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ABSTRACT: Protein-protein interactions (PPIs) are essential for the function of many proteins. Aberrant PPIs have the 
potential to lead to disease, making PPIs promising targets for drug discovery. There are over 64,000 PPIs in the human 
interactome reference database, however, to date very few PPI modulators have been approved for clinical use. Further 
development of PPI-specific therapeutics is highly dependent on the availability of structural data and existence of reliable 
computational tools to explore the interface between two interacting proteins. The fragment molecular orbital (FMO) 
quantum mechanics method offers a comprehensive and computationally inexpensive mean of identifying the strength (in 
kcal/mol) and the chemical nature (electrostatic or hydrophobic) of the molecular interactions taking place at the protein-
protein interface. We have integrated FMO and PPI exploration (FMO-PPI) to identify the residues that are critical for 
protein-protein binding (hotspots). To validate this approach, we have applied FMO-PPI to a dataset of protein-protein 
complexes representing several different protein subfamilies, and obtained FMO-PPI results that are in agreement with 
published mutagenesis data. We observed that critical PPIs can be divided into 3 major categories: interactions between 
residues of two proteins (intermolecular), interactions between residues within the same protein (intramolecular) and in-
teractions between residues of two proteins that are mediated by water molecules (water bridges). We extended our find-
ings by demonstrating how this information obtained by FMO-PPI can be utilized to support the structure-based drug 
design of PPI modulators (SBDD-PPI).  

INTRODUCTION 

 

Protein-protein interactions underpin all of cell bi-

ology from fundamental processes that take place in every 

cell such as DNA replication, transcription and translation, 

to the control of dynamic networks such as cell signaling and 

immune responses. Many proteins have functions that de-

pend on their ability to recognize and bind to other mole-

cules including proteins. Key cellular processes are often 

regulated through the formation of protein complexes. These 

protein complexes are typically controlled via protein-pro-

tein interactions (PPIs).1  

PPIs generate a complex network, called the “in-

teractome” 1, 2, which plays a crucial role in physiological 

processes, such as signal transduction, cell proliferation, 

growth, differentiation and apoptosis.3 Deviations in PPIs af-

fect the entire network of protein-protein signaling and can 

lead to human pathophysiological conditions, such as can-

cers, neurodegenerative disorders and infectious diseases. 4, 

5 Estimates of the number of PPIs in the human interactome 

range from 130,000 to 650,000 3 and over 64,000 6 con-

firmed PPIs are listed in the human interactome reference 

database. In recent years, the increasing attention that PPIs 

have received has made them a promising target for drug 

discovery 3. PPI modulators have been developed to assist in 

treatment of leukemia, lymphoma, carcinoma, melanoma, 

lung cancer, ulcerative colitis, liver cirrhosis, kidney trans-

plantation and other diseases and disorders of human health.3  

However, despite these promising developments, 

PPIs remain extremely challenging drug targets because the 

traditional small molecule drug discovery approaches focus 

primarily on protein targets that have a relatively well-de-

fined ligand-binding site that small molecules can interact 

with. PPIs have a considerable number of interactions that 

form through a much larger contact area, which is difficult 

for a small molecule to compete with. 7 Fortunately, despite 
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the relatively large size of protein-protein interfaces and the 

significant number of interactions, the vast majority of PPIs 

are weak and the stability of the complex is dependent on a 

relatively small number of strong PPIs formed by a limited 

number of residues 3. Mutation of even one of these residues 

can abolish the formation of the complex 8 or significantly 

weaken its stability. Therefore, although the interface of 

PPIs is relatively large, a small molecule only needs to act 

on a few of these key residues to intervene in the PPI. 

These key residues are named “hotspots”. Trypto-

phan, arginine, and tyrosine are more frequently found to ap-

pear as hotspots than other amino acids 3 and, as a result,  are 

frequently targeted in the structure-based drug design 

(SBDD) of PPI modulators (SBDD-PPI)  3, 9, 10. Engagement 

of these hotspot residues in the interactions with small mol-

ecules could potentially prevent the formation of the protein-

protein complex. This strategy would be particularly effi-

cient if the hotspot is located at or near the cavity on the pro-

tein-protein interface where the ligand can bind. For this rea-

son, the identification of hotspot residues is vital for SBDD-

PPI of PPI modulators. 

Traditionally the identification of hotspots is per-

formed by site-directed mutagenesis (SDM). Unfortunately, 

SDM experiments such as alanine-scanning 11 are time con-

suming, expensive and not always appropriate for every pro-

tein or protein complex. For these reasons SBDD-PPI cam-

paigns are likely to be impractical if SDM is the only method 

used for hotspot identification. Several computational ap-

proaches have been proposed in the past for the identifica-

tion of hotspots (e.g., SILCS 12, FTMap 13 and Allosteer 14, 

15). These methods are based on molecular mechanics in-

stead of QM and use protein dynamics and/or fragment 

docking to identify potential binding pockets for SBDD-PPI. 

The definition of hotspots in these methods differs from 

ours, with the author’s defined hotspots as fragment binding 

sites, whereas we define hotspots as the single amino acids 

crucial for protein-protein binding. In this work, we propose 

a new computational approach as a viable, if not preferable, 

alternative. 

Further development of PPI-focused drugs is 

highly dependent on the availability of structural data for the 

target complex and on the existence of accurate computa-

tional tools with which to analyse the structural data. There 

is increasing evidence 16 that a number of underappreciated 

interactions, such as CH/π 17, halogen/π 18 cation/π 19, and 

non-classical hydrogen bonds 20, play important roles in 

protein-ligand binding that are not adequately parameterized 

in the most popular force fields 21, 22 implemented in 

molecular mechanics (MM) calculations. Furthermore, reli-

able MM-based predictive methods for quantifying hydro-

phobic interactions, which are vital for stabilizing protein-

protein interactions 23, remain to be developed 16.  

Quantum mechanical methods (QM) have always 

been considered to be a reliable approach for the exploration 

of molecular interactions 24, 25. However, despite their many 

advantages, traditional QM approaches are generally not 

feasible for large biological systems like proteins, due to 

their high computational cost.  

The fragment molecular orbital (FMO) is a well-

established QM method 26 that provides a list of interactions 

formed between protein residues including their strength (in 

kcal/mol) and their chemical nature (electrostatic or hydro-

phobic). FMO 25 offers a considerable computational speed-

up over traditional QM methods. It is achieved by dividing 

the system into smaller pieces called fragments (Supporting 

Information Figure S1). For example, in proteins, each resi-

due can be represented by a fragment. Ligand can also be 

represented by one or multiple fragments. By using frag-

ments, one can perform QM calculations in much shorter 

time.  

An additional advantage of FMO is the pair inter-

action energy decomposition analysis (PIEDA), which 

quantitatively decomposes the interaction energy between 

two residues (fragments) into the single energy terms that 

define it: electrostatic, exchange-repulsion, charge transfer, 

dispersion (Supporting Information Figure S1), and solva-

tion 27. Polar interactions are generally given by electrostatic 

and charge transfer terms, whereas hydrophobic interactions 

by the dispersion term. In this way, the chemical nature of 

the interaction (electrostatic or hydrophobic) can be identi-

fied and quantified.  28  

Many research groups have used FMO to identify 

underappreciated interactions in protein-small molecule and 

protein-protein binding. For example, the FMO protocol has 

been extensively used for exploration of interactions be-

tween COVID-19 main protease and its inhibitors 29, 30, class 

A G protein-coupled receptors (GPCRs) and their ligands 31, 

in discovery of ITK (kinase) and of Hsp90 32 inhibitors and 

in many other SBDD programs 26. In recent years, the use of 

FMO has been expanded to structural analysis of proteins 26, 

33, for example in the exploration of interactions between 

transmembrane helices of GPCRs 34, 35, SARS-Cov-2-related 

proteins 36, 37 and several other PPI targets 33, 36, 38-40. 

In the current study, we have used FMO to identify 

PPI hotspots (FMO-PPI), applying FMO to 6 protein-protein 

complexes (Table 1) that represent different protein subfam-

ilies. As a benchmark, we compared our computational re-

sults to published experimental SDM data. As backbone-

backbone interactions are not impacted in SDM experi-

ments, we focused this research on PPIs between sidechain-

sidechain, sidechain-backbone and PPIs mediated by water 

molecules (water bridges). QM-based methods are known to 

be sensitive to even small structural changes. We have pre-

viously and extensively reported this phenomenon for 

GPCRs.41 For this reason, we selected the crystal structures 

with the highest possible resolutions from the PDB for these 

tested systems. 

We divided hotspot residues into 3 three categories: 

(a) residues involved in interactions between two proteins 

(intermolecular PPIs), (b) residues that form interactions 

with the residues within the same protein (intramolecular 

PPIs) and (c) residues involved in interactions with interface 
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water molecules (water bridges) and explored the im-

portance of each hotspot category to protein-protein com-

plex stability. Since the interaction interface in a PPI can 

cover a relatively large and mobile surface area 42, we as-

sumed that intramolecular PPIs would exert an indirect ef-

fect on complex formation by stabilizing the ‘bioactive’ con-

formation (topology) of the interface and preparing it for 

complex formation. Interactions with interface water mole-

cules were also included in the FMO-PPI calculations, since 

water molecules can mediate intermolecular interactions by 

forming water bridges between residues at the interface 43. 

Finally, we demonstrate how our findings can be 

used to guide SBDD-PPI of novel and potent PPI modula-

tors.  

 

 

 

Table 1: A summary of crystal structures that have been analyzed with FMO-PPI *. 

Class Protein A Protein B Year Res. (Å) PDB-ID 

β-lactamase TEM1 BLIP 2001 1.73 1JTG 44 

Interferon IFNa2 IFNAR2 2011 2.00 3S9D 45 

GPCR PTH1R ePTH 2018 2.50 6FJ3 46 

Kinase LIMK1 Cofilin-1 2016 3.50 5HVK 47 

GTPase KRAS SOS1 2019 2.55 

6EPL 48 (Apo structure), 

6EPM 48 (Compound 1), 

5OVE 48 (Compound 2), 

5OVG 48 (Compound 3), 

              5OVI 48 (Compound 4) 

E3-ligase CRBN CK1α 2015 2.45 5FQD49 
*The bold line in the middle of the table separates the 4 cases used for SDM comparison and the 2 cases used for drug discovery. 

 

RESULTS 

 

Detecting hotspots with FMO-PPI  

In this first stage of our work, we wanted to demon-

strate that hotspots detected by FMO-PPI agree with those 

detected in SDM experiments. We selected 4 protein-protein 

complexes extracted from the Protein Data Bank (PDB) that 

have available experimental SDM data (Table 1). These sys-

tems represent different protein classes. Based on previous 

FMO reports 50, 51, we considered any interaction with a dif-

ferential pair interaction energy (ΔPIE, see Methods section) 

≥ 3.0 kcal/mol to be significant and treated the residues in-

volved in this interaction as hotspots. Results have been dis-

played as heat maps including intra- and inter-molecular in-

teractions, and water bridges (see Supporting Information 

Figure S2) for both ΔPIE and f (ratio of electrostatics and its 

sum with the dispersion term) terms. 

 

Class β-lactamase: TEM1 in complex with BLIP 

TEM1 hydrolyzes the β-lactam bond in antibiotics, 

thus leading to resistance to antibiotics such as penicillin. β-

lactamase inhibitors such as BLIP are usually used together 

with antibiotics to prevent this 52. The TEM1–BLIP complex 

(Figure 1A) was subjected to FMO-PPI analysis.  

FMO-PPI results (Table 2, heat map plot Figure 1B 

and PIEDA results Supporting Information Figure S3A) are 

consistent with the reported SDM data (Supporting Infor-

mation Table S1). FMO-PPI detected 36 TEM1 and 33 BLIP 

hotspots on their interface (Table 2). These hotspots were 

mapped on the surfaces of the two proteins and a potential 

ligand-binding pocket was found by Site Finder (see Meth-

ods section) at the TEM1-BLIP interface (Figure 1C). These 

potential ligand-binding pockets together with the hotspot 

information can facilitate SBDD-PPI of new TEM1-BLIP 

PPI modulators.  

SDM of K74BLIP into alanine showed the highest 

decrease in TEM1-BLIP binding. According to FMO-PPI, 

K74BLIP forms two intermolecular PPIs with E104TEM1 (salt 

bridge) and Y105TEM1 (hydrophobic), and two hydrophobic 

intramolecular PPIs with Y143BLIP and G141BLIP (Figure 

1D). This evidence explains why K74BLIP is so critical for 

TEM1-BLIP binding. Further, the FMO-PPI analysis indi-

cates that F142BLIP forms a strong − stacking interaction 

with Y105TEM1 and -amide stacking with N170TEM1. More-

over, the sidechain of Y105TEM1 is involved in additional hy-

drophobic contacts with K74BLIP. SDM of R243ATEM1 and 

D49ABLIP result in loss of TEM1-BLIP formation. This can 

be explained by the fact that R243TEM1 and D49BLIP form an 

ionic interaction and a water bridge via HOH687. The resi-

dues reported to have no effect on TEM1-BLIP binding in 

SDM experiments (Supporting Information Table S1) were 

also not identified as hotspots by FMO-PPI protocol. 
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Class Interferon: IFN2 in complex with IFNAR2 

Interferons are cytokines that play an important role 

in the autoimmune response. They are exploited in the treat-

ment of multiple sclerosis and in different kinds of cancer 53. 

Their signaling is mediated by the IFN2 - IFNAR2 receptor 

complex (Figure 2A).  

We used FMO-PPI to explore PPIs on the IFN2 - 

IFNAR2 interface. FMO-PPI results (Table 2, heat map plot 

Figure 2B and PIEDA results Supporting Information Figure 

S4) were in the agreement with the reported SDM data (Sup-

porting Information Table S2).  

It was reported that R33AIFN2 had the largest det-

rimental effect on formation of IFN2-FNAR2 complex 

among all the mutated residues 45. According to FMO-PPI, 

R33IFN2 forms 5 intermolecular PPIs with residues of 

IFNAR2: T44, I45, M46, K48 and E50 (Figure 2C).  

 

Table 2: FMO-PPI results and published SDM (see Supporting Information Tables S1-S4). 

System: 

Protein A – 

Protein B 

Number of 

hotspots detected 

by SDM: 

Proteins A/B 

Number of 

hotspots detected 

by FMO-PPI: 

Proteins A/B 

(as in SDM) 

Number of 

hotspots from 

FMO-PPI in-

volved in intermo-

lecular PPI:  

Proteins A/B 

Number of 

hotspots from 

FMO-PPI in-

volved in intramo-

lecular PPI:  

Proteins A/B 

Number of 

hotspots from 

FMO-PPI in-

volved in water 

bridges: 

Proteins A/B 

TEM1-BLIP 5/4 36/33 (5/4) 26/21 20/19 12/10 

IFN2-IFNAR2 12/n.a. 22/13 (12/0) 10/11 19/9 9/6 

PTH1R-ePTH 7/n.a. 47/31 (7/0) 27/16 37/* 4/3 

LIMK1-Cofilin-1 3/3 20/19 (3/3) 16/11 15/17 n.d. 

n.a.: not annotated in literature. n.d.: the crystal structure did not contain any water molecules. *ePTH is a polypeptide and its secondary structure is a simple 

-helix, so its intramolecular PPIs were not considered.  

Figure 1. FMO-PPI results for the crystal structure of TEM1-BLIP (PDB entry 1JTG) 44: (A) TEM1 (surface colored in green) in 
complex with BLIP (surface colored in light-orange) (B) Heat map plot representing PPIs detected by FMO-PPI. Each box repre-
sents one interaction. Boxes are colored by spectrum according to their ΔPIE values (in kcal/mol) from dark blue (ΔPIE ≤ -10 
kcal/mol, strong attraction) to red (ΔPIE ≥ 10 kcal/mol, strong repulsion). PPIs in the range of -3 kcal/mol < ΔPIE < 3 kcal/mol are 
represented by a white box. Arrows indicate residues that were also detected as hotspots by SDM. (C) Mapping of the hotspots on 
the surfaces of the disassembled proteins. BLIP (on the top) was rotated by 180° on the horizontal axis and translated to expose 
the interfaces of the two proteins. Each interface residue is colored by its highest ΔPIE value and according to color scheme in 
panel B. Surface of residues with PIE values in the range of -3 kcal/mol < ΔPIE < 3 kcal/mol or none interface residues are colored 
in white for TEM1 and light-yellow for BLIP. Potential ligand-binding pockets were identified by Site Finder (see Methods section) 
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and marked by spheres (white spheres represents hydrophobic area and red polar). (D) PPIs formed by K74BLIP with surrounding 
residues. The intramolecular and intermolecular PPIs are shown as pink and purple dashed lines, respectively. 

 

Figure 2. FMO-PPI results for crystal structure of IFNα2 - IFNAR2 (PDB entry 3S9D)45: (A) IFNAR2 (surface colored in green) in 
complex with IFNα2 (surface colored in light orange) (B) Heat map plot representing PPIs detected by FMO-PPI. Each box repre-
sents one interaction. Boxes are colored by spectrum according to their ΔPIE values (in kcal/mol) from dark blue (ΔPIE ≤ -10 
kcal/mol, strong attraction) to red (ΔPIE ≥ 10 kcal/mol, strong repulsion). PPIs in the range of -3 kcal/mol < PIE < 3 kcal/mol are 
represented by a white box. Arrows indicate residues that were also detected as hotspots by SDM. (C) PPIs formed by R33IFNα2 with 
surrounding residues. The intramolecular PPIs are shown as pink dashed lines and the intermolecular ones as purple dashed lines. 
(D) Water bridges identified by FMO-PPI, which mediate PPIs between residues of IFNAR2 and IFNα2, are displayed as yellow 
dashed lines. 

SDM of L30AIFN2 has also a dramatic effect on the 

IFN2-IFNAR2 affinity. FMO-PPI analysis showed that 

L30IFN2 forms strong electrostatic (via the backbone) and 

hydrophobic (via the sidechain) intramolecular PPI with 

R33IFN2 (Figure 2C and Supporting Information Figure 

S4A), suggesting that the major role of L30AIFN2 is to sta-

bilize the bioactive conformation of R33IFN2 and, by doing 

so, indirectly affects the IFN2 - IFNAR2 binding affinity.  

Both FMO-PPI and SDM highlighted the im-

portance of M148IFN2 and A145IFN2 for complex formation. 

The M148IFN2 forms a hydrophobic, intermolecular PPI 

with W100IFNAR2 and an intramolecular PPI with A145IFN2, 

suggesting that A145IFN2 works as stabilizer of bioactive 

conformation of M148IFN2 and, in doing so, indirectly af-

fects complex stability. 

Water molecules also play a key role in stabilizing 

this complex. For example, N98IFNAR2 forms two water 

bridges with HOH173 and HOH225. These water bridges 

mediate intramolecular PPIs formed between N98IFNAR2 with 

various residues: L26IFN2, that was identified as hotspot by 

both FMO-PPI and SDM, and A19IFN2 (Figure 2D and Sup-

porting Information Table S2). 45 

The residues reported to have no effect on IFN2- 

IFNAR2 binding in SDM experiments (Supporting Infor-

mation Table S2) were also not identified as hotspots by 

FMO-PPI protocol. 

 

Class GPCR: PTH1R in complex ePTH 

G-protein coupled receptors (GPCRs) have enor-

mous physiological and biomedical importance and are in-

volved in a wide range of diseases. It is, therefore, not sur-

prising that 475 drugs (~34% of all drugs approved by the 

US Food and Drug Administration (FDA)) act on this pro-

tein family 54. Many biological functions of peptides are me-

diated through GPCRs. However, the design of peptide 

drugs targeting GPCRs remains challenging 55. Further de-

velopment of peptide drugs depends on availability of struc-

tural information and the understanding of the interactions 

formed between peptide and the GPCR receptor. FMO-PPI 

can be helpful tool for this purpose.  

ePTH is a peptide which is an engineered version 

of the parathyroid hormone (PTH) that regulates calcium ho-

meostasis and used to treat osteoporosis. 46.ePTH forms a 

complex with PTH1R (parathyroid hormone 1 GPCR recep-
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tor) via its extracellular domain and the transmembrane hel-

ices (TM) (Figure 3A). We used FMO-PPI to explore 

PTH1R-ePTH complex and results (Table 2, heat map plot 

Figure 3B and PIEDA results Supporting Information Figure 

S5) in agreement with the reported experimental SDM data 

(Supporting Information Table S3).  

SDM of F184PTH1R to alanine resulted in the aboli-

tion of PTH1R-ePTH binding. According to FMO-PPI, 

F184PTH1R forms face-to-edge π-stack (Figure 3C) intermo-

lecular interaction with W14ePTH (Figure 3B) and intramo-

lecular PPI interactions with L187PTH1R.  

 

 

 

 

 

 

 

 

 

Figure 3. FMO-PPI results for crystal structure of PTH1R - ePTH (PDB entry 6FJ3)46 (A) PTH1R (ribbon colored in green) in com-
plex with peptide ePTH (ribbon colored in light orange) (B) Heat map plot representing PPIs detected by FMO-PPI. Each box 
represents one interaction. Boxes are colored by spectrum according to their ΔPIE values (in kcal/mol) from dark blue (ΔPIE ≤ -
10 kcal/mol, strong attraction) to red (ΔPIE ≥ 10 kcal/mol, strong repulsion). PPIs in the range of -3 kcal/mol < ΔPIE < 3 kcal/mol 
are represented by a white box. Arrows indicate residues that were also detected as hotspots by SDM. (C) Intermolecular PPIs, 

formed by W14 ePTH with surrounding residues of PTH1R shown as purple dashed lines.  

 

Moreover, alanine mutations of Y195PTH1R, 

R233PTH1R, F288PTH1R or N448PTH1R resulted in a statistically 

significant decrease in measured IC50. According to FMO-

PPI, this is due to the loss of their intermolecular interactions 

with E4ePTH. Y195PTH1R is also involved in two intramolecu-

lar interactions with R233PTH1R (polar) and Ile237PTH1R (hy-

drophobic), and E180PTH1R forms a hydrogen bond with 

W14ePTH (Figure 3C).  

L244PTH1R and W352PTH1R, which is in the extracel-

lular loop 2 (ECL2), form hydrophobic interactions with 

each other and with M8ePTH, while M445PTH1R is involved in 

weak hydrophobic interactions with Aib3ePTH (below -3 

kcal/mol) and an electrostatic repulsion with E4ePTH.  

Further, SDM experiments have shown that muta-

tion to Ala of L232PTH1R or V235PTH1R did not significantly 

affect peptide binding 56. These experimental evidences are 

in agreement with FMO-PPI results that correctly predicted 

that these residues are not hotspots. 

 

Class Kinase: LIMK1 in complex with Cofilin-1 

Kinases are one of the major drug targets 57, regu-

lating almost every cellular process by switching on and off 

other proteins via their phosphorylation. Due to their crucial 

role, kinases are often involved in several kinds of cancers 

and thus, their inhibitors are usually used in chemotherapy. 
58 Kinase substrate recognition is based on protein-protein 

interactions. LIM domain kinase 1 (LIMK1) is a potential 

drug target for the prevention of amyotrophic lateral sclero-

sis 59. LIMK1 plays a crucial role in the regulation of actin 
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dynamics, by binding to (and phosphorylating) the actin de-

polymerizing factor cofilin-1 (Figure 4A) 47.   

We used FMO-PPI to explore LIMK1-Cofilin-1 

complex (Table 2, heat map plot Figure 4B and PIEDA re-

sults Supporting Information Figure S6) and results agree 

with reported experimental SDM data (Supporting Infor-

mation Table S4). SDM highlighted several important resi-

dues that affect LIMK1-Cofilin-1 affinity and/or function. 

For instance, SDM of M115Cofilin-1 to alanine resulted in loss 

of Cofilin-1 phosphorylation. According to FMO-PPI, 

M115Cofilin-1 forms two hydrophobic intermolecular PPIs 

with Y514LIMK1 and F559LIMK1. Double mutation 

D549KLIMK1 and D551KLIMK1 lead to the same effect which 

can be explained by the strong ionic intermolecular PPI be-

tween K112Cofilin-1 and D549LIMK1 and D551LIMK1. FMO-PPI 

also highlighted importance of the underappreciated (see In-

troduction section) interactions (Figure 4C): S119Cofilin-1 

forms two CH- interactions with Y514LIMK1 and with 

F559LIMK1 and S119Cofilin-1 forms OH—S interaction with 

M516LIMK1. 

Moreover, protein-protein interactions play a key 

role not only in stabilizing the complex, but also in correctly 

positioning the substrate in the catalytic site. Indeed, Cofilin-

1’s α-helix 5 (where residues K112, M115 and S119 are lo-

cated) guides the amino acid S3Cofilin-1 towards the correct 

orientation for the phosphorylation mechanism. Phosphory-

lation of S3Cofilin-1 is essential for the regulation of the inter-

action between Cofilin and actin. FMO-PPI analysis identi-

fied interactions between the phosphorylated serine and the 

kinase residues of the catalytic site. For instance, the phos-

phorylated S3Cofilin-1 forms an electrostatic repulsion with 

D478LIMK1, which is part of the conserved DFG motif. 

 

Figure 4. FMO-PPI results for crystal structure of LIMK1 - Cofilin-1 (PDB entry 5HVK) 47: (A) LINK1 (surface colored in green) in 
complex with Cofilin-1 (surface colored in light orange) (B) Heat map plot representing PPIs detected by FMO-PPI. Each box 
represents one interaction. Boxes are colored by spectrum according to their ΔPIE values (in kcal/mol) from dark blue (ΔPIE ≤ -
10 kcal/mol, strong attraction) to red (ΔPIE ≥ 10 kcal/mol, strong repulsion). PPIs in the range of -3 kcal/mol < ΔPIE < 3 kcal/mol 
are represented by a white box. Arrows indicate residues that were also detected as hotspots by SDM. (C) Intermolecular PPIs 
formed between hotspots of LINK1 (ribbon and carbons of residues colored in green) and Cofilin-1 (ribbon and carbons of residues 
colored in orange) shown as purple dashed lines. 
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FMO-PPI guided SBDD 

In the second part of our work, we wanted to 

demonstrate how the information obtained by FMO-PPI can 

be used for SBDD of PPI modulators. We suggest here a 

simple and practical approach (Figure 5) to achieve this goal. 

The first step in this protocol is to define the protein-protein 

interface, followed by FMO-PPI analysis and independent 

Site Finder search as implemented in MOE 60. These two 

parallel steps are required for determining hotspots and po-

tential ligand binding sites (pockets).  

The ideal PPI-ligand binding site should contain at 

least one hotspot. A ligand that would bind to this site and 

interact with hotspot residues will have a higher chance of 

affecting protein-protein binding. This information can be 

efficiently applied in VS (virtual screening) to search for the 

new ligands that can target these interface sites and/or in ad-

vanced SBDD phases, such as hit-to-lead or lead optimiza-

tion. To demonstrate how this approach works in a real-

world example, we retrospectively applied it in two SBDD 

drug discovery cases.   

 

 

Figure 5. Workflow for structure-based drug design of PPI 
modulators (SBDD-PPI).  

 

Case study 1: Design of compound 4 (BAY-293) 

as inhibitor of KRAS-SOS1 interaction  

KRAS is a GTPase that is activated by SOS1 (Son 

of Sevenless 1, the most-studied guanine nucleotide ex-

change factor 61). KRAS-SOS1 complex is frequently in-

volved in various cancers. Inhibition of its formation by a 

small drug-like molecule is an attractive strategy for anti-

cancer treatments. Compound 4 (BAY-293, Figure 6C) is a 

new KRAS-SOS1 inhibitor.48 Here we retrospectively 

demonstrate how compound 4 could have been designed if 

FMO-PPI approach as descried in Figure 5 were applied. 

We started with the FMO-PPI analysis of KRAS-

SOS1 interface (PDB code 6EPL), which identified numer-

ous hotspots (Figure 6A). We mapped these hotspots on the 

surfaces of the two proteins (Figure 6B). In parallel, we used 

Site Finder 60 to explore the interface of KRAS and SOS1 

and search for potential ligand-binding pockets. We found 

multiple pockets and one of these pockets on the interface of 

SOS1 (site 1, marked in red square in Figure 6B) was partic-

ularly interesting as it contained 3 hotspots V875SOS1, 

N879SOS1 and Y884SOS1.  

Hillig and coworkers 48 reported that two independ-

ent and parallel high-throughput screenings (HTS) against 

SOS1 lead to the identification of compounds 1 (Figure 6C, 

EC50 in the μM range) and 2 (Figure 6D, IC50 = 320 nM) 48. 

Crystal structures of compounds 1 and 2 with SOS1 (Table 

1) confirm that both these compounds bind site 1. We ana-

lyzed these structures with FMO and found 5 interactions 

between compound 1 and SOS1, including with the hotspot 

residue Y884 (Figure 6D). Regarding compound 2, FMO de-

tected 9 interactions with SOS1, including with 3 hotspot 

residues (V875SOS1, N879SOS1 and Y884SOS1) and 2 via water 

molecules (Figure 6D). Engagement of these 3 hotspots of 

SOS1 in protein-ligand interactions instead of in PPIs with 

KRAS can explain why compound 2 acts as inhibitor of 

KRAS-SOS1 complex.  

Compound 3 (Figure 6C) is a synthetic hybrid of 

compounds 1 and 2. FMO analyses of the crystal structure 

of SOS1 with compound 3 detected 9 interactions (Figure 

6D), including interaction with the hotspots V875, N879 and 

Y884. Compound 3 is a new chemical matter, however no 

improvement in IC50 was observed compared to compound 

2. This can be explained by the fact that compound 3 also 

forms just 9 interactions with SOS1 like compound 2 and no 

improvement in TIE (total interaction energy calculated by 

FMO) was observed.  

After several SAR (structure-activity relationship) 

iterations conducted by Hillig and coworkers 48, compound 

4 was designed (BAY-293, IC50 = 21 nM, Figure 6E). FMO-

analysis of the crystal structure of SOS1 with compound 4 

(Table 1) detected 11 interactions (Figure 6D, compare to 

just 9 interactions of compounds 2 and 3) including new salt 

bridge with D887SOS1 (Figure 6E) and TIE was -187.76 

kcal/mol (compared to -96.2 and -93.5 kcal/mol of com-

pounds 2 and 3). This FMO outcome can explain why com-

pound 4 had 21-fold improvement in IC50 compared to com-

pounds 2 and 3. Compound 4 also binds site 1 of SOS1 and 

interacts with hotspot residues V875, N879 and Y884 (Fig-

ure 6E), preventing these residues from forming interactions 

with KRAS. These evidences explains why compound 4 is a 

potent inhibitor of KRAS-SOS1 complex formation 48. SDM 

of N879SOS1 to alanine resulted in loss of KRAS-SOS1 bind-

ing 48.  

We were also able to identify additional pockets 

like site 2 (Supporting Information Figure S8B) that can be 

targeted to design PPI inhibitors or molecular glues (small 

molecules that stabilise protein-protein complexes). For in-

stance, in another case study 62, a series of fragments was 

identified targeting site 2 on the SOS1 surface (Supporting 

Information Figure S8B). Therefore, these fragments could 

be used as starting point for the SBDD-PPI program.  
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With respect to the KRAS pockets identified by 

Site Finder together with FMO-PPI, there are many ligands 

reported in literature 63, 64 that can bind to them, affecting 

KRAS activity or the binding of KRAS to effector proteins 

(Supporting Information Figure S8C-D).   

In this case, we demonstrated how FMO-PPI ap-

proach, as described in Figure 5, integrated with Site Finder 

and followed by FMO-based small molecule SBDD, can be 

a powerful tool in discovery and lead-optimization of novel 

PPI modulators.   
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Figure 6. (A) Heat map representing intermolecular PPIs detected by FMO-PPI for SOS1 in complex with KRAS (PDB entry 6EPL) 
48. Boxes are colored by spectrum according to their ΔPIE values (in kcal/mol) from dark blue (ΔPIE ≤ -10 kcal/mol, strong attrac-
tion) to red (ΔPIE ≥ 10 kcal/mol, strong repulsion). PPIs in the range of -3 kcal/mol < ΔPIE < 3 kcal/mol are not shown. (B) Mapping 
of the hotspots on the surfaces of the disassembled proteins. SOS1 (left) was rotated by 180° on the vertical axis and translated to 
expose the interfaces of the two proteins. Each interface residue is colored by its highest ΔPIE value and according to the color 
scheme in panel A. Potential ligand-binding pockets were identified by Site Finder and marked by spheres (white spheres represent 
hydrophobic area and red spheres the polar one). (C) 2D structures of compounds 1-4, experimental data extracted from literature, 
compared together with the TIE (total interaction energy) values that were calculated by FMO for each SOS1-ligand complex. (D) 
Heat map plot showing PIE values calculated by FMO for protein-ligand interactions (hotspots are marked in red boxes). (E) 
Compound 4 – SOS1 complex (PDB entry 5OVI) 48. Hotspot residues are highlighted in blue and compound 4 is represented in 
orange sticks for carbon atoms.  

 

Case study 2: Why is LVY (lenalidomide) criti-

cal for CK1α - CRBN binding?  

CRBN is a part of CRL4 (Cullin-4-RING E3 ubiq-

uitin ligase) complex. E3 ubiquitin ligases recognize their 

substrates through a short sequence of amino acids which are 

crucial for the protein-protein interaction. Binding of thalid-

omide and its derivatives to CRL4 induces the degradation 

of proteins of interests, such as CK1α kinase 65 and increases 

their efficacy against multiple myeloma cells.66  

No direct binding of CK1α to CRBN has been ex-

perimentally detected in the absence of the small drug-like 

molecule LVY (lenalidomide) or its analogs 49. The mecha-

nism of action of LVY and its effect on CRBN-CK1α is not 

fully understood yet 49. We used FMO-PPI to rationalize 

why the CRBN-CK1α complex cannot be formed without 

LVY.   

We applied FMO-PPI to analyze the crystal struc-

ture of CRBN-LVY-CK1α complex (PDB code 5FQD 49, 

Figure 7A and 7B,). According to FMO-PPI, LVY forms 10 

interactions (Figure 7B) with the CRBN-CK1α complex (9 

+ 1 respectively) and it is critical for CRBN and CK1α bind-

ing for the following reasons:  

LVY stabilizes the bioactive conformation of 

CK1α by forming 1 critical interaction with G40CK1α. The 

G40CK1α is located on the pinhead of the conserved loop of 

CK1α (loop 1; β-hairpin loop between L33CK1α and V45CK1α 

of CK1α).  

Loop 1 is critical for CRBN-CK1α binding because 

5 of its residues; I37CK1α, T38CK1α, N39CK1α, G40CK1α and 

E41CK1α forming intermolecular PPIs with CRBN (Figure 

7B). According to SDM 49, mutation of residues I37CK1α and 

N39CK1α (located on loop 1) into alanine, prevents CRBN-

CK1α binding even in the presence of LVY 49. FMO-PPI de-

tected that I37CK1α forms two intermolecular PPIs with 

N351CRBN and H353CRBN. N39CK1α forms two intermolecular 

PPIs with H397CRBN and W400CRBN, and two intramolecular 

PPIs with other loop 1 residues (N36CK1α and E41CK1α).  

Due to the central position of G40CK1α in loop 1, an 

interaction with this residue controls the conformation of the 

entire loop 1. According to FMO, LVY forms a CH- inter-

action with G40CK1α (Figures 7C and 7D) and this interaction 

stabilizes the bioactive conformation of loop 1, allowing its 

other residues to interact with CRBN. Mutation of G40NCK1α 

abolishes CRBN-CK1α binding 49, because asparagine (in-

stead of glycine) clashes with LVY. This demonstrates that 

a change in even one hotspot could have a dramatic effect on 

protein-protein binding. 

LVY also stabilizes the bioactive conformation of 

CRBN interface by forming 9 interactions with its interface 

residues. It simultaneously interacts with both rigid side (β-

sheets) and flexible side (loops) of the CRBN binding pocket 
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and, by doing so, rigidifies the bioactive conformation of 

CRBN interface (Figures 7C and 7D). FMO-PPI detected 

that LVY forms 3 interactions with β-sheets residues: 

W386CRBN, W400CRBN and F402CRBN and 6 interactions with 

loops residues: N351CRBN, P352CRBN, H353CRBN E377CRBN, 

H378CRBN and W380CRBN (Figures 7C and 7D). These FMO-

PPI results agree with SDM experiments49 that outlined the 

crucial role of H353CRBN. H353CRBN forms strong interaction 

with the LVY and two intermolecular PPIs with K18CK1α and 

I37CK1α.  

We compared the crystal structures of CRBN with 

and without LVY and observed a large conformational 

change of the flexible side of the CRBN pocket (Supporting 

Information Figure S10A) as result of LVY binding. How-

ever, the binding of CK1α to CRBN-LVY complex did not 

affected CRBN structure and only light shift in the position 

of the phthalimide ring of LVY was observed (Supporting 

Information Figure S10B). These experimental evidences 

support the original FMO-PPI based hypothesis that LVY 

stabilizes the bioactive conformation of CRBN interface. 

In summary, LVY is critical for CRBN-CK1α bind-

ing because it stabilizes the bioactive conformation of both 

proteins by simultaneously interacting with them and, thus, 

acting as molecular ‘glue’ (Figures 7C and 7D). 

 

DISCUSSION 

  

PPI-focused modulators have become promising 

drug discovery targets and the focus of increasing attention 

for the development of novel therapeutics. The design of 

such drugs is highly dependent on the availability of struc-

tural data and accuracy of computational tools. The use of 

experimental methods such as SDM to identify PPI hotspots 

is an expensive, laborious, and lengthy process that is not 

always feasible for every protein-protein complex. These ex-

perimental technologies have proven difficult to align with 

the typical timescales of drug discovery programs. Here, we 

present a new computational approach, FMO-PPI, which 

provides an alternative means of supporting SBDD-PPI in 

real times and obviates the need of running expensive and 

long SDMs.  

In our work, we have demonstrated that FMO-PPI 

is able to detect all hotspot residues that have previously 

been reported in the published SDM experiments. The resi-

dues reported to have no effect on protein-protein binding in 

SDM experiments were also not identified as hotspots by 

FMO-PPI protocol. FMO-PPI was able to detect hotspots in 

addition to those reported in the published SDM literature. 

Unfortunately, due to the lack of experimental data for these 

residues, we were unable to determine whether these 

hotspots are true or false positives.  

 

Figure 7. (A) Crystal structure of CRBN (surface colored in green) in complex with CK1α (surface colored in light orange)  and 
LVY (lenalidomide, shown as yellow spheres) (PDB entry 5FQD) 49. (B) Heat map representing PPIs detected by FMO-PPI. Each 
box represents one interaction. Boxes are colored by spectrum according to their ΔPIE values (in kcal/mol) from dark blue (ΔPIE 
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≤ -10 kcal/mol, strong attraction) to red (ΔPIE ≥ 10 kcal/mol, strong repulsion). PPIs in the range of -3 kcal/mol < ΔPIE < 3 kcal/mol 
are represented by a white box. The interactions of LVY with CRBN-CK1α are marked with red font. Arrows indicate residues that 
were also detected as hotspots by SDM. (C) Scheme description of the CRBN-CK1α-LVY binding mode with the key interactions 
detected by FMO. (D) CRBN-CK1α-LVY binding mode. Only residues detected by FMO as important for interactions with LVY 
(yellow sticks) are shown. CK1α residues are colored in orange. CRBN residues located on loops are colored in pink, on β-sheet as 
cyan, and the key interaction with G40CK1α is shown as purple dashed line. 

 

FMO-PPI analysis provides four major categories 

of information about the PPIs formed between any two in-

teracting proteins: (a) the list of PPIs that each interface res-

idue forms with its neighboring amino acids, (b) how strong 

these PPIs are in kcal/mol, (c) their chemical nature (electro-

statics or hydrophobic) and (d) their PPIs category e.g.: in-

ter-, intra- molecular or water-bridges. Comparable ad-

vantages were also reported by Lim H et al.67,79 with their 

method 3D-SPIEs. 

FMO/PIEDA calculations across all 6 protein-pro-

tein complexes (Figure 8A) reveals the importance of hydro-

phobic (dispersion) contributions to protein-protein affinity. 

Our results have shown that, on average, approximately 20% 

of PPIs have mainly hydrophobic nature (Figure 8B). We 

were also able to detect other underappreciated PPIs, includ-

ing non-classical hydrogen bonds, CH- and OH-S, high-

lighting the importance of these in the establishment and 

maintenance of the interaction between two protein partners. 

 

Figure 8. Relative percentages of electrostatics (yellow), 
charge transfer 51 and dispersion (blue) energy terms are dis-
played for each system (A) and as averaged values across all 
the systems under consideration (B). The sum of these terms 
constitutes the so-called “attraction energy”. (C) Average fre-
quency of each amino acid at the PPI as detected by FMO-PPI 
across all systems. Error bars represent the standard error of 
mean. 

Primarily FMO has been applied to the exploration 

of hotspots, with particular focus on the intermolecular in-

teractions between proteins, taking into account the distance 

between the residues and their interaction energies, such as 

calculated with 3D-SPIEs method 67, 68. However as research 

progressed, FMO-PPI has highlighted not only the intermo-

lecular interactions that play a key role in protein-protein 

binding but also the intramolecular PPIs and water bridges. 

The same observation has previously been reported by 

Anzaki S. et. al 69 and Okuwaki K. et al. 70  

On average, approximately 50% of all PPIs are in-

tramolecular. Interestingly, most of the hotspots identified 

by SDM and FMO are simultaneously involved in more than 

one category of PPI (intermolecular, intramolecular and/or 

water bridges, Table 2). These hotspots play a dual role by 

directly and indirectly stabilizing the protein-protein com-

plex. They directly interact with a hotspot of the partner pro-

tein whilst simultaneously stabilizing the bioactive confor-

mation of neighboring hotspot by forming intramolecular in-

teractions with it. This link between intramolecular and in-

termolecular PPIs may also explain why two proteins strive 

to bind each other: as the formation of the protein-protein 

complex progresses, there is an increase in the number of 

intra- and intermolecular PPIs and, thus, potentially an in-

crease in the stability of the secondary structure of each in-

dividual protein. 

The significance of intramolecular PPIs for protein-

protein binding as highlighted by FMO-PPI were also vali-

dated experimentally. For example, according to FMO-PPI, 

L30IFN2 (in the above study), does not engage in intermo-

lecular PPIs with any residue of IFNAR2 but forms just two 

intramolecular PPIs with R33IFN2 (Figure2C). Mutation of 

L30IFN2 into alanine resulted in the elimination of IFN2 

and IFNAR2 binding. These insights suggest that some of 

the intramolecular PPIs in a protein-protein complex 

(L30IFN2 in the example provided here) solely exert an indi-

rect effect on protein-protein affinity, by stabilizing the bio-

active conformation of a neighboring hotspot (R33IFN2). 

FMO-PPI has also highlighted the important role of 

water molecules in enhancing the stability of the protein-

protein complex by forming water-bridges between hotspots 

of two proteins, increasing the number of intermolecular 

PPIs between them.     

It has been shown that mutation of a single amino 

acid can trigger a cascade of structural changes that affects 

the entire PPI network 8. FMO-PPI provides a detailed mo-

lecular explanation for this. FMO-PPI is always applied to 

current (static) snapshot of the system. If the structure of the 

system has changed, for example due to a mutation, the 

FMO-PPI can be applied to the new snapshot and the results 

can be compared with original (WT) structure. In this way, 

the dynamics of the system and the change in PPIs can be 

analyzed by FMO-PPI. For example, mutation F142ABLIP (in 
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complex with TEM1, PDB code 1S0W) 71 induces a signifi-

cant conformational change of the neighboring amino acids 

(Supporting Information Figure S3): Y105TEM1 rotates away 

and the distance between salt bridge residues E104TEM1 and 

K74BLIP increases from 2.68Å in the WT complex to 4.45Å 

in mutated structure. FMO-PPI is able to detect the residues 

that play a key role in the formation of the WT complex 

without needing to take into account the structure change 

upon mutation. However, FMO-PPI cannot predict these 

structural changes, which need to be addressed either exper-

imentally (using crystallography or other methods for deter-

mining atomic structures of proteins) or computationally 

(using protein modelling and molecular dynamics).  

According to our FMO-PPI analyses serine, argi-

nine, lysine and glutamate are the residues frequently ap-

pearing as hotspots (Figure 8C), suggesting that polar amino 

acids are naturally predisposed to form strong PPIs. 

The information produced by FMO-PPI can be 

used to design SDM experiments and to support SBDD-PPI 

programs in ways that have not been possible previously. 

For example, the identification of hotspots and the quantifi-

cation of their interaction energies in the PPI can be mapped 

on the top of the molecular surface of the complex and com-

bined with Site Finder to improve the design of interface lig-

and binding sites.  

We retrospectively applied FMO-PPI protocol 

(Figure 5) to two SBDD-PPI cases. The practicality and ef-

ficiency of this approach is enhanced by the generation of 

structural information for the protein-protein interface, 

which is essential to drive SBDD-PPI. This approach can in-

form the VS, hit-to-lead or lead optimization stages of 

SBDD-PPI and help in design of PPI inhibitors or glues. 

FMO-PPI can be also applied to protein-peptide complexes 

as demonstrated for PTH1R-ePTH system. 

In some cases, the experimental structure of the 

protein-protein complex is not available. However, alterna-

tive computational methods (such as Rosetta 72, MolFit 73, 

HADDOCK 74, MDockPP 75 and other software participat-

ing to the CAPRI challenge 76, 77) together with information 

from the AlphaFold database 78 can provide predicted mod-

els of the protein-protein complex, which could be further 

analyzed with FMO-PPI to establish the key interactions for 

experimental validation and the design of potential PPI mod-

ulators. 

FMO calculations focus solely on the enthalpic 

contributions of the hotspots to PPIs TIE (total interaction 

energy) and do not include entropy, long distance electro-

static PPIs (due to the truncated system) and energy terms 

that are related to structural changes, which can also affect 

protein-protein binding affinity. These additional energy 

terms are obviously included in experimentally measured 

free energy of binding (G). Therefore, although there is 

qualitative agreement with experimental findings, there is no 

direct quantitative correlation between FMO-PPI TIEs and 

experimentally measured G values. However, Lim et al.94 

observed quantitative correlation between experimentally 

measured and calculated free energies when FMO-DFTB 

was combined with machine learning algorithms. 

A similar phenomenon is observed for protein-lig-

and binding. Apart from the protein-ligand TIE calculated in 

this study, the binding event might be driven by different en-

ergy terms including direct enthalpic contributions, entropy, 

solvation and the “strain energy” of the ligand’s bioactive 

conformation 31. Despite the fact that not all these factors are 

accounted for we expected to see some correlation between 

measured and calculated binding affinities as observed in the 

case of SOS1 inhibitors.48 These inhibitors belong to 3 re-

lated chemical subseries and their FMO calculated TIEs cor-

relate well with their experimentally obtained pIC50 values 

(R2 = 0.60, see Supporting Information Figure S7E). Some 

improvement in correlation can be observed if FMO TIE val-

ues are combined with the number of rotatable bonds (R2 = 

0.67, see Supporting Information Figure S7F). Number of 

rotatable bonds in a way mimics the entropic contributions. 

Experimentally measured binding affinity and computed 

TIE usually correlate well in specific cases where TIE values 

are calculated for the same chemical series of small mole-

cules that have a similar chemical structure (usually taken 

from the same SAR) and where the entropic contribution is 

almost identical. In these cases, the affinity depends almost 

exclusively on enthalpy 34, 79, 80.  

 

CONCLUSIONS 

 

In this work, we propose a new QM protocol for the 

analysis of PPIs and SBDD of PPI modulators where FMO 

calculations are performed using differential PIEs. This pro-

tocol allows a detailed molecular understanding of not only 

intermolecular but also intramolecular interactions and wa-

ter bridges – elements that are crucial for the formation of 

the protein-protein complex. In the current work, we focused 

solely on hotspots located on the protein-protein interface 

that are able to be targeted by PPI modulators. However, 

non-interface residues from deeper layers of proteins can 

also contribute through the formation of long-distance elec-

trostatic PPIs. 

We have shown that FMO-PPI successfully identi-

fies PPI hotspots, generating: i. the list of PPIs that are 

formed by each residue with neighboring residues at the pro-

tein-protein interface, ii. the strength of these interactions in 

kcal/mol, iii. their chemical nature (electrostatics or hydro-

phobic) and iv. whether these PPIs are involved in inter-, in-

tra-molecular interactions or in water-bridges. We have also 

shown that hydrophobic and underappreciated interactions 

play a key role in PPIs, and that FMO is able to detect and 

quantify these interactions in an accurate way. Our findings 

show that FMO-PPI results are consistent with the results of 

SDM experiments and can be used to rationalize these with 

a structure-based approach.  

FMO-PPI is a new computational method that 

opens an alternative approach for SBDD-PPI. We confirmed 
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this by showing two examples of the retrospective applica-

tion of FMO-PPI to the design of PPI inhibitors for the 

KRAS-SOS1 complex and molecular glues for the CRBN-

LVY-CK1α complex. In each case, FMO-PPI, together with 

Site Finder, would have guided the identification of suitable 

pockets for the design of PPI modulators, identifying crucial 

hotspots at the interface and assisting the optimization of hit 

fragments. 

FMO-PPI is a pragmatically driven approach that, 

in two relatively simple FMO calculations, can obtain infor-

mation on every interface residue and its individual contri-

bution to overall PPI TIE, including its role and chemical 

nature. This protocol does not aim to mimic experimental 

alanine scans because: (1) the mutation into alanine (or into 

any other residue) can result in structural change and infor-

mation on the nature of this change is rarely available for 

every mutated residue; (2) reproducing an alanine scan com-

putationally requires a large number of FMO calculations (as 

number of residues in each protein) and extensive calcula-

tion time, making the method impractical for short iterations 

of SBDD. However, whilst it is not practical to apply FMO 

to all experimentally mutated residues, the application of the 

FMO-PPI protocol integrated with structure optimization 

methods can be highly efficient for identifying key residues 

to be mutated for SDM experiments. 

 

METHODS 

 

Structure Preparation  

Hydrogen atoms were added to the crystal struc-

tures at physiological pH (7.4) with the Protonate 3D 81 tool 

implemented in MOE (Molecular Operating Environment, 

Computational Chemistry Group, version 2020.09) 60. The 

purpose of the Protonate3D function is to assign ionization 

states and position hydrogens in proteins, ligands and sol-

vents given 3D coordinates.  

The protonated structures were subjected to con-

strained minimization to optimize the interaction geometries 

required for accurate FMO calculations. Small errors in the 

positions of atoms depend on the B-factor of the atom and 

overall resolution of the structure, and could translate in 

large deviations in energy terms 82. In this work we used a 

constrained minimization procedure with the semi empirical 

Amber10:EHT force-field 83, 84 implemented in MOE, where 

each atom was allowed to deviate up to 0.5 Å from its orig-

inal position in the crystal structure.  

 

Definition of the protein-protein interface 

The protein-protein interface was detected with the 

Protein Contacts tool implemented in MOE. Two protein 

surface residues are in contact if the distance between (any 

of their atoms) them is less than ≤ 4.5Å. Interface residues 

of a protein are the residues that contact with residues from 

the interacting proteins. Only interface residues were in-

cluded in the FMO calculations. 

 

FMO-PPI calculation protocol  

FMO is a quantum mechanical method which di-

vides the system into fragments 25, 50. Both amino acids and 

water molecules represent individual fragments. The de-

tailed description of the fragmentation strategy and the basic 

methodology can be found in the published reviews 25, 27, 50, 

including detailed mathematical formulation that are beyond 

the scope of this manuscript. 

The FMO method 50 was applied using FMO code 
32 as embedded in GAMESS (General Atomic and Molecu-

lar Electronic Structure System version Jun2020a) 85, which 

is a general ab initio quantum chemistry package. In our cal-

culations, we used the MP2 method (2nd order Møller-Ples-

set perturbation theory 86) with the 6-31G* basis set and po-

larizable continuum model (PCM) 87 solvation. We have 

elected to use 6-31G* instead of 6-31G** as a reasonable 

compromise between accuracy and efficiency: PIE, the fo-

cus of the present report, is minimally affected by the addi-

tion of polarization functions, whereas computational time 

is significantly increased when using 6-31G**. C-PCM was 

used at the level of FMO/PCM, with the charge renormali-

zation ICOMP=2, IDISP=0, default van-der-Waals radii and 

partial screening 88. By performing QM computations on 

fragments one can achieve high computational speed. The 

FMO method has been efficiently parallelized for high per-

formance computer clusters. 

In this work, we propose a new FMO protocol to 

calculate the pair interaction energy 45 (see Supporting Infor-

mation Figure S1) between two proteins. Instead of mutating 

each single residue to Gly and running FMO on each of them 

separately, we calculated all the differential energy terms be-

tween wild-type (WT) and mutants simultaneously, by com-

puting the WT full-atom pairwise interaction energy 45 and 

the backbone-backbone PIE for each residue pair in two in-

dependent calculations. To compute the backbone-backbone 

PIE, we deleted the sidechains from the WT full-atom com-

plex, obtaining a system that includes only Gly residues for 

the proteins, water molecules and ligands (if any).  

Given residues i and j, their pairwise interaction en-

ergy (ΔPIEij) is calculated by deducting the PIEij of the back-

bone (PIEij
bb) from the PIE of full-atom system (PIEij

fa), ac-

cording to the following equation (1): 

 

(1) ΔPIEij = PIEij
fa – PIEij

bb 

 

This method excludes backbone-backbone interac-

tion energies from the total PIEij between two residues and 

keeps all interactions for side chains. The rationale behind 

this choice is that backbone-backbone interactions cannot be 

experimentally tested with SDM and, thus, used for valida-

tion of the method. Moreover, they would introduce more 

background noise in the analyses of the pair interaction en-

ergies. As an alternative to our FMO-PPI protocol, it may be 
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possible to use higher-order FMO, such as FMO4 89, to de-

fine interactions between the side chains of two proteins or 

to use partition analysis based on FMO2-DFTB 90. 

The fragmentation in FMO 91 results in residue 

fragments shifted by a carbonyl group relative to conven-

tional residues, as driven by the accuracy considerations for 

fragmentation. This does not create problems in discussing 

the interactions of residue fragments except for the case 

when the carbonyl is the group that interacts. In this case, the 

interaction energy needs to be manually curated and as-

signed to the correct residue. The structure was examined to 

determine such cases and the interaction energies involving 

carbonyl groups were assigned to the residue to which the 

carbonyl belongs, not to the residue fragment it is assigned 

to in FMO. Thereby, the interactions reported in this work 

correspond to the actual residues, not residue fragments.  

 

Analysis of FMO-PPI results 

FMO outputs from the full-atom and backbone sys-

tems were processed with an internal script to extract the 

pairwise energy terms and calculate the PIEij values. Water 

bridges were also considered, whereas solvent interactions 

with single amino acids were discarded. Contacts were then 

visualized and analyzed in MOE with a SVL script provided 

by CCG 92.  

Finally, significant PPIs with PIEij below -3 or 

higher than 3 kcal/mol were plotted as heat map with Python 

(version 2.7.9), together with the ratio of electrostatics 

(PIEij
es) and its sum with the dispersion term (PIEij

disp): 

 

 (2)  fij = ΔPIEij
es / (ΔPIEij

es+ ΔPIEij
disp) 

 

This factor distinguishes between electrostatic (ra-

tio above 0.5) and hydrophobic (ratio below 0.5) interac-

tions. Duplicate intermolecular interactions were removed, 

leaving the bottom-left corner of the heat map empty.  

Hotspots were mapped on the surface of the struc-

ture complexes, using an SVL script provided by CCG, 

which colored the residues according to the PIE values. For 

each residue we used the highest PIE value that belonged to 

this amino acid among its inter-molecular interactions. In 

this way, hotspots can be easily visualized. 

 

Identifying potential ligand binding site  

 We used Site Finder, that is implemented in 

MOE60, to search for potential interface ligand binding sites. 

This tool does not consider any results from FMO but uses 

only the 3D coordinates of the protein target or protein-pro-

tein complex. 

Site Finder is a geometric method based on the cal-

culation of alpha spheres, which are collections of 3D points 

in the site. The relative position and accessibility of the 

amino acids are taken into consideration together with a 

rough classification of chemical type. Regions that present a 

tight atomic packing and which are either not too exposed to 

the solvent or inaccessible are identified. The sites are then 

classified as either hydrophobic or polar and alpha spheres 

are calculated. Finally, sites are ranked according to the Pro-

pensity for Ligand Binding (PLB) score 93, which is based 

on the composition of amino acids in the pocket.  

 

DATA AND SOFTWARE AVAILABILITY  

Protein structures in this manuscript have been 

downloaded from Protein Data Bank (PDB, see Table 1).  

The FMO protocol was applied using FMO code 

(https://www.msg.chem.iastate.edu/gamess/index.html) as 

embedded in open source GAMESS (General Atomic and 

Molecular Electronic Structure System version Jun2020a) 

which is a general ab initio quantum chemistry package. Site 

Finder, Protein Contacts and Protonate 3D tools imple-

mented in MOE (Molecular Operating Environment, Com-

putational Chemistry Group, version 2020.09). The full de-

scription of these tools appears in Methods section of this 

manuscript.  
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Supporting Information includes general FMO workflow, 

FMO-PPI and PIEDA heat maps plots, tables with experi-

mental SDM data extracted from literature and table with to-

tal number of interface residues. 
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