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Abstract7

Unmanned surface vehicles (USVs) are of increasing importance to a growing number of8
sectors in the maritime industry, including offshore exploration, marine transportation and9
defence operations. A major factor in the growth in use and deployment of USVs is the increased10
operational flexibility that is offered through use of optimised motion planners that generate11
optimised trajectories. Unlike path planning in terrestrial environments, planning in the maritime12
environment is more demanding as there is need to assure mitigating action is taken against13
the significant, random and often unpredictable environmental influences from winds and ocean14
currents. With the focus of these necessary requirements as the main basis of motivation, this15
paper proposes a novel motion planner, denoted as Gaussian process motion planning 2 star16
(GPMP2*), extending the application scope of the fundamental Gaussian process-based (GP-17
based) motion planner, Gaussian process motion planning 2 (GPMP2), into complex maritime18
environments. An interpolation strategy based on Monte-Carlo stochasticity has been innovatively19
added to GPMP2* to produce a new algorithm named GPMP2* with Monte-Carlo stochasticity20
(MC-GPMP2*), which can increase the diversity of the paths generated. In parallel with algorithm21
design, a Robotic Operating System (ROS) based fully-autonomous framework for an advanced22
USV, the Wave Adaptive Modular Vessel 20 (WAM-V 20), has been proposed. The practicability23

J. Meng1, Y. Liu1,∗ and R. Bucknall1 are with the Department of Mechanical Engineering, University College
London, Torrington Place, London WC1E 7JE, UK (corresponding author: Yuanchang Liu, yuanchang.liu@ucl.ac.uk,
tel: +44 (0)20 7679 7062). A. Humne2 is with the Department of Microtechnique (Robotics), EPFL, Switzerland.
B. Englot3 is with the Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.



IEEE JOURNAL OF OCEANIC ENGINEERING 2

of the proposed motion planner as well as the fully-autonomous framework have been functionally24
validated in a simulated inspection missions for an offshore wind farm in ROS.25

Index Terms26

Unmanned surface vehicles, environment characteristics, GP-based path planning, interpo-27
lation strategy, Monte-Carlo stochasticity, fully-autonomous framework28

I. Introduction29

The planning of trajectories in complex maritime environments plays a critical role30
in developing autonomous maritime platforms such as USVs. The paths generated for31
operations in maritime environments should not only ensure the success of a mission but,32
wherever and whenever possible, actively try to minimise the energy consumption during a33
voyage. Even with growing recognition of the importance of motion planning algorithms for34
USVs, two major challenges have largely hindered their progress of development including:35
1) the majority of mainstream motion planning algorithms do not encompass proper36
consideration of the environmental impacts such as winds and surface currents and 2)37
among the minority of algorithms that do take these environmental characteristics into38
account, important metrics including the computation time and path quality are not up to39
that minimum standard of quality required for practical applications. These aforementioned40
challenges have been addressed to some extent in the past few years, but there is a need41
to further optimise the solutions.42

Current existing mainstream motion planning algorithms can be divided into four cat-43
egories: 1) grid-based algorithms [1], [2], [3], 2) sampling-based algorithms [4], [5], [6], 3)44
potential field algorithms [7], [8] and 4) intelligent algorithms [9], [10], [11], variations of45
which have been applied across different robotic domains. All the aforementioned algorithms46
have been developed over many years and have made an incredible contribution to robotic47
motion planning problems. Nevertheless, these algorithms have some drawbacks and cannot48
fully meet the requirements for motion planning in practical application scenarios. Grid-49
based algorithms require a post-processing path smoothing procedure to satisfy the non-50
holonomic constraints of vehicles [12]. Sampling-based and intelligent algorithms might51
require an extremely long computation time to ensure convergence, otherwise the distance52
and smoothness of the paths can not be guaranteed [13], [14]. Potential field algorithms53
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Fig. 1. A demonstration of WAM-V 20 USV in the real world and the virtual maritime scenario. The virtual maritime
scenario is highly similar to the real world, where the real-time camera information, position, speed, heading angle
and track error can be measured.

suffer from the limitations of local minima and require additional strategies to avoid this54
issue [15]. Meanwhile, these motion planning algorithms are not designed for maritime55
environments with time-varying ocean currents. Another perspective of categorising different56
motion planning algorithms can be found in [16].57

To address the problems in practical application scenarios, trajectory optimisation algo-58
rithms have been proposed in recent years [17], [18], [19], [20], [21]. One of them is the59
GP-based motion planning algorithm [17], [21] that represents trajectories as samples from60
Gaussian processes in the continuous-time domain and optimises them via probabilistic61
inference. This novel motion planning paradigm brings two significant benefits: 1) the62
capability of smoothing the path in line with the planning process based on the specification63
of the system’s dynamic models and 2) the superiority in convergence speed through the64
employment of a fast-updating inference tool such as a factor graph [22]. However, there65
are still some constraints when it comes to implementing trajectory optimisation algorithms66
in maritime environments, and the issues of integrating characteristics of maritime envi-67
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ronments such ocean currents and avoiding dense obstacles remains especially challenging.68
Another research bottleneck for USV development is the lack of high-fidelity environments.69

Fig. 1 compares a typical catamaran, the WAM-V 20 USV, in real world and virtual maritime70
scenarios. In this high-fidelity virtual maritime scenario, physical fidelity and visual realism71
with real-time execution requirements are well-balanced. In general, establishing practical72
experimental platforms would be expensive. By developing high-fidelity simulation environ-73
ments, validating the newly proposed motion planning, control and any other algorithms74
can be conducted in an efficient and low-cost manner.75

In fact, simulations with a sufficient level of fidelity have been gradually adopted for76
USV platforms. Game engines such as Unity [23] and Unreal Engine [24] can present a77
vivid virtual world, which might be suitable simulation platforms for motion planning and78
control algorithms. However, most of them do not have a dedicated support for robotics and79
the hardware requirements for running these game engines are usually difficult to satisfy.80
In 2002, an open-source simulation platform designed for supporting various indoor and81
outdoor robotic applications was proposed, namely the Gazebo [25]. Specifically, it delivers82
the following benefits that made it become the most popular simulation platform among83
robotic researchers: 1) it supports the use of different physics engines to simulate collision,84
contact and reaction forces among rigid bodies, 2) its sensor libraries are progressive due85
to the open source facility and 3) it supports for robotics middle-ware based upon a well-86
developed messaging system.87

Nevertheless, most of the simulators based on the fundamental structure of Gazebo are88
designed for terrestrial, aerial and space robots [26], [27], [28]. To address this deficiency and89
provide a standard simulator for the development and testing of algorithms for USVs, the90
Virtual RobotX simulator (VRX) was proposed in 2019. VRX is a Gazebo-based simulator91
capable of simulating the behaviour of USVs in complex maritime circumstances with waves92
and buoyancy conditions [29]. Also, a mainstream catamaran (WAM-V 20 USV) model is93
provided in VRX with an easy-to-access interface to any self-designed autopilot. There94
is, however, a lack of a fully-autonomous navigation system in VRX, especially a system95
integrating both motion planning capability and autopilot.96

To bridge these research gaps, this paper has specifically focused on developing a new97
motion planning paradigm for USVs with the main contributions summarised as follows:98

• A new GP-based motion planning algorithm, named as MC-GPMP2*, has been de-99
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veloped by integrating a Monte-Carlo stochasticity to enable an improved collision100
avoidance capability.101

• A fully-autonomous framework for USVs has been designed for the VRX simulator.102
• Enriched high-fidelity tests have been carried out in ROS to simulate offshore wind103
farm operations using USVs, where the superiority of the proposed motion planning104
algorithms is properly demonstrated.105

The rest of the paper is organised as follows. Section 2 formulates the problem and dis-106
cusses the mathematical model of the conventional GP-based motion planning algorithm in107
various complex environments. Section 3 describes the Monte-Carlo sampling and introduces108
it into our motion planning algorithm. Section 4 presents the modelling and control of the109
WAM-V 20 USV in ROS. Section 5 demonstrates the proposed path planner’s simulation110
results and then compares them with the results obtained from a series of mainstream motion111
planning algorithms. Section 6 demonstrates the practical performance of the proposed path112
planning algorithm and autopilot in ROS, followed by the conclusion and indications for113
future work in Section 7.114

II. GP-based Motion Planning in Various Complex Environments115

This section explains the GP-based motion planning algorithms in general and proposes116
a new method named the Gaussian process motion planner 2 star (GPMP2∗), which will117
be developed and applied to motion planning for autonomous vehicles such as USVs and118
unmanned underwater vehicles (UUVs).119

A. Problem formulation as trajectory optimisation120

GP-based motion planning algorithms can be applied to solve the problem of trajectory121
optimisation, i.e. employing Gaussian Processes to optimise trajectories in an efficient122
manner. Formally, the trajectory optimisation aims to determine the best trajectory from123
all feasible trajectories while satisfying any user defined constraints and minimising any user124
prioritised costs [30], [31], [19]. By considering a trajectory as a function of continuous time125
t, such an optimisation process can be formulated as the standard form of an optimisation126
problem with continuous variables as:127
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minimise F [θ(t)]

subject to Gi[θ(t)] ≤ 0, i = 1, . . . ,mieq

Hi[θ(t)] = 0, i = 1, . . . ,meq.

(1)

where θ(t) is a continuous-time trajectory function mapping a specific moment t to a specific128
robot state θ. F [θ(t)] is an objective function to find the best trajectory by minimising the129
higher-order derivatives of robot states (such as velocity and acceleration) and collision130
costs. Gi[θ(t)] is a task-dependent inequality constraint function and Hi[θ(t)] is a task-131
dependent equality constraint function that contain the desired start and goal robot states132
with specified configurations.133

As stated in [17], [32], by properly allocating the parameters of low-resolution states134
with relatively large sample interval ∆t (defined as support states) and interpolating high-135
resolution states with relatively small sample interval ∆τ (defined as interpolated states), the136
computational cost of Gaussian Processes can be efficiently reduced and a continuous-time137
trajectory function represented by a Gaussian Process can be shown as:138

θ(t) ∼ GP(µ(t), K(t, t′)), (2)

where µ(t) is a vector-valued mean function and K(t, t′) is a matrix-valued covariance139
function.140

For the given optimization problem, the objective function is given as:141

F [θ(t)] = Fgp[θ(t)] + ω1Fobs[θ(t)] + ω2Fenv[θ(t)], (3)

where Fgp[θ(t)] is the GP prior cost, Fobs[θ(t)] is the obstacle collision cost and Fenv[θ(t)] is142
the environment characteristic cost. ω1 and ω2 are the weight coefficients given to these costs.143
At this juncture we specifically highlight the inclusion of the environment cost (Fenv[θ(t)]) as144
it is of particular importance when considering marine vehicles. For other types of vehicles,145
costs can be adjusted as required.146

B. Motion planning as probabilistic inference147

From another perspective, GP-based motion planning algorithms can also be viewed as148
probabilistic inference problems, where Bayesian inference is applied to find the optimal149
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trajectory. The detailed explanation of using Bayesian inference to solve the trajectory150
optimisation problem in (1) can be found in [20]. In this subsection, we summarise the work151
in [20] and extend it to the more general case that includes multiple planning constraints.152

By exploiting the sparsity of the underlying problem, probabilistic inference, such as153
Bayesian inference, is effective for solving optimisation problems and the optimisation154
problem in (1) can be converted into the following Bayesian inference:155

θ∗ = argmax
θ

p(θ)l(θ; e), (4)

where p(θ) represents the GP prior that encourages smoothness of trajectory and l(θ; e)156
represents a likelihood. More specifically, the GP prior distribution is given in terms of the157
mean µ and covariance K:158

p(θ) ∝ exp

{
−1

2
||θ − µ||2K

}
, (5)

whereupon the GP prior cost in (3) is given as the negative natural logarithm of the prior159
distribution:160

Fgp[θ(t)] = Fgp[θ] =
1

2
||θ − µ||2K . (6)

The likelihood in the above Bayesian inference can be viewed as a combination of different161
categories of likelihoods such as the obstacle collision likelihood and the environment162
characteristic likelihood, thereby it is named as the combined likelihood. Moreover, it is163
worth noting that the distribution of the combined likelihood can be written into a product164
of the distributions from all the subcategory likelihoods using the features of the exponential165
distribution:166

l(θ; e) = exp

{
−1

2
||g1(θ)||2Σobs

}
︸ ︷︷ ︸

l(θ;eobs)

· exp
{
−1

2
||g2(θ)||2Σenv

}
︸ ︷︷ ︸

l(θ;eenv)

(7)

= exp

{
−1

2
||g1(θ)||2Σobs

− 1

2
||g2(θ)||2Σenv

}
(8)

Σobs and Σenv are the diagonal covariance matrices with regard to collision and environ-167
mental characteristics:168
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Fig. 2. An example of the proposed GPMP2* motion planning algorithm: (a) demonstrates the optimised trajectory
generated by GPMP2*, (b) demonstrates the signed distance field generated by the obstacle collision likelihood
function and (c) demonstrates the environment characteristic field generated by the environment characteristic
likelihood function.

Σobs(env) = diag[σobs(env)], (9)

where σobs and σenv are the weighting coefficients with regard to collision and environment169
characteristics. g1(θ) and g2(θ) are defined as a vector-valued obstacle cost function and a170
vector-valued environment characteristic cost function. More specifically, the definition of171
g1(θ) is given as:172

g1(θi) = [c(d(x(θi, Sj)))]1≤j≤M , (10)

where c(·) : Rn → R is the workspace cost function that penalises the set of points B ⊂ Rn173
on the robot body when they are in or around an obstacle, d(·) : Rn → R is the signed174
distance function that calculates the signed distance of the point, x is the forward kinematics175
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function, Sj is the sphere on the robot model andM is the number of spheres that represents176
the robot model. An example of a constructed signed distance field is graphically shown in177
Fig. 2 (b), and the obstacle collision cost in (3) can be given as:178

Fobs[θ(t)] =

∫ tN

t0

∫
B

c(x(θ(t), u))||ẋ(θ(t), u)||dudt. (11)

where u represents the known system control input. Also, the definition of g2(θ) is given179
as:180

g2(θi) = [e(x(θi, Sj))]1≤j≤M , (12)

where e(·) : Rn → R is the environment compensation function that integrates the relevant181
environment characteristics such as surface wind and ocean currents on the set of points182
B ⊂ Rn on the robot body.183

The environment compensation function is defined as a metric calculated using an184
anisotropic fast marching algorithm as stated in [33], [32]. Such a metric can measure the185
energy consumption rate at each pixel so that trajectories can be generated to avoid high186
energy consumption regions (the bright regions in Fig. 2 (c)). The environment information187
is simulated as a vortex function in this work but any real-time statistical data can also188
be extracted and used as stated in [13]. The environment characteristic cost in (3) can189
therefore be given as:190

Fenv[θ(t)] =

∫ tN

t0

∫
B

e(x(θ(t), u))||ẋ(θ(t), u)||dudt, (13)

where u represents the known system control input.191
Now we can rewrite the Bayesian inference in (4) into the following form on the basis of192

the information provided by (5) and (8):193

θ∗ = argmax
θ

p(θ)l(θ; e) (14)

= argmax
θ

{− log(p(θ)l(θ; e))} (15)

= argmax
θ

{
1

2
||θ − µ||2K +

1

2
||g1(θ)||2Σobs

+
1

2
||g2(θ)||2Σenv

}
. (16)
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Similarly, we can rewrite the objective function in (3) into the following form on the basis194
of the information provided by (6), (11) and (13):195

F [θ(t)] =
1

2
||θ − µ||2K + λ1

∫ tN

t0

∫
B

c(x(θ(t), u))||ẋ(θ(t), u)||dudt

+λ2

∫ tN

t0

∫
B

e(x(θ(t), u))||ẋ(θ(t), u)||dudt,
(17)

where λ1 and λ2 correspond to σobs and σenv, respectively.196
A notable advantage of the proposed motion planning algorithm is that when multiple197

environment constraints need to be considered simultaneously, these constraints can be198
formulated as various subclass environment characteristic likelihoods. By taking advantage199
of the features of exponential distributions, subclass likelihoods can be further integrated into200
a superclass environment characteristic likelihood to enable a fast summation of constraints.201
To gain a more intuitive understanding of the feasibility of the proposed motion planning202
algorithm, Fig. 2 demonstrates an example of how the GP-based motion planner can be203
used to avoid obstacles as well as vortexes. Also, the proposed method can be used in either204
2-dimensional (2D) or 3-dimensional (3D) environments. Overall, any type of GP-based205
motion planning method that incorporates the characteristics of the environment through206
adding corresponding likelihood to probabilistic inference can be viewed as GPMP2*.207

III. GP-based Motion Planning with Incremental Optimisation Characteristics208

This section provides detail of the proposed MC-GPMP2* algorithm. The Monte-Carlo209
sampling based, obstacle space estimation is first introduced and this is then followed by210
the details of sampling point interpolation and incremental inference.211

A. Obstacle space estimation using Monte-Carlo sampling212

Monte-Carlo sampling is a highly efficient statistical method to determine the approximate213
solution of many quantitative numerical problems. It can reduce the computation time when214
there is a relatively high complexity in sampling space [34], [35]. In this work, this sampling215
method is used to estimate the ratio of the obstacle space to the entire sampling space,216
especially when the obstacle space has a relatively irregular shape. Algorithm 1 demonstrates217
the specific procedure of the estimation, where the random sample point is generated from218
a continuous uniform distribution:219
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Algorithm 1: Obstacle Space Estimation using the Monte-Carlo Sampling

(MC-EstimateObstacleSpace)
Input: 3-dimensional sampling space Xx,y,z and the total number of samples Nspl

for i = 1, 2, . . . , Nspl do
Generate a random sample point inside the 3-dimensional sampling space Xrand ←

Sample(Xx,y,z);

if (CollisionFree(Xrand,Xx,y,z) == TRUE) then
Accept the random sample point Xrand by increasing the accepted sample number

Nac = Nac + 1

end

if (CollisionFree(Xrand,Xx,y,z) == FALSE) then
Reject the random sample point Xrand by maintaining the previous accepted sample

number Nac = Nac

end

end

Compute the ratio of the obstacle space to the entire sampling space through Pobs =
Nac
Nspl

Output: Obstacle space proportion Pobs

Notes: The pixels inside the obstacle space are ’1’ and the pixels outside the obstacle space are ’0’.

CollisionFree(Xrand,Xx,y,z is a function to check whether the random generated node Xrand is

inside the obstacle space or not.

(x, y, z) ∼ U(a, b), (18)

where a = (a1, a2, a3)
T is a vector-valued lower bound function representing the lower bounds220

of the 3-dimensional sampling space, b = (b1, b2, b3)
T is a vector-valued upper bound function221

indicating the upper bounds of the sampling space. The probability density function of the222
continuous uniform distribution at any point (x, y, z) ∈ R3 inside the sampling space can223
be given as:224

f(⌈x⌉, ⌈y⌉, ⌈z⌉) = 1∏3
i=1(bi − ai)

, (19)

where ⌈·⌉ is the ceiling function used to round-up to the nearest integer and the volume of225
the entire sampling space can be represented by

∏3
i=1(bi − ai).226

In Algorithm 1, based on the law of large numbers [36], [37], [38], the accuracy of the227
estimation of obstacle space gradually increases as the number of samples increases. Its228
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convergence rate is O( 1√
N
), which means that quadrupling the total number of samples229

reduces the algorithm’s error by half, regardless of the dimensions of the sampling space230
[39]. Therefore, Algorithm 1 can provide a reasonably accurate result once the total number231
of samples exceeds a specific threshold. When the total number of samples in Algorithm 1232
equals the total number of pixels on the map, the sampling algorithm becomes a traversal233
algorithm and generates a result with an accuracy that can be considered absolute.234

In general, using GP-based motion planning in conjunction with Algorithm 1 to construct235
a modified motion planning algorithm can offer two notable advantages:236

• Shortening the execution time of GP-based motion planning, especially for high-237
dimensional problems;238

• Shortening the path length and improving the path quality by enhancing the diversity239
of the generated trajectory.240

B. Monte-Carlo based GP interpolation241

As mentioned in Section. II, apart from the support states, a major benefit of using242
GPs is the facility to query the planned state at any moment of interest. In addition,243
according to [20], trajectories generated by a GP-based motion planner can be fine-tuned244
by increasing the number of states. Therefore, to facilitate obstacle avoidance, in this paper,245
it is proposed to interpolate additional states between two support states according to the246
obstacle estimation of Monte-Carlo.247

Similar to previous research [20], [19], [17], [21], a linear time-varying stochastic differential248
equation (LTV-SDE) is adopted to represent the motion model as:249

θ̇(t) = A(t)θ(t) + u(t) + F (t)w(t). (20)

where A(t) and F (t) are time-varying matrices of the system, u(t) is the control input and250
w(t) is the white process noise represented as:251

w(t) ∼ GP(0, Qcδ(t, t
′)), (21)

where Qc is the power-spectral density matrix and δ(t, t′) is the Dirac delta function. Based252
on (20), a queried/interpolated state θ(τ) at τ ∈ [ti, ti+1] is a function only of its neighboring253
state as (the detailed proof of this is presented in [20], [19], [17], [21]):254
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Algorithm 2: Building Factor Graph with the Monte-Carlo Stochasticity (MC-BuildFactorGraph)
Input: Total number of sub-searching regions N

Add Prior Factor

for i = 1, 2, . . . , N do
Add Obstacle Factor and Environment Factor

Compute total number of sample points in the low-resolution region Nj :

Pobs ← MC-EstimateObstacleSpace

Nj = λ · Pobs

for j = 1, 2, . . . , Nj do
Add GP Prior Factor, Interpolated Obstacle Factor and Interpolated Environment Factor

end

end

Add Prior Factor

Output: Factor graph Gmc

Notes: λ represents a self-defined scaling term.

θ(τ) = µ̃(τ) + Λ(τ)(θi − µ̃i) + Ψ(τ)(θi+1 − µ̃i+1), (22)

where255
Λ(τ) = Φ(τ, ti)−Ψ(τ)Φ(ti+1, ti),

Ψ(τ) = Qi,τΦ(ti+1, τ)
TQ−1

i,i+1 ,
(23)

where Φ(∗, ∗) is the state transition matrix and Qa,b is:256

Qa,b =

∫ tb

ta

Φ(b, s)F (s)QcF (s)
TΦ(b, s)Tds. (24)

In general, (22) can be used to interpolate a series of dense states to facilitate the257
generation of collision-free trajectories while keeping a relatively small number of support258
states to maintain low computational cost. As stated previously, the strategy of interpolating259
dense states is lacking in the previous research [20], [19], [17], [21]. Therefore, it is proposed260
that the number of interpolated states should be determined by the proportion of the261
obstacle space relative to the whole region space (Pobs), and such a proportion can be262
quickly estimated by Monte-Carlo sampling as described in Algorithm 1. In addition, the263
Monte-Carlo stochasticity adds a variation to the number of interpolated states (Nj =264
ti+1−ti

τ
= λ · Pobs) to test the optimal number of interpolated states incrementally, where λ265
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Fig. 3. A demonstration of the factor graph and Bayes tree in our problem: (a) illustrates the factor graph, containing
six categories of factors including Prior factor, GP prior factor, Obstacle factor, Interpolated obstacle factor,
Environment factor and Interpolated environment factor, (b) illustrates the Bayes tree, indicating the conditional
dependencies between various states.

is a self-defined scaling term and Pobs is computed by Algorithm 1. More specifically, Pobs266
tends to increase as the volume of obstacles within a specific region increases, leading to267
a growth in the number of interpolated states of this region Nj. Interpolated states with268
relatively high densities can improve the performance of the motion planning algorithm on269
avoiding obstacles as well as smoothen the generated trajectory.270

C. Probabilistic inference using the factor graph271

Given the Markovian structure of the trajectory enabled by the linear time-varying272
stochastic differential equation (LVT-SDE) and the sparsity of the underlying problem,273
the posterior distribution (or the optimised trajectory) can be converted into a factor graph274
to perform inference incrementally. More specifically, the factor graph is a bipartite graph275
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that can express any inference in a more intuitive graphical manner. It is bipartite as there276
are only two categories of nodes existing in the graph, i.e. variable nodes and factor nodes277
[22]. The factorisation of the posterior in our problem is formulated as:278

p(θ|e) ∝
M∏
m=1

fm(Θm), (25)

where fm are factors on variable subset Θm.279
Then the factor graph can be converted into a Bayes tree based on the variable elimination280

process [40], [41], [42], [43]. The Bayes tree in our problem, as converted by (25), is:281

p(Θ) =
∏
j

p(θj|Sj), (26)

where θj are the states and Sj denotes the separator for state θj which is comprised of the282
nodes in the intersection of the state θj and its parent.283

To gain a more intuitive understanding regarding the factor graph, a comprehensive284
structure illustrating how the different factors are integrated as well as converted into a285
Bayes tree for our problem is demonstrated in Fig. 3. Furthermore, the specific process of286
building a factor graph with the Monte-Carlo stochasticity is detailed in Algorithm 2.287

D. Incremental optimising motion planning based on GPs288

The Gaussian process motion planner 2 star with the Monte-Carlo stochasticity (MC-289
GPMP2*) is proposed in this subsection by integrating the aforementioned information. The290
pseudo-code of the proposed motion planner is detailed in Algorithm 3 with key information291
explained as:292

• First, the start state θ0, goal state θN and replanning iteration Nreplan are required as293
inputs.294

• Next, the signed distance field is computed based on the obstacle cost function (as295
described in (10)) and the environment characteristic field is computed based on296
the environment characteristic cost function (as described in (12)), to construct the297
combined likelihood (as described in (8)).298

• A factor graph with Monte-Carlo stochasticity is built based on the MC-EstimateObstacleSpace299
(Algorithm 1) and the MC-BuildFactorGraph (Algorithm 2) and then the optimal path300
θ∗ is inferred based on the Levenberg-Marquardt algorithm [44].301
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Algorithm 3: Gaussian Process Motion Planner 2 star with the Monte-Carlo Stochasticity

(MC-GPMP2*)
Input: Start state θ0, goal state θN and replanning iteration Nreplan

Precompute Signed distance field (SDF ) and environment characteristic field (ECF )

for i = 1, 2, . . . , Nreplan do
Gmc ← MC-BuildFactorGraph

θ∗(i) ← LM(θ0, θN , Gmc, SDF , ECF )

θ∗ ← θ∗(i)

if {L[θ∗(i− 1)] <= L[θ∗(i)]} or {CollisionFree[θ∗(i)] == FALSE} then
θ∗ = θ∗(i− 1)

end

end

Output: Optimal path θ∗

Notes: SDF is calculated by inputting the motion planning space into the workspace cost function.

ECF is calculated by inputting the motion planning space into the environment compensation

function. LM(·) represents the Levenberg-Marquardt algorithm. L(·) represents the function to

measure the total length of the generated path.

• The previous step is repeated several times based on the number of replanning iterations302
Nreplan required to optimise the path θ∗.303

To better understand the functionality of the proposed motion planner, a comparison of304
the paths generated by MC-GPMP2* and GPMP2 is presented in Fig. 4. MC-GPMP2*305
generates relatively diversified paths when there are a relatively small number of sample306
points. Conversely, MC-GPMP2* generates a path with a high level of similarity compared307
with GPMP2 when there is a relatively larger number of sample points.308

IV. WAM-V 20 USV modeling and control in ROS309

In this section, detail will be provided regarding the proposed fully-autonomous navigation310
framework to navigate and control WAM-V 20 USVs in ROS. Overall, the proposed311
framework includes three major components: 1) motion planner, generating an optimised312
path according to obstacles and environment characteristics, 2) navigation refinement system313
to generate the USV heading angles needed to accurately track the paths and 3) autopilot314
adjusting the angle of deflection of rudders and the rotational speed of USVs to match the315
desired values.316
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Fig. 4. A comparison of the paths generated by GPMP2 and MC-GPMP2*. GPMP2 generates a single solution,
while MC-GPMP2* extends the form of this solution by adding randomness to the sampling process making the paths
generated by MC-GPMP2* diversified. This characteristic provides extra solutions to a specified motion planning
problem, i.e. increasing the probability of approaching a better path. From (a) - (c), the number of sample points
increases gradually and the diversity of the paths generated by MC-GPMP2* decreases accordingly.

A. Mathematical modeling for WAM-V 20 USV317

The specifications of the catamaran that will be used are listed in Table I. This catamaran318
consists of a wave-adaptive structure and two air cushions with thrusters mounted at the319
back end of each cushion. The thrusters rotate around the Z axis simultaneously to supply320
different-oriented propulsion within the E-N plane as shown in Fig. 5.321

The spatial position state of the catamaran −̇→X is considered to be its 2D position (E,N),322
heading angle ψ, sway velocity v, surge velocity u, yaw rate r, angle of deflection of rudders323
δr and rotational speed of thrusters ωt as illustrated in Fig. 5. Hence the mathematical324
model of the USV is expressed as:325

−̇→
X =


Ė

Ṅ

ψ̇

 =


u cosψ − v sinψ

u sinψ + v cosψ

r

 , (27)
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Fig. 5. Schematic depictions of the used catamaran: (a) shows the north-east-down reference frame N = {E,N}

and the frame attached to the USV platform B = {bx, by} and (b) shows the motion diagram of the USV, where r

is Z-axis angular velocity (or the USV yaw rate), V is the net velocity of the USV, u is the component of the net
velocity on due north (or the USV surge velocity), v is the component of the net velocity on due east (or the USV
sway velocity), δr is the angle of deflection of rudders and ωt is the rotational speed of the thrusters.

TABLE I
WAM-V 20 USV specifications [45].

Vehicle Length Vehicle Width Vehicle Weight Maximum Speed
6 [m] 3 [m] 320 [kg] 10 [m/s]

where326 u
v

 =

Ev sinψ +Nv cosψ

Ev cosψ +Nv sinψ

 , (28)

where Ev is the velocity component of V along due east and Nv is the velocity component327
of V along due north.328

B. Navigation refinement system329

The navigation refinement system can provide a timely adjustments for the USV while330
tracking the desired path based upon the Light-of-sight (LOS) algorithm [46]. The system331
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Fig. 6. (a) Overall structure of the proposed fully-autonomous USV framework (b) Detailed structure of the
two controllers used in the proposed autopilot. The operator needs only to specify the target goal point and the
catamaran’s linear speed before the framework starts. This framework then generates a collision-free and smooth
path between the current position of the catamaran and any goal point present in the Gazebo environment and
makes the catamaran follow this generated path automatically without requiring any operator interaction.

uses the position of the next waypoint and the current position of the USV to determine332
the required update to the heading angle of the USV. Given the path generated by the333
motion planner as:334

θ(t) = [(Ew1 , Nw1), ...(Ewn , Nwn)], (29)

where (Ew1 , Nw1) is the first waypoint on the desired path, (Ewi , Nwi) is the ith waypoint335
on the desired path, (Ewn , Nwn) is the last waypoint on the desired path and the path336
generated by the motion planner θ(t) is a function of time. Hence at a certain moment t,337
the position of the next desired waypoint (Ew, Nw) can be found.338

The reference frame in the Gazebo virtual world is expressed as G = {X,Y }. As can339
be seen in Fig. 5, the direction of the X axis in G coincides with the direction of N axis340
in N and the direction of the Y axis in G coincides with the direction of E axis in N.341
Furthermore, the rotational angle in N belongs to (0, 2π] and the rotational angle in G342
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belongs to (−π, π]. The rotational angles in the G and N reference frames need to be made343
uniform prior to obtaining the current position of the USV in the Gazebo virtual world. By344
inputting the position of the next waypoint and the current position of the USV into the345
navigation refinement system, the next desired heading angle of the USV can be obtained.346

C. Autopilot347

To track the desired path accurately and smoothly, it is necessary to build a high-348
performance control mechanism to minimise the deviation between the planned path and349
the actual path. Based on the mechanical structure of the selected USV, two separate350
controllers need to be designed as: 1) an angle controller responsible for adjusting the angle351
of deflection of rudders (or the USV’s yaw speed) and 2) a speed controller responsible for352
adjusting the rotational speed of thrusters (or the USV’s linear speed within E-N plane). The353
overall structure of the proposed fully-autonomous USV navigation control system is detailed354
in Fig. 6 (a), while the communicating and interfacing arrangement of the controllers used355
in the proposed autopilot is detailed in Fig. 6 (b). Proportional–integral–derivative (PID)356
control is used for designing the two controllers as it has been widely adopted in previous357
practical USV applications [47], [48], [49]. Other types of controllers, such as back-stepping358
[50], [51], [52] and finite-time path-following [53], can be modified to be used as long as359
correct ROS messages are communicated. More details regarding the fine-tuned autopilot360
can be found in the open source library at: https://github.com/jiaweimeng/wam-v-autopilot361

1) Angle PD controller: It is a PD controller with tuned parameters (P = 1.5 and D =362
12.5). This PD controller is used to adjust the USV’s rudder angle to match the desired363
rudder angle according to the waypoints on the desired path. Compared with the standard364
PID controller, we excluded the integration term as we discovered no explicit steady-state365
error between the current and the desired rudder angles after turning.366

To follow an arbitrary smooth path, the desired rudder angle is one of the controller367
inputs used to calculate the orientation error:368

e∆ψ = ψ − ψd (30)

where ψ is the USV’s current rudder angle, ψd is the desired rudder angle and the ranges369
of ψ and ψd are (−π, π].370

https://github.com/jiaweimeng/wam-v-autopilot
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Based on a real-time acquired orientation error, an angle PD controller can then be371
constructed in the continuous-time domain:372

δr = kp [e∆ψt ] + kd

[
d(e∆ψt)

dt

]
, (31)

where kp and kd are the PD gains, δr is the angle of deflection, [e∆ψt ] is the proportional373
error and [d(e∆ψt )

dt
] is the differential error.374

Due to the entire fully-autonomous USV system is built in discrete-time domain, it can375
then be expressed as:376

δr = kp[e∆ψi ] + kd[(e∆ψi − e∆ψi−1
)], (32)

where kp and kd are the PD gains, δr is the angle of deflection, [e∆ψi ] and [(e∆ψi − e∆ψi−1
)]377

are the corresponding proportional error and differential error in the discrete-time domain,378
respectively.379

2) Speed PID controller: It is a PID controller with tuned parameters (P = 2.5, I =380
0.05 and D = 1.7). This PID controller is used to adjust the thrusters’ rotational speed,381
hence to match the actual linear velocity of the USV with the desired value according to382
the user’s requirement.383

To maintain the actual velocity of the USV just at the level of the desired linear velocity384
or the user-specified velocity, the actual velocity of the USV is one of the controller inputs385
used to calculate the velocity error:386

e∆V = V − Vd (33)

where V is the actual linear velocity of the USV, Vd is the desired linear velocity and the387
ranges of them will be described in Section. VI.388

Nevertheless, the actual linear velocity of the USV cannot be obtained straightforwardly389
from the Gazebo simulation environment. Thus we need to measure it through the following390
equation:391

V =

√
(Nc −Np)2 + (Ec − Ep)2

∆T
, (34)

where (Ec, Nc) and (Ep, Np) are the current position and the previous position of the USV392
obtained straightforwardly from the Gazebo simulation environment between one system393
interval period ∆T , respectively.394
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TABLE II
Specification of the parameters used in the motion planning algorithms.

Map [pixel] GP-based Motion Planning A* RRT*

ϵ σobs σe Tmax N l l

500x500 20 0.05 0.005 2.0 5 10.0 10.0

1000x1000 20 0.05 0.005 4.0 10 10.0 10.0

2000x2000 20 0.05 0.005 8.0 20 10.0 10.0

Notes: These parameters are empirically determined as
values provide a good trade-off between collision avoidance
and energy consumption reduction.

Based on a real-time acquired velocity error, a speed PID controller can then be con-395
structed in the continuous-time domain:396

ωt = kp [e∆Vt ] + ki

[∫ tc

0

(e∆Vt) dt

]
+ kd

[
d(e∆Vt)

dt

]
, (35)

where kp, ki and kd are the PID gains, ωt is the thrusters’ rotational speed of the USV,397
[e∆Vt ] is the proportional error, [

∫ Tc
0
(e∆Vt) dt] is the integral error, [d(e∆Vt )

dt
] is the differential398

error and tc is the present moment.399
Due to the entire fully-autonomous USV system is built based on the discrete-time400

domain, it can then be expressed as:401

ωt = kp[e∆Vi ] + ki

[
Ti∑
n=0

e∆Vt

]
+ kd

[
(e∆Vi − e∆Vi−1

)
]
, (36)

where kp, ki and kd are the PID gains, ωt is the thrusters’ rotational speed of the USV,402
[e∆ψi ], [

∑Ti
n=0 e∆Vt ] and [(e∆ψi − e∆ψi−1

)] are the corresponding proportional error, integral403
error and differential error in the discrete-time domain, respectively.404

V. Simulations and discussions405

This section demonstrates the performance of the proposed motion planning algorithm406
on the basis of comparisons against three simulation benchmarks.407

A. Simulation details408

Three simulation benchmarks have been conducted to evaluate the proposed MC-GPMP2*.409
First, the incremental optimisation process of the proposed method was subjected to410
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TABLE III
Specification of the used hardware platform.

Name of the Device Description Quantity

Processor 2.6-GHz Intel Core i7-6700HQ 8

RAM 8 GB 1

qualitative tests. Then the proposed method was quantitatively compared with other state-411
of-the-art motion planning algorithms including GPMP2 [20], A* (or A star) [2], RRT* (or412
rapidly-exploring random tree star) [5] and AFM (or anisotropic fast marching method)413
[54] in different environments both with and without environment characteristics (ocean414
currents). In all the simulations, GP-based methods were always initialised with a constant-415
velocity straight-line trajectory. Table II details the specifications of the parameters used416
in the motion planning algorithms. The specific parameters of GP-based motion planning,417
A* and RRT* in the following simulations in various resolutions are clarified. In Table II,418
ϵ indicates the safety distance [pixel], σobs indicates the obstacle cost weight, σe indicates419
the energy cost weight, Tmax indicates the total sampling time [s], N indicates the low-420
resolution region number in Algorithm 2 and l indicates the step size [pixel]. In the following421
simulations, one pixel in the map equals one meter in the corresponding motion planning422
problem. Table III is a specification of the hardware platform used.423

B. System dynamics model424

Applying a constant-velocity motion model minimises acceleration along the trajectory,425
thus reducing energy consumption and increasing the smoothness of the generated path.426
The system dynamics of the robot platform is represented with the double integrator linear427
system with additional white noise on acceleration. The trajectory is then generated by428
(20) with the following specific parameters:429

A =

0 I

0 0

 , x(t) =
r(t)
v(t)

 , F (t) =
0
I

 , u(t) = 0, (37)
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Fig. 7. A demonstration of the incremental optimisation process of MC-GPMP2* in replanning problems: (a) a new
path is generated, (b) this newly generated path turns into a benchmark path, (c) this benchmark path is compared
with another newly generated path and the latter will be accepted if 1) it is shorter than the former and 2) it does
not collide with any obstacle and (d) the newly generated path is accepted. Similar to (a) - (d), (d) - (g) and (g) - (j)
repeat the process to achieve incremental optimisation in replanning problems. Overall, the path length generated
by MC-GPMP2* decreases from 412.3 [m] to 379.7 [m] within 5 replanning iterations.

where r = (x, y)T is the position vector, v = (vx, vy) is the velocity vector and given430
∆ti = ti+1 − ti,431

Φ(t, s) =

I (t− s)I

0 I

 , Qi,i+1 =

1
3
∆t3iQC

1
2
∆t2iQC

1
2
∆t2iQC ∆tiQC

 , (38)

This prior is centred around a zero-acceleration trajectory (or a straight-line segment) [20].432
During the optimisation process, the cost function can make the trajectory deviate from433
the straight-line segment to construct an optimised trajectory.434

C. Incremental optimisation process of the proposed method435

In this subsection, we demonstrate the incremental optimisation process of the proposed436
GPMP2* when trajectory replanning is taking place in a coastal region. We explicitly437
reveal how the Monte-Carlo sampling can adaptively vary the number of sampling points438
to generate an optimised trajectory. As shown in Fig. 7, by having 5 support states, a new439
path with 26 sampling points is generated as shown in Fig. 7 (a) with the path length440
being 412.3 [m]. The number of sampling points between each support state are 7, 4, 3, 8441
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and 4, respectively. By using this path as a benchmark (Fig. 7 (b)), a new path with 28442
sampling points is generated as shown in Fig. 7 (c) with the length being 400.5 [m] and443
the sampling points between each support state being 7, 4, 3, 10 and 4, respectively. A444
comparison between the benchmark path and this new path is then conducted. The new445
path will be accepted if 1) it is shorter than the benchmark path and 2) it does not intersect446
with any obstacle. Such iterative comparisons will continue until no more new paths are447
generated and an optimal trajectory can then be selected, which in this case is that shown448
in Fig. 7 (j).449

To summarise, GP-based motion planning generates a trajectory from a stochastic process,450
where the pattern of the trajectory is determined by the sampling points. Within the451
conventional GP-based motion planning, such as GPMP2, although an option to adjust452
the number of sample points is provided, there is a lack of strategy to achieve the optimal453
number of sample points, forcing most GP-based motion planning algorithms to require454
manual tuning of the number of sample points. Monte Carlo stochasticity can be added455
to GP-based motion planning algorithms to achieve an adaptive tuning process by doing456
the following strategy: within a region with a small number of support states, more states457
can be interpolated based upon the number of obstacles, i.e. a larger number of sample458
points would need to be interpolated to deal with a number of densely packed obstacles459
while reducing the number of points for less densely packed obstacles. By following such a460
strategy, sampling points can be adjusted and interpolated more effectively and efficiently.461

D. Benchmark without environment characteristics462

In this subsection, we conduct a comparative study showing the improvement of MC-463
GPMP2* against the mainstream motion planning algorithms such as GPMP2, A* and464
RRT*. Various simulation environments are adopted including: 1) a no-obstacle environment,465
2) a single-obstacle environment, 3) a multi-obstacle environment, 4) a narrow-passage466
environment and 5) a coastal environment without any environment characteristics. Note467
that within the MC-GPMP2*, a relatively large number of sampling points is used to468
guarantee the generation of optimised trajectories.469

The simulation results are shown in Fig. 8 (a) - (e). Note that only the results from the 500470
* 500 pixel maps are illustrated as different resolutions mainly affects the computation time471
rather than the generated trajectories. A quantitative assessment of different algorithms is472
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Fig. 8. Comparisons of the paths generated by various motion planning algorithms in different scenarios with
and without environment characteristics from 500 * 500 pixel maps: (a) and (f) demonstrate non-obstacle scenario
(problem 1), (b) and (g) demonstrate single-obstacle scenario (problem 2), (c) and (h) demonstrate multi-obstacle
scenario (problem 3), (d) and (i) demonstrate narrow-passage scenario (problem 4), (e) and (j) demonstrate coastal
scenario (problem 5). Furthermore, (a) - (e) have no ocean currents but (f) - (j) have ocean currents.

shown in Table IV, where main evaluation metrics such as execution time and path length473
are compared.474

From Fig. 8 (a) - (e), MC-GPMP2* illustrates a distinct advantage regarding the average475
path length and path smoothness compared with GPMP2, A* and RRT*. In no-obstacle476
environments (problem 1), MC-GPMP2*, GPMP2 and A* each generate a straight-line477
path that connects the start point and goal point simply by the shortest distance. However,478
RRT* generates a winding path with the longest path length and lowest path smoothness.479
In single-obstacle environments (problem 2), the paths generated by MC-GPMP2* and480
GPMP2 are of relatively short length and relatively high smoothness. Compared with the481
GPMP2 path, the MC-GPMP2* path shows further improvement in both the path length482
and smoothness. This is a benefit of the proposed interpolation strategy. On the other hand,483
both the paths generated by A* and RRT* are as smooth and might not be smooth enough484
to satisfy the system dynamics model of the USV. In multi-obstacle environments (problem485
3), MC-GPMP2* and GPMP2 paths demonstrate better path smoothness based upon a486
comparison with the A* and RRT* paths. However, the GPMP2 path tends to avoid the487



IEEE JOURNAL OF OCEANIC ENGINEERING 27

TABLE IV
A comparison of MC-GPMP2*, GPMP2, A* and RRT* on average execution time (T ) and path length (L) in 15
path planning problems without ocean currents. The improvement on average execution time (TI) with the Monte

Carlo stochasticity was also measured in each path planning problem. The experiment on each path planning
problem was tested 5 times to calculate the average value.

Map [pixel] Problem MC-GPMP2* GPMP2 A* RRT*
T [ms] L [m] TI [ms] T [ms] L [m] T [ms] L [m] T [ms] L [m]

1 202.1 500.8 58.0 283.3 500.8 1847.1 494.9 3261.4 562.1
2 154.3 607.2 39.9 208.5 618.5 21804.8 617.9 4185.8 656.5

500*500 3 175.7 521.9 49.6 236.5 532.7 15204.6 529.8 3723.1 577.5
4 208.8 480.2 67.8 292.3 491.2 13430.5 476.9 3633.3 610.2
5 187.5 234.6 17.3 224.5 245.1 6834.5 283.1 2595.8 322.5

1 214.6 992.1 69.2 306.3 992.1 4307.4 989.9 7343.5 1126.4
2 207.5 1245.5 49.3 277.9 1267.1 - - 10388.7 1360.2

1000*1000 3 214.9 1104.7 57.4 286.3 1119.3 - - 6736.4 1137.1
4 230.5 1107.2 80.5 339.2 1120.1 - - 8366.2 1406.3
5 233.8 546.8 31.1 287.3 562.7 17434.5 549.7 4823.3 562.6

1 363.1 1981.5 82.6 471.1 1981.5 5748.3 1979.9 15216.2 2275.5
2 340.9 2432.9 61.3 427.2 2499.6 - - 22966.2 2665.7

2000*2000 3 369.8 2201.5 79.6 463.9 2222.7 - - 19636.8 2273.7
4 358.5 2028.8 105.8 497.9 2045.5 - - 18707.3 2383.2
5 406.6 1178.7 51.6 491.5 1195.3 - - 11049.9 1452.2

Notes: ”-” means the motion planning algorithm is not applicable in this map as its execution time is more than 30 [s], which
is meaningless in practical situations. The proposed method is marked in light green. The shortest execution time (T ) and
the shortest path length (L) in each problem are marked in light blue. Meanwhile, the improvement on average execution
time (TI) with Monte-Carlo stochasticity in each problem is marked in light yellow. Without Monte-Carlo stochasticity, MC-
GPMP2* uses a traversal algorithm to estimate the obstacle space. In this benchmark, all the motion planning algorithms
only run once, which means the replanning processes of them are excluded. For instance, the re-wiring process of the tree
branches of RRT* will be terminated once a feasible path has been found.

first obstacle sweeping out around the left hand side, leading to a significant increase in the488
path length. With the proposed interpolation strategy, MC-GPMP2* generates an option489
that would avoid the first obstacle from the bottom side and this results in a decrease on the490
path length. Similar to multi-obstacle environments (problem 3), MC-GPMP2* produces491
a path option which presents a further improvement on length and smoothness compared492
with the GPMP2 path in narrow-passage environments (problem 4). This is because most of493
the sampling points of MC-GPMP2* were sampled around the narrow passage to improve494
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TABLE V
A comparison of MC-GPMP2* and AFM on average energy consumption rate (P ), execution time (T ) and path
length (L) in 15 path planning problems with ocean currents. The improvement on average execution time (TI)
with the Monte Carlo stochasticity was also measured in each path planning problem. The experiment on each

path planning problem was tested 5 times to calculate the average value.

Map [pixel] Problem MC-GPMP2* AFM
P [%] T [ms] L [m] TI [ms] P [%] T [ms] L [m]

1 11.8 684.2 327.2 59.4 10.5 909.6 344.6
2 4.2 608.0 154.5 47.3 2.1 943.6 167.4

500*500 3 15.8 682.5 463.6 77.6 4.9 815.7 505.3
4 2.0 646.8 168.6 115.8 - - -
5 5.3 609.2 236.7 51.2 2.7 715.6 258.8

1 12.1 2401.5 658.9 103.1 10.5 2559.8 684.8
2 4.2 2195.1 309.1 107.4 2.0 2306.5 336.5

1000*1000 3 14.1 2514.7 946.9 143.6 4.9 2731.2 1014.6
4 2.0 2181.4 355.6 197.0 - - -
5 5.0 2112.3 480.8 67.4 2.7 2265.3 517.2

1 11.6 10821.3 1306.8 166.9 10.3 11193.4 1364.3
2 2.2 9263.9 407.9 208.2 1.0 9536.5 442.3

2000*2000 3 14.9 11504.6 1821.8 222.8 4.9 11576.5 2027.8
4 2.1 9724.3 730.3 252.5 - - -
5 5.3 9006.2 954.9 155.4 2.7 9245.6 1034.0

Notes: ”-” means the motion planning algorithm is not applicable in this map as its execution time is more than 30 [s],
which is meaningless in practical situations. The energy consumption rate (P ) caused by ocean currents is computed based
upon the metric proposed in AFM [33] as explained in (12). The proposed method is marked in light green. The shortest
execution time (T ) and the shortest path length (L) in each problem are marked in light blue. Meanwhile, the improvement on
average execution time (TI) with Monte-Carlo stochasticity in each problem is marked in light yellow. Without Monte-Carlo
stochasticity, MC-GPMP2* uses traversal algorithm to estimate obstacle space. The replanning process of MC-GPMP2* is
excluded in this benchmark.

the option for success of the mission and shorten the length of the path apart from the495
narrow passage itself. In coastal environments, MC-GPMP2* demonstrates the highest path496
smoothness and the best obstacle avoidance performance as would be expected.497

From Table IV, MC-GPMP2* demonstates an obvious benefit on average execution time498
and path length over GPMP2, A* and RRT* in maps across a range of resolutions. In499
most of the large-scale motion planning problems with 1000 * 1000 pixel and 2000 * 2000500
pixel maps, A* failed to deliver a feasible solution. This is because the motion planning501
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strategy of A* led to a significant increase in complexity in large-scale motion planning502
problems. Although RRT* could consistently deliver a feasible solution in all the motion503
planning problems, the average execution time, path length and path smoothness were504
not satisfactory as the randomness of its sampling points is too high in the configuration505
space. Compared with GPMP2*, the interpolation strategy of MC-GPMP2* led to a notable506
improvement in average execution time and path length simultaneously.507

To summarise, MC-GPMP2* can generate a path within the shortest execution time,508
with highest smoothness and near-optimal path length in almost all the cases and achieve509
better performance with respect to obstacle avoidance compared with other mainstream510
motion planning algorithms including GPMP2, A* and RRT*.511

E. Benchmark with environment characteristic512

In this subsection, we conduct another comparative study showing the improvement513
of MC-GPMP2* over AFM in the same simulation environments with a supplementary514
environment characteristic resulting from an ocean current field. The ocean current field is515
generated by the energy consumption metric proposed in AFM [33].516

Simulation results related to this benchmark are illustrated in Fig. 8 (f) - (j). Similar517
to the previous benchmark, only the results from the 500 * 500 pixel maps are shown.518
The quantitative assessment of MC-GPMP2* and AFM is shown in Table V, where main519
evaluation metrics such as energy consumption rate, execution time and path length are520
compared.521

From Fig. 8 (f) - (j), MC-GPMP2* has an obvious advantage regarding the average exe-522
cution time and path length compared with AFM. Comparatively, AFM has a considerable523
advantage regarding its average energy consumption rate as it continuously tracks the ocean524
currents. Nevertheless, this could lead to AFM falling into a local minimum when an obstacle525
is blocking the continuous ocean currents, such as the motion planning problems in narrow-526
passage environments (problem 4). MC-GPMP2* generates a path under the interaction527
of two different fields, namely the signed distance field and the energy consumption field.528
To be more precise, the signed distance field and the energy consumption field can be529
obtained by inputting the map in the signed distance function in (10) and the metric that530
can measure the energy consumption rate at each pixel in (12), respectively. Moreover,531
the energy consumption field can prevent the occurrence of local minima when avoiding532
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obstacles in the signed distance field. In other words, once MC-GPMP2* has fallen into a533
local minimum in the signed distance field, the energy consumption field would take it out534
of that local minimum.535

From Table V, the proposed method demonstrates a notable advantage on average536
execution time and path length over another mainstream method (AFM) in different-537
resolution maps. For both methods, the energy consumption field is computed based upon538
the energy consumption metric stated in (12). The energy consumption field is more likely539
to be historical data recorded by relevant meteorological institutions. As a result, the540
computation time for generating the simulated energy consumption field can be saved541
when applying the proposed method in practical cases. This would lead to a remarkable542
reduction in the execution time as the proportion of the time cost on generating the energy543
consumption field exceeds 96 [%] in the 2000 * 2000 pixel maps.544

To summarise, MC-GPMP2* can consider various environment characteristics during the545
motion planning process. The path generated by MC-GPMP2* would fit these characteristics546
as much as possible. Compared with other mainstream motion planning algorithms such as547
AFM, when the path planning has to adjust for the influence of ocean currents, MC-GPMP2548
can generate a path with the shortest execution time, highest smoothness, near-optimal path549
length and a better performance on obstacle avoidance.550

In both the benchmark tests with and without environment characteristics: the Monte-551
Carlo sampling algorithm can converge much earlier than the traversal algorithm, thereby552
reducing the time cost of a motion planner with sample points. In these benchmark tests,553
we only demonstrate the improvement of average execution time in 2D motion planning554
problems. But in high-dimensional motion planning problems, such as the motion planning555
problems for multiple degrees of freedom robotic arms, the Monte-Carlo sampling holds the556
potential to reduce a significant time cost since its convergence rate is independent of the557
dimension of the configuration space. Hence it solves the problem of dimensional explosion558
in GP-based motion planning algorithms to some extent.559

VI. Implementation in ROS560

This section demonstrates the performance of the proposed autonomous navigation system561
for WAM-V 20 USVs. Two different motion planning algorithms, i.e. RRT* and the proposed562



IEEE JOURNAL OF OCEANIC ENGINEERING 31

Fig. 9. ROS simulation environment: (a) demonstrates the Gazebo virtual world, where the green dash line block
represents the start point, the white dash line block represents the selected platform, the blue dash line block
represents the wind turbine (obstacle) and the purple dash line block represents the captured video information
from the camera mounted at the front end of the platform and (b) demonstrates the corresponding motion planning
problem solved by MC-GPMP2* in Rviz, where the start point is represented in yellow, the goal point is represented
in red, the obstacles are represented in green, the desired path is represented in purple and the travelled path
is presented in dark blue. In the Gazebo virtual world, wind and wave fields can be adjusted by changing the
corresponding parameters to create a realistic simulation environment.

MC-GPMP2*, are implemented and compared. An offshore wind farm inspection mission563
is simulated in ROS to show the practicability of the proposed work.564

A. Simulation details565

The detailed information of the environment used in the ROS simulation is detailed in566
Fig. 9, where (a) shows the offshore wind farm in Gazebo with the inclusion of a series567
of physical properties such as sunlight, wind, ocean currents, gravity and buoyancy, (b)568
provides a simulation overview of the configuration space of the corresponding motion569
planning problem in Rviz. A green buoy and a red buoy are placed inside the simulation570
environment to indicate the start point and the goal point for the route proposed for571
the WAM-V 20 USV to navigate. The platform was equipped with a camera to better572
observe the surrounding environment and record videos. The footage from the camera573
was streamed to and displayed on the Rviz interface through the WAM-V Camera node574
(/wam-v/sensors/cameras/front-camera/image-raw). The virtual onboard camera gives this575
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Fig. 10. The storyboards of the inspection mission in an offshore wind power generation scenario based on a path
generated by RRT*: From (a) to (h), the images demonstrate the location of the platform and the video stream
from the camera mounted at the front end of the platform when the time equals 0 [s], 50 [s], 110 [s], 160 [s], 210 [s],
280 [s], 310 [s] and 360 [s], respectively. From (i) to (h), the images demonstrate the corresponding motion planning
problem in Rviz when the time equals 0 [s], 50 [s], 110 [s], 160 [s], 210 [s], 280 [s], 310 [s] and 360 [s], respectively.

work the potential to combine with previous research done by our research group on using576
onboard cameras for object detection and segmentation in maritime environments [55], [56].577

During the inspection mission in Gazebo, the USV transited through the wind turbine578
area to drive away any fish boats entering this area to reduce risk of collision and damage579
to the wind turbines. Figs. 10 and 12 demonstrate the storyboards of the inspection mission580
from both the first-person and third-person perspectives in the Gazebo as well as the motion581
planning problem solved by the corresponding motion planning algorithms in Rviz.582

In the ROS simulation, the inspection mission is designed based on the following steps:583

• Simulation information is inputted as: 1) a Green Buoy Model State node (/gazebo/model-584
states/green_buoy) reads the location of the green buoy which represents the start585
point, 2) a Red Buoy Model State node (/gazebo/model-states/red_buoy) reads the586
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Fig. 11. Performance analysis of the inspection mission in an offshore wind power generation scenario based on a
path generated by RRT*: (a) compares the desired and measured trajectories, (b) demonstrates the real-time track
error, (c) compares the desired and measured heading angles and (d) compares the desired and measured speeds.

location of the red buoy which represents the goal point, 3) a WAM-V Model State587
node (/gazebo/model-states/wam-v) reads the current pose of the WAM-V 20 USV,588
4) the Wind Turbines Model State node (/gazebo/model-states/turbines) reads the589
locations of the wind turbines, 5) the Ocean Currents State node (/gazebo/model-590
states/ocean-currents) reads the information regarding the ocean currents and 6) a591
WAM-V Thrusters State node (/wam-v/thrusters) reads the angle of deflection of592
rudders δr and thrusters’ rotational speed ωt in the Gazebo.593

• This information is then transmitted and used to generate start point, goal point and594
obstacles in the Rviz. The motion planning algorithm then generates a desired path595
θ(t) with a series of waypoints (Ew, Nw) based on the information in Rviz.596

• The waypoints (Ew, Nw) are transmitted to Gazebo and the platform begins tracking597
the planned path θ(t) according to the desired heading ψd and the desired linear velocity598
Vd.599

• The autopilot calculates and regulates the angle of deflection of rudders δr and thrusters’600
rotational speed ωt of the platform in Gazebo in real-time according to the desired601
heading angle ψd and linear velocity Vd. The autopilot makes the platform fulfill the602
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Fig. 12. The storyboards of the inspection mission in an offshore wind power generation scenario based on a path
generated by MC-GPMP2*: From (a) to (h), the images demonstrate the location of the platform and the video
stream from the camera mounted at the front end of the platform when the time equals 0 [s], 40 [s], 80 [s], 120
[s], 160 [s] and 200 [s], 240 [s] and 280 [s], respectively. From (i) to (p), the images demonstrate the corresponding
motion planning problem in Rviz when the time equals 0 [s], 40 [s], 80 [s], 120 [s], 160 [s], 200 [s], 240 [s] and 280
[s], respectively.

motion constraint such as the pose and orientation of the desired path θ(t). It is worth603
noting that due to vehicle inertia, the USV would keep moving forward after reaching604
the target waypoint (Ewi , Nwi). In order to minimise the effects of inertia, the platform605
is considered to have reached the target waypoint (Ewi , Nwi) once it is inside a certain606
range (7 [m] in this case) of the waypoint.607

• The platform enters the standby mode once it reaches the last target waypoint (Ewn , Nwn)608
of the desired path θ(t).609

B. Performance analysis610

Performance analysis of the proposed autonomous navigation systems using different611
motion planning algorithms is detailed in Figs. 11 and 13. In general, motion planning612
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Fig. 13. Performance analysis of the inspection mission in an offshore wind power generation scenario based on a
path generated by MC-GPMP2*: (a) compares the desired and measured trajectories, (b) demonstrates the real-
time track error, (c) compares the desired and measured heading angles and (d) compares the desired and measured
speeds.

algorithms (such as RRT* and MC-GPMP2*) can be integrated into the proposed navigation613
system, within which a good trajectory tracking performance is achieved. Noticeably, as614
shown in Fig. 10 and Fig. 12, MC-GPMP2* generates much smoother path than RRT*,615
which leads to reduced tracking error as shown in Figs. 11 (b) and 13 (b).616

Improved path smoothness can also lead to less severe control inputs and potentially617
improve the stability of the USV. For example, by comparing the heading angles and618
speeds in Figs. 11 (c), (d) and Figs. 13 (c) and (d), a more gradual variation, especially619
in heading angle, is experienced by following the trajectory provided by MC-GPMP2* as620
opposed to the dramatic change between positive and negative maximum values for RRT*621
trajectories. Such a benefit makes the proposed MC-GPMP* a more viable solution for622
USVs, especially when operating in constrained areas requiring refined motion planning623
capability.624

VII. Conclusion and future work625

This paper introduced an improved version of the conventional GP-based motion planning626
algorithm (GPMP2) by further discussing the form of the likelihood function in probabilistic627
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inference. The improved version GPMP2* extends the application scope of GPMP2 from628
environments with only obstacles into complex environments with a variety of environ-629
ment characteristics. Further, a novel fast GP interpolation strategy with Monte-Carlo630
stochasticity has been added into GPMP2*, constructing another improved version named631
MC-GPMP2*. MC-GPMP2* can enhance the diversity in the generated path while reducing632
the time cost of manually tuning sampling points. Then a fully-autonomous framework has633
been proposed for a mainstream catamaran (WAM-V 20 USV). This framework contains634
an interface for any motion planner and an efficient, open-source autopilot. In four different635
simulations, we first demonstrated the path diversity of MC-GPMP2* and its incremen-636
tal optimisation process in replanning problems. The performance of MC-GPMP2* was637
then compared with other mainstream motion planning algorithms such as GPMP2, A*638
and RRT* across a range of environments with obstacles. MC-GPMP2* generated paths639
with the shortest execution time, highest path smoothness and shortest path lengths in640
almost all cases. A competitive study was then conducted between MC-GPMP2* and a641
mainstream motion planning algorithm in environments with ocean currents (AFM). The642
results demonstrated that MC-GPMP2* delivers a better performance compared with AFM643
in execution time, path length and path smoothness in all the cases. Finally, we compared644
the performances of MC-GPMP2* and RRT* in an inspection mission based on WAM-V645
20 USV and the proposed framework in a high-fidelity virtual world. The results further646
reinforced the remarkable performance of MC-GPMP2* in practical autonomous missions647
as well as reflected the accuracy and effectiveness of the proposed USV navigation and648
control framework.649

In terms of future work, proposed areas of focus are: 1) validating the improvement of650
MC-GPMP2* over other mainstream algorithms in high-dimensional environments, such as651
the motion planning circumstances of UUVs or robotic arms, 2) enriching the autopilot652
repository by adding other mainstream controllers such as back-stepping and finite-time653
path following, 3) automatically tuning the weight coefficients ω1 and ω2 in the objective654
function in (3) by using learning-based algorithms, 4) developing another motion planner655
that can use multiple USVs simultaneously to inspect the offshore wind power generation656
scenario and 5) using a digital twin for the navigation of USV so that simulation and real657
environment both can be benchmarked against each other.658
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Fig. 14. A demonstration of two different robot platforms in our problem: (a) illustrates the Herb robot [57] and
(b) illustrates the WAM-V 20 USV [29].
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Appendix A788
Modeling the robots and obstacles in MC-GPMP2*789

Fig. 14 provides a more intuitive perspective about the representation of different robot
models in (10). To make the optimisation problem tractable, we simply view: 1) the robot
model of the robotic arm as a series of spheres over the links and 2) the robot model of the
catamaran as a rigid body. Consequently, (10) can be simplified as follows when we apply
the catamaran as the robot platform in our motion planning problem:

g1(θi) = [c(d(θi))], (39)
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where c(·) : Rn → R is the workspace cost function that penalises the set of points B ⊂ Rn

on the robot body when they are in or around an obstacle and d(·) : Rn → R is the signed
distance function that calculates the signed distance of the point. Further, the signed
distance function d(·) is defined by the following equations:

d(·) = D(·)−D(·), (40)

where D(·) : Rn → R is the Euclidean distance transforms function and is also named as790
distance field. D(·) : Rn → R is the complement of distance field D(·). Based upon the791
definition in (40), d(·) allows us to easily distinguish if a point is inside or outside of the792
obstacles. More specifically, the signed distance function: 1) generates a positive result if793
the point is located inside the obstacles, 2) equals to zero if the point is located on the794
boundaries of the obstacles and 3) generates a negative result if the point is located outside795
the obstacles.796

Appendix B797
Density of interpolated states in GPMP2798

Based upon the information in Section. III-B in our previous research [32], we know that799
GPMP2 only interested in the collision-free event (l(θ; ci = 0)). This indicates that the800
waypoints generated by GPMP2 are always located outside the obstacle areas to obey this801
rule. Whereas, the density of the interpolated states can influence the length of the line802
segment between two neighbour waypoints. In general, a longer line segment can increase803
the possibility of overlapping with obstacles as demonstrated in Fig. 15. To address this804
problem, we propose MC-GPMP2* to increase the diversity of the generated paths as well as805
select an appropriate number of interpolated states to ensure all the line segments between806
the neighbour waypoints do not overlap with any obstacle.807

Appendix C808
USV dynamic model in ROS environment809

As mentioned earlier in the introduction part of this article, we propose a fully-autonomous810
framework for USVs based upon the VRX simulator that is originally designed in [29]. In811
this simulator, Fossen’s six degrees of freedom robot-like vectorial model for marine craft812
[58], [59], [60] has been applied in Gazebo to express the dynamic model of the USV:813
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Fig. 15. The effect of the density of interpolated states in GPMP2: (a) illustrates the trajectory generated with
relatively high density on the interpolated states and (b) illustrates the trajectory generated with relatively low
density on the interpolated states. In (b), the line segment between the second and third waypoints overlaps with
the obstacle at the centre (a zoom-in view is provided in the red square region).

MRB v̇ + CRB(v)v︸ ︷︷ ︸
rigid body forces

+MAv̇r + CA(vr)vr +D(vr)vr︸ ︷︷ ︸
hydrodynamic forces

(41)

+ g(η)︸︷︷︸
hydrostatic forces

(42)

= τpropulsion + τwind + τwaves, (43)

where814

η = [x, y, z, ϕ, θ, ψ]T (44)

v = [u, v, ω, p, q, r]T , (45)

are position and velocity vectors respectively for surge, sway, heave, roll, pitch and yaw.815
To be more specific, the total velocity (v) is the sum of an irrational water current velocity816
(vc) and the vessel velocity relative to the fluid (vr). The forces and moments due to817
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propulsion (or the control input), wind and waves are represented as τpropulsion, τwind and818
τwaves. Generally, the hydrodynamic forces, hydrostatic and wave forces, wind forces and819
propulsion forces function on the USV simultaneously in Gazebo [61].820
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