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ABSTRACT
One of the leading single-channel speech separation (SS) models is
based on a TasNet with a dual-path segmentation technique, where
the size of each segment remains unchanged throughout all layers. In
contrast, our key finding is that multi-granularity features are essen-
tial for enhancing contextual modeling and computational efficiency.
We introduce a self-attentive network with a novel sandglass-shape,
namely Sandglasset, which advances the state-of-the-art (SOTA) SS
performance at significantly smaller model size and computational
cost. Forward along each block inside Sandglasset, the temporal
granularity of the features gradually becomes coarser until reaching
half of the network blocks, and then successively turns finer towards
the raw signal level. We also unfold that residual connections be-
tween features with the same granularity are critical for preserving
information after passing through the bottleneck layer. Experiments
show our Sandglasset with only 2.3M parameters has achieved the
best results on two benchmark SS datasets – WSJ0-2mix and WSJ0-
3mix, where the SI-SNRi scores have been improved by absolute 0.8
dB and 2.4 dB, respectively, comparing to the prior SOTA results.

Index Terms— Speech separation, multi-granularity, self-
attentive network, single-channel

1. INTRODUCTION

Separating a relatively clean speech signal in the presence of mul-
tiple speaking voices is a fundamental and crucial problem (a.k.a.
“cocktail party problem” [1, 2]) for many downstream speech pro-
cessing tasks [3–5]. In this paper, we focus on the single-channel
speech separation (SS) task, which is considerably more challenging
than in a multi-channel setting but at the same time applies to broader
scenarios, e.g., telephone conversations, many VoIP usage cases,
and numerous smartphone applications. The performance of single-
channel SS has been recently advanced by a variety of deep learning
methods [6–8]. The current leading methods are based on the time-
domain audio separation network (TasNet) [6], which takes wave-
form inputs and directly reconstruct sources by computing time-
domain loss with utterance-level permutation invariant training (u-
PIT) [9, 10]. In particular, there are many variants of TasNets: the
long short-term memory (LSTM) based TasNet [6], the Conv-TasNet
[7, 11], the dual-path recurrent neural network (DPRNN) [8], the
dual-path Transformer network (DPTNet) [12], the gated DPRNN
[13] and the Wavesplit [14].

Previous works of TasNets have shown that a smaller window
for encoding improves the separation performance [8, 12, 13], lead-
ing to much longer sequences, which poses special challenges for
modeling long-term global dependencies. To handle the very long
sequences, current SOTA methods [8, 12, 13] employ a dual-path
segmentation technique, which performs over a whole encoded

sequence and divides it into intra-segment and inter-segment se-
quences, to which we simply refer as local and global sequences.
A common strategy in prior works [8, 12, 13] is to use RNNs to
model both the local and global sequences. Instead, we find that
a self-attentive network (SAN) [15] would be a better structure to
model the global sequence. Given an n-length sequence, in SAN
every element can connect to another element using a direct path
(i.e., in O(1) time) rather than recursively processing, resetting, and
updating memory (i.e., in O(n) time) as in RNNs. Although SAN
is notorious for its inefficiency in processing very long sequences
due to its inherent quadratic cost, the global sequence length in the
dual-path setting becomes feasible for SAN to model.

Moreover, existing segmentation-based models generally use a
fixed segment size unchanged throughout all layers of computation.
Our finding is that the modeling capabilities of these networks could
not be fully exploited if constantly modeling the global sequences
with only one fixed granularity. Especially, time-domain signals es-
sentially have different abstract contexts, e.g., phonemes, syllables,
or words, at various granularity levels. Furthermore, SANs have
been proven superior for modeling high-level contexts in a num-
ber of tasks [16–19]. These together inspire us to design a new
neural network architecture, where features are modeled in multi-
granularity by SANs. Consequently, we propose a novel neural net-
work architecture called Sandglasset, for its sandglass shape and its
modest model size and complexity. Forward along each of its blocks,
the granularity of the features gradually becomes coarser until reach-
ing half of the network blocks, and then successively turns finer to-
wards the raw signal level. We also unfold that residual connections
between features with the same granularity are critical for preserving
information after passing through the bottleneck layer.

Finally, the proposed Sandglasset, which is very light with only
2.3M model parameters, has achieved the SOTA results on two
benchmark speech separation datasets – WSJ0-2mix and WSJ0-
3mix, where the SI-SNRi scores have been pushed to 20.8 dB and
17.1 dB, surpassing the prior SOTA results by a large margin of
absolute 0.8 dB and 2.4 dB. Moreover, compared to the smallest
model in literature – DPRNN, our proposed Sandglasset is remark-
ably lighter with 58.4% less memory and 66.0% fewer floating-point
operations. To the best of our knowledge, Sandglasset is the first
work that models multi-granularity segments using SANs in signal
processing.

2. SANDGLASSET

2.1. Overall Architecture

Our proposed Sandglasset is composed of N blocks, as presented
on the right diagram of Fig. 1. If information flows from top to
bottom, the first N/2 blocks constitute an inverted pyramid in Sand-
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Fig. 1: An illustration of the information flow inside Sandglasset. The left diagram shows the multi-granularity features with variable segment
sizes that form a sandglass shape; on the right, it shows the Sandglasset blocks, each of which models a granularity depicted on the left.

glasset, where the signal frames are successively down-sampled into
shorter feature sequences of larger segments in coarser time scales,
i.e., large-granularity, high-level abstract features. Then, the last
N/2 blocks constitute a pyramid, where these high-level features
are then inversely up-sampled back into longer feature sequences of
smaller segments in finer time scales, i.e., fine-granularity, low-level
features. To preserve information, the up-sampled features in the last
N/2 blocks are aggregated with the earlier computed features with
the same granularity using residual connections. This processing is
useful for better signal reconstruction as well as avoiding gradient
vanishing issues. This sandglass-shape processing strategy is capa-
ble of modeling multi-scale temporal granularity to process the in-
put signal hierarchically and progressively, e.g., processing sounds,
syllables, and words at different block levels successively. In the
remainder of this section, we present the inner machinery of each
module in a block as shown in the right diagram of Fig. 1.

2.2. Encoding and Segmentation

2.2.1. TasNet Encoder

First of all, the input signal is a time-domain waveform mixture x ∈
RT . Similar to other TasNet systems [6–8], the input mixture signal
is encoded into a sequence of 50%-overlapping frames, denoted by
X̃ = [x̃1, ..., x̃L] ∈ RM×L, where M is a hyperparameter that is
generally referred to as the window length, and L = d2T/Me. In
TasNet, we use a ReLU-gated 1D convolutional layer to replace the
traditional short-time Fourier transform (STFT) for signal encoding:

X̂ = ReLU
(

Conv1D
(
X̃;U

))
, (1)

where Conv1D(X̃;U) denotes the 1D convolution operation ap-
plied on X̃ parameterized by a learnable weight U ∈ RE×M with
1× 1 kernels, ReLU(·) is the element-wise rectified linear unit used
in [8, 12] to ensure non-negative outputs, and E is the dimension-
ality of each encoded frame. Instead of directly using X̂ for the
subsequent computation, we linearly map the matrix into bottleneck
features X = BX̂ ∈ RD×L, where B ∈ RD×E and D < E.

2.2.2. Segmentation Module

Given a sequence of frames in matrix form X ∈ RD×L, we use a
segmentation module to split X into S 50%-overlapping segments,
each of length K. The first and last segments are padded with zeros
to create S = d2L/Ke equal-size segments. These segments can be
packed together to create a 3D tensor, denoted by X ∈ RD×K×S .
Note that the segment size K is a hyperparameter that can be used
to control the scale of the locality. The segments X are then passed
to a stack of Sandglasset blocks.

2.3. Sandglasset Blocks

For the b-th block, we are given a 3D tensor input Xb ∈ RD×K×S ,
enclosing S segments each containing K frames of D dimensions.
To make the following recurrence relations mathematically sound,
we defineX1 = X . As shown in Fig. 1, each Sandglasset block con-
sists of mainly two operations – firstly processing the intra-segment
sequence using a recurrent neural network for modeling locality, as
in [8], and secondly modeling the inter-segment sequence using a
SAN to capture the global dependencies. Interleaving with these
two modules, a downsampling and an upsampling operation alter
the granularity of the global sequence to be processed by the SAN.

2.3.1. Recurrent Neural Network for Local Sequence Processing

In our task, intra-segment sequences are the local sequences, each
of length K, which contain subtle local details, e.g. temporal or
spectral continuity, spectral structure, timbre, etc., which are rather
irrelevant to the long-term context. In Sandglasset, we assign the
local sequence processing task to a one-layer RNN. Specifically, in
each Sandglasset block, the 3D tensor XLR

b = Xb obtained from
the segmentation process is passed to a bi-directional LSTM of H
hidden nodes. Here, for ease of reference, we use XLR and YLR

to respectively denote the inputs for the local RNN and the outputs
from the local RNN. The superscript LR is used to differentiate from
the corresponding input-output pairs in the global SAN model.

YLR
b =

[
Mb · BiLSTMb

(
XLR

b [:, s, :]
)
+ cb, s = 1, ..., S

]
, (2)



where · is used to denote matrix multiplication, XLR
b [:, s, :] ∈

RD×K refers to the local sequence within the s-th chunk, Mb ∈
RD×2H and cb ∈ RD are the parameters of a linear transformation.

2.3.2. Self-Attentive Network for Multi-Granularity Modeling

After processing the intra-segment sequences each of length K,
we aim at modeling the inter-segment sequences, each of length S.
Noted that inter-segment sequences are likely to encode the contex-
tual information of the speech signal. In Sandglasset, we employ a
variable-context-aware self-attentive network (SAN) to capture the
global dependencies in different time scales.

Instead of directly taking YLR
b as the input to a SAN, we first

apply a layer normalization operation LN(·) to the LR layer’s output
and add a residual connection to the block input:

XGA
b = LN

(
YLR

b

)
+ Xb, (3)

which is then re-sampled to modify the time scale for global pro-
cessing across segments:

YGA
b = USb

(
SANb

(
DSb

(
XGA

b

)))
(4)

where USb(·) and DSb(·) are the upsampling and downsampling op-
erations, respectively, which are defined as the follows:

USb (X ) =

{
ConvTrans1DK

(
X ; 4b

)
if b ≤ N/2;

ConvTrans1DK

(
X ; 4N−b−1

)
if b > N/2,

(5)

DSb (X ) =

{
Conv1DK

(
X ; 4b

)
if b ≤ N/2;

Conv1DK

(
X ; 4N−b−1

)
if b > N/2,

(6)

where Conv1DA(·;B) and ConvTran1DA(·;B) respectively denote
the 1D and 1D transposed convolution operations along the axis of
length A with a kernel size of B and a stride length of B such that
the resultant length becomes bA/Bc (in DS) or bABc (in US) long.
We also employ the variable-context-aware self-attentive network
SANb(·), which is modified from the pioneering work [15]. For sim-
plicity, we generally define our SAN for any input X ∈ RD×S×K :

SAN(X ) = [SelfAttn (LN (X [:, :, k]) +P) , k = 1, ...,K] , (7)

where P denotes the positional encoding matrix as introduced in
[15], and X [:, :, k] ∈ RD×S refers to the inter-segment sequence.
Here, SelfAttn(·) is a typical multi-head self-attention function that
linearly projects an input matrix X ∈ RD×S into three forms of
matrices, commonly denoted as query Qj , key Kj , and value Vj

matrices to compute the scaled dot-product attention for different
heads j = 1, ..., J , which are finally combined by a concatenation
plus a matrix multiplication:

[Qj Kj Aj ]
> =

[
WQ

j WK
j WV

j

]>
X+

[
bQ
j bK

j bV
j

]>
(8)

Aj = Softmax

(
Q>j Kj√
D/J

)
Vj (9)

A = W · Concat (A1, ...,AJ) (10)
SelfAttn(X) = LN(X+ DROP(A)) (11)

where DROP(·) denotes the dropout technique [20], and W ∈
RD×D , WQ

j ,W
K
j ,W

V
j ∈ RD/J×D and bQ

j ,b
K
j ,b

V
j ∈ RD/J are

the parameters for SAN.

2.3.3. Residual Connections to Prevent Information Loss

One of the highlights in Sandglasset is to add residual connections
between pairs of Sandglasset blocks that are of the same granular-
ity. This technique is used to prevent information loss after passing
through the middle blocks, where the granularity is on the coarsest
scale. Mathematically, we define

XLR
b+1 =

{
YGA

b if b ≤ N/2;

YGA
b + YGA

b−N/2 if b > N/2,
(12)

which also defines the recurrence relation between the b-th and the
(b+ 1)-th Sandglasset block. Our experimental result indicates that
in practice adding residual connections is critical to remedy raw sig-
nal level details for improving signal reconstruction and to avoid gra-
dient vanishing issues for better parameter learning.

A seminal work in signal processing – U-Net [21–23] seems a
similar idea to ours for re-sampling and combining features at differ-
ent time scales. Nonetheless, Sandglasset is very different in many
aspects: (1) we have downsampling and upsampling operations to-
gether performed in one block; (2) our multi-granularity features are
only processed by the SANs within each block; and (3) the residual
connections across Sandglasset blocks are purely based on addition.

2.4. Merge Segments and Decoding

2.4.1. Mask Estimation

After passing through N Sandglass blocks, we obtain a 3D tensor
output XLR

N+1 ∈ RD×K×S , which can be used to estimate masks
for C sources. To do so, we first transform the last block’s output
using a PReLU-gated 2D convolutional layer to obtain a 4D tensor
of shape C × E ×K × S:

Y = Conv2D
(

PReLU
(
XLR

N+1

)
;C
)
, (13)

where Conv2D(Y;C) denotes the 2D convolution operation applied
on Y parameterized by a learnable weight C ∈ RCE×D with a 1×1
kernel, PReLU(·) is the element-wise parametric ReLU. We then
merge the output segments Y using an OverlapAdd1 approach [8] to
match the shape of the mixture frames X̂ ∈ RE×L for masking:

M = ReLU (OverlapAdd (Y)) , (14)

where � is the element-wise product operation.

2.4.2. Decoder for Waveform Reconstruction

Finally, the c-th source signal is reconstructed by applying the c-th
estimated mask to the initially computed mixture frames X̂ and then
using OverlapAdd to merge frames into waveform:

ŝc = OverlapAdd(X̃�Mc). (15)

Last but not least, given C estimated sources, the scale-invariant
source-to-noise ratio (SI-SNR) loss [6] is used with u-PIT [9] to
learn the network parameters and to solve the permutation problem.

1https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/contrib/
signal/python/ops/reconstruction ops.py



3. EXPERIMENTS

3.1. Experimental Setup

3.1.1. Data

To compare with the SOTA speech separation networks, we used two
benchmark datasets for evaluation – WSJ0-2mix and WSJ0-3mix
[24], which are generated from the Wall Street Journal (WSJ0) [25]
dataset by randomly mixing clean utterances from different speak-
ers at a sampling rate of 8 kHz with SNRs between 0 dB and 5 dB.
The separation datasets consist of 30 hours of training, 10 hours of
validation, and 5 hours of test data from 16 unseen speakers. Both
WSJ0-2mix and WSJ0-3mix have been widely used as the bench-
mark in single-channel speech separation [6–8, 26–29].

3.1.2. Implementation Details

In our implementation, we used the setting of encoder-decoder mod-
ules in [6, 7] and the segmentation module described in [8]. In par-
ticular, we set M = 4, E = 256, and D = 128. For Sandglasset,
we used 6 Sandglasset blocks, i.e., N = 6. In the first Sandglas-
set block, we used an initial segment size K = 256, which would
be shortened/prolonged by a factor of 4 in the first/last three blocks,
as described in Eq. (5-6). Within each Sandglasset block, we used
local Bi-LSTM with 128 hidden units, i.e., H = 128. The global
SAN was set to be 8-head, i.e., J = 8 with a 0.1 dropout rate. For
training, we used Adam [30] optimizer with an initial learning rate
of 0.001 and a decaying rate of 0.98. The optimization was stopped
if no lower validation loss was obtained for 10 consecutive epochs.

3.1.3. Mixing Same-Speaker Utterances as Post Training

By inspecting the poor separation cases of Sandglasset in WSJ0-
2mix, we found that those mixture inputs shared a common char-
acteristic that both speakers have a similar voice timbre, so that the
model may keep both voices in the two output signals. This reveals
that our model’s separation is highly dependent on the voice timbre
of different speakers. We conceived that one of the main reasons is
that mixture inputs with similar voice timbres are rare in the train-
ing set, which makes it hard for our model to learn to differentiate
those similar voices. To alleviate this problem, we designed a sim-
ple, easy-to-implement post training method for Sandglasset. In par-
ticular, after the convergence of the normal training, we expanded
the training set by adding dynamically mixed utterances from the
same speaker in a 1:1 ratio in sample size relative to the original
training data.

3.2. Performance Comparisons

The SISNRi and SDRi performances of Sandglasset in WSJ0-2mix
are reported in Table 1. First of all, for an ablation study on our pro-
posed multi-granularity (MG) strategy, we trained an ablated base-
line system – “Sandglasset (SG)”, in which each Sandglasset block
uses a single-granularity strategy with a fixed segment size (K =
256). Comparing “Sandglasset (SG)” to “Sandglasset (MG)”, we
can see a significant drop in SI-SNRi and SDRi scores if Sand-
glasset was deprived of the multi-granularity mechanism. This as-
serts our initial expectation that multi-granularity can better exploit
SANs for modeling multi-level contexts. For another ablation study,
we trained a Sandglasset without residual connections, denoted by
“Sandglasset (w/o RES)”, which produced a much-degraded perfor-
mance. We also found that by using the simple post training strategy

Table 1: Comparison of performances on the WSJ0-2mix test set.
The models that exploit speaker IDs as additional information for
training and testing are marked with “+ Spk ID”. † denotes our esti-
mated model size based on the authors’ description.

Model Params. SI-SNRi SDRi
BLSTM-TasNet [6] 23.6M 13.2 13.6

Conv-TasNet [7] 8.8M 15.3 15.6
Conv-TasNet + MBT [29] 8.8M 15.5 15.9

FurcaNeXt [28] 51.4M 18.4 -
DPRNN [8] 2.6M 18.8 19.1
DPTNet [12] 2.7M 20.2 20.6

Sandglasset (w/o RES) 2.3M 20.1 20.3
Sandglasset (SG) 2.3M 20.3 20.5
Sandglasset (MG) 2.3M 20.8 21.0

Sandglasset (MG) + PT 2.3M 21.0 21.2
Gated DPRNN + Spk ID [13] 7.5M 20.1 -

Wavesplit + Spk ID [14] †42.5M 21.0 21.2

Table 2: Comparison of performances on the WSJ0-3mix test set.

Model Params. SI-SNRi SDRi
Conv-TasNet [7] 8.8M 12.7 13.1

DPRNN [8] 2.6M 14.7 -
Sandglasset (MG) 2.3M 17.1 17.4

Gated DPRNN + Spk ID [13] 7.5M 16.7 -
Wavesplit + Spk ID [14] †42.5M 17.3 17.6

described in Section 3.1.3, the performance of Sandglasset can be
further improved.

Overall, the proposed Sandglasset has achieved the best separa-
tion performance with parameters as few as 2.3M, which is the light-
est model size that is ever reported for the SS tasks. We would like
to emphasize that, to focus on studying the advantage of the network
architecture only, we purposely avoid using any speaker information
to help further increase the scores of Sandglasset, unlike what has
been done in the two most recent systems “Gated DPRNN + Spk
ID” [13] and “Wavesplit + Spk ID” [14]. Comparing to the strongest
reference model regardless of speaker information, Sandglasset has
attained an absolute improvement of 0.8 dB SI-SNRi. The WSJ0-
3mix result of Sandglasset, as shown in Table 2, also consistently
shows an absolute improvement of 2.4 dB SI-SNRi over the best
reference model with no speaker information.

3.3. Computational Cost Analysis

Moreover, thanks to some coarser-scale global processing, another
merit of Sandglasset is a significant reduction in computational cost,
relative to a model that is comparable in size – DPRNN. In Table 3,
we reported the runtime memory and the floating-point operations
(FLOPs) 2 which indicates the model efficiency for processing each
second of mixture input. Finally, compared to the best performing
DPRNN (i.e., 2-sample window), Sandglasset consumed 58.4% less
memory and 66.0% fewer FLOPs.

4. CONCLUSIONS

This paper proposes a novel sandglass-shape network for time-
domain single-channel speech separation, namely Sandglasset. This

2https://github.com/sovrasov/flops-counter.pytorch



Table 3: Comparison of computational costs.

Model Params. Memory (GB) GFLOPs (109)
DPRNN [8] 2.6M 1.97 84.7
Sandglasset 2.3M 0.82 (↓58.4%) 28.8 (↓66.0%)

advanced network architecture combines the advantages of the self-
attention networks and the proposed multi-granularity mechanism to
hierarchically and progressively model high-level, large-granularity
contexts and low-level, fine-granularity details. In our experiment,
Sandglasset achieved state-of-the-art results on two benchmark
datasets, especially, with the lightest model size that has ever been
reported for SS tasks. Comparing to the previous smallest and
strongest model in literature, our proposed model is also very light
in terms of memory (58.4% less) and computations (66% fewer),
which suggests Sandglasset a more economical and practical model
for industrial deployment.
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