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There are many challenges involved in online participatory humanitarian response. We 
evaluate the Planetary Response Network (PRN), a collaboration between researchers, 
humanitarian organizations, and the online citizen science platform Zooniverse. The 
PRN uses satellite and aerial image analysis to provide stakeholders with high-level 
situational awareness during and after humanitarian crises. During past deployments, 
thousands of online volunteers have compared pre- and post-event satellite images to 
identify damage to infrastructure and buildings, access blockages, and signs of people 
in distress. In addition to collectively producing aggregated “heat maps” of features 
that are shared with responders and decision makers, individual volunteers may also 
flag novel features directly using integrated community discussion software. The 
online infrastructure facilitates worldwide participation even for geographically focused 
disasters; this widespread public participation means that high-value information can be 
delivered rapidly and uniformly even for large-scale crises. We discuss lessons learned 
from deployments, place the PRN’s distributed online approach in the context of more 
localized efforts, and identify future needs for the PRN and similar online crisis-mapping 
projects. The successes of the PRN demonstrate that effective online crisis mapping is 
possible on a generalized citizen science platform such as the Zooniverse.
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INTRODUCTION

During and after a natural disaster or other humanitarian 
crisis, there is a need for real- or near-real-time information 
about an affected area. The informational needs of 
responders,1 decision makers, and other stakeholders on 
the ground often fall under the broad term “situational 
awareness.” These needs pertain to key information about 
features in the environment that inform decision making at 
all levels. It is often the case that a relatively small group of 
responders has an urgent need for accurate, reliably sampled 
information concerning a large area of interest (AOI). In 
the digital age, ample relevant data frequently exists but 
responders often lack the additional resources required 
to extract this information themselves (Tapia and Moore 
2014). This tension between a flood of data and a trickle 
of resources is familiar to many citizen science practitioners 
(Bonney et al. 2009; Wiggins and Crowston 2011).

There are many types of crowdsourced responses to 
humanitarian crises, from locally driven efforts (e.g., Dailey 
and Starbird 2014; Brown et al. 2016) to those that filter 
SMS messages (Munro 2013) and social media (Hughes and 
Palen 2009; Popoola et al. 2013) and those that involve both 
local and remote participants (Rehman Shahid and Elbanna 
2015; Dittus, Quattrone and Capra 2017). This work focuses 
on the application of distributed online citizen science 
principles and methods to the creation of humanitarian 
maps, sometimes called crisis maps (e.g., Ziemke 2012; de 
Albuquerque, Herfort, and Eckle 2016), based on analysis of 
satellite imagery. Specifically, this paper offers a case study 
of the Planetary Response Network (PRN),2 which since 
2014 has provided rapid, accurate, high-value situational 
awareness to responders and decision-makers in a 
disaster context. The PRN is run as a partnership between 
the Zooniverse, computer science researchers, and 
humanitarian response and resilience organisations. In the 
generalized citizen science project typology of Parrish et al. 
(2018), the PRN is a “data generated: active participation: 
virtual: multiple independent classifications” project type. 
Within the Disaster Research Center (DRC) typology (for 
a recent review of this typology, see Strandh and Eklund 
2018), the PRN blends aspects of both the Extending and 
Emergent types of disaster response organizations. It is an 
online, distributed project that, within a recently-described 
geographic citizen science framework (Skarlatidou and 
Haklay 2021), uses participatory design principles to capture 
volunteered geographic information (VGI) in a generalized 
(i.e., not purely geographic) web application interface.

The field of online distributed humanitarian mapping 
is relatively new and still evolving (Meier 2011, 2012; 
Ziemke 2012; Sharma and Joshi 2019; Turk 2020). 
Assessments following the 2010 earthquake in Haiti (e.g., 

Zook et al. 2010; Harvard Humanitarian Initiative 2011) 
and subsequent disasters have shown both the promise 
of crowdsourced crisis mapping and its challenges. For 
example, Westrope, Banick, and Levine (2014) analyzed 
the OpenStreetMaps response to Typhoon Haiyan 
and found that the rapid assessment was valuable to 
responders but was limited by inaccurate labels, lack of 
participant training, and uneven coverage of the AOI. More 
generally, some of the challenges of online crisis mapping 
are relatively specific to that application, such as the lack 
of shared technical language between project teams and 
responders; competing priorities for security, privacy, and 
publicity; and the psychological toll that participation in a 
project may take on its volunteers (Ziemke 2012; Liu 2014). 
Other challenges, such as data verification and reliability 
(Haklay 2013; Kosmala et al. 2016; Parrish et al. 2018) and 
boundary issues between different involved groups (Shirk 
et al. 2012; Oswald 2020), have found multiple solutions 
in the broader realm of citizen science. In many cases, 
these solutions were known to citizen science practitioners 
prior to the mainstream emergence of online distributed 
humanitarian mapping (e.g., participant training, label 
aggregation and validation, and uniform data coverage; 
Lintott et al. 2008). Blending best practices from both fields 
is thus of high potential value to each.

The PRN is slightly different from other crisis-mapping 
efforts (e.g., Ushahidi, Humanitarian OpenStreetMap), in part 
because it runs on the Zooniverse citizen science platform 
instead of a platform built specifically for mapping. As such, 
it must approach the mapping aspect of deployments 
slightly differently, but it benefits from more than a decade 
of lessons learned regarding citizen science project design, 
data quality, and community engagement. It also benefits 
from exposure to the Zooniverse community of over 2 million 
registered participants. The choice of platform enables the 
PRN to complement, rather than compete with, existing crisis-
mapping efforts. This case study aims to describe the project 
design, present its deployment statistics, and evaluate project 
outcomes in the context of the field of distributed online crisis 
mapping, including a summary of lessons learned.

PROJECT DESIGN

The PRN has deployed multiple times for specific disaster 
responses. To date, the PRN has exclusively made use of 
satellite imagery for data assessment. Satellites provide 
verified data over large areas, which facilitates the rapid 
and broad situational analysis the PRN prioritizes. Within 
that context, we make project design choices (described in 
subsections below) that align with the technical design of 
the Zooniverse platform and with domain-specific needs.
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Deployments of the PRN also adhere to best practices 
in citizen science (e.g., Lintott and Zooniverse 2010; 
Gold 2019); projects must have a genuine and beneficial 
outcome whose goal can be expressed in advance. In a 
disaster relief context, while outcomes may include, for 
example, providing training data for machine learning 
algorithms (Isupova et al. 2018; Weber and Kané 2020), 
the primary goal of providing useful information to improve 
situational awareness necessitates that the PRN include 
partners on the ground. Co-creating crisis maps with local 
stakeholders is a critical step to prevent the abstraction 
of digital humanitarian projects from those they affect 
(Mulder et al. 2016).

While the specifics of the PRN pipeline have evolved over 
time, they generally involve three phases: (1) a planning 
phase, in which all parties consult, gather available data, 
and decide on urgent situational awareness needs; (2) a 
crowd labeling phase, in which volunteer classifiers assess 
available imagery (typically answering questions about and 
marking features on images); and (3) an analysis phase, in 
which crowd labels are aggregated to produce a consensus 
result and feature assessments are produced. These phases 
may be repeated several times during a single deployment 
as more data becomes available and/or response needs 
evolve. Following each analysis phase, the PRN produces a 
“heat map” for each feature of interest and delivers these 
to responders. In addition to the post-analysis heat maps, 
the involvement of the crowd facilitates rapid identification 
of unexpected features that impact situational awareness. 

Once a deployment is complete, the PRN organizational 
team meets to discuss successes, failures, and near-
failures, so that we learn from these and improve our future 
pipeline. Many of the lessons learned discussed below 
crystallized from these post-deployment self-assessments.

PLANNING PHASE
When a disaster is imminent or has just occurred, PRN 
partners consult with each other to decide whether a 
deployment is appropriate. For the PRN deployments to 
date, our primary domain-expert partner was Rescue 
Global, a UK response and resilience charity that operates 
worldwide.3 Rescue Global’s work includes search and 
rescue activities as well as liaising with local governments 
and stakeholders.

The advance relationships Rescue Global builds on the 
ground with local governmental and community-based 
organisations are crucial to the project. Given that many 
disasters strike communities in the global south, the need 
for local partnerships is especially critical for a response 
effort (such as the PRN) whose members are primarily from 
the global north. Rescue Global’s ongoing partnerships have 
included organisations such as the Caribbean Disaster and 
Emergency Management Agency (CDEMA) and the Mexican 

Jewish non-profit Cadena, which operates local branches 
throughout Central and South America. These larger 
nonprofit partnerships have also facilitated relationships 
with individual communities in these and other regions, 
which helps Rescue Global communicate local priorities to 
the PRN team at all stages of a deployment. By partnering 
directly with a single organization whose expertise 
includes cultivating multiple local relationships, the PRN 
team can maximize the chances that a deployment will 
appropriately address the needs of affected individuals 
and communities, while minimizing the costs and risks of 
developing separate relationships from a remote position. 
The necessity of involving local stakeholders is echoed by 
many studies of geographical citizen science projects (e.g., 
Hecker et al. 2019; Skarlatidou and Haklay 2021).

For each PRN deployment, once Rescue Global confirms 
they will deploy to the region and would benefit from 
improved situational awareness, the other partners 
begin assessing imagery data availability. Satellite data 
availability can be a complex landscape. Some data is fully 
open, such as that from NASA’s Landsat or ESA’s Sentinel 
constellations. Higher-resolution imagery often comes 
from commercial providers, which may have their own 
humanitarian data programs and may also participate in 
the International Disasters Charter.4

The date and resolution of available data varies, 
impacting deployment planning. Satellite imagery is 
typically not available for at least 24 hours after a disaster, 
and this can increase due to tasking delays, orbital patterns, 
and weather. Long delays can force deployment priorities to 
shift. The resolution of available data affects the labels that 
can be reliably collected (Battersby, Hodgson, and Wang 
2012; See et al. 2013; de Albuquerque, Herfort, and Eckle 
2016) and the speed of collection. Considering the needs of 
the responders and local decision-makers in the context of 
evolving data availability is critical to ensuring the relevance 
and utility of crisis maps (Ziemke 2012; Turk 2020).

The assessment time for satellite imagery also depends 
on the complexity of the features being assessed. Citizen 
science projects across all disciplines must consider 
tradeoffs between labelling speed and the level of detail 
captured. For example, collecting binary responses about 
an image is fast but sacrifices considerable detail compared 
with drawing individual polygons around each feature. For 
the PRN, the needs of responders and local stakeholders, 
not academic researchers, take priority in project design. 
Responders are accustomed to operating with “good 
enough” information (Tapia and Moore 2014), and generally 
do not require highly granular maps, especially in the early 
days of a response. PRN deployments have thus generally 
asked volunteer classifiers to label features with point 
marks, as this prioritizes the speed of classification while 
sacrificing precision at a level acceptable to responders. 
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This choice deliberately places responders’ immediate 
needs above the future needs of our computer science 
partners who use PRN damage labels to train machine 
learning algorithms between live deployments.5

The processing of satellite imagery is also part of the 
planning phase. PRN leadership procures available data, 
decides which datasets to use for a given deployment, 
and assembles geo-referenced pre- and post-event image 
mosaics. Ad-hoc decisions are often required to optimize 
tradeoffs between cloud cover, image quality, and imaging 
date, given sparse time-sampling of the AOI in both pre- 
and post-event imagery. Following assembly and resolution 
matching of pre- and post-event mosaics, the images are 
tiled into matched sections of a manageable size for data 
labeling. Typically, the mosaic is sliced into square sub-
images of 500 to 600 pixels on a side, which will be assessed 
by volunteer classifiers via the web and mobile devices 
(described further below). For high-resolution imagery, the 
data labels are collected on image subsections as small as 
150 m × 150 m, whereas for medium-resolution imagery, 
this can be as large as 6 km × 6 km. All image subsections 
are large enough to provide useful context for damage 
assessments.

CROWD LABELING PHASE
The Zooniverse is the world’s largest online crowdsourcing 
platform for citizen research. For a detailed glossary of 
Zooniverse terms and infrastructure description, we refer 
the reader to Simpson, Page, and De Roure (2014). In 
the PRN, Zooniverse volunteers typically classify paired 
pre- and post-event image subsections as a single unit of 

data; we refer to these image pairs as “subjects” below. A 
completed collection of tasks that each volunteer classifier 
is asked to submit within a workflow for each subject is 
called a “classification.”

Like most Zooniverse projects, the PRN collects 
multiple classifications per subject. Aggregating multiple 
independent classifications addresses many data quality 
challenges identified within citizen science generally 
(Haklay 2013; Parrish et al. 2018) and in Earth Observation 
and crisis mapping specifically (Harvard Humanitarian 
Initiative 2011; Liu 2014; Westrope, Banick, and Levine 
2014; Fritz, Fonte, and See 2017). The minimum number 
of classifications the PRN collects per subject and workflow 
is generally at least 10. Subjects are served randomly to 
volunteer classifiers from within a set of subjects. Our 
design choices contrast with those of other crisis-mapping 
projects, which allow users to choose their own map 
location and to submit highly detailed labels. Our choices 
are designed to facilitate rapid, uniform coverage of the 
entire AOI and to deliver initial results to responders as 
quickly as possible at their required level of precision.

Figure 1 shows a PRN project screenshot of the 
classification interface, with both mobile and web 
examples. For deployments where available data may be of 
variable quality across an AOI, we have found best results 
with a combination of workflows that filter the subjects in a 
cascading fashion. Volunteers first assess whether images 
are classifiable (defined as having land visible). Only 
subjects with a majority of “Yes” responses are added to the 
feature-marking workflow. One advantage of splitting the 
workflow is that the Yes/No workflow can also be deployed 

Figure 1 Example web (left) and mobile (right) interface for Zooniverse Planetary Response Network projects. Left: Image shown: Barbuda, 
September 2017. Right: Image shown: Bahamas, September 2019. Satellite imagery credit: Maxar Technologies’ Open Data Program.
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in the Zooniverse mobile app, whose interface facilitates 
rapid classification. Separating the project into multiple 
workflows thus optimizes for overall speed of classification 
without sacrificing coverage completeness. Classifiers also 
tend to find this structure more satisfying than in early PRN 
deployments where feature marking workflows included 
high fractions of unclassifiable images. Classifiers may 
access additional resources for help (Katrak-Adefowora, 
Blickley, and Zellmer 2020) on either a specific task or on 
the overall project. The Field Guide feature, available for all 
workflows, allows classifiers to see multiple examples of 
the different types of labels.

When further data becomes available, the crowd 
labeling phase may continue with additional rounds of 
imagery. The project organizers announce each image 
set to participants in the project’s community discussion 
area, Talk; if additional attention is required, the Zooniverse 
team may also send a newsletter to the existing project 

community or a wider Zooniverse audience. We have 
sustained high levels of engagement over several weeks 
owing to newsletter campaigns and regular data releases. 
Each deployed Zooniverse project remains active until the 
PRN partners decide the crowd labeling phase is complete. 
As soon as participants classify the first image set, the 
analysis phase of the PRN begins.

ANALYSIS PHASE
In the analysis phase, we derive consensus from individual 
labels by volunteer classifiers. This aggregation step 
accounts for individual variations in assessment styles and 
minimizes the impact of the small fraction of classifications 
that contain errors (Lintott et al. 2008; Simmons et al. 
2017) by resolving disagreements among the crowd and 
arriving at a high-confidence final label set.

In past deployments, individual labels have been 
aggregated using the Independent Bayesian Classifier 

Figure 2 Heat maps for labeled features in Dominica following Hurricane Maria in 2017. Web-based maps may be zoomed in to show 
further detail. Satellite imagery credit: Planet Team (2017) License: CC-BY-SA.
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Combination (IBCC) machine learning algorithm (Simpson 
et al. 2013; Ramchurn et al. 2016). This algorithm calculates 
the reliability of each classifier and combines their labels 
into a single map by weighting each classifier contribution 
according to their reliability. The IBCC algorithm is 
unsupervised, that is, no ground-truthing (physical and/or 
expert verification of feature labels) is required to produce 
the crisis maps. However, if expert labeling is available, 
then the algorithm can fold these into the maps as ground-
truth.

The aggregation incorporates individual point-marked 
labels for each feature type, as well as blank marks where 
a classifier indicated there was no feature of interest in the 
image. The aggregated labels are then turned into heat 
maps for each feature type. A heat map is a color-coded 
overlay on the satellite image. Figure 2 shows an example 
of heat maps provided for Dominica following Hurricane 
Maria in 2017, based on medium-resolution imagery from 
Planet. The resolution of the heat map grid is chosen to 
reflect both the resolution of the satellite imagery and 
the level of map detail required by the responders. These 
digitized maps are bundled together and forwarded to our 
partner responders.

PROJECT DEPLOYMENT STATISTICS

The PRN has so far deployed live, time-sensitive projects 4 
times: (1) following the two earthquakes with magnitudes 
7.8 and 7.5 in Nepal in spring 2015, (2) following the 
7.8-magnitude earthquake in Ecuador in April 2016, (3) 

following Hurricanes Irma and Maria in the Caribbean 
in autumn 2017, and (4) following Hurricane Dorian in 
autumn 2019. We have also prepared other projects that 
did not deploy (i.e., they never entered the crowd labeling 
phase described above). Projects may fail to deploy for a 
number of reasons, including changes to ground access 
granted by local governments and revised estimates of 
event severity (e.g., a hurricane that changes course or 
dissipates). We choose to focus here on the two most 
recent deployments of the PRN, as these projects exemplify 
the general properties of PRN deployments while being 
similar enough to each other to facilitate comparison.6

Quantitative and technical details for the PRN Caribbean 
deployments are given in Appendix 1. The two projects 
jointly collected over 1 million individual classifications 
from thousands of online participants. Figure 3 shows 
classifications collected over time from logged-in and not-
logged-in participants for both deployments.

In both projects, Rescue Global joined the PRN team 
as on-the-ground partners. In the 2019 deployment 
responding to Hurricane Dorian, we also partnered with 
24 Commando Royal Engineers, a unit of the British Army’s 
Royal Engineers who provide military engineering support 
to 3 Commando Brigade Royal Marines and who had 
additional assessment needs (see Supplemental File 1: 
Appendix 1).

Rescue Global has good relationships with multiple 
governmental and non-governmental organizations 
(NGOs) active in the Caribbean region. As a result, the 
heat maps provided by the PRN had wide reach during 
both deployments. The maps were delivered to more 

Figure 3 Classifications over time for Planetary Response Network Caribbean deployments (2017, left; 2019, right). Classifications 
from logged-in participants are shown in purple; classifications from not-logged-in participants are added in light green, such that the 
combined hourly histogram shows overall classification totals. Upper panels show the daily fraction of classifications from logged-in 
participants.
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than 60 NGOs, the UN, and the Caribbean Disaster 
Emergency Management Authority (CDEMA). Below we 
analyze deployment outcomes and critically evaluate the 
PRN to extract several generalized lessons that may be 
learned from this case study of online citizen science for 
humanitarian aid.

EVALUATING PROJECT OUTCOMES

There are many relevant lenses through which to assess the 
outcomes of the Planetary Response Network. Some are 
purely related to citizen science, while others additionally 
consider our humanitarian objectives. Below we evaluate 
the PRN in the contexts of its success in engaging the 
crowd, the nature of that crowd, the speed of delivery of 
heat maps, the quality of the data delivered, and evidence 
of actual use of the maps in the field. We also comment on 
the process of assessing and learning from failures.

ENGAGEMENT BY, AND WITH, PLANETARY 
RESPONSE NETWORK PARTICIPANTS
The overall number of classifiers who participate in a given 
Zooniverse project can vary from hundreds to hundreds of 
thousands. Given the duration of each PRN deployment, the 
fact that thousands of people have participated represents 
a strong level of participation compared with other short-
duration Zooniverse projects. In general, the success of a 

Zooniverse project is related to both project design and 
volunteer engagement, rather than project duration (Cox 
et al. 2015).

The project statistics (see Supplemental File 1: Appendix 
1) are also typical of healthy Zooniverse projects. The 
classification activity over time (Figure 3), while more varied 
than a typical Zooniverse project, is within expectations 
for a project with time-sensitive data and staggered data 
releases (Spiers et al. 2019). The fraction of classifications 
submitted by logged-in participants is approximately 85% 
throughout both projects, which is also within normal 
ranges for successful Zooniverse projects (Cox et al. 2015).

The Talk discussion area, where participants can engage 
more deeply via open-ended discussions and by tagging 
interesting subjects, is a valuable part of the Zooniverse 
ecosystem. Within the Talk area for each PRN deployment, 
about 10% of logged-in participants posted at least 1 
comment. Figure 4 shows the average word count per post 
for each participant who posted on Talk. Even among those 
who choose to join the Talk discussion, participation is not 
evenly distributed: in both deployments, approximately 
half of participants who posted on Talk posted a single 
comment, with a majority (68% and 77% in the 2017 
and 2019 deployments, respectively) posting 3 or fewer 
comments.

The nature of Talk comments varied, from single-word 
notes tagging an image snapshot with a hashtag (including 
unexpected features of interest not captured by the main 

Figure 4 Average length of Talk discussion posts for each participant versus their post count, for Planetary Response Network (PRN) 
Caribbean deployments. Volunteer participants are shown as purple circles and PRN organizational team members are shown as green 
squares.

PRN Dorian (2019)PRN Irma/Maria (2017)
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classification interface) to lengthy posts with discussion, 
comments, and suggestions. The PRN leadership also 
posted regularly, using Talk to update participants 
with descriptions of new image datasets and sharing 
preliminary heatmaps and feedback from responders. As 
in many Zooniverse projects, we observed trickle-down 
training occurring on Talk, in which advice and tips initially 
shared by the project organizers were subsequently shared 
by other participants in response to common inquiries from 
less experienced classifiers.

The Talk environment also allowed us to directly address 
the risk of participant burnout and secondary trauma 
inherent to online crisis-mapping projects (Ziemke 2012). To 
alleviate these risks, the PRN lead created a section of Talk 
explicitly for taking breaks, and regularly reminded people 
that stepping away from the project was a healthy action 
that would not endanger those on the ground. Overall, this 
represented a small fraction of Talk interactions: it was 
more common that participants expressed sentiments of 
accomplishment and satisfaction. Still, both participant 
engagement generally and burnout prevention specifically 
are important ongoing responsibilities of teams organizing 
crisis-mapping efforts. This is a domain-specific reflection 
of the need to provide a supportive environment for all 
participants in a citizen science project (Resnik, Elliott, and 
Miller 2015; Chari, Blumenthal, and Matthews 2019).

The PRN is a virtual and distributed crisis-mapping project. 
Analytics for the landing pages on both Caribbean projects 
indicate a global reach of visitors (more than 130 countries 
represented overall). For both deployments, over 85% of 
web browser sessions originated in North America and 
Europe, which is generally consistent with overall Zooniverse 
traffic during deployment periods. More local participation 
from Caribbean countries represented less than 1% of 
browser sessions in either project; however, this fraction is 
higher than Caribbean traffic Zooniverse-wide (<0.1% to 
non-PRN projects). This difference is statistically significant7 
and reflects an increased local interest in the PRN even while 
overall participation is much more widely distributed.

Therefore, while the PRN does generate some local 
activity, it primarily provides an opportunity for a global 
community to meaningfully contribute to a humanitarian 
aid effort, even (and possibly especially) when its members 
are too far from the affected area to offer help in person. 
This complements humanitarian crowdsourcing projects 
that are more “ground up” in their origins: whereas 
those projects often provide highly localized and detailed 
individual information, the PRN can provide rapid and 
uniform coverage of a large affected area at a broad 
level of detail suitable for responders seeking to inform 
their initial and ongoing allocation of resources. This 
complementarity reflects the similarities and differences 

of these two approaches. Specifically, both ground-
up and top-down crowdsourced crisis-mapping efforts 
often strive to improve knowledge of a specific disaster 
by blending VGI with traditional sources of geospatial 
information (Zook et al. 2010), without placing the burden 
on responders to become experts in either. Locally driven 
efforts often harness high levels of relevant local factual 
and cultural knowledge (Goodchild and Glennon 2010) 
that complements the humanitarian skills of response 
organizations (Strandh and Eklund 2018). In contrast, the 
more distributed online projects allow anyone to participate 
regardless of whether they have the resources or skills to 
join a locally organized effort. A distributed project such 
as the PRN, which is hosted on an established citizen 
science platform, also has access to a high fraction of 
participants with significant prior experience participating 
in citizen science, which facilitates accurate label collection 
and aggregation. Furthermore, the PRN team includes 
members with substantial experience running citizen 
science projects, which allows us to translate between our 
citizen science community and our responder partners. 
This significantly alleviates boundary issues when planning 
and deploying a response. We stress, however, that it is 
extremely important for a distributed project such as ours 
to continually center local needs and priorities, including 
sharing results with local communities (e.g., Mulder et al. 
2016) as soon as it is safe to do so.

DATA QUALITY AND DELIVERY SPEED
The need for high-quality image labels was a key motivator 
for hosting the PRN on the Zooniverse. The platform 
is designed to enable high-quality data collection via 
proven methods such as collecting multiple independent 
classifications per subject (Kosmala et al. 2016; Parrish et 
al. 2018). Ensuring data quality is also a factor in ethical 
considerations in citizen science (Resnik, Elliott, and Miller 
2015). Zooniverse projects have produced data labels 
whose quality matches and even exceeds that of a single 
expert (e.g., Lintott et al. 2008; Swanson et al. 2015). 
Additionally, the aggregation method we use is able to 
reduce the effect of noisy inputs from individual classifiers 
and account for individual skill levels in reaching consensus. 
This is especially important as ground-truthing is generally 
not available in advance, which makes precise calibration 
challenging. We thus rely on feedback from the field to 
regularly assess the quality of our heat maps.

There are several potential bottlenecks to delivering 
heat maps rapidly enough to be of use to responders. 
These include: 

•	 Domain Expertise: Humanitarian crisis mapping is 
inherently multi-disciplinary (Ziemke 2012), and several 
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types of expertise are required to successfully deploy 
all stages of the PRN. These include knowledge of 
Geographical Information System (GIS) data sources 
and formats, disaster response and resilience, data 
science and statistical methods, and citizen science 
project design.

•	 Data Availability: Satellite and/or aerial imaging data 
may be unavailable for several reasons. Some of these 
are outside the project team’s control: tasking delays, 
weather issues, and corrupted data may all mean that 
needed data is either unavailable or severely delayed.

•	 Data Access: Image data may exist, but not be 
accessible to the project team. Obstacles to data 
access can take the form of paywalls, bureaucratic 
delays, or technological problems (e.g., bandwidth 
issues).

The PRN has been able to deploy projects with very rapid 
turnaround, including initial heat map delivery just hours 
after beginning the crowd labeling phase. This deployment 
speed is possible in large part due to the work that takes 
place prior to, and in between, active project phases. 
Advance preparation is thus a key solution to all of the 
obstacles described above.

The PRN’s advance preparation alleviates the issues 
described above in several ways. We have carefully 
assembled the PRN partnership specifically to address 
the domain expertise needs of a distributed online crisis-
mapping project. These needs were identified as the 
PRN initially formed, but have been refined following 
assessments of successes and failures of deployments. 
Some of the PRN partnership assembly has included 
negotiating and building relationships with partners; other 
aspects have involved training existing team members 
in new skills, developing new features on the Zooniverse 
platform that are useful to the PRN, and documenting end-
to-end procedures and guidelines for all phases of PRN 
deployment. These procedures have enabled us to redirect 
crowd attention to alternative workflows when post-event 
data is scarce. Pre- and post-event data has sometimes 
been available to the PRN days before the same data is 
made openly available owing to previously established 
partnerships with commercial satellite companies.

We therefore strongly agree with the findings of other 
studies (e.g., Harvard Humanitarian Initiative 2011; Liu 
2014) that preparation is critical to a successful crisis-
mapping deployment. We would also note a need to 
inform preparation with the need to be flexible for each 
deployment. This is consistent with the idea that advance 
preparation must prioritize “articulation” work (Hughes 
and Tapia 2015), which develops means of inter- and intra-
organization information exchange so that this flexibility 

is possible during time-critical periods without sacrificing 
efficacy.

Open data is a major benefit to crisis mapping. However, 
improvements are possible in this area. While some 
sources of satellite data are technically open, they are not 
always open in a way that actually encourages their use. 
Since the PRN was created, we have encountered various 
issues with “open” data that have measurably slowed 
active deployment efforts. These have included restricted 
bandwidth for downloads of uncompressed GeoTIFF 
image tiles, previously open image search tools becoming 
paywalled with little or no notice, and unsearchable image 
lists presented in raw form with no separate geographic 
metadata available.

The best implementations of open data have allowed 
us to save hours or days in the planning phase of the 
PRN. For example, humanitarian users of Planet8 data 
have access to the full commercial search and download 
area of the Planet website and API, which significantly 
streamlines data acquisition. Additionally, Amazon Web 
Services’ Open Data program hosts a copy of processed, 
mosaiced ESA Sentinel-2 image data with no restrictions 
on transfer bandwidth.9 This additionally facilitates GIS 
image processing in the cloud, which can save further 
time during live deployments. If more sources of satellite 
imagery took similar approaches in the future, this would 
encourage more rapid and more successful crisis-mapping 
projects, including but not limited to the PRN.

IMPROVEMENTS TO CRISIS RESPONSE
Ultimately, the success of a crisis-mapping project 
depends on whether it achieves its stated goals of 
positively impacting the response effort during and after a 
particular deployment. This framing encapsulates several 
of the ECSA’s ten principles of citizen science within a 
humanitarian context.

Given that every disaster is different, it is difficult to 
rigorously quantify the effect of adding a distributed crisis-
mapping effort to a disaster response. While a project 
team may be highly motivated (e.g., by academic metrics 
or funding pressure) to answer questions such as “how 
much faster will the recovery be now that heat maps are 
available?”, it is not trivial to extract this information even 
by comparing with previous disasters where the project 
did not deploy. Attempts to collect uniform quantified 
feedback in situ during an ongoing response represent a 
significant local resource demand. For a distributed project 
such as the PRN, it would be particularly inappropriate for 
the organizers to make these demands from their position 
of safety, or to risk sending personnel into an ongoing 
response for this purpose. Therefore, feedback to online 
distributed crowd-mapping efforts on the utility of crisis 
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maps is typically qualitative and often arrives after the 
most active periods of a response effort.

Evidence of improvements during the example 
deployments considered here vary. They include broad 
messaging that the heat maps provided were actively used 
on the ground to inform the ongoing effort, as well as specific 
examples. The project team collected specific qualitative 
feedback on the use of the results of the analysis phase. These 
include the use of road-blockage heat maps to optimize 
personnel allocation and more quickly restore critical national 
infrastructure, the incorporation of features flagged directly 
on Talk into flight plans for aerial assessment and evaluation 
of airstrips, and the use of building-damage heat maps to 
target priority areas for rapid ground-truth assessments and 
subsequent allocation of aid. We also received feedback that 
responders generally found maps of proportional damage 
(the fraction of structures in a given area that are damaged) 
extremely useful, especially as they worked their way to more 
isolated communities and health centers.

The above examples represent a minimum assessment 
of the utility of PRN heat maps. Rescue Global also 
distributed the maps widely to other organizations on the 
ground, and the remote PRN team did not receive feedback 
from those organizations as to whether and how the maps 
were used. Preparation for future deployments will include 
establishing contact with a wider group of organizations in 
advance, in part to facilitate end-of-response collection of 
feedback from these groups.

LEARNING FROM FAILURES
Across all PRN deployments, lessons learned from failures 
underpin the majority of our subsequent successes. As 
described in the Project Design section above, several of the 
general best practices described herein arose from specific 
challenges and failures during deployments, some of which 
occurred before those we focus on here. For example, 
prolonged cloud cover immediately following the Nepal 
earthquakes in 2015 forced the PRN to shift deployment 
priorities from damage assessment in post-event satellite 
images to prediction of locations likely to need urgent 
aid, based on comparing recent pre-event images with 
(then incomplete) existing building maps. This ad hoc 
shift subsequently improved our ability to statistically 
incorporate other sources of geographic information (such 
as earthquake severity maps) into our analysis pipeline. 
The value of preparation was further reinforced by another 
lesson from the PRN Ecuador deployment in 2016, when 
post-project reflection on deployment delays led us to 
create project templates including logos, disclaimers, and 
other boilerplate language that could be pre-approved 
by funders, enabling the team to focus on more pressing 
issues during a live deployment.

Additionally, communication with other crisis mapping 
teams and leaders has enabled us to learn from (and 
thus not repeat) external challenges. For example, early 
informal discussions with people involved in the 2010 
Haiti earthquake and 2013 Typhoon Haiyan responses 
highlighted the need to ensure our partnerships include 
local connections and underscored the interdependence 
between teams who focus on technology-driven solutions 
(such as the PRN) and more traditional, hierarchical aid 
organizations (Zook et al. 2010). Discussion with external 
crisis-mapping experts has also been considered alongside 
the PRN team’s expertise in citizen science methods to 
inform our project design. For example, the design choices 
described in the Crowd Labeling Phase section above 
reflect an intent to minimize the biases that can appear in 
VGI data following a crisis (Goodchild and Glennon 2010; 
Zook et al. 2010). All these considerations are especially 
important when organizations based in the global north 
deploy to the global south, which is common in disaster 
and humanitarian aid.

Overall, it is critically important to communicate with 
other experts and include an internal reflection phase 
following each deployment, in which the team aggregates 
both successes and failures into lessons for the next 
deployment. This should be part of the normal process for 
any crisis-mapping project.

CONCLUSION

The PRN is a distributed online crisis-mapping project that 
has deployed multiple times since its creation in 2014. The 
project approaches crisis mapping through a strong citizen 
science lens, with particular focus on global community 
engagement, data quality, and producing outputs with 
clear utility to responders, decision makers, and other 
stakeholders. This case study, which focuses on the most 
recent deployments of the PRN, has produced several 
lessons learned following evaluation of the project’s 
structure, deployments and outcomes:

•	 Distributed online crisis-mapping projects, a particular 
type of humanitarian citizen science, play a positive 
role in the digital humanitarian sphere. It is critical that 
distributed projects such as the PRN continue to center 
the requirements of local stakeholders at all stages of 
project deployments.

•	 There is a strong worldwide interest in response efforts 
following a disaster; distributed online crisis mapping 
provides an excellent way for people to help even when 
they are distant and/or cannot afford to financially 
support aid efforts.
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•	 Crisis-mapping projects such as the PRN become robust 
when end-to-end response procedures are established 
early, and the collaboration has prepared as much as 
possible in advance of deployments. With the addition 
of citizen science as a key response component, project 
design and planning become even more important to 
ensure that the project makes ethical use of participants’ 
time and contributions. Pre-established procedures must 
remain flexible to the needs of each specific deployment.

•	 While some labelling requirements vary depending 
on the type of deployment, other features (e.g., 
infrastructure damage, access blockages, signs of ad 
hoc shelters) tend to be high priorities for situational 
awareness needs across multiple types of disasters.

•	 Responders can generally tolerate more uncertainty 
in crisis maps than a purely academic study. This 
affects the design and deployment of a crisis-mapping 
project, another reason it is vital to regularly liaise with 
responders and local stakeholders.

•	 Point markings, even of extended features, are 
sufficient to flag features of interest during live 
deployments. However, these pose challenges when 
using these labels to train advanced damage-detection 
algorithms. Communication between academic 
and responder team members is critical to establish 
priorities in advance and to explore ways to alleviate 
tensions between urgency and precision that satisfy all 
parties.

•	 Discussion software such as Zooniverse Talk provides 
an important way for crisis-mapping participants to 
identify serendipitous features of interest, train each 
other in advanced feature detection, and remain 
engaged throughout a deployment. Supervision of the 
discussion by team leaders is important for guiding 
self-training as well as for identifying and intervening 
with participants showing signs of secondary 
distress. The latter is a particularly important ethical 
consideration.

•	 Feedback between remote project organizers and 
responders on the ground is often qualitative and 
anecdotal rather than quantitative or statistical, 
necessitated by practical reasons of resource allocation 
priority and risk management. Qualitative feedback 
can still be extremely useful, provided team members 
accustomed to quantitative methods adjust their self-
assessment techniques.

•	 It is immensely valuable when satellite image providers 
make their data open and easily accessible to crisis-
mapping projects. Providers can enable humanitarian 
projects to significantly improve deployment and 
response times by ensuring that their open data 
includes processed data products and that such data is 
easy to search and acquire.

These lessons may be generalizable to other crisis-
mapping efforts, particularly those that conform to the 
virtual and distributed typology of citizen science projects. 
The successes of the PRN provide evidence that online 
distributed crisis-mapping projects can be effective even 
when run on a generalized citizen science platform (such as 
the Zooniverse) not specifically designed for geographical 
citizen science. By applying best practices of citizen 
science and involving responders and local stakeholders 
at all stages of project execution, online distributed crisis 
mapping can add a valuable layer of information to 
complement purely community-based response efforts.

Looking forward, work within the PRN partnership 
continues. In particular, the team leadership is pursuing 
promising avenues for streamlining the planning phase 
using more automated image-processing techniques. We 
are also developing a machine learning pipeline, trained 
on labels provided by project participants, to provide early 
estimates of heat maps even of new geographical regions 
(Kuzin et al. 2021). This will allow responders to access 
high-value information for early resource allocation. It will 
also enable the project to direct participant attention to 
higher-level tasks, easing the tension between urgency and 
the need for detailed information. 

There is also significant potential to develop the PRN further 
to include more frequent deployments as well as longer-
term deployments. Deploying projects in partnership with 
local stakeholders to address risk reduction and resilience 
needs, for example, would enable the PRN to provide value at 
all stages of the disaster life cycle. These deployments would 
also benefit from the reduced time pressure compared with 
a response deployment, and they would allow the PRN 
community to remain active on an ongoing basis.

DATA ACCESSIBILITY STATEMENTS

Satellite imagery availability is subject to permission from 
data providers, who hold the copyright. Heat maps have 
previously been made public in PDF format for ease of 
cross-platform distribution.
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The Supplementary Files for this article can be found as follows:

•	 Supplemental File 1. Appendix: Quantitative Details 
of PRN Caribbean Deployments. DOI: https://doi.
org/10.5334/cstp.392.s1

•	 Project Data. Classification statistics and raw data 
tables for PRN Caribbean Deployments. DOI: https://doi.
org/10.5334/cstp.392.s2
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ETHICS AND CONSENT

All data used herein was collected under the Zooniverse 
privacy and data analysis policy at zooniverse.org/privacy. 
The PRN has received ethical approval from Lancaster 
University.

NOTES
1 In this manuscript, the term “responder” is used to refer to those 

who use the results of this project to coordinate and execute 
humanitarian responses on the ground in affected areas. It 
is distinct from terms such as “volunteer,” “classifier,” and 
“participant,” which refer to those who participate in the online 
citizen science project to provide individual feature labels.

2 planetaryresponsenetwork.org.

3 rescueglobal.org.

4 disasterscharter.org.

5 This tension could be alleviated by running the project, post-
deployment, in a non-urgent phase to collect more detailed labels 
that reach the precision required by computer scientists.

6 The projects we focus on here are at zooniverse.org/projects/
vrooje/planetary-response-network-and-rescue-global-caribbean-
storms-2017 and zooniverse.org/projects/mrniaboc/planetary-
response-network-hurricane-dorian.

7 Using Bayesian binomial confidence intervals and comparing PRN 
traffic to overall Zooniverse traffic during the same dates and 
during a 1-week period outside hurricane season (March 2019), we 
estimate a probability of p < 5 × 10–6 that the fraction of browser 
sessions from the Caribbean for PRN deployments is consistent 
with the fraction outside PRN projects.

8 planet.com.

9 registry.opendata.aws/sentinel-2.
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