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ABSTRACT

To extract robust deep representations from long sequential model-
ing of speech data, we propose a self-supervised learning approach,
namely Contrastive Separative Coding (CSC). Our key finding is to
learn such representations by separating the target signal from con-
trastive interfering signals. First, a multi-task separative encoder is
built to extract shared separable and discriminative embedding; sec-
ondly, we propose a powerful cross-attention mechanism performed
over speaker representations across various interfering conditions,
allowing the model to focus on and globally aggregate the most crit-
ical information to answer the “query” (current bottom-up embed-
ding) while paying less attention to interfering, noisy, or irrelevant
parts; lastly, we form a new probabilistic contrastive loss which es-
timates and maximizes the mutual information between the repre-
sentations and the global speaker vector. While most prior unsuper-
vised methods have focused on predicting the future, neighboring,
or missing samples, we take a different perspective of predicting the
interfered samples. Moreover, our contrastive separative loss is free
from negative sampling. The experiment demonstrates that our ap-
proach can learn useful representations achieving a strong speaker
verification performance in adverse conditions.

Index Terms— Speaker verification, speech separation, self at-
tention, contrastive loss

1. INTRODUCTION

Learning high-level representations from labeled data has achieved
marvelous successes in modern speech processing. To extract re-
liable speaker representations in realistic situations, however, con-
ventional speaker verification, speaker identification, and speaker
diarization (SV, SI, SD) systems generally require complicated
pipelines [1–3]. One has to prepare three independent models: (i)
a speech activity detection model to generate short speech seg-
ments with no interference or overlapping, (ii) a speaker embedding
extraction model, and (iii) a clustering or a PLDA model includ-
ing covariance matrices is needed to group the short segments to
the same or different speaker. Jointly supervised modeling meth-
ods [4–6] have been studied to alleviate the long preparation process
and take into account the dependencies between these models. More
recently, end-to-end neural speaker diarization [7–9] has been pro-
posed to overcome the situation that the previous systems can not
deal with speaker overlap parts because each time slot is assigned to
one speaker.

Despite the breakthrough seen by these supervised methods,
many challenges remain, such as data robustness, efficiency, and
generalization. To alleviate these issues, improving representation
learning requires features that are less specialized towards solving
a single supervised task. Unsupervised or self-supervised learn-

ing [10–14] is a promising apparatus towards generic and robust
representation learning. A common strategy is to use the conditional
dependency between the features of interest and the same shared
high-level latent information/context. Advanced work in unsuper-
vised or self-supervised learning has successfully used the strategy
to learn deep representations by predicting neighboring or missing
words [15,16], predicting the relative position of image patches [17]
or color from grey-scale [18], or most recently predicting future
frames [12] or contextual information [11].

Classical predictive coding theories in neuroscience suggest that
the brain predicts observations at various levels of abstraction [19,
20]. When one is listening to overlapped speakers, we infer the fea-
tures of interest conditionally dependent on both low-mid levels of
abstraction of the same speaker (e.g., spectrum continuity and struc-
ture, timbre, phoneme, syllable, etc.) and high levels of abstraction
(E.g., speaker characterizations, spatial position, etc.). Inspired by
the above, we hypothesize these different levels of abstraction have
shared bottom features. We propose Contrastive Separative Cod-
ing (CSC) model as the following: first, an encoder compresses the
raw input into a compact latent space of separable and discrimina-
tive embedding shared by various levels of abstraction task (Sec.3,
3.3); secondly, we propose a powerful cross-attention model in this
latent space to model the high-level abstraction of speaker represen-
tations (Sec.3.1); lastly, we form a new probabilistic contrastive loss
which estimates and maximizes the mutual information between the
representations and the global speaker vector (Sec.3.2).

2. RELATED WORK AND OUR CONTRIBUTIONS

The compositional attention networks [21] decomposes machine
reasoning into a series of attention-based reasoning operations that
are directly inferred from the data, without resorting to any strong
supervision. Interaction between its two modalities – visual and
textual, or knowledge base and query – is mediated through soft-
attention only. The soft attention enhances its model’s ability to
perform reasoning operations that pertain to the global aggregation
of information across different regions of the image. Earlier, cross-
stitch strategy [22] has been proposed between text and image, on
which both [21] and our proposed cross-attention approach can be
regarded as new variations. To the best of our knowledge, however,
we are the first to use a cross-attention strategy between high-level
speaker representations and low-level speech features.

Another closely related prior work that does not resort to any
strong supervision is the Contrastive Predictive Coding (CPC) [12],
as shown on the left in Fig. 1. Comparing it to our proposed CSC on
the right, we summarize our key contributions in four folds:
• While most unsupervised prior work, including [12], has focused

on predicting the future, neighboring, or missing samples, our per-
spective is different in that it focuses on interfered samples, i.e.,
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Fig. 1: Left: overview of Contrastive Predictive Coding [12]. Right: our proposed Contrastive Separative Coding.

learning separative representations from observations with various
interference.

• To learn mid-level representations by using the powerful cross-
attention strategy.

• To study the prediction strategy on latent global speaker features,
for the first time at a much higher level of abstraction than the prior
work [10–12, 14, 16]. We consider predicting the “global feature”
that spans various observations more interesting, especially across
various interfering conditions, thus the model needs to infer more
global structure to preserve the latent shared information.

• A novel contrastive separative loss is first used as a bound on mu-
tual information. In contrast to the prior common strategy, our
proposed loss models an inverse conditional dependency between
the features of interest and the shared high-level latent context,
which also holds for estimating the mutual information thanks to
its symmetric property. This makes our conditional predictions
easier to model and free from negative sampling as generally re-
quired in prior work, at the cost of weak supervision about the
shared high-level latent context – here is to know the set of mix-
tures containing signals by the same speaker, e.g., the ones marked
in red in Fig. 1.

3. PROPOSED APPROACH

On the right of Fig. 1 is the architecture of Contrastive Separative
Coding (CSC) model. First, an encoder genc maps the encoded
and segmented input mixture sequences of xti , (i = 1, 2, 3, ...) to
sequences of latent representations Xti . We denote them as 2D
tensors Xi ∈ RD×Si , where D is the feature dimension, Si is
the sequence length. Secondly, task-specific encoders, gspk and
gss, map the shared latent representations Xi to compact latent
spaces of various levels of abstraction tasks, i.e., speaker embed-
ding (Yi ∈ RD×Si ) and speech embedding, respectively. Next,
a powerful cross-attention model gatt in the speaker embedding
space computes the high-level abstraction of speaker representa-
tions that are pooled into Zi ∈ RD . Finally, an autoregressive
model gar summarizes all the past Zi to a global speaker vector
E = gar(Zi≤t) ∈ RD .

3.1. Bottom-up Cross Attention
We cast the query vector onto the latent speaker space via the
cross-attention model Zi = Pooling(gatt(Xi,Yj)). The bottom-up
queries are raised from the shared bottom features X to retrieve the
most relevant speaker-dependent global characteristics from the la-
tent speaker space of Y and filter out non-salient, noisy, or redundant
information. Query(·), Key(·), and Value(·) denote linear transfor-
mation functions, where the corresponding input vectors are linearly
projected along the feature dimension (RD 7→ RD) into query, key,
and value vectors, respectively. Our detailed implementation of
these functions is the same as [23].

Specifically, this is achieved by computing the inner product be-
tween Query(Xi) ∈ RD×Si and Key(Yj) ∈ RD×Sj :

ai,j = softmax(Query(Xi)> · Key(Yj)). (1)

yielding a cross-attention distribution ai,j ∈ RSi×Sj , where Si, Sj
are the sequence lengths of either different observations or the same
observation (Si = Sj , amount to self-attention).

Finally, we compute the sum of Value(Yj) ∈ RD×Sj weighted
by the cross-attention distribution ai,j , and then average over Si seg-
ments, to produce a separative embedding Zi ∈ RD:

Zi =
1

Si

∑
Si

∑
Sj

ai,j · Value(Yj)
>. (2)

3.2. Contrastive Separative Coding Loss
Next, we introduce CSC loss, which takes the following form:

LCSC = −ED

[
log

(
f(Z(nc),E(nc))/

N∑
n=1

f(Z(nc),E(n))

)]
,

(3)

f(Z(nc),E(n)) = exp
(
−α‖Z(nc) − E(n)‖22

)
, (4)

We denote E(n) as the global speaker vector for speaker n out of
the overall N speakers in the training set D and the separative em-
bedding Z(nc) for the c-th separated signal, for c = 1, ..., C, given



that each audio input is a mixture of C sources and the c-th source
is generated by one of the speakers indexed by nc out of the overall
N speakers. We assume that the training set D sufficiently defined
the sample space of their joint distributions. For notational simplic-
ity, we omit the subscript i and use Z to denote Z(nc), E to denote
E(nc) in the following text, unless otherwise specified. First, we
study the relationship between CSC loss and mutual information:

Definition 3.1. Mutual information of the global speaker vector and
the separative embedding is defined as

I(E;Z) = ED
[
log

p(E,Z)
p(E)p(Z)

]
. (5)

Then, we make the following assumptions:

Assumption 3.1. With a suitable mathematical form for function
f(·), we can model a density ratio defined as

f(Z,E) ∝ p(E|Z)
p(E)

=
p(Z|E)
p(Z)

. (6)

Assumption 3.2. Considering the case of n 6= nc, since the sepa-
rative embedding Z(nc) does not belong to speaker n, E(n) should
not be dependent on Z(nc). Therefore, it is sensible to assume

p(E(n)|Z(nc)) = p(E(n)), ∀ n 6= nc. (7)

Based on these assumptions, we can deduce the claims:

Claim 3.1. Minimizing CSC loss results in maximizing mutual in-
formation between global speaker vector and the separative embed-
ding, since CSC loss LCSC serves as an upper bound of the negative
mutual information −I(E;Z).

Proof. To prove this claim, we substitute Eq. (6) into Eq. (3) and
obtain the following results:

LCSC = −ED

log
 p(E|Z)

p(E)∑N
n=1

p(E(n)|Z)

p(E(n))


= ED

log
1 +

∑
n 6=nc

p(E(n)|Z)

p(E(n))

p(E|Z)
p(E)


= ED

[
log

(
1 + (N − 1)

p(E)
p(E|Z)

)]
≥ ED

[
log

(
N

p(E)
p(E|Z)

)]
= logN − ED

[
log

(
p(E,Z)
p(E)p(Z)

)]
= logN − I(E;Z)

This proves that LCSC is an upper bound of −I(E;Z).

Next, we study our proposed form of f(Z,E) and its associated
properties when minimizing CSC loss.

Claim 3.2. Applying our proposed form of f(Z,E) to LCSC corre-
sponds to treating each global speaker vector E as a cluster centroid
(Gaussian mean) of different separative embedding vectors Z gen-
erated by the same speaker ij with a learnable parameter α > 0
controlling the cluster size (Gaussian variance):

p(Z|E) = N (E, (2α)−1I) (8)

p(Z) = N (0, (2α)−1I). (9)

Proof. Considering a density ratio f̂ :

f̂(Z,E) ∝ N (E, (2α)−1I)

N (0, (2α)−1I)
=

exp
(
−1/2 · (2α)‖Z− E‖22

)
exp (−1/2 · (2α)‖Z‖22)

= exp
(
−α‖Z− E‖22 + α‖Z‖22

)
Now, we evaluate LCSC with the above-defined f̂(Z,E):

LCSC = −ED

[
log

(
exp

(
−α‖Z− E‖22 + α‖Z‖22

)∑N
n=1 exp

(
−α‖Z− E(n)‖22 + α‖Z‖22

))]

= −ED

[
log

(
exp

(
−α‖Z− E‖22

)∑N
n=1 exp

(
−α‖Z− E(n)‖22

))]

= −ED

[
log

(
f(Z,E)∑N

n=1 f(Z,E
(n))

)]

Claim 3.3. With our proposed form of f(Z,E), minimizing CSC
loss results in minimizing the distance between the separative em-
bedding Z and the corresponding global speaker vector E mean-
while maximizing the distance between other global speaker vectors
{E(n)|∀n 6= nc}.

Proof. By substituting Eq. (4) into Eq. (3), we have

LCSC = −ED

[
log

(
exp

(
−α‖Z− E‖22

)∑N
n=1 exp

(
−α‖Z− E(n)‖22

))]

= ED

[
α‖Z− E‖22 + log

(
N∑
n=1

exp
(
−α‖Z− E(n)‖22

))]
,

which consists of two terms: (1) the first term is a scaled Euclidean
distance with a scalar α > 0, which minimizes the Euclidean dis-
tance between any global speaker vector and its corresponding sep-
arative embedding. (2) the second term is a logarithmic sum of ex-
ponentials, with a negative sign on the Euclidean distance, which
pulls the separative embedding away from all other global speaker
vectors.

Besides, we can also relate the proposed CSC loss with the ex-
isting prior work.

Claim 3.4. CSC loss can be seen as a rescaled l-2 normalization of
InfoNCE loss proposed in [12].

Proof. The InfoNCE loss has a different form, fInfoNCE(Z,E) =
exp

(
Z>E

)
, than our proposed f(Z,E), we get

f(Z,E) = exp
(
−α‖Z− E‖22

)
=

exp
(
2αZ>E

)
exp (α‖Z‖22 + α‖E‖22)

=
fInfoNCE(Z,E)2α

exp (α‖Z‖22 + α‖E‖22)

3.3. Permutation Invariant Training Speedup
As mentioned in Sec.3, the shared bottom features are jointly learned
towards another level of abstraction tasks, i.e., speech separation
(SS) to reconstruct the source signals. The joint training loss is
LSI-SNR+λ(LCSC+Lreg), where LSI-SNR is the scale-invariant signal-
to-noise ratio [24] loss for training gss, while LCSC + Lreg is for
training gspk, where Lreg is a regularization loss that avoids collaps-
ing to a trivial solution of all zeros, and λ is a weighting factor for
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(c) A male interfered by another
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(d) A female interfered by another

Fig. 2: (a) ROC curves by the various models, (b-d)Selective bottom-up cross attentions automatically learned based on mixture observations

the joint loss for training genc. Noted that for computing either the
speech loss LSI-SNR or the speaker loss in LCSC, we need to assign
the correct target source. During training, we use the utterance-level
permutation invariant training (u-PIT) method [25] to solve the per-
mutation issue. We start with using u-PIT to calculate the speech
loss LSI-SNR, which expends heavy computation at reconstructing ev-
ery detail of the signals, while often ignoring the global context. We
use the separative embedding to modulate the signal reconstruction
in the speech-stimuli space by a FiLM [26] method so that the per-
mutation solution for one task also applies to the other task. We
switch to using u-PIT to calculate the speaker loss LCSC instead after
an empirical number of epochs, thereafter, the speech reconstruction
becomes PIT-free and achieves a notable training acceleration.

4. EXPERIMENTS

4.1. Datasets and Model Setup
We firstly evaluated and compared the embedding learnt by CPC
[12] versus our proposed CSC on a small benchmark dataset WSJ0-
2mix [27] for a separation task. The separation SDR result by CPC
significantly decreased by an absolute 2.8dB comparing to CSC, and
therefore we continued with CSC to compare with the traditional
SV methods on a larger-scale dataset, Libri-2mix, where we split the
Librispeech [28] into (1) a training set containing 12055 utterances
drawn from 2411 speakers, i.e., 5 utterances per speaker1, (2) a val-
idation set containing another 7233 utterances drawn from the same
2411 speakers, and (3) a test set containing 4380 utterances evenly
drawn from 73 speakers.

To built our proposed model CSC, we inherited from DPRNN’s
setup [30] for the raw waveform encoding, segmentation, and decod-
ing for the SS task. Then, we used 4, 2, and 2 GALR [31] blocks
for genc, gspk, and gss, respectively. Inherited from the settings
in [30, 31], a 5ms (8-sample) window length and D = 128,K =
128, Q = 16 were used. We empirically set λ = 10. For each train-
ing epoch, mixture signals of 4s were generated online by mixing
each clean utterance with another random utterance in the training
set in a uniform SIR of 0 − 5dB. For testing, mixture signals were
pre-mixed in the same SIR range.

For reference systems, we built a SincNet-based SV model [3]
SincNet, for it was a conventional speaker-vector-based neural
network achieving reproducible and strong performance on Lib-
rispeech. Moreover, for the ablation study, we built another refer-
ence system CE by using 6 GALR blocks for gspk (note that here
genc could merge into gspk as they no longer had the distinction and
that the overall model size kept unchanged for the speaker task) and

1This limitation makes our corpus much more challenging than the lately
released LibriMix [29], meanwhile, more realistic as it was often hard to
collect numerous utterances from the user in real industrial applications.

ablated the proposed method by removing the gatt and gss models
from the graph and replacing the proposed loss with the supervised
Cross-Entropy (CE) loss. All the models were implemented and
trained using PyTorch.

4.2. Results and Discussion
To evaluate the discriminative power of the learned representations,
Fig.2a shows the Equal Error Rate (EER) and Area Under Curve
(AUC) as the performance metrics on the SV task. “[Model] mix”,
“ enh”, and “ clean” indicate systems training and test on mixture
data, enhanced/separated data (by pre-processing the mixture using
a SOTA SS system [31]), and clean data (which we used as a high-
bar reference), respectively. Our proposed system outperforms all
reference models by a large margin, suggesting our learned repre-
sentations have strong discriminative power and can achieve high
performance in difficult conditions.

Moreover, as shown in Fig. 2b-2d, the proposed cross-attention
mechanism improves the model transparency, since we can easily
interpret the attended content, that at any given time segment, it is
generally the most salient source in the mixture that triggers the cor-
responding cross-attention curve. In places where both sources are
soft, all cross-attention curves are low to ignore the possibly noisy
and unreliable parts. Also, cross-attention curves rarely raise concur-
rently. These are all surprisingly similar to a human’s auditory se-
lective attention [32–35] in behavioral and cognitive neurosciences,
i.e., a listener can not attend to both two concurrent speech streams,
while he usually selects the attended speech and ignores other sounds
in a complex auditory scene. Note that this selective cross attention
property of our model was automatically learned from the mixture
without resorting to any regularization or strong supervision.

5. CONCLUSIONS

This paper introduces a novel Contrastive Separative Coding method
to draw useful representations directly from observations in complex
auditory scenarios. It is helpful to learn low-level shared representa-
tions towards various levels of separative task. In-depth theoretical
studies are provided on the proposed CSC loss regarding the mutual
information estimation and maximization, as well as its connection
to the existing prior work. The proposed cross-attention mechanism
is shown effective in extracting the global aggregation of information
across different corrupted observations in various interfering condi-
tions. The learned representation have strong discriminability that its
performance is even approaching the clean-condition performance
of a conventional fully-supervised SV system. Another interesting
observation is the automatically learned bottom-up cross attentions
that are very similar to an auditory selective attention, and we will
explore this merit on speaker diarization in our future work.
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