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Highlights 

• AI-RSM framework for real operational data of a 660 MW power plant is presented. 

• AI-RSM enabled efficient power production of the power plant is realized. 

• Annual reduction in CO2, CH4 and Hg emissions, i.e., 210.2 kt/y is estimated. 

• AI based techno-environmental performance enhancement contributes to net-zero goal. 

Abstract 

A large power generation facility is a complex multi-criteria system associated with 

multivariate couplings, high dependency, and non-linearity among the operating variables 

which present a major challenge to ensure efficient power production. In this research, an 

integrated artificial intelligence (AI) and response surface methodology (AI-RSM) framework 

to achieve the efficient power production operation of a 660 MW coal power plant is presented. 

Two AI algorithms, i.e., extreme learning machine (ELM) and support vector machine (SVM) 

are trained comprehensively on the power plant’s operational data and are validated as well. 

Full factorial design of experiments on the three levels of the operating parameters are 

constructed and simulated from the better performing AI model which is an effective non-linear 

representation of the complex power plant operation. RSM analysis is carried out under three 

power generation scenarios to simulate the effective values of the operating variables which 

are tested on the power plant’s operation and a reasonable agreement is found with the 

experimental observations. The notable improvement in fuel consumption rate, thermal 

efficiency, and heat rate of the power plant under Half Load, Mid Load, and Full Load capacity 
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of the power plant is achieved by the AI-RSM framework enabled analyses. It is estimated that 

annual reduction in CO2, CH4 and Hg emissions measuring 210 kilogram tons per year (kt/y), 

23.8 t/y and 2.7 kg/y, respectively can be obtained corresponding to Mid Load operating state 

of the power plant. The research presents the reliable and robust utilization of AI-RSM 

framework for simulating the effective operating conditions for the fossil-based power plants’ 

operation with an eventual goal to improve the techno-environmental performance which is 

expected to contribute to net-zero emissions goal from the energy sector. 

Graphical Abstract 
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Nomenclature 

AI Artificial Intelligence MST Main Steam Temperature (oC) 

ELM Extreme Learning Machine N Number of samples 

IEA International Energy Agency RHT Reheat Steam Temperature (oC) 

kt/y kilogram tons per year  RSM Response Surface Methodology 

�̇�𝑓 Coal Flow Rate (t/h) SLFNs Single-hidden-Layer Feedforward Networks 

MSF Main Steam Flow Rate (t/h) SVM Support Vector Machine 

1. Introduction 
The recovering global economic activity after the COVID-19 crisis is expected to push the 

demand for coal up by 4.5%, raising it to above the levels in the year 2019. Overall, electricity 

demand is expected to grow by 4 % in 2022, most of which will be catered for by coal and gas-

fired power plants [1]. In this situation, it is becoming ever more difficult to achieve the targets 
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set by the Paris Agreement and Conference of Parties-26, which stipulates that emissions must 

drop 7.6 per cent per year from 2020 to 2030 to keep temperatures from exceeding 1.5 °C and 

2.7 per cent per year to stay below 2 °C [2]. 

It is evident that fossil fuel based power generation is one among the greatest contributor to 

global greenhouse gas emissions and is likely to remain so for the next decade [2]. The 

International Energy Agency (IEA) report on the energy sector roadmap to carbon neutrality 

underlines key technologies to achieve net-zero emissions target from the energy sector [3]. 

However, these technologies are still under the development stage and their reliable utilization 

across the communities and financial markets require cost competitiveness and innovation in 

their performance indicators to achieve a sustainable level. Therefore, the IEA report 

recommends that the existing fossil based power plants need to be operated more efficiently 

(improved energy efficiency and reduced emissions load) by adopting effective operational 

practices and strategies until the clean energy transition is robust and sustainable to achieve 

carbon neutrality [3].  

At the same time, the development of effective operational strategies for the energy-efficient 

power production from large-scale coal power plants is quite challenging. The power 

production operation is sustained under the integration of multiple energy conversion processes 

which have a large number of highly non-linear and interacting control variables. The relative 

significance of these hundreds of variables, extent, nature of non-linearity and interactions 

among them, and the causal relationship with the critical performance indicator of energy 

processes is very important and needs to be included in conducting the performance analytics 

[4, 5]. The first-principle models on the interdisciplinary interacting domains and for the 

complex industrial processes do not exist [6, 7]. Furthermore, a large number of operational 

constraints and degradation in the system performance are not incorporated in the existing 

physical models [6]. In addition to that, the human experience and professional credentials are 

domain-specific, and cognitive abilities are limited to analyzing and visualizing high 

dimensional features. Thus, conventional operating strategies developed for complex and 

integrated industrial processes are built on human wisdom, experience and hit and trial 

approach which cannot yield effective results for such hyper dimensional problems. 

Artificial intelligence (AI) based modeling approach is another paradigm to develop the data-

driven models for the complex and multi-variate systems. Our research group has reported 

various AI based modeling studies for large-scale industrial systems and believes AI is one of 

the reliable tools for conducting the performance enhancement analytics for large-scale 

industrial systems [7-18]. However, conducting the AI-based performance enhancement 

analytics have many associated challenges which are mentioned in the supplementary material. 

It is the high need of the time to highlight the true potential of AI modeling algorithms to the 

industrial community especially to beginner and mid-level engineering managers to help them 

develop efficient techno-economic and environmental policies in order to achieve industrial 

competitiveness, and subsequently, contribute to industry 4.0 vision [18, 19] and net-zero 

emissions commitment [20]. 

Plethora of literature is available on deploying AI tools for modeling the power production 

from various power generation capacities of the power complexes. Lee et al. [21] developed 

an artificial neural network (ANN) model using a large number of features taken from various 

power-generating processes. The data was taken from the simulator of a 500 MW supercritical 
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power plant. The model presented a promising performance in simulating the load variation 

from 250 to 500 MW [21]. Naveen Kumar [22] modeled the power production operation of a 

660 MW by ANN using eight operating parameters to minimize the energy consumption and 

maximize the power production. Yasin Tunckaya [23] modeled the power production operation 

of a 660 MW power plant on thirty seven features taken from the operation of boiler, turbine 

and generator. Ravinder Kumar [24] also modeled the power production rate of a 660 MW 

power plant on a large number of features taken from various energy devices. Ashraf et al. 

modeled the apparent power of a 660 MW power plant using the least square support vector 

machine and other AI techniques. The authors presented the impact of the operating parameters 

on the power production [10]. In another study, Ashraf et al. constructed the power generation 

curve for a 660 MW coal-fired power plant by an AI technique [7]. Haddad et al. applied 

genetic algorithm and particle swarm optimization techniques for the parametric identification 

from a 660 MW power plant. The simulations proved the feasibility for cleaner and flexible 

power generation [25].    

Liu et al. modeled the 1000 MW ultra-supercritical power plant operation by the significant 

operating parameters using fuzzy neural network methods. The model presented the merit of 

efficacy in modeling the complex and non-linear power production operation over the recursive 

least squares technique [26]. Zhang et al. developed a deep neural network with a stacked auto-

encoder modeling approach to model power production from a 1000 MW power plant [27]. 

Cui et al. constructed a deep neural network in addition to a deep belief network for modeling 

and control of a 1000 MW ultra-supercritical power generation process [28]. Mikulandri et al. 

proposed the AI based control for optimizing the combustion process and emissions discharge 

from a thermal power plant [29]. Lei et al. presented the web-based digital twin network for 

the monitoring of a physical power plant [30]. In some other studies, machine learning tools 

were exploited to achieve cleaner power production and increase the thermal efficiency of the 

coal power plants [31-33].  

In the research studies reported in the literature, researchers have deployed a large number of 

operating parameters for modeling the complex power generation operation of large-scale 

power complexes. A great number of features with sizable data potentially increase the 

computational resource, reduction in the prediction efficacy and generalization ability of the 

developed model [4, 34, 35]. Therefore, modeling the power production operation of a large-

scale power plant under the reduced number of system’s relevant variables is lacking in the 

literature which should be investigated. In certain scenarios, selecting a small number of 

critically relevant operating variables for modeling the power production operation would 

further reduce the complexity in conducting the performance enhancement analysis and 

subsequently the implementation of the simulated solutions on the actual power systems would 

be convenient that should be analyzed from the perspective of industrial applications. This 

would especially be very useful when the critical segments of power generation systems under 

investigation are covered by the interdisciplinary domain knowledge and no first principle 

models are available. Furthermore, an integrated framework comprising on AI based modeling 

algorithm and the structured analytical technique with which the industrial community is quite 

versed with for making multi-criteria decision-making should be developed. The potential of 

AI and process analysis techniques towards net-zero from the energy sector should be 

investigated to contribute to its pool of knowledge. Thus, the improvement in the performance 

indices of the power plant and the reduction in emissions discharge to the environment should 
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be evaluated as the result of AI enabled efficient power production analytics so that meaningful 

and viable contributions to the net-zero goals are made from the energy sector [3, 36].  

In this research, two advanced artificial intelligence algorithms are deployed for modeling the 

complex power generation operation of a 660 MW power plant under the reduced number of 

operating parameters. ELM  is a variant of ANN and is becoming increasingly popular among 

the scientific community to conduct the modeling and optimization analytics for lab-scale and 

industrial engineering systems [37-40]. This brings the motivation to investigate the modeling 

performance of ELM for a 660 MW power plant’s power production operation which has not 

been conducted previously and its application on coal power plant is relatively new. Similarly, 

SVM has demonstrated excellent performance in various engineering applications in terms of 

superior modeling capacity and generalization potential [41-44]. Another motivation to apply 

such data-driven AI modeling methods is to comprehend the behavior of the actual power 

plant’s operation which would contribute to the existing body of knowledge on the 

effectiveness of the AI algorithms. Response surface methodology (RSM) is a reliable and 

structured data-analysis technique and is used in academia and industry for the analysis of 

hyper-dimensional and non-linear complex problems. Therefore, RSM is integrated with the 

developed AI model (having effectively learnt the complex and non-linear behavior of the 

power generation operation). The AI-RSM framework built on real industrial data is deployed 

for simulating the values of the operating parameters for efficient power generation under Half 

Load, Mid Load and Full Load capacity of the power plant. The simulated results are tested on 

the power plant’s operation and the performance indices like fuel consumption rate, thermal 

efficiency and power plant heat rate are investigated under three power generation modes. In 

addition to that, the annual reduction in CO2, CH4 and Hg emissions discharge is also estimated. 

The research presents the effective utilization of AI-RSM framework for the complex operation 

of a 660 MW power plant that improved its techno-environmental performance and thus 

contributes to net-zero goals from the energy sector as highlighted by IEA. To the best of the 

authors’ knowledge, the study presents a hybrid framework built on AI modeling algorithm 

and the statistical technique (RSM) for the power generation operation of a 660 MW capacity 

coal power plant that is not reported in the literature. Further, the current research work 

contributes to the body of knowledge of net-zero through AI, as proposed by IEA, and would 

also be beneficial for the industrial community to adopt the proposed AI-RSM framework for 

enhancing the performance of their industrial systems. The novelty of this work is summarized 

as follows: 

1- The modeling of 660 MW power plant’s power generation operation under reduced 

number of operating parameters; 

2- Evaluating and comparing the modeling performance of ELM and SVM on the complex 

power generation operation of the power plant; 

3- AI-RSM framework for the complex and large-scale power generation system is 

proposed. The benefits of the AI model (an effective representation of the complex and 

non-linear system) and RSM (structured and empirical approach to derive the solutions) 

are unified to estimate the effective values of the operating parameters. The developed 

solutions are tested on the power plant operation and a good agreement between the 

experimental and simulated observations is found; and 

4- The contribution to the net-zero goal from the energy sector by improved thermal 

efficiency and reduced emissions load to the environment as suggested by IEA. 
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Furthermore, the AI-RSM hybrid framework contributes to the pool of knowledge on 

net-zero by AI and process analysis techniques. 

The structure of the paper is partitioned into methodology (section 2), AI model development 

(section 3), result and discussion (section 4) and conclusion (section 5). Section 2 describes the 

research methodology followed in the study. Furthermore, the details associated with the data-

collection, visualization and processing steps are provided therein. Section 3 provides the 

comprehensive information on the AI models development along with the hyperparameters 

tuning. Whereas, section 4 contains the results on the validation of the developed AI models, 

estimation of the effective values of the operating parameters by RSM under three power 

generation modes. Moreover, the validation of the developed solutions to achieve the efficient 

power generation from the power plant, and the improvement in the performance indices for 

the power generation operation are presented. Finally, the conclusions of the study are 

mentioned in section 5.   

2. Methodology 

The research framework developed for efficient power production from a 660 MW super 

critical power plant [4] is presented in Figure 1. Data collection is the first step in the AI-based 

data analytics studies and, in this work, is taken from the supervisory information system of 

the power plant. Furthermore, the generic schematic diagram of the coal power plant and the 

corresponding property points of the operating parameters are marked on the temperature-

entropy diagram of Rankine Cycle as mentioned in the supplementary material. The advanced 

data-visualization techniques are utilized to confirm the reasonable distribution of data in the 

variables space. Data-normalization technique is deployed on the data which is subsequently 

exploited for the development of extreme learning machine (ELM) and support vector machine 

(SVM) models; the two advanced AI algorithms. The two models can extract useful 

engineering knowledge from the operational data in reasonable timeframes and with low 

margins of error thus helping in the establishment of robust process models [41, 45]. The recent 

publications and scientific activities from our research group have also presented the excellent 

ability of the AI models in creating value for engineering systems [9, 10, 46].  
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Figure 1. The proposed research framework for the efficient power production operation of a 

power complex underpinning the net-zero goal from the coal-fired power plants. 

The two models are carefully trained by the tuning of the hyperparameters involved in their 

algorithms to achieve the effective prediction flexibility towards the operating conditions. The 

prediction performance of the developed AI models is evaluated before deploying them to 

conduct performance analysis. For this purpose, the models are externally validated by the 

dataset which complies with two fundamental conditions; (1) the variables should have nearly 

the same operating ranges comparable with that of training data, and (2) the dataset should be 

unseen to the models [9]. Four statistical measures namely correlation coefficient (R), mean 

absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error 

(MAPE) are introduced to measure the deviation between the actual and model simulated 

responses and thereby selecting a better performing AI model. The full factorial design of 

experiment (DOE) technique is utilized for constructing the experiments based on the three 

levels of the operating parameters and are predicted from the selected AI model. Subsequently, 

response surface methodology (RSM) analysis is conducted to mine the relationships among 

the input-output variables. Furthermore, RSM analysis is further extended to determine the 

values of the operating variables for the efficient power production under three conditions since 

the power generation is generally maintained around them. These three conditions refer to Half 

Load, Mid Load and Full Load power generation corresponding to 660 MW capacity which is 

taken as 356 MW, 496 MW, and 655 MW respectively. The results simulated by RSM are 

tested on the power plant operation. The key performance indices of the power complex, i.e., 

fuel flow rate, thermal efficiency, power plant heat rate and the emissions discharge (CO2, CH4 

and Hg) are investigated corresponding to the efficient power production.  

The improvement in  energy efficiency and reduction in emissions of  fossil-based power plants 

are the key suggestions given by IEA and other organizations to contribute to net-zero from 

energy sector until the cost effective and reliable carbon capture technologies are available [3, 

47, 48]. Therefore, the potential of advanced AI algorithms and structured RSM technique is 

applied to ensure the efficient power production, higher thermal efficiency and reduced 

environmental impact from the investigated coal power plant to contribute to net-zero target.  
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2.1. Data Collection, Visualization & Processing 

In this paper, four operating variables are deployed to model the power production from a 660 

MW supercritical coal power plant. The variables are selected based on extensive discussion 

with the various teams of the power plant, parametric interdependencies and relevancy, and the 

literature review [6, 10, 23] so that the true representative variables integrated with the power 

generation operation are considered. Therefore, coal flow rate (�̇�𝑓), main steam flow (MSF), 

main steam temperature (MST) and reheat steam temperature (RHT) are taken for modeling 

the power production from the power plant. �̇�𝑓 indicates the fuel consumption rate in the boiler 

and the thermal energy received as the result of fuel combustion is utilized corresponding to 

the sustained power production, main steam conditions,  condition of feed water and air 

(primary and secondary) entering the boiler. Furthermore, �̇�𝑓  is also included for evaluating 

the techno-environment performance of the power plant like thermal efficiency, power plant 

heat rate and emissions discharge to the environment. Smrekar et al. [6] incorporated the 

properties of feed water at the inlet of the boiler like temperature and pressure for modeling the 

steam conditions exiting the boiler. However, the  power plant’s operational control experience 

as well as the strong correlation [49] among the conditions of feed water with �̇�𝑓 compels us 

to avoid incorporating these interdependent variables for the AI model development. Similarly, 

the other three parameters, i.e., MSF, MST, and RHT are the key control variables to be 

maintained carefully for the power production. MST and RHT indicate the work potential of 

steam entering the high-pressure and intermediate pressure turbine respectively and thus, are 

critical to ensure the smooth and energy-efficient power production operation of Rankine Cycle 

[50]. Whereas, MSF represents the quantity of steam entering the high-pressure turbine and 

thus is critically synchronized to maintain the sustained power production [50]. Generally, the 

steam turbines operation is influenced by the condition of steam entering the turbine and thus, 

the parameters associated with the sub-systems synchronized with the steam turbines operation 

like feed water regenerative heating system, deaerator functioning, condenser vacuum system 

etc., are adjusted accordingly [4, 9]. Therefore, the selected variables out of the large number 

of operating parameters of the power plant, are the ones that are to be critically controlled to 

sustain smooth power production. It is important to mention here that the end-state variables 

of a system are enough to develop generalized AI models without incorporating the variables 

associated with the underlying process physics [51]. At the same time, the selection of the input 

variables is influenced by the objectives of model development and the availability of the 

variables. However, the domain knowledge and insight of the system are the crucial 

requirements for structuring the relevant operating variables with the objective function in 

order to achieve the targeted results [6].  

Numerous state-of-the art sensors are implanted at various points along the various power 

generation processes to measure the operating values of the operating parameters. The data 

measured by the sensors is stored in the centralized supervisory information system (SIS). In 

this study a dataset comprising on hourly-averaged observations of the operating parameters is 

obtained from the SIS considering the continuous power generation operation of the power 

plant, and each observation contains the values of four operating variables and the 

corresponding output variable. The outliers in the observations of the operating parameters are 

removed and the procedure is described in the supplementary material. Subsequently, a cleaned 

dataset consisting of 2017 observations is split into 80% and 20% by size for training and 

testing of the model under development. The operating variables have continuous values and 

the descriptive statistics of the dataset deployed for the AI model development are mentioned 
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in Table 1. Furthermore, the make of the measuring sensors is also provided. It is pertinent to 

mention here that the values of the operating variables are carefully taken with reference to the 

variation in power production, i.e., from Half Load to Full Load capacity of the power plant. 

The range of the operating variables is fairly wide referring to the operating windows of the 

variables. Moreover, the data spread is also reasonable as measured by the standard deviation 

values for the variables. 

Table 1. Descriptive statistics of dataset deployed for model development. 

Variables Sensor Unit Min Mean Max Standard 

Deviation 

Input Variables       

Coal Flow Rate 

(�̇�𝒇) 

Vishay Precision 

Group (USA) 

t/h 126 190 252 48.19 

Main Steam Flow 

Rate (MSF) 

Siemens (Germany) t/h 997 1541 2135 434.96 

Main Steam 

Temperature 

(MST) 

Anhui Tiankang 

China 

Thermocouple 

°C 550 562 569 5.04 

Reheat Steam 

Temperature 

(RHT) 

Anhui Tiankang 

China 

Thermocouple 

°C 552 563 569 4.06 

Output Variable       

Power Nanjing Suatak 

Measurement and 

Control System 

MW 354 517 660 135.20 

Figure 2(a,b) show the data distribution of real process data of the input and output variables 

by box plots. The box plots present a viable way of visualizing the data in the distribution space 

of the variables. The straight line through the box represents the mean values of the variables 

while the box itself covers the range of the variables from 25% to 75%. Healthy data 

distribution is evident from the box plots of �̇�𝑓, Power and MSF. However, the box width for 

MST and RHT is appeared to be relatively tight. It is because the two variables are constrained 

to be critically controlled between a narrow operating window (min – max value mentioned in 

Table 1). In general, the data visualization of the variables within the operating limits is 

reasonable which is essentially required for the development of flexible AI models as discussed 

in the next section.  
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Figure 2. Data visualization of operating variables. a) and b) present the box plots of input 

(�̇�𝑓, MSF, MST and RHT) and output (Power) variables.  

An important step in the training of AI models is the normalization of data. It can be observed 

that the data of the variables do not lie in a uniform range and thus normalization is essential 

to scale the input variables into equal ranges. This provides a fair chance for developing the 

association of the input variables with the output variable without biasing it towards some 

particular input variable. Thus, data normalization ensures effective construction of AI models 

based on the variables which can have large operating ranges. Min-max normalization method 

is adopted in this study whose mathematical expression is given as: 

               𝑋𝑖
∗ = 

𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
                            (1) 

where 𝑋𝑖 is the actual value of the variable which is normalized to 𝑋𝑖
∗.  𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 are the 

maximum and minimum values of the variables respectively. After the normalized data set has 

been constructed, it is fed into the AI algorithm for construction of the model. 

3. AI Model Development 

In this work, two reliable and advanced AI algorithms have been used, namely support vector 

machine and extreme learning machine. Both algorithms are investigated for their suitability 

and performance analyses for function approximation problems [52, 53]. A basic theoretical 

background of both techniques is presented here: 

3.1. Support Vector Machine 

Support vector machine (SVM) is one of the popular AI algorithms which is widely used for 

regression and classification problems in recent years [54]. SVM makes use of the structured 

risk minimization principle which allows it to possess good generalization performance [54]. 

SVM transforms the input data onto a higher dimensional feature space which enables it to 

solve the non-linear problems in a linear pattern [55]. SVM incorporates Vapnik’s ε-insensitive 

loss function, formulates the approximation problem as an inequality constrained optimization 

problem and learns the non-linear interactions by solving a convex quadratic programming 

problem. Further details about the SVM algorithm can be found from the supplementary 

material. 

3.2. Extreme Learning Machine 

Extreme Learning Machine (ELM) is an evolution of the popular single hidden layer feed 

forward network (SLFN). ELM was developed to improve the efficiency of SLFN, which faces 

difficulties in the manual tuning of control parameters (such as epochs, learning rate etc.) and 

can end up being confined to a local minimum [56]. On the contrary, ELM does not require 

any intervention by the user as it is implemented automatically with no iterative tuning and has 

faster learning speeds compared to more traditional SLFN. Moreover, ELM can also achieve a 

good generalization performance compared to SLFN with gradient descent and back 

propagation [57]. In ELM, the learning parameters of hidden nodes are assigned randomly and 

independently, and the output weights of the network are determined analytically by the use of 

a simple Moore-Penrose inverse operation [57, 58]. A brief description of the ELM 

development is provided in the supplementary material. 
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3.3. Hyper parameters tuning for SVM and ELM 

A wide range of hyper parameters for the SVM, namely epsilon, kernel scale and box constraint 

are tested. These hyper parameters are tuned to ensure good generalization performance of the 

SVM. In this study, the range of hyper parameters, i.e., kernel scale, epsilon, and box constraint 

is varied between 0.001 ~ 1000, 0.20859 ~ 20859.15 and 0.001 ~ 1000 respectively. After 

selection of operating ranges, Bayesian optimizer along with the expected improvement per 

second plus acquisition function is deployed for selecting the different combination of hyper 

parameters in 30 epochs under a 5-fold cross validation training scheme [10]. The mean square 

error (MSE) between the modeled outputs and the actual observations is calculated 

corresponding to a set of values of the hyperparameters, and the MSE comparison 

corresponding to each set of the hyperparameters values is made for thirty epochs. The 

minimum MSE of 4.30 is achieved for kernel scale = 37.91, epsilon = 1.14 and box constraint 

of 997.9.  

In the case of ELM, one only needs to specify the type of activation function and the number 

of neurons in the hidden layer, as ELM itself has good generalization performance for randomly 

assigned, small values of the input weights, and hidden layer biases of the network [10]. For 

this study, a sigmoidal activation function (g(x) = 1/(1+exp(−x))) is deployed since it performs 

better nonlinear transformation and feature mapping compared with other activation functions 

[59]. Huang et al. [57] proved theoretically that ELM can approximate any continuous function 

with any degree of accuracy provided it has as many as possible hidden layer neurons included 

in its architecture. However, in practical applications, a higher number of hidden layer neurons 

cannot guarantee the best ELM performance [59]. It is recommended to apply an incremental 

approach in selecting the hidden layer neurons and subsequently, prune the unimportant ones 

to develop a better ELM model [59]. The hidden layer neurons are varied from 10% - 90% of 

the training dataset and the root mean square error (RMSE) between the predicted and actual 

outputs is compared. Hidden layer pruning is executed and a better ELM model comprising of 

seventy hidden layer neurons is developed for which the least RMSE has been the least. 

Subsequently, the developed ELM model is forwarded for external validation test as mentioned 

in section 4.2. Matlab 2020b software is used for the development of SVM and ELM network 

in this study, and the performance of SVM and ELM in the training phase is provided in the 

supplementary material. 

4. Result and Discussion 

4.1. Evaluation Criteria 

Four statistical parameters are selected to assess the prediction performance of the trained AI 

models, namely correlation coefficient (R), root mean square error (RMSE), mean absolute 

error (MAE) and mean absolute percentage error (MAPE) [10]. Their mathematical 

expressions are written as: 

𝑅 =
∑  𝑁

𝑖=1 (𝑦𝑖−�̅�𝑖)(�̂�𝑖−�̂�
−

𝑖)

√∑  𝑁
𝑖=1 (𝑦𝑖−�̅�𝑖)2 ∑  𝑁

𝑖=1 (�̂�𝑖−�̂�
−

𝑖)
2
               (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)2𝑁

𝑖=1                            (3) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − �̂�𝑖| 𝑁

𝑖=1                              (4) 
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𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖−�̂�𝑖

𝑦𝑖
|𝑁

𝑖=1 ∗ 100                          (5) 

where, N is the sample size, �̂�𝑖 and 𝑦𝑖 are the predicted and actual values; �̅�
 

𝑖and �̂�
−

𝑖 are the mean 

of actual and predicted values. The range of R lies from 0 to 1. R = 0 describes a condition that 

no correlation exists between the actual and network predicted values. Whereas, R = 1 signifies 

a perfect correlation between actual and network predicted values. The other merits of 

performance like RMSE, MAE and MAPE account for the errors computed between the actual 

and network predicted responses and are measured in relevant measuring units. 

4.2. External Validation of AI models 

The developed AI models are deployed to predict the external validation dataset in order to 

evaluate their prediction efficacy towards the unseen dataset of the operating variables. The 

dataset is taken from the power plant for various power generation values and consists of 134 

observations. The operating conditions are simulated by SVM and ELM models, the model’s 

simulated responses are compared with the actual power values, and performance matrix built 

on the chosen statistical parameters is computed.  

Figure 3 (a,b) present the graphical representation of actual vs SVM, and actual vs ELM 

predicted power values for the external validation dataset respectively. Comparing the models’ 

responses with the actual values, it appears that SVM has well predicted the dataset confirming 

the good generalization ability of the model. Moreover, its predicted responses are far closer 

to the actual values compared with that of ELM. Although, the R value for ELM predictions is 

high measuring 0.99 which is comparable with that of SVM (R = 0.99). However, the RMSE, 

MAE, and MAPE for the ELM model, i.e., 7.81 MW, 5.10 MW, 0.95 % are significantly larger 

than that of SVM (2.96 MW, 2.59 MW, 0.51 %) respectively. It is explained on the basis of 

the difference in learning algorithms of the two models. SVM tends to get closer to the actual 

values through the iterative cost function minimization process which reduces the error 

between the actual and model predictive responses without sticking to the local extrema, and 

enables SVM to improve its prediction efficacy. On the other hand, ELM chooses a few of the 

learning parameters from the input space randomly and based on them, the remaining 

parameters required for the model development are determined. The iterative error reduction 

loop is missing in the training algorithm of ELM which could explain the existing predictive 

performance of the model. Similar results confirming the comparable or superior performance 

of SVM over ELM are reported in the literature [60, 61]. The performance matrix built for 

SVM provides confidence in the model’s efficacy to predict the unseen operating scenarios 

which appears to be a little weak in the case of ELM. Therefore, SVM turns out to be a 

comparatively better model in conducting the further analysis as presented in the subsequent 

section.  

It is important to note that correlation coefficient of the SVM model, constructed on four 

operating parameters in this work, is comparable with the ANN model (R = 0.99 on eight 

operating parameters) reported in literature [22]. It confirms that power generation operation 

can be modeled on fewer operationally and financially significant operating parameters. 

Subsequently, the estimation of the effective operating values of the operating parameters by 

RSM and the testing of the developed solutions on the power plant operation would be 

convenient as described in the subsequent sections 4.3-4.4. 
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Figure 3. Comparison of actual power with the AI models’ predicted responses; a) SVM, and 

b) ELM. SVM has presented a better performance in simulating the external validation 

dataset deployed for evaluating the prediction efficacy of the developed models. 

4.3. Response Surface Methodology 

Response surface methodology (RSM) is a statistical technique that mines the relationship 

among the system’s driving variables and objective function. It incorporates linear / square / 

polynomial or interaction terms to develop the relations among the input and output variables. 

This technique is well-established and popular among the scientific and research community 

for deriving optimized solutions for engineering systems [62].   

Full factorial design of experiment technique is deployed in this study to generate all possible 

combination of experiments using the operating variables. Three levels of the variables, i.e., 

minimum, average and maximum values are utilized for constructing the experiments (34 = 

81). RSM is introduced in combination with the SVM model to develop the causal relationships 

among the input and output variables through systematically constructed experiments. The 

prediction of the constructed experiments from the SVM model and the subsequent fitting of 

RSM model provides the basis for conducting the value-creating analytics for efficient power 

production.  

A second-order regression model along with the interaction terms is fitted through the 

constructed experiments and the simulated responses (output). The equation of the RSM model 

is provided in the supplementary material. The model has demonstrated excellent goodness of 

fit measuring coefficient of determination equal to 0.999. Moreover, the Pareto chart showing 

the significance (standardized effect) of variables and combinations on the output is presented 

in Figure 4. A line of statistical significance (95% confidence interval or α = 0.05) is drawn on 

the Pareto chart. The bars represent linear, quadratic, or interaction terms, and the ones lying 

above the statistical significance line are significant for the output. It is observed that MSF 

terms out to be the most significant variable followed by �̇�𝑓, RHT and MST. Similarly, the 

interaction among the operating variables is also significant like MSF * RHT, MST * MSF etc. 

It is estimated that the accumulated contribution of the linear, interaction and square terms on 

the output variable is 85%, 12%, and 3% respectively representing the significance of operating 

variables on the power production. 
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Figure 4. Pareto chart of the standardized effects for the operating variables on the output. 

The main effect plot of the operating variables is presented in Figure 5. The plot is constructed 

on the complete range of a particular variable and keeping other variables at their average 

values. Thus, it provides the separate and marginal effect of the variable on the output function. 

The locally estimated scatterplot smoothing is performed for the ease of interpretation of the 

main effect plot for the selected variable. Referring to Figure 5(a), a rising trend in power 

production is observed with the increase in �̇�𝑓. The increase in �̇�𝑓 provides more thermal 

energy input in the boiler and the subsequent increased heat transfer through heating surfaces 

for producing high-quality steam which is exploited in power production. The result is 

supported by the research conducted on the thermal performance evaluation of a coal power 

plant by Kumar et al. . In Figure 5(b), a linear positive trend is observed between MSF and the 

power. It is explained by the power plants’ operational physics that the increase in main steam 

flow and its subsequent expansion in the series of turbines produces large torque in the main 

shaft of the steam turbine system which is utilized in increasing the power production [50, 63]. 

MST and RHT refer to the steam temperatures before the high pressure and intermediate 

pressure turbines respectively. The increase in these two temperatures provides more work 

potential available to the respective turbines. The work potential is observed to be utilized for 

the power production as evident from Figure 5(c) (MST) and Figure 5(d) (RHT) respectively. 

The parametric response of MST and RHT on the power generation also complies with the 

explanation of the Rankine Cycle for steam turbine  that the enthalpy of the steam before 

entering the turbines is high, and thus the net-work produced by the turbines is increased [50]. 
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Figure 5. Main effect plot of operating parameters a) �̇�𝑓, b) MSF, c) MST, and d) RHT. 

The combined effect of two variables on the power production in the form of a contour plot is 

presented in Figure 6. The contour plot represents the projection of the output function present 

in space on to a two-dimensional plane defined by the selected variables. Figure 6(a) presents 

the effect of �̇�𝑓 and MSF on the power production under the full variation in their operating 

ranges, i.e., 126 t/h to 252 t/h and 997 t/h to 2134 t/h respectively. Whereas, MST and RHT are 

kept at their average values. The power production under the parametric variation is observed 

to vary from lower than 400 MW to greater than 650 MW which complies with the reported 

study in literature [22, 63, 64]It is apparent that �̇�𝑓 and MSF have a positive impact on the 

power production and various power production brackets as indicated in the right side of the 

plot, are identified against the operating windows of the two parameters. Generally, power 

plants are designed to be operated at their rated full power production capacity. Therefore, 

constraining �̇�𝑓 and MSF in the operating limits, i.e., from 228 t/h to 252 t/h and 2004 t/h to 

2132 t/h respectively, power production from the power plant can be sustained > 650 MW.  

MST and RHT are the two critically controlled operating parameters during the power plant 

operational control and their influence on the power production is presented in Figure 6(b). In 

simulating the effect of MST and RHT on power production, �̇�𝑓 and MSF are kept at their 

average values. It is found that an increase in MST and RHT in their operating limits drives the 

power production system to enhance its output. It is explained by the fact that the work potential 

of the steam in Rankine Cycle is effectively increased resulting in higher power production 

[50]. However, the upper limit of the two temperatures is carefully controlled given the thermal 

stresses and material metallurgy is to be kept in the safe operating region [65]. For the given 
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operating values of �̇�𝑓 and MSF as incorporated in the construct of the MST & RHT contour 

plot, MST and RHT can be maintained between 561 oC to 569 oC & 567 oC to 569 oC for which 

the power production would be more than 526 MW. 

  
Figure 6. Contour plots of the operating variables a) Effect of �̇�𝑓 & MSF on the power 

production, and b) Effect of MST & RHT on the power production. 

RSM analysis is further extended for estimating the values of the operating parameters for 

which the power production from the power plant is efficient. Various research studies reported 

in the literature have reported the optimum engineering solutions using the RSM based analysis 

[66, 67].  

In this work, the operating values of the operating variables are determined for the set value of 

power production by the RSM technique. The limiting range of �̇�𝑓, MSF, MST and RHT 

deployed in the analysis is 126 ~ 252 t/h, 997 ~ 2135 t/h, 550 ~ 569 oC and 552 ~ 569 oC 

respectively. It is important to note that the operating range of power, i.e., 350~ 360 MW, 490 

~ 500 MW, and 650 ~ 660 MW is considered as Half load, Mid Load and Full Load operating 

zone for 660 MW power generation capacity of the power plant. Therefore, 356 MW, 496 MW, 

and 655 MW are taken as Half Load, Mid Load and Full Load set values, and are deployed for 

finding out the corresponding operating values of �̇�𝑓, MSF, MST, and RHT respectively. 

Figure 7(a-c) depict the RSM-simulated values for �̇�𝑓, MSF, MST and RHT for Half Load, 

Mid Load and Full Load respectively. The operating values are determined with a desirability 

factor almost equal to one indicating the strong confidence in the estimated values of the 

operating variables. Moreover, the target values of power are quite close to the RSM-predicted 

responses. The operating values of �̇�𝑓 and MSF for Half Load, Mid Load, and Full Load are 

estimated to be 132 t/h, 185 t/h, 236 t/h and 1033 t/h, 1450 t/h, 1980 t/h respectively. Whereas, 

it is recommended to keep MST and RHT at 569 oC under three power production scenarios. 

Keeping the MST and RHT at the safe upper control limits is beneficial to ensure the efficient 

power generation [50].  
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Figure 7. RSM-driven operating values of �̇�𝑓, MSF, MST and RHT for a) Half Load, b) Mid 

Load, and c) Full Load. 

4.4. Testing of the RSM-driven solutions on the power plant operation 

RSM-based operating values of �̇�𝑓, MSF, MST and RHT are tested on the power production 

operation of the power plant. The power production operation under the three power generation 

modes, i.e., Half Load, Mid Load, and Full Load is carefully sustained during which each 

operating parameter is maintained at an operating value for one hour (steady-state operation) 

with the tendency to keep it around the RSM-driven recommended values for the operating 

parameters. Subsequently, the average values of the operating variables and the power 

production observations maintained for one-hour duration are taken. During the test, seven 

hourly-averaged observations corresponding to the Half Load, Mid Load and Full Load are 
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recorded and the corresponding values of �̇�𝑓, MSF, MST and RHT are plotted in Figure 8(a-

d) respectively. 

Figure 8(a) shows �̇�𝑓 observations recorded corresponding to three operating modes of the 

power plant. The mean value of �̇�𝑓 for the three power generation modes maintained during 

the Half Load, Mid Load, and Full Load is 134 t/h, 183 t/h and 235 t/h respectively. The mean 

percentage deviation of �̇�𝑓 observations with the corresponding RSM-driven values, i.e., 132 

t/h, 185 t/h, and 236 t/h for Half Load, Mid Load and Full Load are 1.69%, -0.92% and -0.36% 

respectively. Similarly, MSF is maintained around 1031 t/h, 1456 t/h, and 1981 t/h (shown in 

Figure 8(b)) with the mean percentage deviation of -0.20%, 0.39% and 0.07% respectively 

from the RSM-driven operating values of the operating parameters for the three power 

generation modes. 

Referring to Figure 8(c) and Figure 8(d) plotted for MST and RHT respectively, their average 

values maintained during the test corresponding to Half Load, Mid Load and Full Load are 568 
oC & 566 oC, 563 oC & 565 oC and 565 oC & 566 oC respectively. Some fluctuations in the 

steam temperatures are observed which are attributed to different adjustments in the set-values 

of the various operating parameters like attemperation water flow rate, superheat degree, 

burners angles and soot accumulation on the heating surfaces etc. during three power 

generation modes of the power plant. However, the mean percentage deviation measured 

among the MST and RHT observations with the RSM based simulated values of the operating 

parameters for three power generation modes of the power plant are -0.09% & -0.45%, -1.13% 

& -0.76% and -0.62% & -0.54% respectively. 

Figure 8(e) refers to the power produced under the influence of the operating parameters for 

three operating scenarios termed as Half Load, Mid Load and Full Load. The average power 

production for the three power generation modes is 356 MW, 497 MW, and 657 MW (shown 

by the purple color bar in Figure 8(e)) with the mean percentage deviation of -0.14%, -0.36% 

and 0.38% from the RSM-driven predicted values. The experimental results for the power 

production under three power generation modes of the power plant appear to be in good 

agreement with the RSM-driven solutions. It confirms the ability of the RSM technique to 

determine the efficient solutions which are not only viable to be implemented on the real 

engineering systems but could also enhance the performance of industrial systems. 
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Figure 8. The operating values of the operating parameters maintained during testing of RSM- 

driven solutions for a) �̇�𝑓, b) MST, c) MSF, and d) RHT. (e) The sustained power production 

under the impact of �̇�𝑓, MSF, MST and RHT during Half Load, Mid Load and Full Load. The 

purple bar shows the average of the power production under the given operating mode of the 

power plant. 

4.5. Performance Enhancement in the Power Plant Operation 

The tested results obtained by the RSM technique are compared with the power plant operation. 

The mean values of �̇�𝑓, power, thermal efficiency and heat rate of the power plant under Half 

Load, Mid Load and Full Load are taken from the power plant operation. These values are 

taken corresponding to the business as usual (BAU) approach (the power plant’s operation 

control by the operators influenced by their experience and instructions from the management), 

and are presented in Table 2. Similarly, the RSM-simulated values (RSM-SV) of �̇�𝑓, power, 

thermal efficiency and heat rate are also mentioned in Table 2.  

Comparing the BAU observations with the RSM-SV, it is evident that the fuel consumption 

rate for the power production is less than that of BAU approach measuring 4 t/h, 12 t/h and 6 

t/h fuel savings for three power production modes respectively. The thermal efficiency of the 

power plant is also improved estimating 1.29 percent point (pp), 2.63 pp and 0.94 pp 

improvement corresponding to RSM-SV based operational control of the power plant 

respectively. Moreover, the heat rate of the power plant is decreased by 289 kJ/kWh, 586 
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kJ/kWh and 188 kJ/kWh as the result of RSM-SV for operating parameters settings under Half 

Load, Mid Load and Full Load operating scenario respectively. It confirms that RSM-simulated 

operating values of the operating parameters ensured the efficient power production from the 

power plant. 

Table 2. Comparison of test results with power plant operation. 
Power Mode State �̇�𝒇 (t/h) Thermal Efficiency (%) Heat Rate (kJ/kWh) 

Half Load BAU 138 39.41 9135 

RSM-SV 134 40.70 8846 

Mid Load BAU 195 38.97 9239 

RSM-SV 183 41.60 8653 

Full Load BAU 241 41.89 8594 

RSM-SV 235 42.83 8406 

The fuel savings are converted into annual reduction into CO2, CH4 and Hg emissions for three 

operating modes of the power plant, i.e., Half Load, Mid Load, and Full Load as shown in 

Figure 9. The formula for calculating the emissions is mentioned in the supplementary material. 

The schedule overhaul period and the allowed shutdown hours as committed with the power 

purchasing agency are removed for estimating the annual reduction in emissions. It is noted 

that significant reduction in CO2 emissions is calculated measuring 70 kilo tons / year (kt/y), 

210 kt/y and 105 kt/y corresponding to Half Load, Mid Load and Full Load respectively. 

Similarly, the savings in CH4 and Hg emissions discharge to the environment is 7.9 t/y, 23.8 

t/y, 11.9 t/y and 1.6 kg/y, 2.7 kg/y, 1.6 kg/y for the three power generation modes respectively. 

The accumulated reduction in emissions is largest for Mid Load operating mode of the power 

plant summing 210.2  kt/y. CO2 and CH4 are the major contributor to the global warming [68] 

whereas Hg has a hazardous and toxic impact on the environment [69]. Therefore, the reduction 

in these pollutants as the result of efficient power generation and improved thermal efficiency 

not only supports environmental protection but also contributes to global efforts and 

commitments like Paris Accord and net-zero emissions targets by the energy sector.  

 
Figure 9. Annual reduction in CO2, CH4 and Hg emissions corresponding to Half Load, Mid 

Load and Full Load. 
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5. Conclusions 
Efficient power production from a coal-based large-scale power facility is a significant 

challenge for the industrial community to ensure fuel economy, improved thermal efficiency 

and minimal emissions discharge to the environment. In this paper, AI-RSM framework to 

achieve the efficient power production from a 660 MW supercritical power plant is presented. 

Moreover, response surface methodology (RSM) technique coupled with the AI model is 

deployed to determine the effective operating values of the operating parameters for the 

efficient power production from the power plant.  

The training data of the operating variables are carefully collected, visualized in the input and 

output space, and normalized. Subsequently, advanced AI models like ELM and SVM are 

developed, validated and a better-performing model evaluated on a performance matrix is 

retained, i.e., SVM.  

Full factorial design of experiments based on the three levels of operating variables is 

constructed, simulated by the effective SVM model (representation of the complex and non-

linear power generation operation of the power plant) and RSM model is constructed. The 

Pareto chart shows that MSF is the most significant operating variable to the power production 

followed by �̇�𝑓. RSM analysis is extended to determine the operating values of �̇�𝑓, MSF, 

MST, and RHT under three power generation modes of the power plant, i.e., Half Load, Mid 

Load and Full Load. The simulated values of the operating variables are tested on the power 

plant operation under three operating modes, and a reasonable agreement is found with the 

experimental observations.  

The AI-RSM framework enabled simulated results have further improved the fuel 

consumption, thermal efficiency, and heat rate of the power plant. 12 t/h savings in �̇�𝑓, 2.63 

pp improvement in thermal efficiency and 586 kJ/kWh reduction in power plant heat rate are 

achieved corresponding to Mid Load power production mode. Moreover, the annual reduction 

in CO2, CH4 and Hg are found to be the largest corresponding to Mid Load power generation 

measuring 210 kt/y, 23.8 t/y and 2.7 kg/y respectively. The improvement in the energy 

efficiency and reduction in the emissions from the coal power plant contribute to net-zero goal 

from the energy sector through efficient operation of the existing fossil-fuel based energy assets 

as highlighted by IEA.  

The AI-RSM methodology is tested on a 660 MW coal power plant. However, the proposed 

framework should be tested on large-scale power plants (multi-capacity and different power 

generation technologies) and process industries to verify its effectiveness. The detailed insight 

for power generation operation can be investigated with the first-principle models and can be 

compared with the AI-RSM framework enabled results.  

In the future work, ANN-PSO and ANN-fuzzy framework along with other optimization 

techniques would be investigated considering significant causal variables for the multi-

objective optimization problem incorporating thermal efficiency and emissions for multi-

capacity coal power plants. It is expected that contribution to the pool of knowledge on the 

carbon neutrality from the energy sector by AI would be continued to made in the future 

research studies. 
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