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ABSTRACT
Background: To use routinely collected data to develop a five-year cardiovascular 
disease (CVD) risk prediction model for Chinese adults with type 2 diabetes with 
validation of its performance in a population of European ancestry.

Methods: People with incident type 2 diabetes and no history of CVD at diagnosis of 
diabetes between 2008 and 2017 were included in derivation and validation cohorts. 
The derivation cohort was identified from a pseudonymized research extract of data 
from the First Affiliated Hospital of Nanjing Medical University (NMU). Five-year risk 
of CVD was estimated using basic and extended Cox proportional hazards regression 
models including 6 and 11 predictors respectively. The risk prediction models were 
internally validated and externally validated in a Scottish population–based cohort 
with CVD events identified from linked hospital records. Discrimination and calibration 
were assessed using Harrell’s C-statistic and calibration plots, respectively.

Results: Mean age of the derivation and validation cohorts were 58.4 and 59.2 years, 
respectively, with 53.5% and 56.9% men. During a median follow-up time of 4.75 
[2.67, 7.42] years, 18,827 (22.25%) of the 84,630 people in the NMU-Diabetes cohort 
and 8,763 (7.31%) of the Scottish cohort of 119,891 people developed CVD. The 
extended model had a C-statistic of 0.723 [0.721–0.724] in internal validation and 
0.716 [0.713–0.719] in external validation. 

Conclusions: It is possible to generate a risk prediction model with moderate 
discriminative power in internal and external validation derived from routinely 
collected Chinese hospital data. The proposed risk score could be used to improve CVD 
prevention in people with diabetes.
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INTRODUCTION
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in China and 
worldwide [1, 2]. People with type 2 diabetes are at approximately two‐ to fourfold higher risk of 
developing CVD than people without diabetes [3, 4]. Because almost a quarter of the estimated 
global population of people with diabetes is in China [5], it is important to be able to support 
effective management of the large number of people with diabetes, especially in urban areas 
where diabetes prevalence is higher than in rural areas [6]. 

Conventionally, CVD risk prediction models are derived from cohort studies and were designed to 
assess the management options and develop personalized treatment strategies [6, 7]. Most CVD 
risk prediction models [8–13] for people with type 2 diabetes were derived in cohorts from Western 
countries [14]. Existing CVD risk prediction models derived in Chinese populations with type 2 diabetes 
were derived from cohorts collected more than 20 years ago [15, 16], from small data sets (less 
than 10,000 individuals), or from data sets that were missing important clinical characteristics at 
baseline [17, 18]. Therefore, new CVD models for patients with type 2 diabetes in China are needed.

Application of the Observational Medical Outcomes Partnership Common Data Model (OMOP 
CDM) platform [19] offers a new way to create CVD risk prediction models for patients with 
diabetes in China using routinely collected data. Data concerning basic characteristics, diagnoses, 
and medications of patients were extracted from an aggregation of patient-centric health data 
collected in hospitals in real time can be cleaned, pseudonymized, and used for research. 

Nanjing city is the capital of Jiangsu province in central-eastern China. The First Affiliated 
Hospital of Nanjing Medical University (NMU) is one of the best medical centers in Nanjing with a 
catchment area including approximately eight million people. The CDM platform of the hospital 
contains observational health data of more than 140,000 patients with type 2 diabetes since 
2005. The NMU-diabetes database offers an opportunity to evaluate existing diabetes-specific 
CVD risk prediction models and to generate a new model. 

These developments offer an alternative efficient approach to conducting observational 
research on routine care data, enabling follow-up using routine data on larger numbers of 
people. Risk prediction models created from such data also have the potential to be more 
relevant to ‘real-world’ settings. 

External verification in other ethnic groups showed the differences in the diagnosis, treatment, 
and CVD risk factors among type 2 diabetics in different regions. It is valuable to explore 
whether models derived from Chinese populations might apply to other ethnic groups in other 
settings. Nowadays, most CVD risk prediction models were derived primarily from populations 
of European ancestry. It is valuable to assess whether models derived in Chinese populations 
might also perform well in populations of European ancestry. Scotland maintains a national 
population-based register, Scottish Care Information–Diabetes (SCI-Diabetes), of more than 
180,000 patients with a diagnosis of type 2 diabetes that can be linked to population-based 
hospitalization and mortality records. It has previously been used to externally validate other 
CVD prediction models [20].

The aim of this study is to validate previous CVD risk prediction models for people with type 
2 diabetes, then develop a five-year CVD risk prediction model for Chinese adults with type 
2 diabetes using routinely collected hospital data from a large medical center in Nanjing, 
and validate its performance in a population of largely European ancestry identified from the 
population-based register of people with a diagnosis of diabetes in Scotland.

2 METHODS
2.1 STUDY DESIGN AND DATA SOURCE 
2.1.1 Derivation cohort 

The derivation cohort was identified from the OMOP CDM platform in the First Affiliated 
Hospital of Nanjing Medical University (NMU), where we undertook a cohort study in a large 
number of inpatients and outpatients. Data concerning basic characteristics, diagnoses, and 
medications of patients were extracted from the Clinical Data Repository (CDR), an aggregation 
of patient-centric health data collected in hospital in real time, and went through privacy-free 
and cleaning treatment to map an observational medical outcomes partnership common data 
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model (OMOP CDM, Ver. 5.0). In this research, data concerning demographic characteristics, 
diagnoses, and medications for more than 6.3 million patients seen as inpatients or outpatients 
between January 1, 2005, and December 31, 2017, were extracted. Details of the data set have 
been reported previously [21]. This study was approved by the Ethics Committee of the First 
Affiliated Hospital of Nanjing Medical University (No. 2019-SR-153), and informed consent from 
study participants was waived. 

2.1.2 Validation cohort

The external validation cohort was extracted from the Scottish Care Information (SCI) diabetes 
data set, which was introduced in 2000 and is populated by patient data from primary care 
and hospital diabetes clinics. Outcome data is obtained from linkage to the Scottish Morbidity 
Record (SMR01), a national hospital admission data set, and death registrations. Approval for 
generation and analysis of the linked data set was obtained from the Caldicott Guardians of all 
health boards in Scotland, the Privacy Advisory Committee of the Information Services Division 
of NHS National Services Scotland, and the Scottish multicenter research ethics committee.

2.1.3 Participants

The derivation cohort, NMU-Diabetes, and the external validation cohort, SCI-Diabetes, both 
consisted of people diagnosed with type 2 diabetes between January 1, 2008 and December 
31, 2017. This time frame was chosen to reflect the earliest availability of high-quality data and 
the most recently available data for both data sources. We defined baseline date as the date of 
diagnosis of type 2 diabetes using the earliest hemoglobin A1c (briefly HbA1c, ≥48 mmol/mol or 
6.5%) or use of insulin or oral hypoglycemic drugs, or the first recorded diagnosis of type 2 diabetes. 

We included participants who were aged between 30 and 89 years at the date of diagnosis 
of diabetes because there were few events in younger people and because of the complex 
confounding factors in older patients. Members of the cohort were followed up from baseline 
(date of diabetes diagnosis) until the earliest date of death, date of first CVD event (defined 
later), or study end date (December 31, 2017). 

The cohort was restricted to people who had no previous history of CVD (as defined later) in 
order to enable the identification of high-risk groups that could inform approaches to primary 
prevention. We included individuals who were prescribed statins prior to and after type 2 
diabetes diagnosis in the main analyses but conducted sensitivity analyses in subpopulations 
restricted to (1) people who had not been prescribed statins prior to type 2 diabetes diagnosis 
and (2) people who had not been prescribed statins prior to type 2 diabetes diagnosis or during 
follow-up. See the supplementary Figure 1 for the study criteria in the derivation cohort.

2.1.4 Outcome

Our outcome was cardiovascular disease, which was defined as any hospital admission or death 
from nonfatal myocardial infarction (International Classification of Disease [ICD-10] codes I21–
I22), stroke (ICD-10 codes I60–I69), heart failure (ICD-10 code I50), cerebrovascular diseases, or 
transient cerebral ischemic attacks and related syndromes (ICD-10 codes G45) between baseline 
and December 31, 2017. CVD definitions used in derivation and external validation data sets were 
identical except that ICD-9 codes were used in the derivation data set for identifying the previous 
history of CVD due to the existence of legacy data (see Supplementary Table 1 for details). 

2.1.5 Predictors 

The candidate predictors included in the prediction model were chosen from those used in the 
existing risk scores [8–13] and that were available in both NMU-Diabetes and SCI-Diabetes data sets. 

In the NMU-Diabetes data set, we extracted data for demographic factors, clinical diagnoses, 
clinical values, and drug use. Candidate predictors of demographic factors included age 
(years) and sex (men/women). Candidate predictors of clinical diagnoses included rheumatoid 
arthritis (yes/no, ICD-10 codes M06.8, M06.9), hypertension (yes/no, ICD-10 codes I10.x), and 
chronic kidney disease (yes/no, ICD-10 codes N03, N11, N18). All predictor variables of clinical 
diagnoses were based on the latest diagnosis text in Chinese recorded in the CDM platform 
before entry to the cohort. Candidate predictors of clinical values included body mass index 
(weight/height, kg/m2), smoking status (yes/no), HbA1c (%), systolic blood pressure (mmHg), 
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total cholesterol (mmol/L), HDL–cholesterol (mmol/L), LDL cholesterol (mmol/L), albumin-to-
creatinine ratio (mg/g), albuminuria (normal, micro, macro), urine creatinine (umol/L), and 
estimated glomerular filtration rate (mL/min/1.73 m2). Smoking status and body mass index 
were extracted from medical records by natural language processing. Other clinical values 
were extracted from the standard clinical data in the CDM platform. Predictor values of clinical 
values were defined as measurements recorded closest to the date of diagnosis within 12 
months before or after the baseline date of diagnosis of diabetes. Candidate predictors of drug 
use included antihypertensive medications (yes/no) and lipid-lowering medications (yes/no). 
Values of drug-use predictors were decided by the drug name in Chinese recorded in the drug 
exposure table in the CDM platform and the tertiary list of the China national essential drugs 
list (2018 edition). The descriptions of predictors were shown in Supplementary File 1 in detail.

In the SCI-Diabetes cohort, prescriptions of antihypertensive and lipid-lowering medications 
were defined using British National Formulary codes 2.5 and 2.12, respectively. The presence 
of rheumatoid arthritis was defined as patients with any prescription for disease-modifying 
antirheumatic drugs, defined with a British National Formulary code of 10.1.3 prior to diagnosis 

Figure 1 Kaplan-Meier 
curve analysis in the whole 
derivation cohort. (A) 
Survival probability for all 
patients in the derivation 
cohort. (B) Survival probability 
for all patients in the 
derivation cohort grouped 
by statins using or not. 
Gray line: no statins using 
patients. Blackline: statins 
using patients. (C) Survival 
probability for all patients 
in the derivation cohort 
grouped by gender. Gray line: 
Male. Black line: Female. (D) 
Survival probability for all 
patients in the derivation 
cohort grouped by geriatric 
or not. Geriatric is defined 
according to the clinical 
definition in China. Gray line: 
Not Geriatric, younger than 
60. Black line: Geriatric, older 
than 60. Survival probability: 
the outcome modeled in 
the Kaplan-Meier curves are 
for the composite outcome 
defined in ‘Methods.’



5Wan et al.  
Global Heart  
DOI: 10.5334/gh.1131

of diabetes. For comparability with the derivation cohort, diagnosis of hypertension was based 
on the presence of ICD-10 codes I10, I11, I13, and I15 in hospital records. Other predictors are 
defined as the same as those in the NMU-Diabetes cohort.

2.1.6 Missing data 

Multiple imputations were implemented using the mice algorithm in the statistical package R 
(Package mice version 3.7.0 mice package in R) to replace missing values in exposure and risk 
factor variables. Imputation models were estimated and included all the baseline covariates 
used in the main analysis (age, sex, smoking status, high-density lipoprotein cholesterol, low-
density lipoprotein cholesterol, total cholesterol, systolic blood pressure, total cholesterol to 
high-density lipoprotein cholesterol ratio, HbA1c, albuminuria [normal, micro, macro], albumin-
to-creatinine ratio, creatinine, eGFR), baseline medications (prescribed antihypertensive 
medications, prescribed statins prior to diabetes diagnosis), coexisting medical conditions 
(history of rheumatoid arthritis, chronic kidney, and atrial fibrillation disease), coexisting medical 
conditions (history of rheumatoid arthritis, chronic kidney, and atrial fibrillation disease), and 
survival days and the outcome event status for each endpoint. Prior (between 10 and 1 years 
before study entry) and post (between 0 and 1 year after study entry) averages of continuous 
covariates were used in the imputation. Five multiply imputed data sets were generated, and 
Cox models were fitted to each data set. Estimates were pooled using Marshall’s adaption 
of Rubin’s rules [22]. The Kolmogorov-Smirnov test was used to compare the distribution of 
observed versus imputed log-transformed covariates. 

2.2 STATISTICAL ANALYSES AND DERIVATION AND VALIDATION OF THE 
MODELS
2.2.1 Survival analysis

Grouped Kaplan-Meier analysis, a nonparametric approach, using the month as the unit of 
time was used to illustrate event rates. The proportional hazards (PH) assumption was checked 
using statistical tests and graphical diagnostics based on scaled Schoenfeld residuals. Statistical 
significance was defined as a p-value < 0.05, and 95% confidence intervals (CI) were calculated.

2.2.2 Derivation of the models

We developed and evaluated the prediction models using existing works and performed an 
initial analysis based on all patients identified in the cohort. We used Cox proportional hazards 
regression to derive the risk prediction model. We developed a basic model that examined risk 
factors (age, sex, clinical diagnoses, and drug-use factors) that were easily measured in Chinese 
routine clinical settings and with lower data missing rates. The basic model excluded smoke 
status and biomarkers (eGFR, albuminuria, systolic blood pressure, LDL cholesterol, HbA1c) to 
test the performance of eliminating the influence of missing data on the model that used all 
the relevant patients on the database. Then, to maximize the power and generalizability of 
the results while remaining the cohort size same, we developed an extended model that used 
all the relevant patients on the database. We fitted full models initially, selected variables for 
inclusion in the model following a stepwise approach, and undertook standard model checking. 
The variable included in the extended model was the one associated with the smallest Akaike’s 
information criterion (AIC). AIC statistic estimates the relative amount of information lost by 
a given model and deals with the trade-off between the goodness of fit of the model and the 
simplicity of the model. Sex-specific models were also generated, and interactions between 
the predictors and sex were tested to investigate potential effect modification. AIC statistics 
were used to analyze the performance of the interactive model. We also considered several 
approaches to transforming continuous predictors, including linear, squared, log, and restricted 
cubic spline with four and five knots. The values of these knots can be found in Supplementary 
Table 2. The effect of different transformations was evaluated using Wald χ2. To avoid overfitting, 
the transformation of each continuous predictor with the highest χ2, if it was more than 5% 
higher than the χ2 value of the linear model, was chosen for inclusion in the multivariable 
model. We also evaluated performance in each age group (≤45, 45–60, 61–75, >76 years), 
persons without a previous statin prescription subgroup, the person with complete data for 
all predictors subgroup, and the person with complete data for some important biomarkers 
(albuminuria, estimated glomerular filtration rate, LDL cholesterol) subgroups. Performance 
was also evaluated by calculating Harrell’s C-statistics. 
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2.2.3 Internal validation and reclassification statistics

A bootstrap approach was used in internal validation (200 replications). Bootstrap is a statistical 
resampling procedure that draws bootstrap samples with replacement from the original sample 
to introduce a random element. 

We classified patients as being at high risk of CVD if their estimated five-year risk was equal to 
or greater than a threshold. The threshold was set as 20% according to the overall event rate of 
CVD in deviation cohort. Integrated discrimination improvement (IDI) was applied to compare 
the performance of the basic and the extended models we presented [23]. 

We compared predictions from our model with those from existing works, such as the American 
College of Cardiology/American Heart Association (ACC/AHA) Pooled Cohort Equations (PCEs) 
[8] for white and PECs for Africa, ADVANCE [8], Swedish NDR [12], and QRISK2 [24] for Chinese. 
Harrell’s C-statistic and IDI were also applied to assess how well each set of equations 
distinguished high-risk from low-risk patients (the threshold was set as 0.2 for cardiovascular 
disease). 

2.3 EXTERNAL VALIDATION OF THE MODEL 

The predictive performance of each derived risk score for the NMU-Diabetes cohort was 
assessed by internal and external validation. Discrimination of the final model was assessed 
using Harrell’s C-statistic during external validation. Discrimination describes the model’s ability 
to differentiate people who developed CVD from those who did not. Calibration was assessed 
in the external validation cohort using calibration slopes, calibration-in-the-large statistics, and 
calibration plots. Calibration slope statistics are the unitless slope of our calibration plot [25] 
used to evaluate the agreement between the risk prediction model and observed five-year risk 
using Kaplan-Meier estimates. Calibration-in-the-large statistics compare the mean predicted 
risk and mean observed risks. 

The models were recalibrated during external validation by adjusting baseline hazard and 
regression coefficients of the predictors by linear regression between the predicted risks and 
the observed risks in the SCI-Diabetes cohort. We also evaluated performance in each age 
group (≤45, 45–60, 61–75, ≥76 years).

All statistical analyses were conducted in R, version 3.6.2. Details about packages and codes 
were shown in Supplementary file 3. The reporting of this study is in accordance with the 
Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis 
(TRIPOD) guidelines.

3 RESULTS 
3.1 DERIVATION AND VALIDATION DATA SETS
3.1.1 Characteristics of the participants 

For the derivation cohort, we identified 148,624 patients with a diagnosis of diabetes from 
the CDM platform. We excluded 6,613 (4.45%) with a diagnosis of other diabetes, 4,297 
(2.89%) with a diagnosis of type 1 diabetes, 3,622 (2.44%) aged less than 30 or missing age 
info at baseline, 17,244 (11.60%) who are clearly observable for drugs in the one-year period 
after diagnosis and have insulin prescribed in that period, 23,295 (15.67%) with a diagnosis 
of cardiovascular disease at baseline, and 8,923 (6.00%) with a diagnosis of type 2 diabetes 
before January 1, 2008. Overall, 84,630 patients were included in the derivation.

For the external validation cohort, there were 248,281 individuals diagnosed with type 2 
diabetes in Scotland before December 31, 2017. Of these, 128,390 had a previous history of 
CVD or were diagnosed with type 2 diabetes before January 2008 and so were excluded from 
the analyses, leaving 119,891 (28.29%) individuals to form the external validation cohort.

Among the predictors included in the risk models, five had missing values, and the proportions 
of missingness were higher in NMU-Diabetes than SCI-Diabetes. In the derivation and validation 
cohorts, respectively, there were a total of 79,975 and 91,481 individuals with incomplete 
predictor data, including 2,907 and 55,638 individuals with a single incomplete predictor and 
a further 9,541 and 27,264 individuals with two incomplete variables (Supplementary Table 3). 
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3.1.2 Baseline characteristics of derivation and validation cohort

Table 1 compares the characteristics of eligible patients in both cohorts. Major differences 
between the derivation and validation cohort included a higher prevalence of macroalbuminuria 
(6.8% for women and 5.1% for men) in the derivation cohort than in the validation cohort 
(2.9% for women and 3.6% for men), whereas the prevalence of prescribing of lipid-lowering 
(11.3% for woman and 13.6% for men) and antihypertensive medications (23% for woman 
and 24.5% for men) in the NMU-Diabetes cohort was lower than in the Scottish cohort. 

3.1.3 Incidence of cardiovascular disease

Table 1 also shows the incidence rates of cardiovascular disease by gender both in the derivation 
cohort and in the external validation cohort. In the derivation cohort, during median follow-
up (interquartile range, IQR) of 4.75 [2.67, 7.42] years, 18,827 (22.25%) individuals developed 
cardiovascular disease during the study period from 10 years of observation. The 5- and 10-
year CVD event rates were 22.0% and 23.83% for men and 18.63% and 20.43% for women, 
respectively. Kaplan-Meier survival curves for the derivation cohort are shown in Figure 1. In the 

CHARACTERISTICS DERIVATION COHORT VALIDATION COHORT

FEMALE MALE FEMALE MALE

N 39,392 45,238 51,651 68,240

Age at diagnosis, years, median (IQR) 59 (8.6) 57 (9.4) 61 (9.3) 58 (8.9)

Systolic blood pressure, mmHg, mean (SD) 131 (18.7) 130 (18.2) 137.6 (17.7) 138.1 (17.1)

Smoking status, n (%) 　 　 　 　

  no 38,840 (98.6) 28,904 (63.9) 26,061 (50.5) 28,900 (42.4)

  ex 80 (0.2) 2,599 (5.7) 14,596 (28.3) 24,539 (36)

  cur 472 (1.2) 13,735 (30.4) 10,994 (21.3) 14,801 (21.7)

TDL cholesterol, mmol/mol, mean (SD) 5.9 (1.6) 5.9 (1.6) 5.4 (1.2) 5.1 (1.3)

LDL cholesterol, mmol/mol, mean (SD) 3.4 (0.9) 3.4 (0.9) 3 (1.1) 2.8 (1)

HDL cholesterol, mmol/mol, mean (SD) 2.4 (0.8) 2.3 (0.8) 1.3 (0.4) 1.1 (0.3)

Glycated hemoglobin, %, mean (SD) 6.9 (1.5) 7.2 (1.7) 7.9 (2) 8.3 (2.2)

Urine creatinine (umol/L) 100.9 (66.2) 134.2 (78.6) 71.8 (18.8) 85.3 (21.8)

Albumin-to-creatinine ratio, mean (SD) 72.7 (141.5) 60.5 (122.2) 3.5 (13.5) 4.1 (14.9)

Estimated glomerular filtration rate mls/
min/1.73 m2, mean (SD)

68.9 (34.9) 66 (36.5) 81.2 (19.4) 86.9 (18)

Albuminuria, n (%) 　 　 　 　

  normal 25,460 (64.6) 30,996 (68.5) 42,414 (82.1) 51,240 (75.1)

  micro 11,261 (28.6) 11,919 (26.3) 7,741 (15) 14,553 (21.3)

  macro 2,671 (6.8) 2,323 (5.1) 1,496 (2.9) 2,447 (3.6)

Retinopathy, n (%) 　 　 　 　

  0 37,487 (95.2) 43,416 (96) 51,643 (100) 68,225 (100)

  1 1,905 (4.8) 1,822 (4) 8 (0) 15 (0)

rheumatoidarthritis, n (%) 　 　 　 　

  0 39,087 (99.2) 45,058 (99.6) 50,962 (98.7) 67,822 (99.4)

  1 305 (0.8) 180 (0.4) 689 (1.3) 418 (0.6)

Atrial Fibrillation, n (%) 　 　 　 　

  0 39,210 (99.5) 44,938 (99.3) 49,806 (96.4) 65,582 (96.1)

  1 182 (0.5) 300 (0.7) 1,845 (3.6) 2,658 (3.9)

Prescribed statins prior to diabetes 
diagnosis, n (%)

　 　 　 　

  0 34,925 (88.7) 39,102 (86.4) 36,088 (69.9) 47,204 (69.2)

  1 4,467 (11.3) 6,136 (13.6) 15,563 (30.1) 21,036 (30.8)

Prescribed antihypertensive medications, 
n (%)

　 　 　 　

  0 30,349 (77) 34,151 (75.5) 35,987 (69.7) 48,051 (70.4)

  1 9,043 (23) 11,087 (24.5) 15,664 (30.3) 20,189 (29.6)

5-year CVD event rate, n (%) 7,340 (18.63) 9,954 (22.0) 2,579 (5) 3,660 (5.4)

10-year CVD event rate, n (%) 8,048 (20.43) 10,779 (23.83) 3,647 (7.1) 5,116 (7.5)

Table 1 Characteristics of 
patients aged 30–89 in 
derivation and validation 
cohorts 2008–2017 [CODE: 
finalBaselineTable.R].
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survival analysis, CVD event incident risk was significantly higher among patients older than 60 
(hazard ratio 1.97, 95% CI 1.92–2.03) compared with younger patients, was significantly higher 
among patients using statins before baseline (hazard ratio 8.2, 95% CI 7.94–8.45) compared 
with those who did not, and was slightly lower among female patients (hazard ratio 0.83, 95% 
CI 0.81–0.86) compared with male patients in the entire cohort.

3.1.4 Characteristics of events

Overall, in the NMU cohort, there were 10,120 (53.75%) coronary heart disease events (I21, 
I22, I50), 4,043 (21.47%) cerebrovascular disease (I60–I66), and 4,664 (24.78%) other CVD 
events (I67, G45). 

In the SCI cohort, there were 4,689 (57.87%) heart disease events, 1,718 (21.47%) 
cerebrovascular disease events were, and 2,356 (20.93%) other CVD events. 

3.2 RISK PREDICTION MODEL DEVELOPMENT AND INTERNAL ASSESSMENT
3.2.1 Model development

Table 2 shows the coefficients for each predictor in the basic and extended models. The basic 
model performed modestly overall in all patients with C-statistics of 0.716 [0.714–0.718]. The 

MODEL NAME BASIC EXTENDED

Age at diagnosis 1.027 [1.026–1.028]*** 1.025 [1.024–1.027]***

Sex: 　 　

  male 1 1

  female 0.821 [0.797–0.846]*** 0.86 [0.831–0.889]***

Rheumatoid Arthritis 1.63 [1.399–1.899]*** 1.65 [1.416–1.922]***

Hypertension 2.873 [2.785–2.964]*** 2.758 [2.672–2.847]***

Prescribed statins prior to diabetes diagnosis 2.264 [2.178–2.353]*** 2.37 [2.279–2.464]***

Prescribed antihypertensive medications 0.635 [0.611–0.659]*** 0.628 [0.604–0.653]***

Smoking status 　 　

  Never smoker 1 1

  Ex-smoker 　 1.232 [1.18–1.285]***

  Current smoker 　 1.273 [1.18–1.373]***

Albuminuria 　 　

  Normal 　 1

  Microalbuminuria 　 1.096 [1.06–1.134]***

  Macroalbuminuria 　 1.244 [1.172–1.32]***

Estimated glomerular filtration rate, mls/min/1.73 m2, 　 　

  (0, 15) 　 0.748 [0.631–0.888]***

（  15, 30） 　 1

  (30, 60) 　 1.146 [1.087–1.208]***

  (60, 90) 　 1.308 [1.24–1.381]***

  >90 　 1.354 [1.285–1.427]***

Glycated hemoglobin, %, 　 0.904 [0.894–0.914]***

LDL cholesterol, mmol/mol, 　 0.828 [0.814–0.842]***

Center 1.693 0.558

Harrell’s C-statistic 0.718 [0.716–0.72] 0.727 [0.725–0.729]

Nagelkerke’s R2 0.11 0.123

AIC 374,308.188 373,182.563

Internal Validation C-statistic (bootstrap) 0.718 [0.716–0.72] 0.727 [0.725–0.729]

Table 2 Adjusted hazard ratios 
(95% CI) for cardiovascular 
disease for the basic and 
extended models in derivation 
cohort. 

*** p < 0.001.



9Wan et al.  
Global Heart  
DOI: 10.5334/gh.1131

extended model identified 11 predictors associated with the risk of CVD (shown in Table 2) 
and had a similar C-statistic, 0.727 [0.725–0.729], to the basic model. The internal validation 
using a bootstrap approach showed these models were stable with C-statistics of 0.712 [0.703–
0.72] for the basic model and 0.723 [0.715–0.732] for the extended model (Table 2). Results 
of analyses exploring improvement in model fit following the inclusion of nonlinear terms are 
presented in Supplementary Table 4. 

3.2.2 Sensitivity analyses

Calibration and discrimination for age-stratified subsets were shown in Supplementary Table 
5. Evaluated according to the mean C-statistics, the age-stratified extended models using 
all factors except age performed slightly higher (with C-statistics as 0.727 [0.72, 0.734] in 
subgroup age lower than 45, 0.713 [0.708, 0.717] in subgroup age between 45 and 60, 0.699 
[0.696, 0.703] in subgroup age between 61 and 75, and 0.673 [0.668, 0.677] in subgroup age 
older than 76 years, respectively) compared with the age-stratified basic models only using 
sex, clinical diagnoses, and drug-use factors. Totally, the age-stratified models performed 
better in the younger subcohort. 

The sex-specific models using all factors except gender performed slightly lower (with 
C-statistics as 0.726 [0.723–0.729] and 0.725 [0.723–0.728] in the female and male 
subcohorts, respectively) compared to the results of the whole cohort. Detailed are presented 
in Supplementary Table 6. Interactions between the predictors and sex were consistent in the 
basic and the extended models (Supplementary Table 7). For each of these interactions, hazard 
ratios for the predictors were lower for women compared with men and raised gradually with 
increasing age. 

In sensitivity analyses conducted in the subcohort of persons without a previous statin 
prescription (N = 74,027), model coefficients were consistent with the whole NMU-Diabetes 
cohort (Supplementary Table 8). In the subcohort of persons with complete data for all predictors 
(N = 2,877) (see Supplementary Table 8), hazard ratios for nonusers of statins were consistent 
with the whole NMU cohort. Five-year CVD incidence in the subcohort for people with complete 
data for all predictors was 36.32 %, nearly twice as high as the whole cohort. Hazard ratios for 
rheumatoid arthritis and the use of statins were in the opposite direction from those of the whole 
cohort. The adjusted hazard ratio for three biomarker-related predictors (albuminuria, estimated 
glomerular filtration rate, or LDL cholesterol), included in the extended model in derivation 
cohort but with high missing rate, are explored in the subcohort with no missing values.

3.2.3 Internal validation and reclassification statistics

The internal validation using a bootstrap approach showed these models were stable with 
C-statistics of 0.712 [0.703–0.72] for the basic model and 0.723 [0.715–0.732] for the extended 
model (Table 2). The calibration slopes were 1.04 [1.04, 1.04] and 1.038 [1.038, 1.038], and 
estimates of calibration-in-large were 0.019 and 0.018 for the basic and the extended models, 
respectively, which means that the two models performed well in cohorts similar to the 
derivation cohort. 

With a 20% threshold for high risk of developing CVD, the extended model classified 15.07% of 
the cohort as high risk, capturing 12,751 (73.73%) of the subsequent CVD events. In comparison, 
14.61% of the cohort were classified as high risk by the basic model, capturing 12,362 (71.48%) 
of the CVD events. The IDI of the extended model compared to the basic model was 1.75% 
[1.64%–1.85%]. 

3.3 VALIDATION OF EXISTING WORKS

Reclassification statistics of comparison between the NMU extended model and other models 
(PEC for Africa, ADVANCE, Swedish NDR, and QRISK2 for Chinese) were shown in Supplementary 
Table 10.

Of the 38,743 patients classified as high risk (risk of at least 20% over five years) with the 
PCE score (using white people equation), 22,261 (57.5%) would be reclassified at low risk with 
the NMU extended model. The five-year observed risk among these reclassified patients was 
13.08% [12.92%–13.24%]—that is, below the 20% threshold for high risk.
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Among the 37,095 patients classified as high risk with NMU extended model, QRISK2 for 
Chinese model reclassified the lowest (11,747) as low risk, and ADVANCE reclassified the highest 
(36,204) as low risk. The five-year observed risk among those patients reclassified as low risk 
with QRISK for Chinese was 48.72% [46.58%–50.88%]—that is, above the 20% threshold for 
high risk and highest in comparison. 

The annual incidence rate of cardiovascular events among those with an NMU extended model 
score of at least 20% was 87.06 per 1,000 person-years (95% confidence interval 86.61–87.50) 
for men and 62.24 per 1,000 person-years (61.90–62.57) for men. Both these figures are higher 
than the annual incidence rate for patients identified as high risk with PCE score (using the 
white people equation). The annual incidence rate for these patients was 68.43 per 1,000 
person-years (68.08–68.78) for men and 56.04 (55.74–56.35) for women. In other words, at 
the 20% threshold, the population identified by NMU extended model was at higher risk of a 
CVD event than the population identified by the PCE score. 

3.4 EXTERNAL VALIDATION IN THE SCI-DIABETES COHORT

In the validation cohort, during median follow-up (IQR) of 4.75 [2.67, 7.42] years, 8,763 
(7.31%) individuals in the SCI-Diabetes cohort developed cardiovascular disease CVD during 
the study period from 10 years of observation. The 5- and 10-year CVD event rates were 5.4% 
and 7.5% for men and 5.0% and 7.1% for women, respectively. Supplementary Table 11 shows 
the associations between variables selected in the NMU-Diabetes basic and extended models 
and the risk of incident CVD in the SCI-Diabetes cohort. For the basic model, hazard ratios were 
similar in the two cohorts, with the exception of antihypertensive medication use. For the 
extended model, hazard ratios for eGFR, Hemoglobin AIC, LDL, and lipid-lowering medication 
use were in different directions. 

In the external validation, C-statistics were 0.691 [0.688–0.694] for the basic model and 0.714 
[0.71–0.717 ] for the extended model. Measures of calibration and discrimination for subsets 
within the external validation cohort yielded results similar to those of the main analyses 
(Supplementary Table 12), and calibration plots are presented in Figure 2. For calibration, 
applying the basic model and the extended model to the external validation cohort by adjusting 
the linear predictor gave a C statistics of 0.65 [0.646, 0.654] and 0.634 [0.63, 0.637] for CVD, 
respectively, and good calibration with the calibration slope 1.009 [1.008, 1.01] and 1.116 
[1.115, 1.117] for CVD. Overall, the basic model performed better than the extended model in 
the external validation cohort, but both models tended to overestimate risk. For both models, 
C-statistics values decreased after stratification by age, particularly in older age groups.

4. DISCUSSION
We developed a five-year CVD disease risk score in people with new-onset diabetes identified 
from the database of a tertiary hospital in China who were found to be at high risk of developing 
CVD. The risk score was compared with previous CVD scores and performed moderately well in 
external validation in a Scottish population–based cohort. 

Figure 2 Calibration plots for 
observed versus predicted 
five-year risk of CVD as 
estimated using the basic 
and the extended models in 
the derivation cohort. Gray 
dashed line reflects perfect 
agreement between observed 
and predicted risk. (A) 
Calibration plots using the basic 
model. (B) Calibration plots 
using the extended model.
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4.1 MAIN FINDINGS 

There are three main contributions of this paper. First, in this study we developed the risk models for 
high-risk patients using routinely collected clinical data from a large medical center. This permits 
better identification of patients at high risk among the large number of patients who visit large 
medical centers. The average incidence of CVD in these patients was higher than in population-
based survey data. For example, the 10-year Kaplan-Meier ASCVD rate reported as 4.6% for men 
and 2.7% for women in the China-PAR Project, which is much lower than the 10-year CVD event rate 
(23.8% for men and 20.4% for women) in the NMU-Diabetes cohort. Although the median follow-
up of the NMU-Diabetes cohort in this study, 4.75 [2.67, 7.42], is not the longest retrospective cohort 
in China, the median follow-up of the cohort will increase with the routinely collected process in the 
hospital. Therefore, it is valuable to develop a CVD risk prediction model based on longterm follow-
up clinical diagnosis and treatment data extracted from top-level hospitals in China. Through this 
study, high-risk patients can be more effectively identified, and targeted early interventions and 
focused interventions can be carried out in the large medical centers. 

Second, in this prospective study, we provide a new attempt to leverage clinical big data in 
China to help to reduce health inequalities in Western countries. In China, large medical centers 
have accumulated considerable clinical diagnosis and treatment data, which have the potential 
to offer a valuable resource for risk prediction to support individual patient management, 
observational research, and recruitment to clinical trials. The NMU-Diabetes cohort provided a 
good reference for analyzing the risk of CVD in diabetic patients in China’s eastern developed 
regions (according to China’s 2021 census data, which accounts for 40% of China’s total 
population). In contrast, in the study of the prediction of cardiovascular disease risk in people 
with type 2 diabetes mellitus, many existing works have studied the performances of the 
models established in Western countries in China, but few studies have tried to do it in reverse. 
Therefore, our work provides a new attempt to leverage huge clinical data in China to help to 
reduce health inequalities in other countries.

Third, we provide two models to better predict patients’ risk of CVD according to their visiting 
history. The basic model of CVD risk prediction tries to eliminate bias caused by differences in 
test results between different hospitals. Due to China’s current medical system, patients are free 
to choose hospitals, and their medical test results might have a high missing rate. Furthermore, 
there is also a lack of high-quality guarantees for the comparability of the results of medical 
tests between different hospitals because of the insufficient level of medical development. 
For example, in the 2020 Nanjing Medical Laboratory Intermural Quality Assessment, it was 
found that some hospitals’ cholesterol-related test results could not meet the relevant quality 
standards. Meanwhile, we provide an extended model that incorporates test results to provide 
more accurate risk prediction for patients who visit one hospital commonly and do medical tests 
in the same hospital. Compared with the existing equation for cardiovascular risk, the extended 
model allows more accurate quantification of risks for individual patients by incorporating 
important additional clinical conditions (including clinical diagnoses, clinical values, and drug 
use such as rheumatoid arthritis, chronic kidney disease, hypertension, antihypertensive 
medications, lipid-lowering medications, etc.).

4.2 PREDICTORS INCLUSION AND EXCLUSION

According to the information available in the routinely collected data set, we retained as many 
predictors used by existing algorithms (QRISK2, ADVANCE, PCE, Swedish NDR, etc.) as possible. 

We have produced two main final models: the basic model, which includes age, sex, clinical 
diagnoses, and drug-use factors that may be more suitable for patients admitted for the first 
time, and the extended model, which includes smoke status and biomarkers (eGFR, albuminuria, 
systolic blood pressure, LDL cholesterol, HbA1c) after multiple imputations for missing data 
that may be more suitable for patients who often visit the hospital where longitudinal repeated 
biomarkers values are likely to be available.

Although adopted in many risk score studies, predictors such as BMI, family history of CVD, and 
economic status were not included in the candidate predictors of this study. BMI is excluded 
as a risk factor because of the limited number of records in CDR (only 405 records) and their 
high values (mean ± SD 36.89 ± 8.59 kg/m2) suggesting biased recording. Few other hospitals in 
China record BMI limiting its value as a predictor. Although family histories of CVD were recorded 
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in more than 50,000 patients’ admission notes in Chinese text, the structured results of family 
history require special complicated natural language processing and are not available in this 
study. Socioeconomic status is excluded as a risk factor because it was totally not recorded in the 
EHR system. Although some existing work determined the economic status of patients through 
self-report or zip code matching, it is not suggested in the EHR standard in China until now. 

4.3 COMPARISONS WITH THE LITERATURE

Hemoglobin AIC had a statistically negative correlation with incident CVD in the NMU-Diabetes 
cohort similar to the association reported for women in the five-year CVD risk prediction study 
in Hong Kong. For example, in Model 1 proposed by the Hong Kong Cohort Study [26], the 
hazard ratio for Hemoglobin AIC was 0.73 [0.63, 0.85] in women and 1.25 [1.09, 1.42] in men. 
In contrast, Hemoglobin AIC is positively associated with CVD risk in people with type 2 diabetes 
in Scotland [20], the United States [27], and the United Kingdom [28, 29]. Further research is 
required to investigate potential explanations for this discrepancy, which may be related to the 
duration of diabetes that can be difficult to establish in the absence of regular screening.

In terms of the effects of drug use on CVD risk, the effects of lipid-lowering drugs are consistent 
with existing studies [26, 30]. Statin prescription at diagnosis of diabetes (12.53%) appears 
to be low in NMU cohort compared to that (30.53%) in the Scottish cohort. Mean LDL in the 
whole NMU cohort and the subcohort with a diagnosis of hypertension are 3.39 and 3.39 
mmol/L, respectively, considerably higher than 2.84 and 2.66 in comparable Scottish groups. 
In contrast, prescribed statins prior to diabetes diagnosis became a protective factor (OR 0.934 
[0.798–1.093] in the basic model and 0.969 [0.827–1.135] in the extended model) among the 
subcohort of patients with complete data. Patients with complete data visited the medical 
center more than other patients, and the incidence rate (36.32% ) of the subcohort is much 
higher than the whole cohort (18.63% for female and 22% for male). According to ‘2017 China 
Diabetes Prevention and Control Guidelines [6],’ high risk is adults with one or more of the 12 risk 
factors, such as older than 40 years, hypertension or undergoing antihypertensive treatment, 
and dyslipidemia or receiving lipid-lowering therapy. Target LDL-C for people with diabetes is 
less than 2.6 mmol/L, which is much lower than the values observed result in the NMU cohort. 
The proposed risk score in this paper could potentially be used to target prescribing of statins to 
people at particularly high risk of CVD. 

In some existing research, hypertension-related predictors are defined in different ways. For 
example, treated hypertension (diagnosis of hypertension and treatment with at least one 
antihypertensive drug) was combined as one predictor in QRISK3 and resulted in adjusted ORs 
of 1.66 [1.60–1.73]. Systolic blood pressure of ≥150 mm Hg and diastolic blood pressure of ≥90 
mm Hg were used as two predictors in research using cohorts from the First Affiliated Hospital 
of Zhengzhou University, Henan, China [17]. In the NMU-Diabetes cohort, 7,225 patients with 
hypertension diagnosis were not taking antihypertensive drugs in one year. Accordingly, the 
diagnosis of hypertension and antihypertensive drug prescription was used as two separate 
predictors on the basis of advice from clinical experts. In both models, the diagnosis of 
hypertension was a risk factor, and antihypertensive medicine prescription was a protective 
factor. This suggests that in patients with diabetes mellitus complicated with hypertension, 
antihypertensive drug therapy has a significant protective effect on reducing the risk of CVD. 

Chronic kidney disease–related risk factors like albumin-to-creatinine ratio, albuminuria 
(normal, micro, macro), urine creatinine, and estimated glomerular filtration rate (eGFR) act as 
positive or negative risk factors in different subcohorts. Among the patients in three subcohorts 
in the derivation cohort with no missing albuminuria, with no missing estimated glomerular 
filtration rate, or with no missing LDL cholesterol, incidence rates of five-year CVD are, 
respectively, 29.5%, 30.5%, and 41.4% higher than the incidence of the whole NMU-Diabetes 
cohort. All of them showed positive risk OR adjusted by age and gender. Among the subcohort 
for patients without prescribed statins used prior to diabetes diagnosis and the subcohort for 
the person with complete data for all predictors, LDL cholesterol showed a negative risk effect, 
and estimated glomerular filtration rate remained a positive risk predictor. The adjusted hazard 
ratio of chronic kidney disease stage (defined by eGFR value range) was presented in gender-
specified extended mode, in line with other published studies. So the chronic kidney disease 
stage (defined by the eGFR value range) is suggested to be used in risk prediction instead of the 
values of LDL cholesterol.
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4.3.1 Overall performance

Differences in follow-up time, cohort size, and CVD definition make it difficult to make direct 
comparisons with previous similar studies, and the performance of our model was similar to 
previous models. For example, the C-statistic for internal validation of the China-PAR Project 
(Prediction for ASCVD Risk in China) 10-year ASCVD risk prediction model was 0.794 [0.775–
0.814] [31]. In a study from Hong Kong [30], a five-year ASCVD risk prediction model had a 
C-statistic of 0.705 [0.693, 0.716] in internal validation. The definition of CVD in the Hong Kong 
cohort was similar to ours, but the sudden death for unknown reason was also included in 
the outcome. Previous validation of risk scores developed in populations of European ancestry 
among Chinese populations have only shown moderate performance, even after recalibration 
leading to recommendations that ethnic-specific risk scores are developed [32–34]. 

When we evaluate the performance of some existing models using similar outcome and 
similar predictors available in the NMU cohort, the ACC/AHA Pooled Cohort Equations (PCE for 
white and PCE for Africa), ADVANCE, Swedish NDR, and QRISK2 all did not perform very well in 
the deviration cohort. All of them underestimate the CVD risk of patients in the NMU cohort. 

4.4 DIFFERENCES IN RISK OF CARDIOVASCULAR DISEASE DEMONSTRATED IN 
EXTERNAL VALIDATION

As expected, we needed to recalibrate our CVD risk model as part of the external validation. The difference 
in the rate of CVD between the two cohorts is more than 14%. It might be caused by the difference in 
the cohort data sources. The NMU-Diabetes cohort collected the data from a tertiary hospital in Jiangsu 
province. The patients in the hospital are more serious than those in other hospitals in Nanjing. Patients of 
this cohort showed moderate adherence, and some patients cannot maintain regular visits to the hospital. 
The SCI-Diabetes cohort is populated by patient data from primary care and hospital diabetes clinics. The 
incidence rate of CVD in the SCI-Diabetes cohort decreased 7.3% because of their years of effort to control 
CVD risk in diabetes. Furthermore, we noted that the component of the composite outcome differed in 
the NMU and Scottish cohorts. In the NMU-Diabetes cohort, the proportion of the outcome made up by 
coronary disease not further specified is 29.92%, which is much higher than in the Scottish cohort (10.2%). 

4.5 LIMITATIONS

Key limitations of the NMU-Diabetes cohort were limited data on BMI and socioeconomic 
status, which meant that these could not be included in the risk models. The proportions of 
missing data for biochemical predictors, such as systolic blood pressure and LDL cholesterol, 
were higher in the NMU-Diabetes cohort than in the Scottish cohort. But both the basic model 
and extended model derived from the cohort with data after imputation performs better than 
those from the cohort without missing data. Risk prediction based on patient medication 
records and related blood test results still yielded adequate performance of the risk score. The 
data were obtained from a single hospital and therefore may not be representative of the wider 
population. We will try the validation of different hospitals in China in future work.

4.6 CLINICAL IMPLEMENTATION

The results of this study can be easily embedded into existing electronic clinical systems to support 
clinician decision-making. It also provides an example of how to use the routinely collected clinical 
data to create useful prediction models for chronic disease complications. There are some patients in 
whom the proposed models should not be calculated, including patients who were diagnosed as type 
2 diabetes and type 1 diabetes at different times, and those with preexisting cardiovascular disease. 

The study results further suggest the importance of multicenter clinical electronic medical record 
integration, and we recommended that patients’ smoking status and BMI be systematically 
collected and recorded in a more useful format than free text in the EHR in China. Further 
research is needed to establish whether the wider use of risk scores improves the quality of care 
and outcomes for people with diabetes. The external validation will provide a reference for the 
treatment of patients with type 2 diabetics, and maybe with rare subtypes of diabetes if the risk 
models based on a big population in China perform well in other ethnic groups. 

In conclusion, we developed a five-year CVD risk model in Chinese people diagnosed with type 
2 diabetes based on a large, retrospective cohort study in a population treated in tertiary care. 
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The risk score performed moderately well in both internal and external validation. We conclude 
that although there is scope to further improve risk scores for incident CVD among people with 
type 2 diabetes, Chinese databases have the potential to provide a valuable source of data for 
the development of future risk scores for populations from diverse ethnic groups.
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