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Abstract
Introduction: Population-based biomarker surveys are the gold standard for estimating HIV prevalence but are susceptible
to substantial non-participation (up to 30%). Analytical missing data methods, including inverse-probability weighting (IPW)
and multiple imputation (MI), are biased when data are missing-not-at-random, for example when people living with HIV more
frequently decline participation. Heckman-type selection models can, under certain assumptions, recover unbiased prevalence
estimates in such scenarios.
Methods: We pooled data from 142,706 participants aged 15–49 years from nationally representative cross-sectional
Population-based HIV Impact Assessments in seven countries in sub-Saharan Africa, conducted between 2015 and 2018 in
Tanzania, Uganda, Malawi, Zambia, Zimbabwe, Lesotho and Eswatini. We compared sex-stratified HIV prevalence estimates
from unadjusted, IPW, MI and selection models, controlling for household and individual-level predictors of non-participation,
and assessed the sensitivity of selection models to the copula function specifying the correlation between study participation
and HIV status.
Results: In total, 84.1% of participants provided a blood sample to determine HIV serostatus (range: 76% in Malawi to 95% in
Uganda). HIV prevalence estimates from selection models diverged from IPW and MI models by up to 5% in Lesotho, without
substantial precision loss. In Tanzania, the IPW model yielded lower HIV prevalence estimates among males than the best-
fitting copula selection model (3.8% vs. 7.9%).
Conclusions: We demonstrate how HIV prevalence estimates from selection models can differ from those obtained under
missing-at-random assumptions. Further benefits include exploration of plausible relationships between participation and out-
come. While selection models require additional assumptions and careful specification, they are an important tool for triangu-
lating prevalence estimates in surveys with substantial missing data due to non-participation.
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1 INTRODUCT ION

Accurate HIV prevalence estimates are crucial for monitoring
HIV disease burden and guiding testing and clinical manage-
ment. However, population-based HIV biomarker surveys, the
gold standard for estimating HIV prevalence, can be prone
to substantial non-participation that is non-random [1]. Past

biomarker non-response rates have been as high as 30% in
nationally representative Demographic and Health Surveys
(DHS) and other population-based studies [2–4]. When par-
ticipants and non-participants differ with respect to HIV sta-
tus, naïve use of prevalence data from surveys yields biased
results [1]. HIV-seropositive persons may decline to test
more often for various reasons. Individuals who know their

1

http://onlinelibrary.wiley.com/doi/10.1002/jia2.25954/full
https://doi.org/10.1002/jia2.25954
https://orcid.org/0000-0003-1009-4701
https://orcid.org/0000-0001-6604-491X
mailto:ap3223@caa.columbia.edu
http://creativecommons.org/licenses/by/4.0/


Palma AM et al. Journal of the International AIDS Society 2022, 25:e25954
http://onlinelibrary.wiley.com/doi/10.1002/jia2.25954/full | https://doi.org/10.1002/jia2.25954

serostatus may want to avoid unnecessary re-testing [5];
those who do not know, but suspect their status, may decline
to test for fear of disclosure and HIV-related stigma or to pre-
vent imposing burdens on family or caregivers [6].

Growing attention has turned to analytical methods to deal
with non-ignorable missing data, such as those that are miss-
ing not at random (MNAR). If data are missing completely at
random, no adjustment is needed. When HIV status is missing
at random (MAR) conditional on observed variables, the use
of inverse-probability weighting (IPW) or multiple imputation
(MI) is sufficient to generate unbiased estimates [7, 8]. How-
ever, it is not possible to empirically verify whether data are
indeed MAR or instead MNAR, where unwillingness to con-
sent to biomarker testing is associated with HIV status (actual
or perceived) due to unmeasured factors. In such scenarios,
HIV prevalence estimates are susceptible to bias even when
using IPW or MI methods.

One method that can potentially recover unbiased preva-
lence estimates from MNAR data is the Heckman-type sample
selection model [9, 10]. Selection models operate by using the
association between the probability of selection (HIV test par-
ticipation) and the outcome of interest (HIV serostatus) and
jointly estimating population-level prevalence for participants
and non-participants. Selection models empirically require one
or more selection variables—that is, variables that predict the
outcome only via their association with the participation pro-
cess. Previous work has proposed that interviewer identity fits
this criterion for biomarker-measured outcomes, since inter-
viewer skill and personality may affect a participant’s willing-
ness to consent for testing but could not plausibly affect their
HIV status; moreover, interviewer identity is commonly avail-
able in survey data [11].

Early selection models required bivariate normally dis-
tributed errors for selection and outcome, but this require-
ment has now been relaxed by specifying a copula function
that describes the dependence between the error terms in
the outcome and selection models [12]. This development has
enhanced the flexibility of selection models and may even
increase their utility as a means to identify the form of non-
participation biases in a given population, yielding insights for
HIV prevention [13]. Such methodological advancements pro-
vide support for the routine adoption of selection models in
epidemiological research. However, despite extensive use in
economics, selection models have been used sparingly in epi-
demiology and typically using earlier formulations with less
flexible modelling assumptions [11, 14–17].

Selection models are particularly relevant for Population-
based HIV Impact Assessments (PHIAs); these are nation-
ally representative cross-sectional household-based surveys
aimed to capture the state of the HIV epidemic in the most-
affected countries, such as sub-Saharan African countries and
Haiti [18]. PHIA surveys include HIV testing via venous blood
draw and other biomarker testing. PHIA response rates were
generally higher than other comparable nationally represen-
tative surveys [2]. Nonetheless, blood test refusal rates in
some countries have been as high as 30% for men and
19% for women [19–25]. While published PHIA estimates
are weighted to account for non-response and the com-
plex sampling design, these estimates relied on observed
covariates and thus may not account for non-response

associated with HIV status or perceptions around HIV
status.

In this study, we aimed to test whether HIV prevalence esti-
mates in seven PHIA surveys conducted in Tanzania, Uganda,
Malawi, Zambia, Zimbabwe, Lesotho and Eswatini were sensi-
tive to the method chosen to handle missing data. We com-
pared sex-stratified HIV prevalence estimates in each country,
using naïve, IPW, MI and sample selection models, to evalu-
ate the potential benefit of accounting for MNAR data in such
estimates.

2 METHODS

2.1 Data source and sampling

Each PHIA survey was designed to characterize HIV preva-
lence and incidence, as well as progress towards The Joint
United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90
targets, referring to 90% of people living with HIV knowing
their HIV status, 90% of those who know their status receiv-
ing antiretroviral therapy (ART) and 90% of those on ART
achieving viral suppression [26]. Similar to DHS, the sampling
approach used in PHIA begins with a first-stage sampling of
census enumeration areas (EAs) with probability proportional
to size within geographic strata defined by the highest sub-
national geographic designated area in each country, such
as province or region. Within sampled EAs, households were
randomly selected to participate in a interview to provide
household information and a household membership roster.
All rostered adults meeting country-specific age criteria
(typically between 15 and 64 years of age) who had slept in
the household the night before the survey were eligible to
participate in an individual interview. Consenting participants
were offered venous blood sample collection to conduct HIV
rapid testing. Consent for the interview was obtained prior
to the interview, and consent for the blood test was obtained
after the interview immediately prior to testing, except in
Eswatini where both consents were elicited prior to the inter-
view. HIV test results were returned to respondents at the
time of the survey, and those testing seropositive and a small
sample of those testing seronegative were further provided
point-of-care CD4 testing, referral to HIV care and treatment,
and viral load testing, the results of which were returned to
nearby health facilities within 6–12 weeks [18–25].

2.2 Measures

We defined HIV test participation as the completion of blood
testing based on each country’s national HIV testing algo-
rithm; this involved sequential testing that utilized up to three
HIV rapid tests administered at the home. HIV seropositiv-
ity was defined as blood test-confirmed HIV-positive status
using a confirmatory HIV test; negative and indeterminate
test results were classified as HIV seronegative. We selected
potential covariates for inclusion in MI and selection models
on the basis of hypothesized association with HIV test par-
ticipation or HIV status from the existing literature. Selected
covariates included: urban residential location (urban vs.
rural); 5-year age-group (15-19, 20–24, 25–29, 30–34, 35–
39, 40–44 or 45–49); marital status (never married, married
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or living together, divorced or separated, or widowed); edu-
cational attainment (no education, primary, secondary, more
than secondary); ethnicity (categorical, when available); house-
hold wealth quintile within the country (based on household
assets and characteristics that varied across countries [18,
27]); circumcised versus uncircumcised (males only); pregnant
versus not pregnant (females only); self-reported ever versus
never had sex; self-reported ever versus never received HIV
testing prior to the survey; province/region; and language.

Interviewers’ identities were recorded using unique
anonymized IDs. Two different interviewers may have admin-
istered the interview and blood draw depending on training
in phlebotomy and HIV testing. If the interview was admin-
istered by an interviewer without clinical training, consent
for blood draw was obtained by a separate interviewer [18].
Among individuals who participated in the individual interview
and were offered a blood test, we used the identity of the
interviewer who elicited consent for blood testing. Among
participants who did not participate in the interview, we used
the identity of the interviewer who elicited consent for the
interview.

2.3 Analysis

All rostered de facto household members in participating
households aged 15–49 years were potentially eligible for
analysis. Sample characteristics were described among the
entire sample and compared to those who completed an indi-
vidual interview and the further subset who completed a
blood test. Blood test participation rates were calculated over-
all and by country, sex and age.

We estimated sex-stratified HIV prevalence and 95% con-
fidence intervals (CIs). All prevalence estimates were calcu-
lated using survey design weights to adjust for EA and house-
hold selection probabilities and household non-participation.
This weighting approach allowed at minimum for all rostered
de facto household members to represent the national pop-
ulation. Additional adjustment for interview and blood test
non-participation was performed under models with different
missing data approaches as described below. All analyses were
conducted using the MICE and GJRM packages in R v3.6.2
[28, 29].

2.3.1 Naïve model and maximal bounds

In naïve models, we calculated HIV prevalence as the
weighted proportion of blood test participants who tested
seropositive, with no further adjustment for individual-level
non-participation. We also calculated maximal bounds, which
represent lower and upper limits in the observed sample
assuming all non-participants were HIV seronegative or HIV
seropositive, respectively [30].

2.3.2 IPW model

IPW model estimates were additionally weighted to adjust for
non-participation in the individual interview and blood test-
ing. Survey weights were constructed using the least absolute
shrinkage and selection operation (LASSO) regression and chi-
squared automatic interaction detector (CHAID) tree classifi-
cation algorithms to select a minimal set of available variables

that best predict non-response. The inverse probability of par-
ticipation within strata defined by the identified set of vari-
ables was used to weight blood test respondents. This IPW
approach was similar to the estimation method used in pub-
lished PHIA reports [18, 31], except that we omitted post-
stratification weighting and used Taylor series variance esti-
mation instead of jackknife repeated replication in order to
simplify comparison between models.

2.3.3 MI model

MI was performed using chained equations. Selected covari-
ates were included in country- and sex-specific imputation
models to generate 20 imputation datasets each. HIV preva-
lence was estimated by running models across datasets and
pooling results as per Rubin’s rules [32]. Interview and blood
test non-participation weights were not used as individual-
level non-response was accounted for by MI.

2.3.4 Sample selection model

Selection models require specification of two equations, a
selection equation for test participation and an outcome equa-
tion for HIV status [11, 12]. We used a probit regression
model for binary HIV status yi for individual i:

y∗i = XT
i 𝜷 + 𝜖i

yi =
{
1 if y∗i > 0
0 otherwise

where y∗i is an unobserved latent variable determining the
likelihood of having HIV-positive status that depends on a vec-
tor of observed characteristics Xi and random error 𝜀i Simi-
larly, we used a probit model for selection si for individual i:

s∗i = XT
i 𝜸 + ZT

i 𝝓 + ui

si =
{
1 if s∗i > 0
0 otherwise

where s∗i is an unobserved latent variable determining the
likelihood of participation that depends on a vector of
observed characteristics xi, a potentially null vector of selec-
tion variables Zi and random error ui. The predictors in Xi
were the same in both models, though this is not theoretically
necessary. However, due to HIV-related stigma, risk factors
for HIV are likely to be predictors of non-participation as well.
Detailed information on the selected covariates in all models
is provided in Table S1. Selection variables Zi are chosen on
the basis of their predictive utility for participation but not
the outcome, and are included in order to prevent collinearity
between selection and outcome models [11]. Replicating prior
studies, we used interviewer identity reflecting the fact that
interviewer skill and personality may influence participation
in HIV testing but could not plausibly affect HIV status [33],
modelled as a random effect using a ridge penalty to improve
convergence properties [12]. Province/region was modelled as
a random effect using a Markov random field smoother [12].

We incorporated a copula function to model various
forms of dependence between selection and outcome model
errors [34]. We considered 19 different copulae: normal;
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Table 1. Pooled sample characteristics

Men Women

All eligible household

members

Interview

participants

Blood test

participants

All eligible

household

members

Interview

participants

Blood test

participants

N (% of total sample) % of eligible % of eligible % of total sample % of eligible % of eligible

Total sample 64,049 (100%) 85.7% (54,900) 79.0% (50,584) 78,657 (100%) 94.2% (74,133) 88.2% (69,393)

Country

Tanzania 13,059 (20.4%) 88.3% 84.0% 16,057 (20.4%) 94.9% 91.1%

Uganda 11,788 (18.4%) 93.5% 92.1% 15,200 (19.3%) 97.8% 96.8%

Malawi 9,030 (14.1%) 80.7% 69.8% 11,006 (14.0%) 92.7% 81.3%

Zambia 10,358 (16.2%) 80.2% 71.0% 12,192 (15.5%) 90.6% 82.1%

Zimbabwe 9,702 (15.1%) 82.7% 74.6% 11,806 (15.0%) 93.9% 86.6%

Lesotho 5,473 (8.5%) 86.8% 76.7% 6,871 (8.7%) 95.1% 87.2%

Eswatini 4,639 (7.2%) 86.0% 78.8% 5,525 (7.0%) 93.4% 88.3%

Urbanicity

Urbana 22,684 (35.4%) 80.5% 72.1% 28,978 (36.8%) 93.3% 86.3%

Rural 41,365 (64.6%) 88.6% 82.7% 49,679 (63.2%) 94.8% 89.3%

Age group

15–19 15,574 (24.3%) 85.8% 80.7% 16,654 (21.2%) 91.1% 86.2%

20–24 11,520 (18.0%) 87.0% 80.0% 15,619 (19.9%) 94.7% 88.3%

25–29 9,801 (15.3%) 84.9% 77.1% 13,222 (16.8%) 95.1% 88.2%

30–34 8,849 (13.8%) 83.8% 76.1% 11,423 (14.5%) 95.4% 88.8%

35–39 7499 (11.7%) 84.6% 77.4% 9,183 (11.7%) 95.5% 89.0%

40–44 6155 (9.6%) 86.3% 79.3% 7,203 (9.2%) 95.2% 89.7%

45–49 4651 (7.3%) 88.4% 82.3% 5,353 (6.8%) 95.1% 89.5%

Note: Numbers of men and women in the pooled sample, by country, urban/rural and 5-year age groups. Percentages of total sample represent
the proportion of the total number of eligible household members in the total pooled sample (column percent). Percent of eligible represents
the row percent of eligible household members who participated in the interview and blood test, respectively. aWhile most countries had two
categories for urban and rural, in Lesotho, peri-urban was treated as urban for analysis.

Student’s-t; Frank; Ali–Miqhail–Haq; Pluckett; Farlie–Gumbel–
Morgenstern; Hougaard; Joe; Gumbel; and Clayton—the last
three each rotated by 0, 90, 180 and 270 degrees. We
fit sample selection models using each copula function and
selected the best-fitting model using Akaike’s information cri-
terion (AIC). We explored how HIV prevalence estimates var-
ied across copulae to assess the sensitivity of results to this
model specification.

2.4 Sensitivity analyses

We conducted sensitivity analyses running all models only
among individual interview participants. Compared to analyses
among all eligible household members, these analyses were
all additionally weighted for interview non-response at mini-
mum. Consequently, comparisons between models accounted
only for differences in missingness assumptions with respect
to blood test non-participation.

2.5 Ethical approval

The PHIA protocol and data collection tools were approved
by institutional review boards at Columbia University Medi-

Figure 1. Blood test participation by country, sex and 5-year age
group. Each point indicates the blood test participation rate (% of
all eligible adult household members) for each country by sex and
5-year age group, and lines indicate the trends across age. Bolded
points and lines indicate the pooled blood test participation rate
for all countries by sex and 5-year age group.
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Figure 2. HIV prevalence estimates among adults aged 15–49 using different missing data methods. Abbreviations: IPW, inverse proba-
bility weighting; MI, multiple imputation. Points and error bars represent HIV prevalence (%) and 95% CIs obtained from models under
various missing data treatments using data from all rostered household members. Maximal bounds are the theoretical minimum and
maximum of possible HIV prevalence estimates in the sample assuming that all non-participants were HIV negative or HIV positive. CIs
from other models may exceed the maximal bounds due to Taylor series variance approximation.

cal Center, the United States Centers for Disease Control and
Prevention and ethical review boards in each country.

3 RESULTS

3.1 Sample characteristics

Across seven countries, N = 142,706 individuals aged 15–
49 were eligible to participate (men: 64,049; women: 78,657).
Overall, 90% (N = 129,033) participated in the individual
interview (men: 54,900; women: 74,133); of these, 93% (N =
119,977) participated in blood testing, yielding an overall
blood test participation rate of 84.1% of all de facto house-
hold members, (men: 79.0%; women: 88.2%). Participation
rates differed by country, as well as sex and age, with lower
participation among men and those 25–39 years old (Figure 1
and Table 1). Sample characteristics by country are reported
in Tables S2a–2g.

Consent rates varied widely by interviewer, ranging
between 60% and 100%. Interviewer-level consent rates
were significantly positively associated with HIV prevalence in
Eswatini, Zambia and Zimbabwe, but not in Malawi, Lesotho,
Tanzania or Uganda (Table S3 and Figure S1).

3.2 HIV prevalence estimates

Figure 2 and Table 2 show sex-stratified national HIV preva-
lence estimates from each model. Naïve model estimates

among men ranged from 3.3% in Tanzania to 19.9% in Eswa-
tini and among women from 6.5% in Tanzania to 34.8% in
Eswatini. IPW estimates were similar to those in the naïve
models among men ranging from 3.8% in Tanzania to 19.9% in
Eswatini and among women from 6.2% in Tanzania to 34.3%
in Eswatini. Naïve and IPW point estimates did not differ by
more than 1.3% in any survey. MI model estimates were sub-
stantially higher than IPW models among men in Tanzania
(5.4% vs. 3.8%), Malawi (16.5% vs. 8.9%), Zambia (14.2% vs.
8.5%) and Zimbabwe (14.9% vs. 12.0%) and among women in
Eswatini (38.6% vs. 34.3%).

Figure 3 shows an example of selection model copula test-
ing in Tanzania. For men, HIV prevalence estimates from
selection models under all copulae were higher than the IPW
model estimate of 3.8% but two groups of estimates emerged.
One group yielded similar HIV prevalence estimates to the
IPW model of around 4–5%, while the second group yielded
HIV prevalence estimates between 6% and 8% with CIs that
did not overlap that of the IPW estimate and had substan-
tially better AIC-based model fit. For women, we observed
less variation in AIC and HIV prevalence, with all model CIs
overlapping with that of the IPW model. For both sexes, the
Student’s-t copula had the best fit and was thus used for
the main analysis. Copula tests for all countries are shown in
Figure S2.

Prevalence estimates for men were higher in selection
models than the IPW model in Tanzania (7.9% vs. 3.8%),
Uganda (4.7% vs. 4.2%), Zimbabwe (13.5% vs. 12.0%), Lesotho
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Figure 3. Comparison of HIV prevalence estimates from selection models under various copulae versus the IPW model. Points and error
bars show selection model results by sex for each bivariate copula, AIC (x-axis) versus HIV prevalence (%) and 95% CI (y-axis). Horizon-
tal black line and gray bar indicate the IPW estimate and 95% CI. Points further left exhibit better model fit. Point labels denote which
copula was used: “N” = Normal, “F” = Frank, “T” = Student’s-t, “FGM” = Farlie–Gumbel–Morgenstern, “AMH” = Ali–Mikhail–Haq, “PL” =
Placket, “HO” = Hougaard, “J” = Joe, “C” = Clayton, “G” = Gumbel. For Joe, Clayton and Gumbel copulae, numbers indicate rotation,
either 0, 90, 180 or 270 degrees.

(24.3% vs. 19.3%) and Eswatini (20.8% vs. 19.9%); and for
women in Tanzania (7.9% vs. 6.2%), Zambia (15.5% vs. 14.3%),
Zimbabwe (18.1% vs. 15.9%), Lesotho (34.9% vs. 29.7%) and
Eswatini (37.5% vs. 34.3%). The differential between IPW
and selection model point estimates ranged between –0.8%
and 5.2%. Compared with IPW models, selection models
generally yielded lower estimated female-to-male prevalence
ratios; the largest change was observed in Tanzania where
the female-to-male prevalence ratio disappeared from 1.63 to
1.00 (Table 2).

Sensitivity analyses restricted to participants who com-
pleted an individual interview are shown in Table S4 and
Figure S3. The direction and magnitude of selection bias esti-
mated by the selection model were inconsistent with analy-
ses using all eligible household members. Notably, however,
the selection model estimates were typically higher than the
IPW estimate in these analyses as well, except for Malawi and
Zambia for men and Tanzania for women.

4 D ISCUSS ION

In this study, we assessed the sensitivity of national HIV
prevalence estimates to the assumptions made about test
non-participation using data from seven population-based
HIV surveys in sub-Saharan Africa. Compared to unadjusted
estimates, standard methods to account for non-response
under MAR assumptions (IPW and MI) produced only small
changes in estimated prevalence in most countries. However,
using selection models—a method that relaxes the assump-
tion that non-participation was MAR conditional on observed

characteristics—led to increased prevalence estimates com-
pared to IPW models in several cases where MI did not.

Our study replicates and extends a previous analysis using
older DHS data from 12 countries, five of which were
also included here (Malawi, Zambia, Eswatini, Zimbabwe and
Lesotho) [16]. The impact of using selection models in our
analysis was less extreme than in the earlier work, but we
found that selection model estimates deviated from IPW and
MI models in a greater proportion of surveys than Hogan
et al. did [16]. This may reflect changes over time in the
strength of association between HIV status and willingness
to participate, perhaps because of reductions in HIV-related
stigma due to increased availability of treatment [35]. Alter-
natively, the more modest differences may reflect method-
ological improvements, including the ability to model differ-
ent forms of the relationship between selection and outcome
via copula functions, and improved convergence properties via
the incorporation of ridge penalties in model estimation [12,
34].

Selection models potentially provide more accurate mea-
sures of an outcome when the assumptions of commonly used
approaches are inappropriate. When study non-participation
is driven by factors not observable to implementers, IPW or
MI methods operate under incorrect assumptions regarding
the mechanisms that determine missingness. IPW models can
also underestimate uncertainty due to missing data in vari-
ance estimation. The selection model CIs were often, but not
always, wider than those of naïve and IPW models, reflect-
ing uncertainty in both sampling variability and regression
parameters, similar to results seen in prior studies [16]. Some
selection model estimates did not have wider CIs, though,
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possibly due to better fit achieved using the specified cop-
ula function and increased efficiency via joint regression mod-
elling procedures [12, 16]. However, even in cases where
the selection model estimates were less precise, results were
nonetheless statistically significantly and meaningfully differ-
ent to IPW estimates in several cases. In all such cases here,
when multiple copulae diverged substantially from the IPW
estimate, the estimates from these copulae models were sim-
ilar to one another. However, such accord may not always
be the case and subject matter knowledge should be used to
guide whether the selection model estimates are plausible.

The wide variability seen in estimates across different
copulae suggests that selection models are in fact sensitive
to this model specification. Indeed, copula selection proved
to be non-trivial in several surveys where multiple copulae
yielded divergent HIV prevalence estimates. As the example
of Tanzania illustrated above, findings suggested that a neg-
atively correlated copulae (Student’s-t) best represented the
relationship between selection and outcome, meaning that
HIV-positive status was associated with lower likelihood of
participation. Furthermore, Student’s-t is a symmetric copula,
indicating that the association was driven equally by lower
participation among HIV-positive and higher participation
among HIV-negative individuals. In contrast, teardrop-shaped
copulae suggest that the association is stronger for certain
individuals; for example, the Joe 90 rotation copula selected
in Lesotho shows that the negative association between HIV
status and participation is driven more by individuals who are
HIV negative (Figure S4).

We cannot rule out misspecification of the selection model
equations. Our selection model results for men in Tanzania
yielded a two-fold increase in HIV prevalence compared to
IPW estimates despite high participation rates (84%). This
suggests a degree of selection bias where approximately
one-third of men who refused participation were HIV posi-
tive (compared to 3.8% among participants). The estimated
correlation between selection and outcome model errors was
strong (Kendall’s tau: –0.548, Figure S4); however, validation
requires external knowledge of study design and data collec-
tion. Similarly, MI estimates for men in Malawi and Zambia
drastically diverged from the IPW models. These findings
were not replicated among individual interview participants
only (Figure S3), suggesting that the selection biases likely
stemmed from household non-participation. Male heads of
household may disproportionately refuse when HIV positive,
but this hypothesis is untestable with the available data.
Future surveys should collect more robust household-level
predictors of participation and HIV risk.

The validity of our selection model findings rests centrally
on whether interviewer identity is a valid selection variable
(i.e. it is unrelated to HIV status conditional on observed
variables). This assumption is conceptually untestable. Inter-
viewers in PHIA were intentionally matched to geographic
areas based on language. However, other unplanned match-
ing may have occurred, for example if high-performing inter-
viewers were assigned to difficult areas, or to participants by
sex or age. If unplanned matching occurred and was strongly
correlated with HIV status, the exclusion criterion would be
violated, although its impact on our findings cannot be dis-
cerned. Future studies could limit such violations by random-

izing interviewer assignment a priori. Randomized assignment
of interviewers within defined geographic areas has previously
been shown to be feasible and improve identification of inter-
viewer effects without substantial detriment to overall sur-
vey quality [36]. We are also unable to determine whether
the elicitation of blood test consent prior to the interview
in Eswatini (whereas it was elicited after the interview in all
other countries) affected likelihood of consent and thus the
selection model results. It is, for example, possible that inter-
viewers develop rapport during the interview, increasing the
likelihood of blood test participation. However, we found no
stronger evidence of selection bias in Eswatini than in the
other countries. Lastly, this analysis cannot account for unob-
served predictors of household non-participation.

5 CONCLUS IONS

In this study, we demonstrate the utility of selection models as
a valuable part of triangulation in estimating HIV prevalence
[37]. While selection models require additional assumptions
and careful assessment of model sensitivity, they can evalu-
ate the potential impact of non-participation biases compared
to other analytical methods where non-response is high, miss-
ingness is likely non-random conditional on observed charac-
teristics and a plausible selection variable is available. In the
context of population-based studies, this includes biomarker
and other objectively verifiable outcomes, particularly those
subject to stigma or fear-based perceptions (e.g. viral load
for measuring treatment adherence). Selection models also
enable exploration of the relationships between study par-
ticipation and outcome, which is itself of scientific interest.
Given the accessibility of flexible tools in readily available soft-
ware, selection models can be easily implemented and have
the potential to improve modelling and inference in survey
analysis. Furthermore, selection model results may highlight
areas for improving future surveys through enhanced inter-
viewer training and supervision and targeted recruitment of
sub-populations with known non-participation biases observed
in previous surveys.
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Information tab for this article:
Figure S1: Consent rates and HIV prevalence by interviewer
Figure S2: Selection model results by copula
Figure S3: HIV prevalence estimates among adults aged 15–
49 under different missingness assumptions using data from
individual interview participants only
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Figure S4: Copula contour plots
Table S1: Model specifications
Table S2a: Sample characteristics for Tanzania
Table S2b: Sample characteristics for Uganda
Table S2c: Sample characteristics for Malawi
Table S2d: Sample characteristics for Zambia
Table S2e: Sample characteristics for Zimbabwe

Table S2f: Sample characteristics for Lesotho
Table S2g: Sample characteristics for Eswatini
Table S3: Interviewer-level participation rate (%) and HIV test
prevalence (%)
Table S4: HIV prevalence estimates among adults aged 15–
49 under different missingness assumptions using data from
individual interview participants only
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