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Introduction: Nephronophthisis (NPH) comprises a group of rare disorders accounting for up to 10% of

end-stage kidney disease (ESKD) in children. Prediction of kidney prognosis poses a major challenge. We

assessed differences in kidney survival, impact of variant type, and the association of clinical character-

istics with declining kidney function.

Methods: Data was obtained from 3 independent sources, namely the network for early onset cystic

kidney diseases clinical registry (n ¼ 105), an online survey sent out to the European Reference Network

for Rare Kidney Diseases (n ¼ 60), and a literature search (n ¼ 218).

Results: A total of 383 individuals were available for analysis: 116 NPHP1, 101 NPHP3, 81 NPHP4 and 85

NPHP11/TMEM67 patients. Kidney survival differed between the 4 cohorts with a highly variable median

age at onset of ESKD as follows: NPHP3, 4.0 years (interquartile range 0.3–12.0); NPHP1, 13.5 years

(interquartile range 10.5–16.5); NPHP4, 16.0 years (interquartile range 11.0–25.0); and NPHP11/TMEM67,

19.0 years (interquartile range 8.7–28.0). Kidney survival was significantly associated with the underlying

variant type for NPHP1, NPHP3, and NPHP4. Multivariate analysis for the NPHP1 cohort revealed growth
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retardation (hazard ratio 3.5) and angiotensin-converting enzyme inhibitor (ACEI) treatment (hazard ratio

2.8) as 2 independent factors associated with an earlier onset of ESKD, whereas arterial hypertension was

linked to an accelerated glomerular filtration rate (GFR) decline.

Conclusion: The presented data will enable clinicians to better estimate kidney prognosis of distinct pa-

tients with NPH and thereby allow personalized counseling.

Kidney Int Rep (2022) -, -–-; https://doi.org/10.1016/j.ekir.2022.05.035

KEYWORDS: end-stage kidney disease; genetic variant severity; genotype-phenotype correlations; kidney survival;

nephronophthisis; prognostic factors
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N
PH comprises a clinically and genetically hetero-
geneous group of autosomal recessive tubu-

lointerstitial cystic kidney disorders representing the
most frequent monogenic cause of ESKD in children
and adolescents.1,2 Incidence ranges from 1 per
1,000,000 to 1 per 50,000 depending on ethnicity and
underlying disease-causing variant.3,4 Variants in 25
genes have been identified to be associated with NPH,
still leaving about 40% of patients genetically un-
solved.4–7 A large homozygous deletion on chromo-
some 2q12-q13 including the entire NPHP1 gene is the
most frequent disease-causing variant accounting for
20% to 40% of all cases. Variants in the other known
NPHP genes makeup for 3% or less each.5,8–10 Three
clinical subtypes have been established based on age at
onset of ESKD as follows: Infantile, juvenile, and
adolescent NPH.11,12 The so called “classical juvenile
NPH” is the most common entity associated with ESKD
at a median age of 13 years.13 Conversely, in infantile
NPH, ESKD is reached before the age of 5 years (mean
age 8 months) whereas in adolescent forms kidney
function is usually preserved until adulthood (mean
age 19 years).11,14,15 Variants in NPHP2 and NPHP3
rather predispose for infantile NPH, whereas other
genes are linked to late onset forms (e.g., NPHP4).5,16

Nevertheless, the more widespread use of modern
sequencing techniques in combination with clinical
information gained from large-scale databases opened
up new perspectives to define more precisely the age
spectrum for the onset of ESKD associated with distinct
gene variants. This particularly applies to the homo-
zygous NPHP1 deletion.17,18 Similarly, distinctive
NPHP3 variants have been reported to cause late onset
NPH in contrast to the majority of patients displaying
an infantile disease course.19–21

Despite the large number of identified NPHP genes,
only a few of them are of relevance in routine clinical
practice, namely NPHP1, NPHP3, NPHP4, and
NPHP11/TMEM67. These 4 genes account for 75% of
all identified disease-causing variants.9 In addition,
NPHP5/IQCB1 and NPHP6/CEP290 represent the 2
main causes for the clinical spectra of Senior-Løken and
Joubert syndrome.16,22,23

NPH-related diagnostic approaches have shifted
from a predominantly clinical assessment to the early
use of multigene panels and exome sequencing as a
result of technical progress.24–26 This allows for a
detailed molecular diagnosis early in life, sometimes
even before the onset of kidney symptoms. Neverthe-
less, because of the lack of clear-cut genotype-pheno-
type correlations, phenotypic variability and the
consequential unpredictability of individual disease
progression, clinical management and personalized
counseling remain major challenges. The prognostic
uncertainty poses an enormous psychological burden
on pediatric patients and their families facing a
potentially life-threatening disease of unclear onset and
extent.

Herein, we analyzed differences in gene-related
kidney survival based on large patient cohorts of
>80 each. Furthermore, we assessed potential prog-
nostic factors for the NPHP1 cohort, representing the
clinically most relevant group. This is one of the largest
studies addressing kidney survival for NPH in genet-
ically characterized individuals.
METHODS

Patient Recruitment

Phenotypic data of 383 genetically characterized in-
dividuals was obtained from 3 independent sources,
namely the Network of Early Onset Cystic Kidney
Diseases (NEOCYST) clinical registry (n ¼ 105),27 an
online survey sent out to the members of the European
Reference Network for Rare Kidney Diseases (ERKNet;
n¼ 60) and a complementary literature search (n¼ 218)
(Figure 1). In addition, clinical information of 44
genetically unsolved individuals was available from the
NEOCYST registry. Patients were enrolled in the reg-
istry from February 1, 2010, through December 31,
2020. The ERKNet-based online survey asked for a
limited data set containing information on sex, age,
Kidney International Reports (2022) -, -–-
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Figure 1. Patient recruitment. Phenotypic data of 383 genetically characterized individuals was obtained from 3 independent sources: the
Network of Early Onset Cystic Kidney Diseases clinical registry (n ¼ 105), an online survey sent out to the members of the ERKNet (n ¼ 60) and a
complementary literature search (n ¼ 218). Homogeneous data from 116 NPHP1 patients obtained from the Network of Early Onset Cystic
Kidney Diseases registry (n ¼ 80) and the online survey (n ¼ 36) was fused for analyzes of impact of clinical factors. Gene-specific and variant-
related kidney survival was analyzed including all 383 genetically characterized individuals (NPHP1: n ¼ 116; NPHP3: n ¼ 101; NPHP4: n ¼ 81;
NPHP11/TMEM67: n ¼ 85) originating from the Network of Early Onset Cystic Kidney Diseases registry (n ¼ 105), the online survey (n ¼ 60) and
a comprehensive literature search (n ¼ 218). ERKNet, European Reference Network for Rare Kidney Diseases.
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genetic background, GFR decline, hypertension, pro-
teinuria, and a medical history of ACEI treatment. Pa-
tient baseline characteristics at study entry are outlined
in Supplementary Table S1. All patients and/or their
parents gave written informed consent. The study was
approved by the Ethics Committee of the University of
Münster (2016-284-f-S) in accordance with the Decla-
ration of Helsinki.

For the literature search, the MEDLINE library was
screened for original articles including case reports up
to March 2020, providing data on kidney survival or
onset of ESKD for the following genotypes: NPHP3,
NPHP4, and NPHP11/TMEM67. In total, data from
218 individuals (86 NPHP3, 64 NPHP4, and 68
NPHP11/TMEM67) were identified and extracted from
the literature containing information on the age at
ESKD and the underlying disease-causing variants
(Supplementary Table S2). No literature-based data was
generated for the NPHP1 cohort. For the NPHP1
cohort, solely information from the NEOCYST registry
(n ¼ 80) or reported via questionnaire (n ¼ 36) were
used for analysis (Figure 1). For the NPHP1 cohort,
duplicate inclusions were thoroughly excluded by
crosschecking identifying information (initials, month
and year of birth, and sex). In the case of all other
genotypes, combined information on individual genetic
Kidney International Reports (2022) -, -–-
variants, sex and age were used to avoid duplicate
inclusions from different data sources. A total of 3
duplicates were identified and withdrawn before
analysis, resulting in phenotypic data of a total of 383
genetically characterized individuals (Figure 1).

Genetic Testing

Because of the study design, various methods for ge-
netic testing were used, including PCR-based gel elec-
trophoresis or MLPA for detection of homozygous
NPHP1 deletions (n ¼ 97/165), targeted Sanger
sequencing on the basis of the patient’s phenotype (n ¼
11/165), as well as massively parallel sequencing based
approaches such as multigene panel sequencing and
exome sequencing (n ¼ 57/165).28,29

Variables

Estimated GFR (eGFR) was assessed by the FAS equa-
tion for the full age spectrum.30 Annual eGFR decline
was determined in patients with at least 2 subsequent
eGFR values in intervals of at least 3 months and dis-
played as absolute values (ml/min per 1.73 m2 body
surface area (BSA) per year).

ESKD was defined as either the start of renal
replacement therapy (chronic dialysis treatment or
kidney transplantation) or an eGFR value <10 ml/min
3
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per 1.73 m2 BSA. Proteinuria was defined as >300 mg/
24 h (>0.2 g/g). Growth retardation was defined by a
baseline height below the third percentile or height
development crossing the third percentile.

Variant Classification

Interpretation of the clinical significance of variants
was completed following the American College of
Medical Genetics and Genomics and the Association for
Molecular Pathology guidelines31 using the VarSome32

online tool (VarSome The Human Genomics Commu-
nity). In addition to the automatically generated
criteria, manual adjustment for the following 2 criteria
was made: PM3 (recessive disorders, detected in trans
with a pathogenic variant) and PP4 (patient’s pheno-
type or family history is highly specific for a disease
with a single genetic etiology). Further interpretation
of functional effects of human nsSNPs was conducted
using the PolyPhen-233 (http://genetics.bwh.harvard.
edu/pph2/), SIFT34 (https://sift.bii.a-star.edu.sg/),
PROVEAN35 (http://provean.jcvi.org/about.php), var-
SEAK Online (https://varseak.bio, developed by JSI
medical systems GmbH, Ettenheim, Germany) and
ClinVar (release 13./31.07.2021)36 (https://www.ncbi.
nlm.nih.gov/clinvar/) online tools.

Statistical Analysis

Based on the detailed phenotypic data provided by the
NEOCYST registry and complemented by information
gained from the online survey, cross-sectional and
longitudinal statistical analyses were performed on the
NPHP1 cohort (n ¼ 116). Kidney survival was defined
as the time from birth to the age at onset of ESKD.
Patients who did not reach ESKD were censored at their
age of last follow-up. Kidney survival was depicted
using Kaplan-Meier estimator and the association of
potential prognostic factors was estimated by Cox
regression analysis in a univariate and multivariate
fashion. The P # 0.05 were considered noticeable
(“significant”). Results are considered exploratory, not
confirmatory. No adjustment for multiple testing was
performed. An overall significance level was not
determined and cannot be calculated. Statistical ana-
lyses were performed using R software and SAS (SAS
Institute Inc., Cary, NC, USA).

RESULTS

Kidney Survival

Using the data of all 383 genetically determined and 44
genetically unsolved patients, Kaplan–Meier analysis
revealed remarkable differences between the geneti-
cally defined subgroups (Figure 2). A rapid decline of
kidney survival between the age of 8 and 16 years was
observed in the NPHP1 subgroup (Figure 2a). By 16.5
4

years of age, 75% of affected teenagers received kidney
replacement therapy (Figure 2b). Among the patients,
19% retained residual kidney function beyond the age
of 20 years (5 individuals with a homozygous NPHP1
deletion and 3 carrying other biallelic NPHP1 variants)
(Supplementary Table S2). Kidney survival for patients
carrying NPHP4 variants was characterized by a later
onset and a slower decline compared with NPHP1
(Figure 2a). The main differences between both groups
were illustrated by the age when 50% (13.5 years vs.
16 years) and 75% (16.5 years vs. 25 years) of patients
reached ESKD. Almost no age difference was observed
for the onset of 25% receiving renal replacement
therapy (Figure 2b). Notably, kidney survival of the
genetically unsolved individuals was comparable to
survival curves observed for NPHP1 and NPHP4
(Figure 2a).

NPHP11/TMEM67 related kidney survival was
characterized by an overall lower percentage of ESKD
as well as a flatter decline in survival, particularly in
the second decade of life. Two distinct groups could be
identified, namley those with severe kidney involve-
ment represented by 25% having reached ESKD as
early as 8.7 years, and those with mild or no obvious
kidney involvement with another 25% of patients not
requiring kidney replacement therapy at the age of 28
(Figure 2a). An even more pronounced picture emerged
for the NPHP3 group. Though approximately half of
the patients experienced infantile NPH with an early
onset of ESKD before the age of 4 years, a minority of
15% retained residual kidney function beyond the age
of 20 (Figure 2a). Gene-related differences in mean age,
median age, and interquartile age ranges for the onset
of ESKD are summarized in Table 1.

Impact of Variant Type

We subclassified the genetic variants into 3 different
categories as follows: truncating-truncating (trunc/
trunc), truncating-missense (trunc/mis) and missense-
missense (mis/mis). Truncating variants were defined
as predicted loss of function (Supplementary Tables S1
and S2). Because of the nature of the presentation of
variants in the NPHP1 group, a different classification
was applied to this cohort as follows: biallelic truncating
variants including a homozygous deletion (n¼ 105), and
other genetic NPHP1 variants (n ¼ 11).

For NPHP1, NPHP3 and NPHP4, the type of un-
derlying disease-causing variant was significantly
associated with kidney survival. In the NPHP3 cohort,
the presence of at least 1 truncating variant (trunc/
trunc or trunc/mis) led to an early onset of ESKD before
the age of 2 years in >50% (Figure 3a). In contrast, the
presence of 2 predicted missense variants was associ-
ated with a significantly better kidney survival (P <
Kidney International Reports (2022) -, -–-
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Figure 2. Gene-related kidney survival. Differences in gene-related kidney survival displayed as Kaplan–Meier survival curve (a) and median
age (black line)/interquartile range for the onset of ESKD in 50%, 25% and 75% of participants (b). Significant statements: NPHP1 vs. NPHP3: P <
0.0001; NPHP1 versus NPHP4: P < 0.003; NPHP1 versus NPHP11: P ¼ 0.057; NPHP3 versus NPHP4: P < 0.0001; NPHP3 versus NPHP11: P <
0.0001; NPHP4 versus NPHP11: P ¼ 0.539; NPHP1 versus NPHP3 vs. NPHP4 versus NPHP11: P < 0.0001. ESKD, end-stage kidney disease.
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0.0001). For NPHP4, only the presence of 2 truncating
variants was associated with a significantly
(P ¼ 0.0021) worse kidney outcome compared with
patients carrying at least 1 missense variant (Figure 3b).
In individuals carrying biallelic truncating NPHP1
variants including those with a homozygous deletion, a
significantly worse kidney survival was observed
compared with individuals with at least 1 missense
variant (P ¼ 0.03) (Figure 3c). Nevertheless, analyzing
only individuals with a homozygous deletion (n ¼ 97)
and comparing them with the rest of the cohort (n ¼
19), no significant difference in kidney survival was
observed (P ¼ 0.20; Supplementary Figure S1). In
addition, no association between variant type and
kidney survival was apparent for NPHP11/TMEM67
(Figure 3d).

Impact of Nongenetic Factors

A cross-sectional multivariate analysis was applied to
the NPHP1 cohort, representing the only group
providing sufficient information on the clinical vari-
ables used for analysis (Figure 4). In total, 116 patients
with NPHP1 (54 females) with a median age of 10.5
years (0.6–31.5 years) at study onset were included,
comprising a phenotypic spectrum of isolated kidney
disease in 101 individuals, whereas the remaining 15
Table 1. Kidney survival of genetically defined NPH cohorts
Patient characteristics NPHP1 NP

Total number of participants 116 1

Participants with ESKD (%) 70% 8

Mean age at onset of ESKD (years/ range) 12.5 (5.3–27.6) 7.7

Median age and interquartile range (IQR) for the onset
of ESKD (years)

13.5 (10.5–16.5) 4.0 (0

ESKD, end-stage kidney disease; IQR, interquartile range; n.a., not assessed; NPH, nephronop

Kidney International Reports (2022) -, -–-
children displayed characteristic features for Senior-
Løken syndrome (n ¼ 7), Joubert syndrome (n ¼ 3),
congenital oculomotor apraxia type Cogan II (n ¼ 4), or
Bardet-Biedl syndrome (n ¼ 1). Details of the extrarenal
phenotype are outlined in Supplementary Table S4.
Arterial hypertension was reported in 62 individuals
(52%), accompanied by significant proteinuria in 26%.
Either of both conditions led to ACEI treatment in 27
individuals. Patients were characterized ‘hypertensive’
based on the start of antihypertensive treatment
(Table 2).

Cross-sectional multivariate analysis revealed
growth retardation (hazard ratio 3.52; CI 1.67–7.41) and
ACEI treatment (hazard ratio 2.80; CI 1.13–6.91) as 2
significant (P < 0.05) and independent factors corre-
lated with an earlier onset of ESKD (Figure 4a).

Furthermore, univariate analysis on the GFR trajec-
tory revealed arterial hypertension and ACEI treatment
to be significantly (P < 0.01) associated with an
accelerated annual GFR decline (Figure 4b and
Supplementary Table S5). Based on 47 deltaGFR values
from 23 individuals treated with ACEIs against 125
values from 62 individuals without treatment, we
observed a difference in annual GFR loss of 7.2 � 0.4
versus 5.2�0.6 ml/min per 1.73 m2 BSA. Patients with
and without ACEI treatment were comparable
HP3 NPHP4 NPHP11 Unsolved

01 81 85 44

1% 100% 45% 57%

(0–47) 17.1 (6–54) 11.9 (0–32) 11.1 (2.1–18.6)

.25–12.0) 16.0 (11.0–25.0) 19.0 (8.7–28.0) 15.4 (9.7–n.a.)

hthisis.
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Figure 3. Variant-related kidney survival. Genetic variants for NPHP3, NPHP4, and NPHP11/TMEM67 were subclassified into truncating/trun-
cating, truncating/missense or missense/missense, defined by the presence of either 2 loss of function, 1 loss of function and 1 missense
mutation or 2 missense mutations. The NPHP1 group was divided into biallelic truncating including a homozygous deletion and others. NPHP3
(n ¼ 98) (a); NPHP4 (n ¼ 81) (b); NPHP1 (n ¼ 116) (c); NPHP11 (n ¼ 85) (d).

CLINICAL RESEARCH JC König et al.: Kidney Survival in Nephronophthisis
regarding sex, age, and CKD stage (Table 3). In single
cases with only temporary ACEI treatment, intra-
individual GFR decline was higher under the influence
of ACEIs compared with no treatment (Figure 5).
However, in a subsequent multivariate approach
adjusted for each individual factor, only the impact of
arterial hypertension remained significant with an
annual GFR loss of 7.0 � 0.5 versus 4.6 � 0.4 ml/min
per 1.73 m2 BSA (P < 0.01).

DISCUSSION

Since the identification of a large homozygous 290 kb
deletion covering the entire NPHP1 gene in the 1990s,7

tremendous progress has been made in the molecular
understanding of NPH and related ciliopathies.1,37–41

However, the focus of most scientific efforts has been
on the discovery of the genetic background and mo-
lecular pathways.5,7,9,42 Consequently, a lack of clear-
cut genotype-phenotype correlations and prognostic
6

factors is preventing reliable prognosis of kidney sur-
vival, and individual counseling. Herein, we present
one of the largest studies addressing kidney survival in
genetically characterized NPH cohorts.

In 1997, Hildebrandt et al.13 established creatinine
based, age–dependent quartiles for the NPHP1-related
progression of chronic kidney failure. The survey was
based on a large number of 308 serial serum creatinine
values originating from 19 individuals only. The pre-
sent study covered a significantly higher number of
patients including 97 individuals with a homozygous
NPHP1 deletion. Still, results were consistent with
those of the historical study. Median age at ESKD was
13.5 years versus 13.1 years in the historical cohort and
12.9 years in a recent survey of 20 Chinese chil-
dren.13,43 Quartiles of 25% and 75% reaching ESKD
were similar to 10.5 years and 16.5 years compared
with 11.3 years and 17.3 years.13 In a series of 20
Egyptian children with NPHP1 variants including 5
Kidney International Reports (2022) -, -–-



Figure 4. Cross-sectional analysis of NPHP1 patients identifying clinical factors. Multivariate cross-sectional analysis identifying clinical factors
for an early onset of ESKD in patients with NPHP1 gene variations (a). Univariate cross-sectional analysis of NPHP1 patients displaying the
differences in annual deltaGFR (e.g., eGFR slope ¼ deltaGFR male - deltaGFR female) for multiple clinical characteristics: ACEI treatment and
most strikingly arterial hypertension were associated with an accelerated GFR decline; however, in a multivariate approach adjusted for each
characteristic, only the influence of arterial hypertension remained significant (b). ACEI, angiotensin-converting enzyme inhibitor; eGFR, esti-
mated glomerular filtration rate; ESKD, end-stage kidney disease; HR, hazard ratio.
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with a homozygous deletion, Soliman et al.44 reported a
significantly earlier onset of ESKD (7.9 years). Sur-
prisingly, in that survey, children without NPHP1
deletion showed a worse kidney outcome compared
with those with a homozygous deletion whereas in our
study it was the other way around (P ¼ 0.03). Eight
NPHP1 patients (5 with a homozygous deletion)
retained residual kidney function beyond the age of 20
years. This is in line with previous case reports and the
recent awareness of NPHP1 variants being responsible
for a remarkable number of adult-onset ESKD.12,13,16–18
Kidney International Reports (2022) -, -–-
Biallelic variants in NPHP3 were originally
described in a Venezuelan pedigree presenting with
late onset ESKD.15,19 Recent reports identified NPHP3
variants as one of the most relevant genetic causes for
infantile NPH.9,20,45,46 In a worldwide cohort of 1056
patients displaying a NPH phenotype, 17 were identi-
fied with either a homozygous or compound hetero-
zygous variant in NPHP3, of whom 9 presented an
onset of ESKD before the age of 2 and only 3 in-
dividuals reached ESKD beyond 5 years of age.9 Simi-
larly, ESKD in our NPHP3 cohort (n ¼ 15) occurred at a
7



Table 2. Clinical characteristics of NPHP1 patients at the time point
when classified “hypertensive”
Characteristics Patients

Sex

Female 27

Male 35

Age at diagnosis (yrs) 11.2 (2.4–33.4)

CKD stage

CKD I 2

CKD II 1

CKD III 16

CKD IV 17

CKD V 26

Average time from diagnosis hypertension to ESKD (yrs) 1.52 (0–7.1)

Pre-RRT antihypertensive treatment

No 14

Mono 32

Dual 8

Triple 8

Calcium antagonist 23

Beta blocker 18

ACEIs 27

Other 4

ACEI, angiotensin-converting enzyme inhibitor; CKD, chronic kidney disease; EKSD, end-
stage kidney disease; RRT, renal replacement therapy.
Arterial hypertension was either defined by the start of antihypertensive treatment
before the onset of ESKD (n ¼ 48) or simultaneously with the start of RRT.

Table 3. Clinical characteristics of 85 NPHP1 patients with
subsequent eGFR values on and off ACEI treatment.
Patient characteristics ACEIL ACEID

Number of patients (n) 62 23

DeltaGFR values (n) 125 47

Male/female 33/29 12/11

Age at study entry (yrs) 10.2 � 3.7
(2.4–20.8)

13.9 � 7.9
(4.4–33.4)

CKD stage, n (%)

CKD1 3 (4) 2 (9)

CKD2 7 (10) 1 (4)

CKD3 26 (38) 11 (48)

CKD4 23 (34) 10 (43)

CKD5 9 (13) 3 (13)

Absolute GFR loss/yr
(ml/min per 1.73 m2cBSA)

5.2 � 0.6 7.2 � 0.4

ACEI, angiotensin-converting enzyme inhibitor; BSA, body surface area; CKD, chronic
kidney disease; GFR, glomerular filtration rate.
DeltaGFR values were determined for individuals with at least 2 subsequent eGFR
values in intervals of minimum 3 months. This way we were able to generate 125
deltaGFR values from 62 patients without and 47 deltaGFR values from 23 patients with
the influence of ACEI treatment.
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median age of 3.3 years. No association between the
NPHP3 genotype and the age at ESKD has been
revealed so far.15,42 In this study, we found a signifi-
cant association between the time of ESKD and variant
type. Individuals carrying 2 missense variants pre-
sented a significantly better kidney survival compared
with those with at least 1 truncating variant. However,
it needs to be mentioned that 24 of 27 patients with 2
missense variants belonged to the same Venezuelan
pedigree.19

For NPHP4, there was significant phenotypic over-
lap with the NPHP1 cohort, particularly when pre-
senting as isolated kidney disease and reaching ESKD
in the early teens. However, the overall kidney sur-
vival was much better as compared with other NPHP
groups. Even the ‘trunc/trunc’ scenario was charac-
terized by juvenile NPH mimicking the situation of
most NPHP1 patients. Comparable survival rates were
observed among large international NPH cohorts
comprising 45 patients with NPHP4 variants.42,47 In
contrast, Halbritter et al.9 described 22 NPHP4 pa-
tients with 19 experiencing rather early ESKD (mean
12.5 years). None of the studies revealed a correlation
between variant type and the onset of ESKD. We
observed an earlier onset of ESKD in individuals with 2
truncating NPHP4 alleles. Supporting this observation,
a case series on a consanguineous Filipino family car-
rying 2 NPHP4 missense variants reported a
8

consistently late onset kidney failure (median age 36.2
years).48

NPHP11/TMEM67 related kidney survival was
characterized by an overall lower percentage of ESKD
accounting for 35% of NEOCYST patients and 45%
when including published cases. This is in line with a
large genotype-phenotype study including 22 in-
dividuals with Joubert syndrome caused by biallelic
NPHP11/TMEM67 variants, of whom only 50%
showed kidney involvement.49 Though the overall
onset of ESKD in our cohort was 11.9 years, 2 groups
could be distinguished, namely those with severe and
early kidney involvement, and those with mild or no
obvious kidney phenotype. This reflects the wide
phenotypic spectrum covered by NPHP11/TMEM67
variants comprising isolated liver disease, Joubert
syndrome with and without kidney involvement,
COACH syndrome, RHYNS syndrome, and lethal
Meckel-Gruber syndrome.50–53 Previous genotype-
phenotype correlation studies identified the associa-
tion of variant and phenotypic severity, observing
mostly truncating variants or missense variants clus-
tering within exons 8 to 15 to be causative for lethal
Meckel-Gruber syndrome phenotypes.54 Nevertheless,
this did not apply to kidney survival in the current
study population. The presence of disease-causing
variants in exons 8 to 15 was not associated with age
at ESKD. In patients with such variants in 1 allele,
onset of ESKD was 11.8 years (n ¼ 19) compared with
11.3 years in patients without a disease-causing variant
in exons 8 to 15 (n ¼ 18). Biallelic exon 8 to 15 variants
(n ¼ 4) were associated with ESKD at a median age of
9.2 years (n ¼ 3) (Supplementary Table S6). This
observation underpins the idea of the organ-specific
impact of distinct genotypes, which is an important
Kidney International Reports (2022) -, -–-



Figure 5. Representative eGFR trajectories from 4 patients with biallelic NPHP1 variants and temporary ACEI treatment. In all 4 cases, eGFR
decline was more pronounced under the influence of ACEIs compared with no treatment-irrespective of CKD stage and age. However, no
statistical significance was reached. ACEI, angiotensin-converting enzyme inhibitor; CKD, chronic kidney disease; eGFR, estimated glomerular
filtration rate.
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point to keep in mind for the clinical management of
affected patients.

So far, neither molecular markers nor clinical factors
associated with kidney prognosis have been unraveled
for NPH. In this study, applying an in-depth phenotyp-
ing registry-based approach, we were able to identify 2
independent factors associated with an earlier onset of
ESKD inNPHP1 patients, namely growth retardation and
ACEI treatment. Whereas growth retardation was
observed in 34% consistent with previous data (11%–
40%),47,55 information on the effects of ACEI treatment in
the setting of NPH is extremely sparse. The association of
ACEIswith a negative effect on kidney survival observed
in our study appeared peculiar at first glance considering
the nephroprotective benefits of ACEI treatment in the
setting of chronic kidneydisease.56,57However, a detailed
look at the original pediatric data reveals that these
benefits were mainly limited to glomerulopathies and
congenital anomalies of the kidney and urinary tract
disorders, but did not apply to cystic kidneydiseases.58,59

Regarding individuals with autosomal dominant poly-
cystic kidney disease, clear benefits of ACEI treatment
have been described in the literature. Yet, many of these
benefits rather applied to blood pressure control and
cardiac outcome whereas evidence for a direct benefit to
the decline of kidney function remains sparse.60 In fact,
there is only 1 prospective observational study directly
Kidney International Reports (2022) -, -–-
showing a slower GFR decline in autosomal dominant
polycystic kidney disease patients treated with ACEIs
compared with a matched group treated with diuretics.61

Further evidence is either based on indirect conclusions
drawn from an epidemiologic study or on the presence of
increased plasma renin activity levels.62,63 In contrast,
there have also been studies on autosomal dominant
polycystic kidney disease cohorts that failed to show
beneficial effects of ACEI treatment on the decline of
kidney function.64 The limited amount of data included
in our study (n ¼ 27) does not allow us to draw final
conclusions at this stage. Yet, the univariate analysis of
individual GFR trajectories revealed that the use of ACEIs
was also significantly associated with a faster GFR decline
(Supplementary Table S5 and Figure 5). Further investi-
gation beyond the scope of this study is necessary,
including more data and prospective studies to confirm
the current impression because it would have a major
impact on clinical practice recommendations.

In addition to ACEI treatment, both in a univariate
and multivariate analysis revealed a significant
negative impact of arterial hypertension on the
annual GFR decline. This appears contradictory at
first because both arterial hypertension and antihy-
pertensive ACEI treatment had the same negative
effect on the GFR trajectory. A potential explanation
for this phenomenon might be the content overlap
9
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List of NEOCYST Consortium

NEOCYST members: P. Antczak, J. Birtel, C. Bergmann,
M. Cetiner, M. Dahmer-Heath, J. Drube, J. Gerß,D.
Haffner, T. Illig, I. Kamp-Becker, N. Klopp, S. Koll-
mann, J. König, M. Konrad, MC. Liebau, C. Nittel, C.
Okorn, H. Omran, L. Pape, P. Pennekamp, F. Schäfer,
B. Schermer, H. Storf, J. Vasseur, S. Weber, K. Wohl-
gemuth, W. Ziegler, C. Gimpel, J. Göbel, B. Schlevogt
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expressed by 27 of 62 hypertensive individuals
receiving ACEI treatment. It is noteworthy that after
adjusting for each individual factor in the multivar-
iate analysis, only the impact of hypertension
remained significant. The high number of hyperten-
sive patients in our cohort appeared striking
considering the absence of elevated blood pressure
levels being referred to as a typical feature of
NPH.5,11,12,65 In fact, different cohort studies reported
predialysis arterial hypertension in up to 30%,
exceeded by the ratio in our cohort of 62:116.47,55

Against this background it must be mentioned that,
in most cases arterial hypertension was closely
related to ESKD reflected by an average interval be-
tween the diagnosis of hypertension and the onset of
ESKD of 1.5 years (Table 2). This again raises the
question of whether the arterial hypertension is a
consequence of advanced chronic kidney disease
rather than an independent risk factor for the early
onset of ESKD. Supporting this assumption, pre-
dialysis antihypertensive treatment was started in 48
cases only. The remaining 14 individuals were diag-
nosed hypertensive concomitant with ESKD at their
first clinical presentation (Table 2). Neither concom-
itant extrarenal organ involvement nor the sono-
graphic detection of kidney cysts did have an impact
on kidney prognosis.

The current study was limited by the fact that
different genetic methodologies were included. Un-
fortunately, the registry-based approach did not
allow a universal use of state-of-the-art genetic
analysis because many of the patients were no longer
in pediatric care and there was no access to current
blood samples. In addition, the classification of ge-
netic missense variants as ‘predicted mild’ without
proof of functional data may be vulnerable. However,
we tried to address these concerns as best as possible
by the application of the American College of Med-
ical Genetics and Genomics criteria on all variants to
(re)assess the validity of all included and partly
formerly published variants (Supplementary
Table S3).

In this study, we provide evidence that NPH-related
kidney survival is not only determined by the under-
lying affected gene but may also varies depending on
variant type. Growth retardation and the use of ACEIs
were identified as independent factors associated with
an earlier onset of ESKD in the setting of an underlying
NPHP1 genotype. Furthermore, arterial hypertension
was linked to an accelerated GFR decline regardless of
the kind of antihypertensive treatment. The presented
data enables clinicians to better estimate individual
kidney prognosis and thereby facilitate personalized
counseling.
10
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