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ABSTRACT

Recent research on the time-domain audio separation networks (Tas-
Nets) has brought great success to speech separation. Neverthe-
less, conventional TasNets struggle to satisfy the memory and la-
tency constraints in industrial applications. In this regard, we de-
sign a low-cost high-performance architecture, namely, globally at-
tentive locally recurrent (GALR) network. Alike the dual-path RNN
(DPRNN), we first split a feature sequence into 2D segments and
then process the sequence along both the intra- and inter-segment di-
mensions. Our main innovation lies in that, on top of features recur-
rently processed along the inter-segment dimensions, GALR applies
a self-attention mechanism to the sequence along the inter-segment
dimension, which aggregates context-aware information and also en-
ables parallelization. Our experiments suggest that GALR is a no-
tably more effective network than the prior work. On one hand, with
only 1.5M parameters, it has achieved comparable separation perfor-
mance at a much lower cost with 36.1% less runtime memory and
49.4% fewer computational operations, relative to the DPRNN. On
the other hand, in a comparable model size with DPRNN, GALR
has consistently outperformed DPRNN in three datasets, in partic-
ular, with a substantial margin of 2.4dB absolute improvement of
SI-SNRi in the benchmark WSJ0-2mix task.

Index Terms— speech separation, TasNet, low-cost, multi-head
attention

1. INTRODUCTION

Audio separation is a fundamental problem in signal processing,
and the most typical problem is called “cocktail party problem” [1]
including multi-talker speech separation, overlapped speech-music
separation, etc. Recent advances in deep learning models [2, 3, 4, 5]
have drastically advanced state-of-the-art speech separation perfor-
mances on several benchmark datasets. Currently, one outstand-
ing category of the best-performing solutions is based on the time-
domain audio separation network (TasNet) [6], which takes mixture
waveforms as inputs and directly reconstruct sources by computing
time-domain loss with permutation invariant training (PIT) [7, 8].
In particular, there were several types of TasNets: the initially pro-
posed bi-directional long short-term memory (Bi-LSTM) based Tas-
Net [6], the time convolutional network (TCN) based Conv-TasNet
[9, 10], the dual-path recurrent neural network (DPRNN) [2] and the
recently proposed dual-path Transformer network (DPTNet) [11].

These TasNet-based prior work has proven that a smaller win-
dow size improves the separation performance at the cost of a signif-
icantly longer 1-D feature sequence [2, 11]. To provide a more con-
crete illustration, we take a 4-second 16Hz sample rate waveform
input as an example in Fig. 1, where the resultant feature sequence
that a TasNet (with a window size of 2 samples and hop size of 1

sample) needs to model would be as long as 64000. Learning such
long-term sequential dependency poses special challenges to vari-
ous conventional sequential modeling networks, including attention
models[12, 13], CNNs [14, 10], and RNNs (e.g., LSTMs[15] and
GRUs [16]), each with respective difficulties as discussed below.

Attention models [17] has superiority in learning context-aware
long-term dependencies, e.g., in BERT [18] for natural language pro-
cessing tasks. Most recently, a series of research has also attempted
to apply self-attention in speech signal processing, but generally to
remarkably shorter feature sequences than a raw input, e.g., frame-
level acoustic features for speech recognition [19, 20, 21, 22], layer
features in a U-Net architecture [12] or short-time Fourier transform
(STFT) features for speech enhancement [13]. Nevertheless, atten-
tion models have been hardly applied to time-domain source separa-
tion tasks as we discussed above because its complexity and mem-
ory consumption per layer is quadratic to the sequence length and
become unacceptable for very long sequential modeling. 1-D CNNs
with fixed receptive fields that are smaller than the very long se-
quence length, unlike RNNs that have dynamic receptive fields, are
not able to fully utilize the sequence-level dependency [9]. RNNs
are also limited by its nature of recursively processing and memo-
rizing context [23, 24, 25]. To mitigate the long sequence modeling
problem for RNNs, Luo et al. [2] introduced DPRNN, in which the
long signal sequence is divided into shorter segments and interleave
two RNNs, an inter-segment RNN and an inter-segment RNN, for
local and global modeling, respectively.

To provide a better panorama about how a sequential context
a TasNet (e.g., DPRNN) is dealing with looks, we plot the 4s raw
waveform mixture in the upper in Fig. 1, where one of the two over-
lapping utterances, saying “Settle, no matter how, but settle”, has
been marked in red. Under the dual-path setting, it is segmented
into 512 segments, each with length 250. The lower plot zooms in
on the 385th segment to show the details inside a segment around
the lateral phoneme of /l/ in the second “settle”. As we can see,
high temporal correlation, acoustic signal structure, and continuities
occur in inter-segment sequences, whilst strong discontinuities oc-
cur in inter-segment sequences. As revealed by Khandelwal et al.
[23], RNNs are far more sensitive to the nearby elements than to
the distant ones, and the model is capable of using about 200 to-
kens of context on average, but sharply distinguishes nearby con-
text (recent 50 tokens) from the distant history. This suggests that
RNNs are ideally suited for inter-segment modeling, but not nec-
essarily so for inter-segment modeling. Moreover, Ravanelli et al.
[24] discovered that RNNs reset the stored memory to avoid bias to-
wards an “unrelated” history. However, unlike language modeling
where information could be safely discarded when moving from one
text to another semantically unrelated text, we argue that for specific
tasks such as audio separation, faraway memory could potentially
be important. For example, as shown in Fig. 1, the first “settle”
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Fig. 1: Upper: a 4s raw waveform mixture of two overlapping utter-
ances; Lower: zooming in on the 385th segment around the lateral
phoneme of /l/.

(20th- 65th segment), which is very distant from the second “settle”
(360th- 405th segment), could be more useful than nearby elements.
In contrast, one strength of attention mechanisms over RNNs lies in
a fully connected sequence processing strategy, where every element
is connected to other elements in a sequence via a direct path without
any recursively processing, memorizing reset, or update mechanisms
like RNNs. Given the above example, for the second “settle”, a self-
attention model would have readily placed more importance to the
first “settle”, despite the faraway context beyond 200 segments.

Motivated by the above observation, our work revises TasNets
and DPRNN to better address long-range context modeling for au-
dio separation, leading to a lower-cost, higher-performance struc-
ture called globally attentive locally recurrent (GALR) network. We
resort to the self-attention mechanism [17] for inter-segment com-
putation to model context-aware global dependencies. Meanwhile,
we keep using RNNs for modeling local dependencies at the lower
inter-segment context level, e.g., signal continuity, signal structure,
etc, which are inherently important for waveform reconstruction.

The contribution of this paper is four-fold:

• To the best of our knowledge, this is the first work that jointly
leverages the attention and recurrent mechanisms in an alternate
and iterative manner, and most importantly, allows the system to
take advantage of both techniques, which are complementary at
modeling global long-range context and local detail dependencies,
respectively.

• Our work elegantly solves the critical bottleneck of self-attention
networks due to unacceptable computational and memory cost for
modeling very long sequences, as we can control the global se-
quence length via the dual-path structure [2]. Related similar work
includes R-Transformer [25] and DPTNet [11]. Nevertheless, R-
Transformer has the attention mechanism at the middle-level di-
rectly applied to the whole sequence, thus its computational cost is
still quadratic to the sequence length, which hinders its application
to TasNet; DPTNet also applied a dual-path setting like DPRNN
to a Transformer-based architecture, but both inter-segment and
inter-segment sequences are processed by a combination of at-
tention model and RNN, leading to additional computational cost
much heavier than DPRNN and our proposed GALR, which we
will discuss in more details in Section 3.2.4.

• The proposed GALR model has a significantly lower cost with
42.3% reduction in model-size and with a 36.1% reduction in run-
time memory cost and a 49.4% reduction in computational opera-

tions, while achieving comparable or better performance compar-
ing to DPRNN. Moreover, unlike RNNs and DPRNN, the global
attentive structure can further reduce training and inference time
via parallelization, as the attention can be computed for all seg-
ments in parallel and allows parallel computation for aggregating
information across segments over long audio sequences.

• Finally, results show consistently higher performance over DPRNN
in terms of SI-SNRi and SDRi across three different datasets,
while still maintaining a lower cost.

2. MODEL DESIGN

This section presents our proposed globally attentive locally recur-
rent (GALR) network. Fig. 2 shows the inner machinery of GALR,
of which the core processing component is a stack of GALR blocks.
Each GALR block contains two modeling perspectives. The first
modeling perspective is responsible for modeling the local structures
of input signals recurrently; the second modeling perspective aims
at capturing global dependencies with the multi-head self-attention
mechanism. Next, we describe each part in detail.

2.1. Encoding Raw Signals

2.1.1. Encoder

In a TasNet-based separation system, an input mixture signal is rep-
resented as I half-overlapping frames, denoted by x1, ...,xI ∈ RM ,
where M denotes the window length. Analogous to the short-time
Fourier transform (STFT), we non-linearly transform each frame xi
into a D-dimensional feature vector x̃i ∈ RD using a 1D gated con-
volutional layer:

x̃i = ReLU(U ∗ xi), (1)

where ∗ denotes the 1D convolution operation, U ∈ RD×M con-
tains D vectors (encoder basis functions) with length M each, and
ReLU(·) is the rectified linear unit used in [6, 2, 10] to ensure the
non-negativity.

2.1.2. Segmentation

Given an encoded signal input X̃ ∈ RD×I , the segmentation
module splits X̃ into S half-overlapping segments each of length
K. The first and last segments are padded with zeros to cre-
ate S = d2I/Ke + 1 equal-size segments: Ss ∈ RD×K for
s = 1, ..., S. These segments are packed into a 3D tensor, denoted
by T ∈ RD×S×K . Note that the size of each segment K is a
hyperparameter that affects the number of segments and can be used
to control the scale of the locality.

2.2. GALR Blocks

The input 3D tensor T is then passed to a stack of N GALR blocks,
as shown in Fig. 2, which is designed to decouple the mixture sig-
nal by alternating local and global sequence modeling. Each GALR
block returns a 3D tensor with the same dimensionality as its input.
We denote the input for block n = 1, ..., N as T(n) ∈ RD×S×K ,
where T(1) = T. As shown on the right of Fig. 2, a GALR block
is composed of two phases of computation, a locally recurrent layer
and a globally attentive layer, respectively corresponding to inter-
segment processing and inter-segment processing. Each of which is
described in detail below.
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Fig. 2: Left: the overall architecture of our GALR network. Right: detailed illustration about how the intra- and inter-segment sequences are
processed in the locally recurrent layer (lower right) and the globally attentive layer (upper right) inside each GALR block, respectively.

2.2.1. Locally Recurrent Model

A recurrent model is adopted to model the local information of the
input sequence upon segmentation. To model such short-term de-
pendencies within each segment, we employ a bi-directional LSTM
of H hidden nodes:

L(n) =
[
R(n)f

(n)
Bi-LSTM

(
T(n)[:, s, :]

)
+ Y(n), s = 1, ..., S

]
, (2)

where R(n) ∈ RD×2H and Y(n) ∈ RD×1 form a linear layer,
L(n) ∈ RD×S×K is the output of the Bi-LSTM f

(n)
Bi-LSTM(·), and

T(n)[:, s, :] ∈ RD×K refers to the local sequence within the sth seg-
ment. The output of this locally recurrent model then goes through
a layer normalization operation LN(·) with a residual connection to
the block’s input, which in practice is critical for model regulariza-
tion and training acceleration [2]:

L̂(n) = LN(L(n)) + T(n). (3)

2.2.2. Globally Attentive Model

We build a globally attentive model on top of the locally recurrent
model to capture the long-term dependencies. Recent works in the
speech community [19, 26, 27] have unveiled the extraordinary per-
formance of attention mechanisms in learning long-term global de-
pendencies [17]. Here in our case, the multi-head attention mecha-
nism especially becomes the perfect fit due to three reasons. Firstly,
the inherent computational burden of attention models becomes less-
problematic since we now can control the sequence length by chang-
ing the window length of segmentation. Secondly, global dependen-
cies across segments are directly modeled without needing to memo-
rize segments one by one as in RNNs. Thirdly, given that the input is
composed of different sources, it is sensible to use multiple attention
schemes (a.k.a. heads) on the whole sequence.

Before applying the attention mechanism, the output of locally
recurrent model first goes through the following:

G(n) = LND(L̂(n)) + P (4)

where LND(·) denotes the layer normalization applied only along
the feature dimension D, P denotes the positional encoding ma-
trix introduced in [17]. For global sequence modeling, we consider
the sequence of frames across all segments, i.e., G(n)

k , [G(n)[:
, s, k], s = 1, ..., S]. In order to create J heads, we linearly map
G

(n)
k into J different forms of query, key, and value matrices:

Q
(n)
k,j = W

(n)
query,j(W

(n)
queryG

(n)
k + b(n)

query) (5)

K
(n)
k,j = W

(n)
key,j(W

(n)
key G

(n)
k + b

(n)
key ) (6)

V
(n)
k,j = W

(n)
value,j(W

(n)
valueG

(n)
k + b

(n)
value) (7)

for k = 1, ...,K, j = 1, ..., J . , where W
(n)
query, W(n)

key , W(n)
value ∈

RD×D , b(n)
query, b(n)

key , b(n)
value ∈ RD×1 and W

(n)
query,j , W

(n)
key,j , W

(n)
value,j ∈

RD/J×D . Note that the attention parameters are not dependent on k,
which means that we tie the attention weights for all K sequences,
i.e, [G

(n)
k , k = 1, ...,K]. Tying weights is sensible here because the

cross-segment sequences formed within a relatively small segment
size ought to have very high correlations.

Given the query, key, and value inputs, we then compute the
scaled dot-product attention following [17] in J heads:

A
(n)
k,j = Softmax

Q
(n)
k,j

>
K

(n)
k,j√

D/J

V
(n)
k,j . (8)

Next, the attention matrices computed at different heads are
combined using an affine transformation after concatenating the
matrices:

A
(n)
k = W

(n)
attn Concat

(
A

(n)
k,1 , ...,A

(n)
k,J

)
, (9)

where W
(n)
attn ∈ RD×D is the weight matrix for the heads. The

attention outputs are then concatenated back to a 3D tensor, i.e,



A(n) = [A
(n)
k , k = 1, ...,K]. Given the attention output, we em-

ploy a sub-layer connection with reference to the well-known Trans-
former model [17] given by

Ĝ(n) = LN(G(n) + Dropout(A(n))), (10)

where Dropout(·) denotes the dropout regularization [28] operation.
Finally, the GALR block outputs a residual sum between the local
model output and global model output:

T(n+1) = Ĝ(n) + L̂(n), (11)

which defines a recurrence relation between N GALR blocks.

2.2.3. Low-dimension Segment Representation

Note that the attention mechanism is repeated K times in Eq.
(8-9), we observe that our globally attentive model can use a low-
dimension trick to reduce memory and floating-point operations,
while maintaining the performance. Due to high correlations be-
tween the cross-segment sequences, we indeed can approximate the
global dependencies with a down-sampled number of sequences.
In this regard, we employ two affine transformations Cmap(·) and
Cinv(·) for mapping K dimensions into Q dimensions and inversely
mapping Q dimensions back to K dimensions, respectively, where
Q << K. Mathematically, we only need to re-write Eq. (4) and Eq.
(11) as

G(n) = LND(Cmap(L̂
(n))) + P, (12)

T(n+1) = Cinv(G
(n)) + L̂(n), (13)

where Cmap(·) and Cinv(·) contain affine mapping parameters in
shapes Q× (K + 1) and K × (Q+ 1), respectively.

2.3. Signals Reconstruction

2.3.1. Mask Estimation

After N consecutive GALR blocks, we obtain a representation of
the mixture signal that facilitates the separation of C sources. We
then use a 2D convolutional layer to transform this 3D representation
into C 3D tensors. Then, we transform each of the C 3D tensors
back to a matrix Sc ∈ RD×L for c = 1, ..., C by applying the
OverlapAdd method described in [2]. After that, we have a beam-
forming procedure [29] that applies two 1D gated convolution layers
to each of the C matrices:

Ŝc = tanh(Utanh ∗ Sc)� σ(Usigmoid ∗ Sc), (14)

where � denotes element-wise multiplication, σ(·) is the Sigmoid
function, and Utanh ∈ RD×D and Usigmoid ∈ RD×D are two param-
eter matrices in the 1D gated convolution. The Tanh and Sigmoid
functions here act as the beam-forming filters.

To produce a mask matrix for each source, the final step is to
employ a resilient linear (ReLU) mask function

Mc = ReLU(Urelu ∗ Ŝc), (15)

where Urelu ∈ RD×D is a 1D convolution for learning mask.

2.3.2. Decoder for Waveform Reconstruction

The cth estimated mask is applied back to the initially encoded mix-
ture X̃ = [x̃1, ..., x̃L] to reconstruct source c:

ŝc = OverlapAdd(B(X̃�Mc)), (16)

where B ∈ RM×D is a matrix containing the basis signals with each
column corresponding to a 1D filter.

2.4. Permutation Invariant Training

In a standard training framework, given a speech separation model
fθ with a set of parameters denoted by θ, a loss functionL(fθ(x),y)
is used to penalize the divergence between the predicted outputs
fθ(x) = {ŝ1, ..., ŝC} and the clean sources y = {s1, ..., sC}. As
an end-to-end network, our proposed GALR model outputs wave-
forms of the estimated clean signals so that we can directly use the
scale-invariant source-to-noise ratio (SI-SNR) [6] as our maximiza-
tion objection with permutation invariant training (PIT) [7, 8]:

LSI-SNR(fθ(x),y) = −10 log10

‖Πs(ŝ)‖22
‖ŝ−Πs(ŝ)‖22

, (17)

where Πa(b) = a>b
‖a‖22

a is the projection of b onto a. SI-SNR has
also been used in many end-to-end separation models [6, 10, 30, 2].

3. EVALUATION AND ANALYSIS

3.1. Experimental Setup

3.1.1. Data Preparation

We used three datasets for our experiments: (1) WSJ0-2mix, a two-
speaker speech dataset [31, 32] that consists of 30 hours of train-
ing, 10 hours of validation, and 5 hours of evaluation data and is
widely used as the benchmark in monaural speech separation [2,
3, 6, 10, 33, 34, 35], (2) Libri-2mix, a larger two-speaker audio
mixture dataset generated from a publicly available English speech
corpus Librispeech [36] that contains 982.1 hours of speech from
2484 speakers, and (3) WSJ0-music, a speech-music mixture audio
dataset generated in [35]. All mixture audios were simulated by ran-
domly combining utterances from different speakers or music clips
at a sampling rate of 8 kHz with SNRs between 0 dB and 5 dB.

3.1.2. Model Setup

In our implementation, we used the setting of encoder-decoder mod-
ules in [6, 10] and the segmentation module described in [2]. In the
middle part of the separation network, 6 consecutive blocks were
used to model local and global sequences, i.e., N = 6. We fixed the
number of hidden nodes (H) in Bi-LSTM to 128 as in [2]. The multi-
head attention based global model was made of 8 heads, i.e., J = 8.
In each attention layer, the dropout rate was set to 0.1. Regarding
other model hyperparameters, we varied the number of filters (D),
the window length (M ), and the segment size (K) as shown in Ta-
ble 3. Notably, when we set D = 64 as in [6, 10] the model size
of GALR is much smaller than that in the previous works, there-
fore, we also tried D = 128 to obtain a comparable model size with
DPRNN. Meanwhile, we implemented the most recently proposed
DPTNet [11] as another reference.

It is worthwhile to explain why we omitted the configuration of
M = 2 and K = 250, which corresponds to the highest SI-SNRi
score in [2]. Although the authors in [2] reported that setting shorter
window length leads to better SI-SNRi performance, the associated
computational burden was not disclosed. Given a limited GPU mem-
ory, halving the window length resorts to halving the batch size and
doubling the training time. We tried to run the highest scores un-
der the setting of M = 2 for both DPRNN and GALR. However,
building such systems in a small dataset like WSJ0-2mix costs more
than ten days of training. For a realistic industrial development, we
generally need to tackle 10-100 times larger datasets. Therefore, the
corresponding training efficiency is unacceptable for most realistic



Table 1: Comparison of dual-path processing time complexities for different block types.

Block Local-path Complexity Global-path Complexity Maximum Path Length [17]
DPTNet [11] O(KSH2 +K2SD) O(KSH2 +KS2D) O(S +K)
DPRNN [2] O(KSH2) O(KSH2) O(S +K)

GALR O(KSH2) O(QS2D) O(K)

scenarios, not to mention that the high latency at inference time is
also problematic for system deployment.

3.1.3. Training Details

All the models were trained on 8 NVIDIA Tesla M40 GPU devices
using PyTorch [37] for fair comparisons. We found that the perfor-
mances of all separation models deteriorated as we used 8 GPUs in
place of 1 GPU. A similar observation has been obtained in [38, 39],
where this multi-GPU training approach is termed model averaging.
Note that it is impractical to use a single GPU for model training with
its unacceptably long training time. For a fair part-to-part compar-
ison, we report the performances of GALR under the same 8-GPU
training condition, though the SI-SNRi can be further improved in
the case of using fewer GPUs.

For the benchmark WSJ0-2mix separation task, we referred to
the training protocol in [2], where clipped 4-second waveforms were
used for permutation invariant training [7] to minimize pairwise SI-
SNR loss [6]. Concerning optimization, we used Adam [40] op-
timizer with an initial learning rate of 1e−3 and a weight decay-
ing rate of 1e−6. The learning rate was exponentially decayed at
a rate of 0.96 for every two epochs. The training was considered
converged when no lower validation loss can be observed in 10 con-
secutive epochs. A gradient clipping method was used to ensure the
maximum l2-norm of each gradient is less than 5. All models were
assessed in terms of SI-SNRi and SDRi [41].

3.2. Performance Analysis

3.2.1. Investigation of GALR Optimality

Table 2: SI-SNRi results of WSJ0-2mix when permuting Bi-LSTM
and attention model in local and global modeling

Approach Local Bi-LSTM Local Attention
Global Bi-LSTM 15.9 12.3
Global Attention 17.0 14.6

First and foremost, we experimented on WSJ0-2mix to validate
our hypothesis that the proposed GALR architecture is the optimal
choice amongst while permuting recurrent and attention models for
local and global sequence modeling. In this experiment, we chose
the bi-directional LSTM as a representative recurrent model. As
shown in Table 2, we obtained 4 distinctive SI-SNRi scores from
4 kinds of TasNet systems. Interestingly, we found two consistent
patterns: (1) in local modeling, the recurrent model performed bet-
ter than the attention model; (2) in global modeling, the attention
model performed better than the recurrent model. Overall, the pro-
posed GALR architecture (bottom-left) gave the best performance
among the four architectures, which matches our expectations.

3.2.2. Time Complexity Analysis

Next, we compared the algorithmic complexities of all three models
in Table 1, where we reported dual-path processing complexities and

the maximum path length (MPL) [17] that was needed to connect
any two positions in the signal sequence in Big-O notation. Consid-
ering the global-path processing complexity, the cost of DPTNet was
about the sum of the costs of both DPRNN and GALR. Notably, for
very long input sequences, e.g., in the case of small window length,
we needed to use a larger K to improve the computational perfor-
mance of both models. By introducing low-dimensional mapping
with Q << K, we found that GALR could significantly relieve the
computational burden carried by a large K, as reported in terms of
actual FLOPs in Table 3. Besides, with regard to MPL, amongst
the three models, only GALR managed to connect all positions with
O(K), whereas both DPRNN and DPTNet required O(S +K) se-
quential operations. As discussed in [42], the shorter the MPL, the
easier it was to learn long-term dependencies, which echoed the the-
oretical advantage of GALR.

3.2.3. Visualizing Global Attention with Multiple Heads

head 1
head 2

Fig. 3: An example given by a GALR model trained on WSJ0-2mix.
The clean speech signals unseen by the model are shown in red and
blue. The two graphs above the signals denotes the softmax values
of two selected heads attending on the target segment in green frame.

We were also interested in understanding how the multi-head
self-attention works in speech separation. To reason about the phys-
ical meaning of our global attention mechanism, we examined the
values of the softmax matrices defined in Eq. 8 computed in dif-
ferent heads. The softmax values were plotted against the time axis
with respect to the source signals, as shown in Fig. 3. Interestingly,
we observed two heads where the attention values were related to
the energies of the two clean speeches. This explained how multi-
head self-attention mechanism worked in GALR – the attention ma-
trices of different heads were combined over stacks of GALR blocks
to output an easily separable representation for the mixture signal.
This attention behavior was also mimicking how humans conceptu-
ally following the speech of one talker with regards to its volume.

3.2.4. Performances in Benchmark WSJ0-2mix

As for the architecture for TasNet, we compared the result of our
GALR model to the state-of-the-art DPRNN [2] and DPTNet [11].
Considering only the lightest model with M = 16, we found that
DPTNet costs 152% more time and 225% more memory than our
proposed GALR. Considering this remarkable surge of memory con-
sumption, we noted that DPTNet might be not practically prefer-
able for most realistic industrial tasks; therefore we only compared



Table 3: Performances of DPRNN and our proposed GALR in WSJ0-2mix test set with different configurations.

TasNet D M K Q Size SI-SNRi SDRi Runtime Memory GFLOPs
DPTNet [11] 64 16 100 - 2.8M 15.5 15.7 419 MiB 12.6

DPRNN [2]
64 16 100

- 2.6M
15.9 16.2 231 MiB 10.7

64 8 150 17.0 17.3 456 MiB 22.2
64 4 200 17.9 18.1 929 MiB 42.3

GALR

64 16 100 32
1.5M

16.2 16.5 161 MiB 5.6
64 8 150 16 17.1 17.4 309 MiB 11.5
64 4 200 8 17.7 17.9 594 MiB 21.4

128 16 100 32
2.3M

17.0 17.3 186 MiB 8.3
128 8 150 16 18.7 18.9 363 MiB 16.5
128 4 200 8 20.3 20.5 730 MiB 30.8

GALR with DPRNN in the following tasks. We replicated the ex-
periment in [2] with the same configurations of window length and
segment size. The results are shown in Table 3. Besides the standard
separation measure SI-SNRi, we also analyzed the runtime cost of
each model for processing a 1s mixture input in terms of memory
measured in GPU and floating-point operations (FLOPs) approxi-
mated with a third-party module,1 which represents the model effi-
ciency. On the one hand, the GALR with a model size comparable
to DPRNN consistently gave superior SI-SNRi performances over
DPRNN under the same configurations of window length and seg-
ment size. On the other hand, the smaller GALR attained compa-
rable or better separation performances while requiring only 57.3%
parameters and reducing up to 36.1% runtime memory and 49.4%
computational operations.

3.2.5. Performances in Large-scale Libri-2mix

Table 4: Performances of DPRNN and our proposed GALR in Libri-
2mix

TasNet Size SI-SNRi SDRi
DPRNN [2] 2.6M 12.0 12.5

GALR 2.3M 12.2 12.7

To validate the consistency of GALR’s improvements over
DPRNN, we experimented on a larger dataset Libri-2mix. In Libri-
2mix, we split the Librispeech [36] corpus into (1) a training set
containing 12055 utterances (5 utterances per speaker) drawn from
2411 speakers, (2) a validation set containing another 7233 utter-
ances (5 utterances per speaker) drawn from the same 2411 speakers,
and 2411 speakers (3) a test set containing 4380 utterances (60 utter-
ances per speaker) drawn from 73 speakers. Note that the separation
task in Libri-2mix was much more challenging than that in WSJ0-
2mix because of not only increasing training speakers from 101
to 2411 but also the limitation of only five sampled utterances per
speaker for training. Despite the increased separation difficulty, we
conceived that the separation scenario became more realistic as it
was often hard to collect many clean utterances from the user in
real-world applications.

In this large-scale separation dataset, to strike a balance between
the training speed and the separation performance, we decided to use
a configuration of M = 8 and K = 150 to train both DPRNN and
GALR. For a fair comparison in terms of the number of parameters,
we only trained the GALR with 2.3M parameters to be compara-
ble to DPRNN. The separation results of DPRNN and GALR were

1https://github.com/sovrasov/flops-counter.pytorch

summarized and shown in Table 4. We observed that GALR main-
tained its advantage in speed and memory over DPRNN and mean-
while achieved 0.2dB absolute improvements in SI-SNRi and SDRi.
The consistent results suggest that GALR keeps performing low-cost
separation without sacrificing separation efficacy.

3.2.6. Performances in Separating Speech-Music Mixture

Table 5: Performances of DPRNN and our proposed GALR in
WSJ0-music

TasNet Size SI-SNRi SDRi
DPRNN [2] 2.6M 14.5 14.8

GALR 2.3M 15.9 16.2

Besides two-speaker speech separation tasks, we were also in-
terested in separating speech from a speech-music mixture. In this
paper, we simulated the speech-music mixture using the speech from
the WSJ0-2mix corpus and the music clips in [35]. The results were
shown in Table 5. Comparing to the two-speaker separation, we
found that GALR obtained a even greater superiority over DPRNN
in the speech-music scenario, which is also very common in real-
world conversation scenarios. In particular, there is a growing de-
mand in the industry where the speech-music separation becomes
critical for the deployment of many real-world signal processing sys-
tems, e.g., micro-video automatic captioning. Therefore, the con-
sistent and larger superiority of GALR over DPRNN in the speech-
music separation task is valuable for both conventional and emerging
application deployments.

4. CONCLUSIONS

This paper introduces a novel architecture – globally attentive lo-
cally recurrent network (GALR), which combines the advantages of
recurrent networks and attention mechanisms for effective, low-cost
time-domain signal processing. We provide empirical evidences that
the self-attention mechanism is a better candidate for modeling the
long-range context sequence than the RNNs. Results across three
different datasets also suggest the superiority of attention models
over recurrent models in modeling global sequences, which leads
to greater modeling power, reduced model size, and less runtime
memory. We believe that a compact, low-cost, and effective separa-
tion system is more practical to the industry and will empower wider
applications of speech separation for robust signal processing.
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