that 
the number of deliveries is more than once, but the number of 
vehicles used is equal to one. In this case, we fix the single- 
customer routes except for the last delivery. (see lines 5–6 in  
Algorithm 1). On the other hand, the latter is the case in which 
the values of NQikt and NTikt are greater than one. In this case, we 
fix the single-customer routes which the delivery quantity is 
equal to the vehicle capacity (see lines 7–8 in Algorithm 1). 
Algorithm 1. Procedure of fixing the single-customer routes. 
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Next, we calculate the values of parameters that used for 
the MTHVRP at the lower level. The notation of the para
meters is given below.    

ivt operation time limit of vehicle v at plant i in time period 
t (day)   
Dikt

new demand of customer k in a cluster associated with 
plant i and time period t (kg)   

TTit
fix transportation of fixed single-customer routes in a 

cluster associated with plant i and time period t (£) 

Also, the equations for calculating values of the para
meters are presented in. 

Algorithm 2 . 

Algorithm 2. Parameters used for the MTHVRP in the lower 
level.  

For a more comprehensive understanding of the procedure, 
assume that customer k1 received 10 kg of the product from 
plant i1 by vehicle v1, of which capacity is 10 kg, and 5 kg by 
vehicle v2, of which capacity is 8 kg, on a certain day. Also, 
customer k2 received 4 kg by vehicle v2 on the same day (see Fig. 
A.1). In case of customer k1, the delivery with 10 kg full load (red 
coloured route) is fixed, whereas the second delivery for 5 kg of 
the product (blue coloured route) will be reoptimised. Accord
ingly, in the lower-level MTHVRP, which is related to the plant 
and time period (i.e., plant i1 and the day), the demand of cus
tomer k1 will be 5 kg (Dk

new
1 = 5 kg). In addition, the remaining 

operation time for the vehicle will be Δt minus the operation 
time used for the fixed delivery of 10 kg of the product (i.e., τv1 = 
20 h). On the other hand, because customer k2 was visited only 
once, no route is fixed for the customer. In the MTHVRP, the 
available operation time for vehicle v2 (τv2) will be the same as 
the Δt and the demand of customer k2 (Dk

new
2 ) will be 4 kg. 

Fig. A.1 – Example for calculating input parameters used in the lower-level MTHVRP.  
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B. Appendix: hospital demand profile 

The use of oxygen at hospitals is dominated by hospitalised 
coronavirus patients, who require on average 14 L/min 
oxygen gas for their survival based on the latest report by the 
World Health Organisation (WHO) (World Health 
Organization, 2020). In this section, we present the method 
used for estimating the hospital oxygen demand profile that 
is mainly related to the COVID-19 patients. First, we calculate 
the national oxygen demand based on the number of hos
pitalisations reported by the UK government (UK Health 
Security Agency, 2021) and WHO guideline that provides the 
required oxygen amount per COVID-19 patient (World Health 
Organization, 2020). According to the WHO guideline the 
COVID-19 patients requiring hospitalisation are classified 
into two cases, critical and severe cases. We assume that the 
hospitalisations at intensive care units (ICUs) are the critical 
cases, while the patients admitted to normal wards are the 
severe cases. The method for converting the number of 
hospitalisations to the oxygen demand is given in Table B.1. 
Next, we get the ratio of the total delivered amount to each 
hospital over the planning horizon to the national demand 
during the horizon. Note that the delivered amount is from 
historical data given by the industrial companies, Linde/BOC. 
Based on the ratio, we distribute the total delivered amount 
to follow the national demand profile. This procedure finds 
the hospital demand profile which is fitted to the given da
taset regarding the national demand.  
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